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Abstract

The first case of COVID-19 in South America occurred in Brazil on February 25, 
2020. By July 20, 2020, there were 2,118,646 confirmed cases and 80,120 con-
firmed deaths. To assist with the development of preventive measures and targeted 
interventions to combat the pandemic in Brazil, we present a geographic study to 
detect “active” and “emerging” space–time clusters of COVID-19. We document the 
relationship between relative risk of COVID-19 and mortality, inequality, socioeco-
nomic vulnerability variables. We used the prospective space–time scan statistic to 
detect daily COVID-19 clusters and examine the relative risk between February 25–
June 7, 2020, and February 25–July 20, 2020, in 5570 Brazilian municipalities. We 
apply a Generalized Linear Model (GLM) to assess whether mortality rate, GINI 
index, and social inequality are predictors for the relative risk of each cluster. We 
detected 7 “active” clusters in the first time period, being one in the north, two in 
the northeast, two in the southeast, one in the south, and one in the capital of Bra-
zil. In the second period, we found 9 clusters with RR > 1 located in all Brazilian 
regions. The results obtained through the GLM showed that there is a significant 
positive correlation between the predictor variables in relation to the relative risk 
of COVID-19. Given the presence of spatial autocorrelation in the GLM residuals, 
a spatial lag model was conducted that revealed that spatial effects, and both GINI 
index and mortality rate were strong predictors in the increase in COVID-19 rela-
tive risk in Brazil. Our research can be utilized to improve COVID-19 response and 
planning in all Brazilian states. The results from this study are particularly salient to 
public health, as they can guide targeted intervention measures, lowering the mag-
nitude and spread of COVID-19. They can also improve resource allocation such as 
tests and vaccines (when available) by informing key public health officials about 
the highest risk areas of COVID-19.
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1 Introduction

Over the past 18  years, zoonotic coronavirus transmissions have been a global 
health concern. During that period, there were two epidemics: SARS-CoV in 
2003 in China, which spread across 30 countries in six continents and resulted in 
8098 cases and 774 deaths (9.5%), while the second being Middle East Syndrome 
Coronavirus (MERS-CoV), which started in the Kingdom of Saudi Arabia in 2012 
and spread throughout 27 countries with 2494 laboratory-confirmed cases and 
858 related deaths (Al-Tawfiq et al. 2014; WHO 2019; Aly et al. 2017). The third 
time that a zoonotic coronavirus had crossed species and infected humans was 
SARS-CoV-2 (Perlman 2020)—also called coronavirus disease 2019 (COVID-
19)–but it is the first time a coronavirus outbreak is considered to be a pandemic. 
The first case of COVID-19 in South America occurred in Brazil on February 25, 
2020. The country has a high connection with other countries through airports 
and shipping ports, especially in cities such as São Paulo and Rio de Janeiro, 
which facilitates the spread of the disease inland and in coastal regions as well as 
neighboring countries (Rodriguez-Morales et al. 2020; FIOCRUZ 2020).

By June 7, 2020, there were 691,758 confirmed cases and 36,455 confirmed 
deaths in Brazil, with a mortality rate of 5.3%. By July 20th, the figures increased 
to 2,118,646 cases and 80,120 deaths with a mortality rate of 3.8% (Brazil 2020). 
However, underreporting of deaths and lack of testing were also expected to bias 
these numbers (Alonso et al. 2020). It is generally acknowledged that the high-
est proportion of deaths by COVID-19 occur among the elderly; those with the 
most severe disease were most likely having a history of hypertension, respiratory 
disease, and cardiovascular disease (Jordan et al. 2020; Du et al. 2020). The risk 
of death among young adults is smaller than that of older adults, e.g., at most 
0.1%–0.2% (Jordan et al. 2020; Kobayashi et al. 2020); however, severe outcomes 
and deaths have also been reported among children (Deyà-Martínez et al. 2020; 
Jones et  al. 2020). Promislow (2020) reported that COVID-19 mortality rates 
tended to increase exponentially with age, while males tended to have a higher 
risk of dying across all ages.

COVID-19 has the potential to affect everyone in society; however, the virus 
affects specific segments of the population very differently, due to their vulner-
ability (Smith and Judd 2020). Although Brazil has made significant progress in 
extending a range of social protection (e.g., universal health care), there remains 
important social inequalities (Landmann-Szwarcwald and Macinko 2016). The 
poorest segment of the population is the most vulnerable, especially in the time 
of a crisis, as it is affected by unemployment, the weakening of social safety nets, 
and access to health services (Ahmed et al. 2020).

Surveillance of COVID-19 is essential to improve response and planning, such 
as allocating testing and hospital resources, and mitigating the social vulnerabil-
ity of the population. An effective public health response to the disease requires 
the ability to monitor and analyze outbreaks under critical space–time conditions. 
Space–time analytics are particularly attractive to analyze spatial data with a tem-
poral dimension (Carroll et  al. 2014; Delmelle et  al. 2011, 2014; Jacquez et  al. 
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2005; Levine 2006, Robertson et  al. 2010; Rogerson and Yamada 2008; Paez 
et al. 2020, Yamada et al. 2009), allowing to estimate the dynamics of infectious 
diseases. The prospective space–time scan statistic (Kulldorff 1997) is a widely 
used cluster detection tool in disease surveillance, which can identify areas that 
are statistically significant hotspots of disease incidence on the most current time 
period of the analysis (Allévius and Höhle 2019). The statistic determines if the 
space–time patterns of COVID-19 cases exhibit statistically significant cluster-
ing. Cylindrical scanning windows of different spatial and temporal dimensions 
are computed to systematically scan the study area and time period for more 
observed than expected disease cases. The prospective version of the scan sta-
tistic is slightly different than the retrospective version (Desjardins et  al. 2018; 
Owusu et al. 2019; Whiteman et al. 2019) because it disregards historical clusters 
that may have previously existed before the most current day of analysis (Kull-
dorff 2001).

There are many examples illustrating the use of the prospective space–time scan 
statistic. Chen et  al. (2016) designed an online analytical tool for frontline pub-
lic health workers to prospectively detect ongoing dengue fever in each village of 
Tainan and Kaohsiung transmission on a weekly basis. Tang et al. (2017) identified 
seasonal peaks and high-risk periods of measles in Guangxi during 2013–2014 and 
found patterns of transmission in space and time. Al-Ahmadi et al. (2019) provided 
an initial assessment for the potential environmental risk factors of MERS-CoV in 
Saudi Arabia between June 2012 and March 2019, performing spatiotemporal clus-
ter analyses proposed by Kulldorff’s spatial scan statistics on cases reported in that 
period. It was the first study that aims to analyze the spatiotemporal pattern and 
clustering of MERS-CoV in Saudi Arabia, and the results reinforce that secondary 
infections are the great challenge for health-care system in the prevention and con-
trol of MERS-CoV outbreaks in Saudi Arabia. The prospective scan statistic has 
recently been used in a series of studies on COVID-19. Desjardins et  al. (2020), 
Hohl et al. (2020a) and Hohl et al. (2020b) identified COVID-19 clusters and esti-
mated relative risk throughout the USA at the county level. Masrur et  al. (2020) 
conducted spatiotemporal analysis using the prospective scanning statistic in Bang-
ladesh, suggesting that the country had experienced a community-level transmission 
as early as March 2020. Alkhamis et al. (2020) and Gomes et al. (2020) used the 
same approach to identify clustering events that were still active (i.e., emerging clus-
ters) in the State of Kuwait and Northern Brazil, respectively.

The results from these studies are particularly salient to public health, as they can 
guide targeted intervention measures, lowering the magnitude and transmission of 
COVID-19. They can also improve resource allocation and justify continued social 
distancing and stay-at-home orders by informing key public health officials about 
the highest risk areas of COVID-19. The importance of the prospective approach 
is that it can be extended to analyze the characteristics of the population of munici-
palities within the clusters. As case data are updated, the analysis can be repeated to 
continuously monitor the evolution of COVID-19 outbreaks (Desjardins et al. 2020).

In Brazil, the State Health Secretariats (SHS) update the data daily and make 
them public, so our approach is well suited to facilitate daily COVID-19 surveil-
lance in the country. The Ministry of Health reports daily confirmed cases and 
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deaths; while also utilizing a COVID-19 app to disseminate information (de Oliveira 
et  al. 2020). Regarding COVID-19 surveillance in Brazil, a susceptible, exposed, 
infected, removed (SEIR) model was applied to several lockdown scenarios (Tar-
rataca et  al. 2020); while Ribeiro and Bernardes (2020) estimated the number of 
underreported cases and deaths in Brazil. Some studies were conducted in Brazil 
about the risk of COVID-19 transmission and health-care system capacity. Costa 
et  al. (2020) used demographic and mobility data and COVID-19 cases along 
3  weeks since March 31st and performed a long-term analysis of epidemic out-
comes using a stochastic metapopulation model. The authors found that the degree 
of heterogeneity and desynchronization of the epidemic curves in cities with large 
populations and countryside regions suggest diverse mitigation scenarios and strate-
gies to combat COVID-19. Castro et  al. (2020) simulated the time it would take 
for hospitals to operate beyond their capacity in Brazil. According to the onset and 
the intensity of transmission, shortages of hospital beds, intensive care unit (ICU) 
beds, and ventilators could affect populations that depend on public health systems, 
and this highlights issues with equity and ethics in service allocation. Considering 
cases of COVID-19 in March 2020, Coelho et  al. (2020) calculated the probabil-
ity of COVID-19 spread from São Paulo and Rio de Janeiro, considering human 
mobility. In addition, they evaluated socioeconomic indices to identify vulnerable 
areas and concluded that North and Northeast Brazil are high risk and vulnerable to 
adverse health outcomes.

Utilizing a prospective space–time scan statistic, our objective is to detect new 
emerging clusters of COVID-19 across 5570 Brazilian municipalities, contrasting 
two temporal intervals, from February 25 to June 7, 2020, and from February 25 to 
July 20, 2020. When examining these time periods, we compute the evolution of the 
relative risk of the clusters in different regions and municipalities in Brazil and find 
associations with mortality rate, vulnerability, and social inequality.

2  Data and methods

2.1  COVID‑19 data and geographic information

Brazil is comprised of 5570 municipalities in 26 states. With a population of approx-
imately 210,147,125 people (IBGE 2019), Brazil is the sixth largest country in pop-
ulation and fifth in landmass, which faces great inequalities and socioeconomic dis-
parities. East coast states include approximately 70% of the population. The states of 
São Paulo and Rio de Janeiro have the highest population density (similar to Europe) 
while the states of the Amazon region have densities close to those of Canada and 
Australia (Somain 2014).

COVID-19 cases were retrieved from the Brazil.io project website (Brazil IO, 
2020). This project compiles data from the daily COVID-19 case reports by munici-
pality in the 27 units of Brazil and are available in a raw format, which were then 
tabulated to a format SaTScan could support. The data are from February 25, 2020, 
to July 20, 2020. In Brazil, 2,075,657 cases of COVID-19 were confirmed between 
the two aforementioned time periods (Fig. 1).
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In GIS, two layers of geographic data were utilized: (1) the location of 5570 
municipal seats for the SaTScan clusters detection and (2) municipality polygons 
for visualizing clustering and relative risk results via choropleth maps. These layers 
were retrieved by the Instituto Brasileiro de Geografia e Estatística (IBGE) website; 
English—The Brazilian Institute of Geography and Statistics. Using the location of 
the municipal seat instead of the centroid of the municipality better reflects the pop-
ulation concentration. The data sources are shown in appendix Table 11.

2.2  Space–time cluster detection

The detection of active clusters is conducted using the prospective Poisson 
space–time scan statistic method (Kulldorff 2001). The statistic detects active 
clusters of disease on the most current day of analysis (Jones et al. 2006). New 
data can be added to monitor active and emerging clusters and identify areas that 
no longer are experiencing excess incidence (e.g., less observed than expected 
cases). The statistic systematically implements moving cylinders to scan the study 
area, which are centered on the centroid of the Brazilian municipalities. The base 
of the cylinder is the spatial scanning window, and the height represents the tem-
poral scanning window, which are both expanded until a maximum threshold is 
reached. The null hypothesis stipulates that the model reflects an inhomogeneous 
Poisson process with an intensity μ, which is proportional to the at-risk popu-
lation. The alternative hypothesis is that the number of reported cases exceeds 

Fig. 1  Daily number of reported COVID-19 cases in Brazil between February 25 and June 7, 2020, and 
descriptive statistics
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the number of expected cases derived from the null model. A maximum likeli-
hood ratio test is utilized to evaluate the null and alternative hypotheses, which is 
defined in Eq. 1:

where L(Z) is the likelihood function for cylinder and ZeL0 is the likelihood func-
tion for the null hypotheses for cylinder Z. Essentially, the number of observed dis-
ease cases in a cylinder n

Z
 is divided by the number of expected cases in a cylinder 

�(Z) to the power of the observed n
Z
 , multiplied by the observed cases divided by 

the expected cases outside of the cylinder. The numerator is then divided by the quo-
tient of dividing the total number of observed cases for the entire study area N across 
all time periods �(A) , to the power of the total number of observed cases. The cylin-
der will have an elevated risk if the likelihood ratio is greater than 1 (i.e., 
n

Z

�(Z)
>

N−n
Z

N−�(Z)

 ). Furthermore, the cylinder with the highest likelihood ratio value is the 

most likely cluster.
The majority of the literature pertaining to STSS only report the locations 

that belong to a significant space–time cluster. However, this approach assumes 
that the risk of infection is homogenous throughout the cluster. Conversely, 
some locations within a cluster may contain zero cases of a particular disease, 
due to the scanning nature of the STSS. To reduce uncertainty by identifying the 
municipalities that are the highest risk locations in a cluster (rather than assuming 
the risk of disease is homogenous throughout a cluster), we also report the rela-
tive risk of each areal unit belonging to a space–time cluster, which can provide 
additional evidence for targeted interventions. Relative risk quantifies the risk of 
becoming infected with a disease in one location compared to all other locations 
(Eq. 2):

We defined the maximum spatial and temporal search windows to 10% of the 
population at-risk and 50% of the study period, respectively. Each cluster’s dura-
tion is set to a minimum of 2 days and a cluster must contain a minimum of five 
confirmed cases of COVID-19 (Desjardins et al. 2020). We utilize a prospective 
Poisson model to detect space–time clusters that are still occurring or active on 
June 20, 2020, and July 20, 2020 (Kulldorff 2001; Desjardins et  al. 2020). We 
assume that COVID-19 cases follow a Poisson distribution under the null hypoth-
esis that states that the model reflects a constant risk. The alternative hypothesis 
states that the number of observed cases exceed the number of expected cases 
derived from the null model. The expected cases are estimated by multiplying the 
population in the cylinder by the total COVID-19 rate in each cylinder. A maxi-
mum likelihood ratio test is implemented to evaluate whether cylinders have an 
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elevated risk of COVID-19. If the cylinder has a likelihood ratio > 1, then it has 
an elevated risk—(i.e., case rate within the cylinder is greater than the case rate 
outside of the cylinder, that is, all municipalities in Brazil). To derive statistical 
significance, 999 Monte Carlo simulations are computed for each cylinder. We 
report clusters at the p < 0.05 level and map the relative risk of each municipality. 
The relative risk is defined as the estimated risk of COVID-19 within a munici-
pality divided by the risk outside of the municipality. We utilize the SaTScan 
software for space–time cluster detection of COVID-19 data and a commercial 
GIS software for the visualization of clusters and relative risk of the Brazilian 
municipalities.

2.3  Non‑spatial modeling

To examine the role of socioeconomic characteristics on the presence of COVID-19 
clusters, we select three indicators reflecting population characteristics and COVID-
19 mortality: the GINI index, (IPEA 2015) the Brazilian Social Vulnerability Index 
(SVI) (Atlas Brasil 2013), and COVID-19 mortality rate. The GINI coefficient has 
been applied in the area of health to measure disparities (Han et  al. 2016) and is 
based on population income per municipality and ranges between 0 in the case of 
perfect equality and 1 in the case of perfect inequality. The SVI is an index that var-
ies between 0 and 1 and summarizes three attributes: urban infrastructure, human 
capital, and income and labor. The closer to 1, the greater the social vulnerabil-
ity of a municipality. These dimensions correspond to sets of variables that indi-
cate that the standard of living of families is low, suggesting non-access and non-
observance of social variables. For municipalities with an SVI between 0 and 0.200, 
this indicates very low social vulnerability; between 0.201 and 0.300 indicates low 
social vulnerability; between 0.301 and 0.400 indicates middle social vulnerability; 
between 0.401 and 0.500 indicates high social vulnerability; and between 0.501 and 
1 indicates that the municipality has very high social vulnerability (Brazil 2015). 
The mortality rate was selected because it is a criticality indicator since it is influ-
enced by the structure of the population, sex, and age, in turn, conditioned by socio-
economic factors.

To analyze the correlation between the RR and the selected independent vari-
ables, we used the RR value of each municipality located in the space–time clusters, 
from February 25, 2020, to July 20, 2020 (n = 3304). We evaluate the effect of soci-
oeconomic variables and mortality rate on RR using a Generalized Linear Model 
(GLM) (Eq 3).

with Y the relative risk, β the regression coefficients, “a” reflecting the GINI vari-
able, “b” the SVI variable, “c” the mortality rate, and ε the error of the terms. 
Descriptive statistics for the variables used in the GLM model are provided in 
appendix Table  12. The GLM technique is conducted in the R software (version 
4.0.1.).

(3)Y = �
0
+ �

1a
+ �

2b
+ �

3c
+ �
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2.4  Spatial modeling

We implement a Moran’s I test on the GLM residuals to detect the presence of spa-
tial autocorrelation (Anselin 1988; Anselin and Bera 1998) and justify the use of 
the subsequent spatial modeling. First, we conduct a Spatial Lag Model (Eq. 4) to 
estimate how the dependent variable Y at in a municipality i is affected by its neigh-
boring municipalities j.

where Y denotes the vector of the response variables, Xβ is the dimensionality of the 
vector parameter for the variables considered (GINI values, SVI values and mortal-
ity rate), λ is the autoregressive spatial coefficient (when λ = 0 the autocorrelation 
is null), WY expresses the spatial dependence Y. Second, we test the Spatial Error 
Model (Eq. 5), which controls the spatial autocorrelation in the residuals, and thus 
in both dependent and independent variables.

where Wε is the error with spatial effect and ρWε is the measure of the autocorrela-
tion of the errors of Y, and ξ the error component with constant and uncorrelated 
variance (white noise).

We applied the Lagrange Multiplier (LM) test to identify the model with the 
strongest explanatory power for the variable Y (Anselin 2005). This test estimates 
the LM-Lag for the dependency in relation to the original variables in the neigh-
boring areas and the LM-Error in relation to the residuals in the neighboring areas. 
If significant, this indicates that a spatial regression may capture some of the spa-
tial effects that affect the behavior of the Y variable; if both models are significant, 
the best model should be selected according to the Akaike Information Criterion 
(AIC) (Anselin 1996, 1988; Anselin and Bera 1998). We used the Jarque–Bera test 
to examine the normality of the distribution of the errors (Anselin et al. 2010).

When a spatial model is utilized, it is recommended to check whether the depend-
ent variable of the target location is influenced by neighboring locations (Lesage 
and Pace 2009). In this context, it is possible to identify spillover effects among 
neighboring municipalities. For example, evaluating whether the COVID-19 relative 
risk of a municipality is positively or negatively related to the RR of neighboring 
municipalities. Here, we use GeoDA (Anselin 2005) to compute the spatial regres-
sion models.

3  Results

3.1  Emerging clusters, February 25–June 7, 2020

We detected 11 emerging space–time clusters of COVID-19 occurring in all Brazil-
ian regions (p < 0.001) for the first period (February 25 to June 7, 2020). Among 

(4)Y = �
0
+ �WY + X� + �

(5)Y = �
0
+ X� + �W� + �
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these clusters, three occurred exclusively in the north and northeast regions (Fig. 2). 
Seven clusters had a relative risk (RR) greater than 1 (i.e., more observed than 
expected cases). Cluster 1 (RR = 7.97) is located predominantly in the North region 
and the state of Tocantins (Center-West region) and includes 466 municipalities, 
with 293 municipalities showing a RR > 1. Cluster 2 (RR = 4.7) is found in the 
Northeast region and includes 584 municipalities, where 180 have a RR > 1. Clus-
ter 3 (RR = 4.15) is found in the Southeast region, including São Paulo city and 34 
municipalities, where 15 have a RR > 1. Cluster 4 (RR = 4.46) includes 274 munici-
palities and 48 cities with a RR > 1 and is also found in the Southeast region of Bra-
zil, covering the states of Minas Gerais, Espírito Santo and Rio de Janeiro. Cluster 5 
(RR = 5.05) includes 68 municipalities in the state of Bahia that is in the Northeast 
region of Brazil, where eight municipalities have a RR > 1. Cluster 7 includes only 
Brasília, the Capital of Brazil, with a RR of 4.39 located in Center-West region of 
Brazil. Finally, Cluster 9 (RR = 4.24) includes 230 municipalities located in Santa 
Catarina and Rio Grande do Sul states, where 51 municipalities have a RR > 1 
(Table 1).

Fig. 2  Spatial distribution of emerging space–time clusters of COVID-19 showing the relative risk in 
Brazil from February 25 to June 7, 2020
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Table 2 shows the first three municipalities with the highest RR for each emerging 
cluster of COVID-19 identified in Brazil from February 25th to June 7, 2020. We 
found the highest relative risks in the Amapá state (cluster 1), in the North region 
of Brazil. The data presented in Table 2 highlighted only three of the Brazilian state 
capitals (São Paulo and Vitória) and Brasília, calling attention to the highest relative 
risks in countryside municipalities and some cities along the shoreline.

We observed a critical situation in the Amapá State, where all the municipalities 
have a RR > 1, and two instances where 50% of the municipalities in two states have 
a RR > 1 (Table 3). We identified this pattern only in Cluster 1- Pará (62.5%) and 
Maranhão (62.5%). However, it is important to examine the numbers observed in the 
Amazonas (Cluster 1 – 45.16%), Paraíba (Cluster 2 – 31.39%), Rio de Janeiro (Clus-
ter 4 – 27.17%), Espírito Santo (Cluster 4 – 25.64%), Ceará (Cluster 2–23.36%) and 
Roraima (Cluster 1–21.15%) states.

3.2  Emerging clusters, February 25–July 20, 2020

We detected nine emerging space–time clusters of COVID-19 with a RR > 1, which 
occurred in all Brazilian regions (p < 0.001) for this second period (147 days), while 
two more clusters were detected compared to the first period of analysis (Fig. 3). In 
addition, for this time series, the increase in COVID-19 cases in the countryside of 
Brazil is more evident (Fig. 3). In the first period, we observed 1658 municipalities 
within an emerging cluster; and in this new time series, we detected 3304 munici-
palities (an increase of almost 100%). This result shows that almost 60% of the Bra-
zilian municipalities are within an emerging cluster with a RR > 1 (Table 4).

Regarding the number of municipalities with a RR > 1 within the emerging clus-
ters from the first to the second period of analysis, we observed 958 municipalities, 
an increase of 60.7% (Tables 3 and 4).

Table  5 shows the first three municipalities with the highest RR for each 
emerging cluster of COVID-19 identified in Brazil from February 25 to June 
20, 2020. As observed in the first period of analysis, the municipalities with the 

Table 1  Emerging space–time clusters of COVID-19 in Brazil from February 25 and June 07, 2020, with 
relative risk (RR) greater than 1

*All prospective clusters finish in June 7, 2020

Cluster Number of 
municipalities

Observed Expected Cluster RR Number of munici-
palities with RR > 1

Time frame*

1 466 142,789 21,929.42 7.97 293 2020/5/5

2 584 94,432 22,556.14 4.7 180 2020/5/4

3 35 81,747 21,633.70 4.15 15 2020/5/5

4 274 50,151 11,909.17 4.46 48 2020/5/18

5 68 12,894 2588.76 5.05 8 2020/5/21

7 1 9791 2252.82 4.39 1 2020/5/15

9 230 6222 1476.71 4.24 51 2020/4/17

Total 1658 398,026 84,346.71 – 596
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highest RR are also located in the northern region of the country. Aracaju is the 
only state capital that is among the highest RR observed in emerging clusters. 
Except for Brasília (capital of Brazil), all other municipalities are located in the 
countryside and some on the shoreline. Only Pedra Branca do Amapari (State of 
Amapá), Santos (State of São Paulo) Presidente Kennedy (State of Espiríto Santo) 
and Brasília (Federal district) remained on this list for the two periods analyzed. 
In this second period, all 26 Brazilian states and Brasília intersect with emerging 
clusters of COVID-19, while in the first period of the analysis we observed 19 
states and Brasília intersecting the with emerging clusters.

We observed a critical situation in the Amapá State and Roraima State, 
where all the municipalities have a RR > 1. In addition to the states of Amapá 
and Roraima, the states of Amazonas (91.93%), Acre (86.36%), Pará (66.66%), 
Espírito Santo (62.82%), Ceará (60.32%) and Sergipe (56%) have been in a criti-
cal situation with more than 50% of the municipalities with a RR > 1 (Table 6). 
Some states are intersecting more than one cluster, such as the states of Mara-
nhão (Clusters 1 and 2), Mato Grosso (clusters 1 and 5), Tocantins (clusters and 

Table 3  Number of municipalities with relative risk greater than one (RR > 1) with the percentage based 
on the number of municipalities for each state that intersects with the emerging space–time clusters 
(RR > 1) of COVID-19 in Brazil from February 25 to June 7, 2020

*Cluster 7 is not present in the table, as it contains only the city of Brasília, DF

Cluster States intersecting the Cluster Number of 
municipalities with 
RR > 1

% Municipalities 
with RR > 1 in a 
state

Number of munici-
palities in the state

1 Amazonas 28 45.16 62

Amapá 16 100 16

Maranhão 125 57.60 217

Pará 90 62.5 144

Piauí 5 2.23 224

Roraima 11 21.15 52

Tocantins 18 12.94 139

2 Alagoas 16 15.68 102

Ceará 43 23.36 184

Paraíba 70 31.39 223

Pernambuco 35 18.91 185

Rio Grande do Norte 16 9.58 167

3 São Paulo 15 2.32 645

4 Espírito Santo 20 25.64 78

Minas Gerais 3 0.35 853

Rio de Janeiro 25 27.17 92

5 Bahia 8 1.91 417

9 Rio Grande do Sul 38 7.64 497

Santa Catarina 13 4.40 295
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Fig. 3  Spatial distribution of emerging space–time clusters of COVID-19 at the municipality level of 
Brazil from February 25 to July 20, 2020

Table 4  Emerging space–time clusters of COVID-19 in Brazil from February 25 and July 20, 2020 
(RR = relative risk)

*All prospective clusters finish in July 20, 2020

Cluster Number of 
municipali-
ties

Observed cases Expected cases Cluster RR Number of 
municipalities 
with RR > 1

Time frame*

1 513 396,480 207,350.91 4.29 307 2020/5/12

2 755 299,769 207,240 3.48 290 2020/5/28

3 388 191,606 151,849.08 3.29 111 2020/6/2

4 26 244,606 184,980.4 2.78 13 2020/5/27

5 439 163,190 157,465.53 3.43 52 2020/6/15

6 186 88,597 60,006.82 3.76 68 2020/6/2

7 532 112,471 179,440.91 2.25 82 2020/6/23

8 441 116,278 199,931.69 1.86 27 2020/6/19

9 24 98,627 105,658.33 1.81 8 2020/5/18

Total 3304 1,711,624 1,453,923.67 – 958
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Table 6  Number of municipalities with relative risk higher than one (RR > 1) of COVID-19 in Brazil 
from February 25 to July 20, 2020

*States that intersected more than one cluster

Cluster States intersecting the cluster Number of munici-
palities with RR > 1

% Municipalities 
with RR > 1 in a 
state

Number of munici-
palities in the state

1 Acre 19 86.36 22

Amazonas 57 91.93 62

Amapá 16 100 16

Maranhão* 57 26.26 217

Mato Grosso* 14 9.92 141

Pará 96 66.66 144

Rondônia 11 21.15 52

Roraima 15 100 15

Tocantins* 37 26.61 139

2 Ceará 111 60.32 184

Maranhão* 9 4.14 217

Paraíba 80 35.87 223

Pernambuco* 7 3.78 185

Piauí 45 20.08 224

Rio Grande do Norte 38 22.75 167

3 Alagoas 37 36.27 102

Bahia 31 7.43 417

Pernambuco* 1 0.54 185

Sergipe 42 56 75

4 São Paulo* 13 2.01 645

5 Distrito Federal 1 100 1

Goiás 15 6.09 246

Minas Gerais* 6 0.70 853

Mato Grosso do Sul 2 2.53 79

Mato Grosso* 8 5.67 141

São Paulo* 19 2.94 645

Tocantins* 1 0.71 139

6 Espírito Santo 49 62.82 78

Minas Gerais* 12 1.40 853

Rio de Janeiro* 7 7.60 92

7 Paraná 1 0.25 399

Rio Grande do Sul 33 6.63 497

Santa Catarina 48 16.27 295

8 Minas Gerais* 5 0.58 853

São Paulo* 22 3.41 645

9 Rio de Janeiro* 8 8.69 92
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5), Pernambuco (clusters 2 and 3), São Paulo (clusters 4, 5 and 8), Minas Gerais 
(clusters 5, 6 and 8) and Rio de Janeiro (clusters 6 and 9).

3.3  Regression results

The results obtained through the GLM showed that there was a significant positive 
correlation between the predictor variables in relation to the relative risk at the level 
of the municipalities belonging to the nine emerging clusters (Fig. 4).

The GLM result showed that all variables have a statistically impact on the RR 
of the municipalities located in the clusters. For each one-unit increase in the GINI 
variable, the relative risk increases by 2.02, while the impact of SVI is 0.82, and 
mortality rate is 0.021. For comparison purposes, we implemented the same model 
for all municipalities in Brazil regardless of their cluster membership, and all munic-
ipalities outside the clusters. When applied to all municipalities, the same predictor 
variables were significant; however, the estimates were substantially lower (closer 
to zero) with a decrease in the standard error. The decrease in the estimate was even 
more pronounced when the model was conducted to the municipalities outside of 
the clusters.

We identified problems of multicollinearity and heteroscedasticity (Appendix 
Table 13), in addition to spatial dependence on residuals, confirmed by the Moran’s I 
statistic (Appendix Fig. 5). Although the Moran’s I test showed a value close to zero 
(Table 7), it is still possible to identify spillovers with groups of high–high in the 
Brazil North region and others of low–low, mainly in the Northeast region. Table 8 
also shows the result of the Lagrange Multiplier Test, which indicated the recom-
mendation for applying spatial regression for LM-Lag and LM-Error regressions.

Considering both spatial regressions performed, LM-Lag showed the most 
adjusted model based on the AIC values (Appendix Figs. 6, 7), as well as in com-
parison to the GLM (Appendix Table 14). The result of the Moran’s I test LM-
Lag and LM-Error residuals was 0.274 and -0.033, respectively. Based on these 
results, we choose the LM-Lag spatial regression model, which is more adjusted 

Fig. 4  Linear fit of the Generalized Linear Models (blue line) with confidence intervals (shaded area) for 
relative risk of the municipalities belonging to the space–time clusters of COVID-19 in Brazil
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Fig. 5  a Lisa map for GLM residual, b Moran’s I scatterplot residual, c residual scatterplot for GLM

Table 7  Estimated parameters 
of the predictor variables 
used for the Generalized 
Linear Model for the relative 
risk of COVID-19 for the 
municipalities belonging to the 
space–time clusters  (R2 = 0.34)

Akaike info criterion: 8306.26,  R2: 0.341210

Variable Coefficient SE p

Constant 0.8686 0.0148 < .001

GINI 2.0204 0.2718 < .001

SVI 0.8208 0.1350 < .001

Mortality rate 0.0217 0.0006 < .001

to assess how the variables GINI, SVI and Mortality Rate explain the variation in 
the RR of the municipalities located within the clusters. The results of the LM-
Lag showed that all variables analyzed have a statistically significant effect for 
RR, except for the SVI (Table 9).
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Table 8  Spatial dependence 
diagnostic

Test MI/DF Value PROB

Moran’s I (error) 0.3426 32.0821 0.000

Lagrange multiplier (lag) 1 1173.7476 0.000

Robust LM (lag) 1 174.2724 0.000

Lagrange multiplier (error) 1 1020.7702 0.000

Robust LM (error) 1 21.2950 0.000

Lagrange multiplier (SARMA) 2 1195.0426 0.000

Fig. 6  a Lisa map for LM-lag residual, b Moran’s I scatterplot residual, c residual scatterplot for LM-Lag

According to the results of the model, the variables GINI and mortality rate have 
a significant effect (p < 0.001) on the relative risk of municipalities within the clus-
ters. Table 10 shows the results about the direct, indirect, and total effects. The GINI 
variable has the greatest positive direct (1.280) and indirect (1.414) effects, resulting 
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Fig. 7  a Lisa map for LM-error residual, b Moran’s I scatterplot residual, c residual scatterplot for LM-
Error

Table 9  Estimated parameters 
of the variables used for 
the LM-Lag for the relative 
risk of COVID-19 for the 
municipalities belonging to the 
space–time clusters

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’

Variable Coefficient SE z-value Probability

W_Relative Risk 0.55969 0.016697 33.52 0.00000***

CONSTANT − 0.44866 0.095822 468.226 0.00000***

GINI 118.502 0.229002 517.471 0.00000***

SVI − 0.08561 0.11544 0.74159 0.45834

Mortality Rate 0.014232 0.000597 238.302 0.00000***
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in a total effect of 2.695. This indicates an increase in the RR within the munici-
palities due to inequality, but mainly due to the role of spillovers from neighboring 
municipalities. The same pattern was also observed for the mortality rate for the 
direct (0.015), indirect (0.016), and total (0.032) effects. In the case of SVI, no sig-
nificant effects were observed for RR (Table 10).

3.4  Sensitivity of scan parameters

In this paper, we selected spatial and temporal scan statistic parameters in line with 
previous work (Desjardins et al. 2020; Hohl et al. 2020a, b). We conducted a sensitiv-
ity analysis by parameterizing different spatial and temporal scanning windows: (1) 
25% of the population at-risk and 25% of the study period; (3) 10% and 50%, (3) 10% 
and 25%, (4) 5% and 50%, (5) 5% and 25%, and (6) 5% and 10%. In general, increas-
ing the temporal scan results in clusters that start much earlier than smaller search win-
dows (e.g., 10% versus 50%), essentially capturing a longer temporal range of cases. 
As such, increasing the temporal cutoff too much may obscure smaller space–time 
clusters that happened more recently in Brazil. Spatially, the general location of the 
clusters is very similar when decreasing the spatial scanning window from 25% to 5%. 
Larger spatial scanning windows may encompass multiple clusters that were detected 
using smaller windows (e.g., 25% versus 5%). This is due to the relaxation of the pop-
ulation constraint, allowing the windows to capture more municipalities which result 
in very large clusters in rural regions of Brazil (e.g., State of Amazonas). The spatial 
overlap of the clusters using different scanning windows provide some confidence that 
the COVID-19 clusters are “stable”, despite the parameter selection.

4  Discussion

Comparing the first period (103 days) with the second (with an increase of 44 days), 
the results show a significant increase in the COVID-19 in Brazil, demonstrated by 
the 61% increase in the number of municipalities with RR > 1 within the detected 
clusters. A significant increase in the number of municipalities was detected, con-
firming the study by Peixoto et al. (2020) who showed that not only risk regions are 

Table 10  Direct, indirect, and total effects of the model

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’

Dependent variables Direct Indirect Total

SVI − 0.09314893 − 0.10293739 − 0.19608632

Simulated p-values 0.20196 0.20293 0.20228

GINI 1.2802934 1.41483177 2.69512519

Simulated p-values <0.001*** <0.001*** <0.001***

Motality rate 0.01534331 0.01695565 0.03229895

Simulated p-values <0.001*** <0.001*** <0.001***
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those closest to the capitals where the outbreak began, but that there are also interior 
cities with risk.

The choropleth maps presented in this paper (Figs. 2 and 3) are based on the cal-
culations of the relative risk, which reflects the relationship between the total number 
of confirmed cases in relation to expected cases based estimated from the population 
of the municipality. In the first time period (February 25–June 7), municipalities with 
RR > 1 where we identified mainly in the North, Northeast and close to the coast asso-
ciated with the occurrence of the main state capitals, such as São Paulo and Rio de 
Janeiro. However, in the second period (February 25 to July 20), there was an increase 
in the number of municipalities with RR > 1 in the North and also in the coastal regions. 
Besides that, there was also an increase in the number of municipalities with RR > 1 in 
the interior of the country. Costa et al. (2020) identified that some states had outbreaks 
that started mainly in their capitals, followed by epidemic waves that spread toward the 
interior, and that still other states have multiple initial outbreaks of epidemics.

The inequality (GINI) and mortality rate have direct, indirect, and total positive 
effects of relative risk detected in the Brazilian municipalities. This finding is related 
to the spread of COVID-19 to the countryside, where there is high social inequal-
ity, mainly in the municipalities of the North and Northeast Regions (74.3% of the 
municipalities with RR > 1). The states of the South and Southeast regions have a 
lower concentration of income, while the Center-West, North, and Northeast regions 
have higher levels of inequality (Colombo and Ferreira 2019). Coelho et al. (2020) 
highlighted that these areas would suffer an increased spread of the disease in popu-
lations with greater socioeconomic vulnerability.

When bringing to debate the political aspect of the virus, Smith and Judd (2020) 
consider relevant “to reflect on who is most vulnerable in pandemics”. This question 
is based on the argument that, despite the fact that COVID-19 can affect the whole 
of society, its effects will be experienced in different ways, depending on the level of 
equity that exists in each social reality, as such it is essential to analyze the pandemic 
and the policies that emanate from it in the perspective, not only of health, but also 
of social and economic determinants (Smith and Judd 2020).

The municipalities with the greatest inequality will likely be the regions with the 
highest incidence and death of COVID-19 in Brazil. Our results indicate that ine-
quality is a significant variable that explains RR increase in the municipalities with 
spatial spillover effects. The inequality of income and the lack of access to services 
are sufficient to suggest that there is a disproportionate effect of COVID-19 among 
the most vulnerable in the country (Pires et al. 2020). In addition, there is a lack of 
protocols and measures aimed at the social protection of these populations in the 
atypical context of a pandemic; so when clusters with high risk show a high mortal-
ity rate, this can guide decisions for these municipalities.

The relationship of active clusters with indices that express inequality in the 
country may represent the beginning of a problematic scenario, especially so in 
the most vulnerable municipalities. This may result from the difficulties of enforc-
ing social isolation due to the needs of maintaining employment and income, as 
well as access to health and basic sanitation (Pires et al. 2020). In the study carried 
out by Fiocruz (2020) on April 2nd, 2020, the most vulnerable regions of Bra-
zil were identified in the north and northeast. In our study, we found the highest 
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relative risk in north and Northeast for all-time series, corroborating with Fiocruz 
(2020). Although the North Region of Brazil has low levels of urbanization, river 
migration is related to the spread and progression of the disease in the municipali-
ties of the State of Amazonas, unlike other urbanized regions (Aleixo et al. 2020).

Examining the adherence to social distancing guidelines requires a more detailed 
analysis, which was beyond the scope of this study. Amazonian communities such 
as Indians and riverside populations are geographically isolated populations; how-
ever, they have been impacted by COVID-19 (ISA 2020). Therefore, actions need to 
be taken based on the geographic, social, and cultural differences than those living 
in urban areas. We present an exploratory study that identifies associations between 
the relative risk of COVID-19 clusters and mortality, inequality, socioeconomic 
vulnerability of the disease in Brazilian municipalities, but there are not enough 
elements to detail demographic particularities of the population.

An important correlation between clusters with high relative risk and mortality 
rates and inequality is observed, but the method is sensitive to the scale adopted 
(Chen et al. 2008); therefore, we hypothesize that the findings will be different and 
may be more severe regarding relative risk if finer-level data were available. The 
pandemic is still spreading in Brazil, and it is difficult to estimate the speed of trans-
mission along the countryside, where small population municipalities are located. 
However, our research highlights the regions that are experiencing the highest risk 
of COVID-19, which is critical for improving public health decision-making. Pre-
ventive measures must be strengthened and adhered to, while the only strategy that 
has proved effective for the control of COVID-19 has been social distancing (de 
Oliveira et al. 2020).

Despite the strengths of this study, there are several of limitations worth address-
ing in future studies. First, the cylindrical scanning windows of the prospective scan 
statistic may not capture the true shape of the COVID-19 outbreaks. However, this is 
an exploratory study and cylindrical scanning windows are widely used and accept-
able in the SaTScan literature. We encourage more research on developing irregular 
search windows, similar to by Tango and Takahashi (2005) and Wu and Grubesic 
(2010), but extended in time. Second, we do not provide daily surveillance of 
COVID-19 in Brazil, as this was beyond the scope of our research objectives. Rather, 
we provide two snapshots of the situation in South America’s largest country. Future 
research can provide daily updates, similar to Hohl et  al. (2020b). Third, there are 
inherent biases in the dataset that we used. Like many other countries, testing was not 
always accessible when the pandemic reached Brazil; as such findings may have suf-
fered from this underreporting, although the country ramped up testing. Fourth, we 
used different covariates to explain the variation in relative risk (inside and outside 
clusters). One avenue worth modeling as future research is the persistence of a cluster 
over time, an approach suggested by He et al. (2017). This approach is worth pursu-
ing when the timespan of study would be long enough. Finally, we did not adjust the 
p-values for multiple analyses; however, Kulldorff and Kleinman (2015) suggest that 
adjusting p-values should be avoided for long sequences of data, especially in a spati-
otemporal context (i.e., increasingly difficult to reject null hypothesis).
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5  Conclusion

This research presented an analysis of the dynamics of the expansion of COVID-
19 based on the number of daily cases by municipality, with the intent of iden-
tifying emerging space–time clusters active in Brazil in the first five months of 
the pandemic. We detected nine significant active clusters of COVID-19 within 
Brazil on July 20, 2020. Therefore, this space–time approach to detect emerging 
clusters will allow decision-makers to identify statistically significant hotspots 
of COVID-19 cases. States are responsible for coordinating the activities at the 
regional health level. These regions can use these results to optimize coordina-
tion and organization of health care needs, specifically in relation to the poorest 
populations and those with the highest health-care demand. Our approach may 
also allow authorities to pay attention to municipalities that still have little-to-no 
cases, so they can be prepared to face the burdens of COVID-19. In turn, this can 
improve the management of resources to the States and Health Regions.

Appendix

See Tables 11, 12, 13, 14, 15, 16, 17, 18 and Figs. 5, 6, and 7.        

Table 11  Variables, sources, units and links to access the data used in this research

Variable Source Units URL

COVID-19 cases 
and deaths

Brazil in released data (Brasil.
io), 2020

Count https:// brasil. io/ covid 19/

Municipality 
polygons

Brazilian Institute of Geography 
and Statistics (IBGE), 2010

Polygonal geom-
etry

https:// www. ibge. gov. br/ geoci 
encias/ organ izacao- do- terri 
torio/ malhas- terri toria is. html

Municipality city 
points

Brazilian Institute of Geography 
and Statistics (IBGE), 2010

Points in lat/long 
coordinates

https:// geose rvicos. ibge. gov. br/ 
geose rver

Population esti-
mation

Brazilian Institute of Geography 
and Statistics (IBGE), 2019

Count https:// www. ibge. gov. br/ estat 
istic as/ socia is/ popul acao/ 
9103- estim ativas- de- popul 
acao. html? edicao= 25272 
&t= resul tados

GINI coefficient Atlas of Human Development in 
Brazil, 2010

Coefficient http:// atlas brasil. org. br/ 2013/ 
pt/ consu lta/

Social Vulnerabil-
ity Index (SVI)

Atlas of Social Vulnerability, 
2013

Coefficient http:// ivs. ipea. gov. br/ index. 
php/ pt/ plani lha

https://brasil.io/covid19/
https://www.ibge.gov.br/geociencias/organizacao-do-territorio/malhas-territoriais.html
https://www.ibge.gov.br/geociencias/organizacao-do-territorio/malhas-territoriais.html
https://www.ibge.gov.br/geociencias/organizacao-do-territorio/malhas-territoriais.html
https://geoservicos.ibge.gov.br/geoserver
https://geoservicos.ibge.gov.br/geoserver
https://www.ibge.gov.br/estatisticas/sociais/populacao/9103-estimativas-de-populacao.html%3fedicao%3d25272%26t%3dresultados
https://www.ibge.gov.br/estatisticas/sociais/populacao/9103-estimativas-de-populacao.html%3fedicao%3d25272%26t%3dresultados
https://www.ibge.gov.br/estatisticas/sociais/populacao/9103-estimativas-de-populacao.html%3fedicao%3d25272%26t%3dresultados
https://www.ibge.gov.br/estatisticas/sociais/populacao/9103-estimativas-de-populacao.html%3fedicao%3d25272%26t%3dresultados
https://www.ibge.gov.br/estatisticas/sociais/populacao/9103-estimativas-de-populacao.html%3fedicao%3d25272%26t%3dresultados
http://atlasbrasil.org.br/2013/pt/consulta/
http://atlasbrasil.org.br/2013/pt/consulta/
http://ivs.ipea.gov.br/index.php/pt/planilha
http://ivs.ipea.gov.br/index.php/pt/planilha
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Table 12  Descriptive statistics for the variables used in the GLM model

GINI SVI Mortality rate Observed cases

Mean 0.494 0.352 15.7 373

Median 0.49 0.335 7.42 46

Sum 2754 1958 87724 2075657

Standard deviation 0.0661 0.13 21.9 2974

Variance 0.00437 0.0169 481 8,840,000

Minimum 0.28 0.09 0 0

Maximum 0.8 0.784 208 166,348

25th percentile 0.45 0.246 0 12

50th percentile 0.49 0.335 7.42 46

75th percentile 0.54 0.448 23 180

Table 13  GLM regression 
diagnostics

Test DF Value Prob.

Multicollinearity: test on normality of errors

 Jarque–Bera 2 233,139.5728 0.00

Heteroskedasticity (random coefficients)

 Breusch–Pagan test 3 2644.6462 0.00

 Koenker–Bassett test 3 125.1991 0.00

Table 14  Spatial lag model 
coefficients

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’

Akaike info criterion: 7385.64

Variable Coefficient SE z-value Probability

W Relative risk 0.55969 0.016697 33.52 0.00000***

Constant − 0.44866 0.095822 − 468.226 0.00000***

GINI 118.502 0.229002 517.471 0.00000***

SVI − 0.08561 0.11544 − 0.74159 0.45834

Mortality rate 0.014232 0.000597 238.302 0.00000***

Table 15  Spatial lag model 
regression diagnostics

Test DF Value Prob.

Heteroskedasticity (random coefficients)

 Breusch-Pagan test 3 3092.3383 0.00

Spatial dependence

 Likelihood ratio test 1 922.6248 0.00
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Table 16  Spatial error model regression coefficients

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’

Akaike info criterion: 7490.79

Variable Coefficient SE z-value Probability

Constant − 0.0613326 0.127557 − 0.480826 0.63064

GINI 118.985 0.249604 476.696 0.000***

SVI 0.120072 0.172886 0.694515 0.48736

Mortality rate 0.0160655 0.000671939 239.091 0.000***

Lambda 0.617606 0.0177266 348.406 0.000***

Table 17  Spatial error model 
regression diagnostics

Test DF Value Prob.

Heteroskedasticity (random coefficients)

 Breusch-Pagan test 3 2995.6530 0.00

Spatial Dependence

 Likelihood Ratio Test 1 815.4676 0.00

Table 18  Result of the Akaike 
information criterion (AIC) for 
the regression models

Regression models AIC

Generalized Linear Model (GLM) 8306.26

Lagrange Multiplier test for spatial lag dependence (LM-
lag)

7385.64

Lagrange Multiplier test for spatial error dependence 
(LM-Error)

7490.79
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