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Abstract 
Packets sent using the IP protocol include the IP address 
of the sending host. The recipient directs replies to the 
sender using this source address. However, the 
correctness of this address is not verified by the protocol. 
The IP protocol specifies no method for validating the 
authenticity of the packet’s source. This implies that an 
attacker can forge the source address to be any desired. 
This is almost exclusively done for malicious or at least 
inappropriate purposes. Given that attackers can exploit 
this weakness for many attacks, it would be beneficial to 
know if network traffic has spoofed source addresses. This 
knowledge can be particularly useful as an adjunct to 
reduce false positive from intrusion detection systems. This 
paper discusses attacks using spoofed packets and a wide 
variety of methods for detecting spoofed packets. These 
include both active and passive host-based methods as 
well as the more commonly discussed routing-based 
methods. Additionally, we present the results of 
experiments to verify the effectiveness of passive methods. 
 
 

1. Introduction 

Packets sent using the IP protocol [22] include the IP 
address of the sending host. The recipient directs replies to 
the sender using this source address. However, the 
correctness of this address is not verified by the protocol. 
The IP protocol specifies no method for validating the 
authenticity of the packet’s source. This implies that an 
attacker could forge the source address to be any he 
desires. This is a well-known problem and has been well 
described [5][10][12]. In all but a few rare cases, sending 
spoofed packets is done for illegitimate purposes.  

Sending IP packets with forged source addresses is 
known as packet spoofing and is used by attackers for 
several purposes. These include obscuring the true source 
of the attack, implicating another site as the attack origin, 
pretending to be a trusted host, hijacking or intercepting 
network traffic, or causing replies to target another system. 

Because none of these are desirable, it is useful to 
determine if a packet has a spoofed source address. In 
cases where an ongoing attack is occurring it is beneficial 
to determine if the attack is from a particular location. In 
many cases we are able to determine when packets are 
spoofed, and generally from where they originate. 

Spoofing of network traffic can occur at many layers. 
Examples include network layer spoofing (e.g. Ethernet 
MAC spoofing), non-IP transport layer spoofing (e.g. IPX, 
NetBEUI), as well as session and application layer 
spoofing (e.g. email spoofing). All of these have 
significant security concerns. However, for the purposes of 
this paper we will focus only IP packet spoofing. 

A related issue is attacks that cause packets to be routed 
to a different host than the sender intends. These are 
attacks on routing [9][31] and the DNS system [4]. Packet 
spoofing is restricted to false source addresses in the IP 
packet header. 

This paper discusses a variety of methods that can help 
determine if received packets have spoofed source 
addresses. Routing-based methods rely on routers and 
other network devices to identify traffic with unexpected 
source addresses or can aid spoofed packet detection. Non-
routing methods include both active and passive 
techniques a host can use to determine if a received packet 
is spoofed. Active methods involve either probes, such that 
the response will corroborate the authenticity of a received 
packet, or methods that cause changes in network behavior 
such that the observed change (or lack of change) can 
corroborate the authenticity of the packets. Passive 
methods involve observing packet data that would be 
anomalous in legitimate packets. 

These methods are not intended to function in isolation, 
rather to provide supplemental information to other IDS 
components or to help assess the significance of far to 
common nuisance alerts generated by commercial IDSs. 
Spoofed packet detection is an example of techniques to 
provide supplemental information to corroborate other IDS 
reports when needed.  



 

The paper is organized as follows. Section 1 provides 
an overview of the various detection methods. Section 2 
discusses routing methods. Section 3 discusses active 
methods. Section 4 discusses passive methods. Section 5 
discusses work related to detecting spoofed packets. 
Section 6 discusses our experiment in passive detection. 
The last section is a discussion of the experimental results 
and further issues in detecting spoofed packets.  

2. Packet Spoofing Attacks 

Because packet spoofing can be part of many different 
types of attacks, it is important to have an understanding of 
how they are used. A key factor in all packet-spoofing 
attacks is that it is not necessary for the attacker to directly 
receive packet replies from the target. Replies are either 
unimportant, their contents can be inferred, or the packets 
can be observed in transit. This section describes several 
such attacks and discusses their security implications. 

2.1. SYN-flood  

Perhaps the archetypal denial-of-service attack, SYN-
flooding demonstrates an attack where replies are 
irrelevant. SYN-flooding requires the attacker to 
continually sends a large number of TCP SYN packets to 
the target. For each SYN-packet received, the target host 
sends an acknowledgement packet to the supposed sender. 
The target then waits for a reply to the acknowledgment. 
The attacker never sends the reply, causing the target to 
continue to wait. This ties up a buffer on the target host 
When all buffers are used no further network connections 
to the target are possible. Eventually the waiting 
connection will time-out, the kernel will free the buffer and 
make it available for new connections. Because of the high 
volume of packets sent during a SYN-flood, an attacker’s 
packets is more likely to use the buffer than a packet from 
a legitimate connection.  

In this attack, return packets are irrelevant to the 
attacker. However, for this attack to be successful, the 
attacker must spoof source addresses from hosts that are 
non-existent or inactive. If the source address is of an 
active host, because this host did not send the initial SYN-
packet, when it receives the acknowledgement packet from 
the target, it will reply with a reset and thus release the 
waiting slot.  

2.2. Smurf 

In the Smurf attack [8], spoofed ICMP echo request 
(ping) packets are sent to a subnet broadcast address. This 
will cause each active host to send an echo reply to the 
source. In this attack the source address is set to the 
address of the target. This causes a large number of replies 

to be sent to the target causing degradation of service on 
its network. The Smurf attack exploits the concepts of 
packet amplification and address spoofing to overwhelm 
the target network. 

Again, seeing return packets is not important to the 
attacker; in fact, it is generally not desired. For this attack 
to be successful, the attacker must have access to a 
broadcast address that responds to ICMP echo requests. 
Unfortunately, these are widely available. 

2.3. TCP Connection Spoofing 

This attack requires coordination of several attacks; 
primarily denial-of-service of a trusted host, and packet 
spoofing of the attack target. The DoS component can be 
anything that prevents the trusted host from sending reset 
packets to the target. One such means would be a SYN-
flood. The other component requires sending packets 
spoofed to be from the trusted host to the target. Because 
of the DoS attack, the trusted host cannot reply to packets 
received from the target, and the attacker can cause the 
target to believe the packets are from the trusted host. This 
will allow the attacker to use the target as if it were the 
trusted host. 

This attack is made difficult because TCP requires reply 
packets to include the sequence number of the preceding 
packet. If the attacker cannot directly observe the packets, 
it must guess the sequence numbers. RFC 1948[6] 
provides recommendations for increasing the difficulty of 
predicting sequence numbers. Theoretically sequence 
numbers could be made unguessable. However, while 
more difficult than in the past, it is still possible and not as 
difficult as is widely believed [32]. 

2.4. Bounce Scan 

A difficulty in scanning computer sites is that the 
attacker must see the replies. This makes it difficult to used 
spoofed addresses. The simplest way to do this is to spoof 
the address of another computer on your network segment 
and monitor network traffic for replies to the spoofed 
address. However, movement to switched Ethernet 
environments or away broadcast networks altogether 
makes this less feasible. A clever alternative to is to use 
spoofed packets and to indirectly observe the target’s 
replies. This is illustrated by the bounce scan attack [1]. 

This attack takes advantage of the regular nature of the 
IP header “identification number” field. In most 
implementations, this number is increased by one with 
each packet sent. The bounce attack uses this by sending 
spoofed SYN packets to a port on the target host. If the 
port is closed, the target replies with a reset. The spoofed 
host takes no action on receipt of a reset [31]. If the port is 
open, the target replies to the spoofed source with an 



 

acknowledgment. Because the spoofed host did not initiate 
the SYN, it sends a reset to the target, and increments its 
IP id number. The attack requires three steps: (i) probe the 
spoofed host to find its current id number; (ii) send the 
spoofed scan packet to the target; (iii) recheck the id 
number on the spoofed host. From this the attacker can 
learn if the target host’s port was open or not: if the id 
number went up by one, the port was closed, if it went up 
by two it was open. 

To ensure that other packets are not sent to the spoofed 
host during the scan, the attacker should select a host to 
spoof with little or no network traffic (e.g. a networked 
printer, late at night). Alternatively, or if the spoofed host 
does not increment id numbers by one, the attacker can 
uses multiple probes to each port and infer its state by 
profiling the observed changes in id numbers. 

2.5. Zombie Control 

Distributed denial-of-service attacks such as Trinoo and 
Stacheldraht [19], send one-way control messages to their 
“zombies”. This allows the attacker to control the zombies 
without observing a reply, and consequently to be able to 
spoof the origin of the control messages. Also, because 
these are one-way communications, any protocol can be 
used. This makes it easier to send control messages 
through firewalls that may block some traffic. 

Similar to the bounce scan, control messages can be 
sent indirectly. By sending a packet to any host on the 
network, but setting the TTL to be shorter than the 
required number of hops, when the TTL reaches zero, the 
router will send a TTL expired packet to the expired 
packets source. By spoofing this to be the address of the 
zombie and encoding control information in the original IP 
header, this method can effectively send indirect spoofed 
control methods to the zombies. 

 
 
The above illustrates some of the many ways spoofed 

packets can be used in attacks. For some of these it is 
useful to know if the packets are spoofed or not. This can 
help rule out potential attack sources, prevent false 
attribution of the attack, estimate the level of sophistication 
of the attacker, the stealth of the attack, and possibly lead 
to discovery the true attack source. Next we describe how 
spoofed packets can be detected. 

3. Spoofed Packets Detection Methods 

Detection methods can be classified as those requiring 
router support, active host-based methods, passive host-
based methods, and administrative methods. 
Administrative methods are the most commonly used 
methods today. When an attack is observed, security 

personnel at the attacked site contact the security personnel 
at the supposed attack site and ask for corroboration. This 
is extremely inefficient and generally fruitless. An 
automated method of determining the whether packets are 
likely to have been spoofed is clearly needed. This section 
describes a number of such methods. 

3.1. Routing methods 

Because routers (or IP level switches) can know which 
IP addresses originate with which network interface, it is 
possible for them to identify packets that should not have 
been received by a particular interface. For example, a 
border router or gateway will know whether addresses are 
internal to the network or external. If the router receives IP 
packets with external IP addresses on an internal interface, 
or it receives IP packets with an internal IP address on an 
external interface, the packet source is most likely spoofed.  

In the wake of recent denial-of-service attacks involving 
spoofed attack packets, ISPs and other network operators 
have been urged to filter packets using the above-described 
method. Filtering inbound packets, known as ingress 
filtering, protects the organization from outside attacks. 
Similarly, filtering outbound packets prevents internal 
computers from being involved in spoofing attacks. Such 
filtering is known as egress filtering. It is interesting to 
note that if all routers were configured to use ingress 
and/or egress filtering, attacks would be limited to those 
staged within an organization or require an attacker to 
subvert a router. 

Internal routers with a strong notion of inside/outside 
can also detect spoofed packets. However, certain network 
topologies may contain redundant routes making this 
distinction unclear. In these cases, host based methods 
(discussed in section 4.2) can be used at the router.  

A number of IP addresses are reserved by the IANA for 
special purposes. These are listed in table 1. The addresses 
in the first group are private addresses and should not be 
routed beyond a local network. Seeing these on an outside 
interface may indicate spoofed packets. Depending on the 
particular site, seeing these on an internal address would 
also be suspicious. The other addresses in table 1 are 
special purpose, local only addresses and should never be 
seen on an outer interface.  

Many firewalls look for the packets described in this 
section. Typically they are dropped when received. 
Because firewalls have been a popular security product, 
research into routing methods has been active. Most all 
research has been in this area.   

Routers can also take a more active role in detecting 
spoofed packets. A number of advanced router projects 
have dealt with this and spoofed packet traceback [27][28]. 
These are discussed in section 6. We have proposed a 



 

number of proactive methods that can be used to detect 
and prevent spoofed packets. 

One limitation of routing methods is that they are 
effective only when packets pass through them. An 
attacker on the same subnet as the target could still spoof 
packets. When the attacker is on the same Ethernet subnet 
as the target, both the source IP address and the Ethernet 
MAC would be spoofed. If the spoofed source address was 
an external address, the MAC would be that of the router. 
This implies that other techniques are required.   

3.2. Non-routing methods 

Computers receiving a packet can determine if the 
packet is spoofed by a number of active and passive ways. 
We use the term active to mean the host must perform 
some network action to verify that the packet was sent 
from the claimed source. Passive methods require no such 
action, however an active method may be used to validate 
cases where the passive method indicates the packet was 
spoofed. 

3.2.1. Active Methods 
Active methods either make queries to determine the 

true source of the packet (reactive), or affect protocol 
specific commands for the sender to act upon (proactive). 
These methods have an advantage over routing methods in 
that they do not require cooperation between ISPs and can 
be effective even when the attacker is on the same subnet 
as the target. 

Active methods require a response from the claimed 
source. Only if the spoofed host is active (i.e. connected to 
the network and receiving and processing packets) can it 
be probed. A host that is heavy firewalled and cannot 
respond to probes is effectively inactive. Because inactive 
hosts are commonly used as source addresses in spoofed 
packets, if these packets are seen in an attack, it is likely 
they are spoofed. When hosts will not respond to any 

probes, passive methods will be required for 
corroboration.  

 
TTL methods. As IP packets are routed across the 
Internet, the time-to-live (TTL) field is decremented. This 
field in the IP packet header is used to prevent packets 
from being routed endlessly when the destination host can 
not be located in a fixed number of hops[26]. It is also 
used by some networked devices to prevent packets from 
being sent beyond a host’s network subnet.  

The TTL is a useful value for detecting spoofed 
packets. Its use is based on several assumptions, which, 
from our network observations, appear to be true. 

• When a packet is sent between two hosts, as long as the 
same route is taken, the number of hops will be the 
same. This means that the initial TTL will be 
decremented by the same amount.  

•  Packets sent near in time to each other will take the 
same route to the destination. 

• Routes change infrequently. 
• When routes change, they do not result in a significant 

change in the number of hops. 
If these assumptions do not hold, the described methods 

may result in false positives, that is, valid packets may 
appear to be spoofed. However, repeated checks should 
not consistently violate these assumptions. In general, they 
will hold. This allows improved accuracy by repeating the 
detection method to corroborate the results. Also, other 
non-TTL methods may be used for further corroboration. 

 
Direct TTL probes. By sending a packet to the claimed 
host that will cause a reply we can check to see if the TTL 
in the reply is the same as the packet being checked. If 
they are of the same protocol, they generally have the same 
TTL. Because different protocols use different initial 
TTLs, when the probe packet is of a different protocol, we 
must infer the actual hop count. Only a few initial TTL 
values are commonly used. For TCP/UDP, 64 and 128 are 
most commonly seen. ICMP commonly uses 128 and 255 
as the initial value. By subtracting the observed TTL from 
the supposed initial value we can estimate the number of 
hops. For example, for an ICMP packet with an observed 
TTL of 241, we get 255-241 or 14 as the estimated number 
of hops. If we are checking a TCP packet with an observed 
TTL of 50, we get 128-50=78 and 64-50=14. Because 14 
is the expected value, we can assume the packet was not 
spoofed. If we knew the actual initial TTL for the host this 
would be more certain. Using information about a 
particular host is discussed in the section on passive 
methods, but it should be noted here that combined 
methods are feasible and will result in better detection. 

If the attacker happened to be the same number of hops 
from the target as the spoofed source, this method would 
result in a false negative. Similarly, if the attacker knew the 
number of hops between the spoofed host and target, it 

Table #1: Special IP Addresses 
 
Private Networks (RFC 1918) --  

10.0.0.0/8         
172.16.0.0/12        
192.168.0.0/16       

 
Special / IANA Reserved -- 

0.0.0.0/8           - Historical Broadcast 
127.0.0.0/8         - Loopback 
169.254.0.0/16      - Link Local Networks 
192.0.2.0/24        - TEST-NET 
240.0.0.0/5         - Class E Reserved 
248.0.0.0/5         - Unallocated 
255.255.255.255/32  - Broadcast 

 



 

may be possible to spoof the TTL field as well. Issues 
related to this are discussed in section 9. 

IP Identification Number 
As discussed in the section on Bounce Scanning, the 

sending host increments the Identification Number (ID) in 
the IP header with each packet sent. Because this is a value 
that is easily probed and changes in its value are 
predictable, we can use it to determine if a packet is 
spoofed. Unlike TTL values, IP ID numbers can be used to 
detect spoofed packets even when the attacker and the 
target are on the same subnet. 

If we send probe packets to the claimed source and we 
receive a reply, the ID values should be near the value of 
questionable packets recently received from the host. Also, 
the ID values observed in the probe should be greater than 
the ID values in the questionable packets. If not the 
packets were likely not sent by the claimed source. If the 
host associated with the claimed source is very active, the 
ID values may change rapidly. To be effective, the probes 
must be done very close in time to receipt of the 
questionable packets.  

Some systems change initial ID values using more 
sophisticated method than increment by or some other 
constant value.  To avoid violating RFC 79I [22], for 
fragmented packet assembly, ID numbers only need be 
sequential for the fragments of a particular datagram. This 
allows for more complicated ID number usage. Two 
common alternatives are to use a separate counter for each 
packet stream, or to use pseudo-random values. The 
implementation challenge is to prevent overlapping 
existing IP data streams.  

In cases where sophisticated ID number assignments 
are implemented, using ID numbers to detect spoofed 
packets may be problematic. However, if the attacker’s 
computer does not use the same ID number creation 
method, probes to classify the ID numbering method used 
would readily show a difference. Also, some OSs exhibit 
quirky ID number assignment for certain protocols or 
services. For example, the Linux (kernel 2.4.0-2.4.4) 
ICMP echo request/reply packets always set the ID to zero. 
This defeats the simplest ID number probes, but it does 
facilitate more sophisticated probes.  

OS Fingerprinting 
The above techniques illustrate aspects of the more 

general task of OS fingerprinting where a series of various 
probes are used to identify the operating system of a 
particular host. Active fingerprinting refers to direct 
probing of a computer, while passive fingerprinting refers 
to monitoring traffic and comparing it to expected norms 
for different OSs. We can perform a limited passive 
fingerprint as we observe network traffic from a particular 
host, then by comparing this to an active OS fingerprint, 

we can determine if the two are likely to be the same OS. 
If not we can infer the packets are spoofed. 

 
TCP Specific Methods. Spoofed TCP packets can be 
checked using a number of methods in addition to the IP 
packet methods discussed above. TCP assures reliable 
packet transmission. To implement this, communication 
between both sides of the connection must occur. This 
allows us to detect spoofed packets by taking advantage of 
the fact that the sender’s spoofed packets will not respond 
to any packets from the receiver. TCP’s primary control 
messages are acknowledgement packets (ACK-packets).  
We will discuss two methods detection methods using 
ACK-packets. One causes the sender to pause sending 
packets; the other causes the sender to retransmit a packet.  
 
Flow Control. The TCP header includes a window size 
field. This is used to communicate the maximum amount 
of data the recipient can currently receive. This can also be 
interpreted as the maximum amount of data the sender can 
transmit without an acknowledgement from the recipient. 
This is the TCP flow control method. If the window size is 
set to zero, the sender should not send more data.  

If the packets we are receiving are spoofed, then the 
sender will never see the recipient’s ACK-packets. This 
implies that the sender will not respond to flow control. If 
the recipient does not send any ACK-packets, the sender 
should stop after the initial window size is exhausted. If it 
does not, it is likely the packets are spoofed. One way of 
implementing this check is to always send an initial 
window size that is extremely small. If packets received 
exceed this threshold, we can infer the packets are 
spoofed.  

Because spoofing replies with the correct sequence 
number to multiple TCP packets may be challenging, most 
spoofed TCP connections do not progress past the first 
ACK-packet. This implies that the best chance to detect 
spoofed packets requires it be done in the handshake. 
Fortunately the TCP handshake requires the host sending 
the initial SYN wait for the returned SYN-ACK prior to 
sending its first ACK packet. By setting the window size in 
the SYN-ACK to zero, we can we can determine if the 
sender is receiving (and responding to) our packets. If the 
sender sends an ACK-packet with any data, we know the 
true source is not responding to our packets, and was likely 
a spoofed packet. 

Packet Retransmission. TCP uses sequence numbers to 
determine which packets have been acknowledged. An 
ACK-packet communicates to the recipient that all packets 
it has sent, up to and including the packet with the 
sequence number in the packet have been successfully 
received. When a packet is received with an ACK-number 
that is less than the minimum expected, or greater than the 



 

max expected, the packet is dropped and as a way to 
resynchronize the connection, a reply with the minimum 
expected ACK-number is sent. We can exploit these 
replies to probe for spoofed packets. By sending a probe 
packet, spoofed to be from the internal host, with an ACK-
number greater than the minimum expected, we can induce 
a resynchronization ACK from the host being probed. If 
the probe receives a RST in reply, we can infer the 
connection was spoofed. A concern with this method is 
that it may lead to an ACK-storm as both sides attempt to 
resynchronize [17]. This method is best performed on a 
firewall where the probe reply could be captured. This will 
prevent the internal host from seeing the reply, and will 
prevent an ACK-storm.   

Traceroute 
Traceroute [26] is a widely used network tool to 

discover the route from the site traceroute is executed on to 
another. When used to detect spoofed packets, it may tell 
you the number of hops to the true source. Unfortunately it 
is very slow and generally fails when the site being 
checked is behind a firewall. If the firewall blocks the 
probing UDP packets (or the ICMP replies), the traceroute 
program will know only the number of hops to the firewall. 
However, when the firewall is more hops away from the 
monitored site than the true site, traceroute will return a 
hop count greater than expected of the questionable 
packet. In this case, traceroute can be useful as a detector. 

Because of its performance, traceroute is a poor general 
technique for spoofed packet detection. However, in cases 
where the attacker is nearer the target than the true source 
site’s firewalls, and the firewall will not allow probes to 
succeed, traceroute or similar techniques should be 
considered.  

The issues with traceroute introduce a different method 
of spoofed packet detection base only on previously 
observed packets. Because the TTL and ID fields are set 
by the true source, we can learn the expected values for a 
particular host. Such passive methods are discussed in the 
next section. 

3.2.2. Passive Methods 
Passive methods are a logical extension of the reactive 

methods discussed earlier. Where observed data will have 
a predictable value, not relative to some prior packet, we 
can learn what values are to be expected and consider 
packets with unexpected values suspicious. Because TTL 
values are a function of a host’s OS, the packet’s protocol, 
and the network topology, all which are reasonably static, 
TTLs can be used as a basis for passive detection. 
Conversely, IP ID numbers, which generally have a strong 
relation to prior packets, do not make good candidates for 
the basis of a passive system. The next section describes 

several different passive methods and how they could be 
used to detect spoofed packets. 

Passive TTL Methods 
As discussed in section 4.2.1.1, TTL values are an 

indication of how many network hops exist between a 
packet’s source and destination. By recording, over a 
period of time, the TTL values of distinct source IP 
address/protocols we can learn which values are expected 
from particular hosts. We believe that these are reliable, 
predictable values of a given IP address/protocol. (See 
section 7 for experimental validation of this.) This will 
give us a reasonable basis for identifying suspicious 
packets from previously observed hosts.  

Our implementation of this compares observed packets 
to the expected TTL values for that packet. If the values 
were anomalous, the packet would be flagged as 
suspicious.  

In many cases, we will receive packets from hosts not 
previously encountered.  These will have no entry in the 
table. Without further information we will not be able to 
know if the packet’s TTL values are suspicious. How to 
flag such packets should be left up to the particular 
application.  

However, by taking advantage of the fact that similar IP 
addresses are commonly the same number of hops away 
from a monitoring point, we can expand the above method 
to predict values for previously unseen packets. In addition 
to learning IP address/protocol to TTL relations we can 
also learn IP subnet to TTL relations. The predictability 
based on subnets is not expected to be as high as specific 
IP address/protocols, but will provide additional 
information. 

Rather than use passive methods alone, by using them 
in combination with reactive methods we can construct an 
efficient spoofed packet detection system. The reactive 
method can be initiated only when the packet seems 
suspicious. This minimizes the amount of probing 
required, and allows us to test packets using a number of 
methods. The specifics or our implementation are 
described in sections 5 and 7. 

One of the strengths of passive TTL methods is that 
they are resistant to network routing attacks. These occur 
when packets intended for a particular host are routed to 
another host posing as the first. Such an attack is not 
strictly packet spoofing because the packets are coming 
from the effective IP address of the sender. However, if the 
network distance between the two hosts has changed, we 
will identify these packets as spoofed. This allows passive 
spoofed packet detection to also act as a routing change 
detector. 

  
OS Idiosyncrasies. We have identified a number of other 
features that can be used to find suspicious (possibly 



 

spoofed) packets. These include the expected source port 
for a TCP or UDP communication, expected ID values for 
certain packets, and type of service (ToS) or differential 
service code point (DSCP) values. The TCP window size 
has also been observed to be highly predictable given the 
source [33]. Other useful features are likely. Basically, any 
that is specific to a particular host, OS, NIC, etc. is a 
potential identifier for that host.  

How useful a particular feature is depends on how 
predictable a particular feature is and how likely another 
computer will generate the same value as the claimed 
source. Features with values common to many computers 
will tend to generate false negatives while those that vary 
significantly will tend to generate false positives. This 
illustrates why these methods are best used in combination. 
The more useful features we use the more likely our 
assessment will be correct. 

4. Use in Intrusion Detection Systems 

Spoofed packet detection can be implemented as either 
an IDS sensor or as a firewall process. As a sensor, packets 
believed to have spoofed source addresses will generate 
alerts for use by the IDS. Used in a firewall, the packets 
can be dropped or passed but flagged as possibly spoofed. 
Security monitoring systems could use this in detecting 
attacks.  

A robust and efficient spoofed packet detection process 
should use a combination of methods to make its 
determinations. The system we are constructing first 
determines if the packet is suspicious using passive 
techniques then active probes to corroborate the passive 
detectors prediction. A number of different probes are used 
to determine if the packet was spoofed. If the probes 
indicate the packet is not spoofed, the system will update 
the static classifier to include the new values. Although 
updating the detector could incorporate router attacks as 
valid packet sources, it also allows us to learn more of the 
existing network relations. 

While it is possible to check all packets, for efficiency 
we see these methods being most useful as an on-demand 
adjunct to a primary IDS. 

We are finalizing an IDS module for detecting spoofed 
packets. This will incorporate many of the techniques 
discussed above. Details are described in section 9, 
Current and Future Work. 

5. Related Work 

We found no published work discussing detection of 
spoofed packets. However there are a number of papers on 
other spoofing attacks. 

ARP spoofing [30] involves sending packets with 
Ethernet MAC of a different host than the IP address in the 

packet. This will cause hosts on the local network segment 
to direct packets to the wrong interface on the network. 
Work to detect ARP spoofing has been discussed in [2]. 

Because SMTP does not have the provision to relate 
email addresses to actual users it is possible to send email 
that appears to come from any user desired. Email 
spoofing is discussed in detail in [11]. 

Another type of spoofing is when a filename is created 
which is a link to some other file. This is a common tactic 
in many “race condition” attacks.  

Efforts to detect the source of a spoofed packet are 
discussed in [15] and [24]. 

Some firewalls use “SYN-cookies”[3] as a means of 
minimizing the effects of SYN-flood type denial-of-service 
attacks. A SYN-cookie is a cryptographically chosen initial 
TCP sequence number. These are based on time, source IP 
address, port, etc. When a SYN packet is received, rather 
than open a buffer for the connection, the server sends the 
SYN-ACK packet with the SYN-cookie initial sequence 
number. No information about the connection is saved. 
This creates a stateless handshake. When an ACK packet 
is received for a socket that is not active, the returned 
sequence number is checked to see if it is valid for SYN 
packets sent from that host in recent time. If the sequence 
number is valid, a buffer is allocated and the connection 
begins. If the sequence number is not valid, the packet is 
dropped. While SYN-cookies do not detect spoofed 
packets per se, they do serve to mitigate SYN-flood attacks 
that utilize spoofed packets.  

6. Experiments 

This section describes the experiments we performed to 
support the assumptions made earlier and to evaluate the 
effectiveness of various techniques at detecting spoofed 
packets. 

6.1. TTL Predictability 

We collected packet data on our research lab network 
for 2 weeks. During this time approximately 23,000,000 IP 
packets were observed. These included packets from 
23,461 unique IP addresses. Of these, 110 were hosts on 
the local network segment. The purpose of collecting this 
data was to assess the predictability of TTLs and evaluate 
them as a means of detecting spoofed packets. 

The measure of predictability we used was conditional 
entropy. This measures the amount of information that 
knowing the source IP address (and IP protocol) provides 
us in estimating the true expected TTL of the host.  
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is a measure of unpredictability; values closer to zero are 
highly predictable, those numbers closer to one are highly 
unpredictable. Here, x is a particular IP address/Protocol, 
while y ranges over all possible TTL values (0..255).  

We calculated the conditional entropy for each host and 
protocol seen and determined the mean C.E. and variance 
for all IP addresses, only source addresses outside our 
subnet, and only source addresses inside our subnet. The 
results are summarized in Tables 2-8. Only four IP 
protocols were observed: ICMP, IGMP, TCP, and UDP. 
Conditional entropies were very low. To eliminate the 
effect of hosts who connected only once, or a few times, 
we recalculated the C.E.s with only IP addresses included 
with a minimum number of observed packets: 10 packets, 
50 packets, 250 packets and 500 packets. All had higher 
C.E.s than when IP addresses with single connections were 
included, however the C.E. values remained very low 
indicating that the TTLs were highly predictable given an 
IP address and protocol. 

Plots of the data consistently show low values for all 
protocols. An interesting feature is that as the number of 
UDP packets received from an IP address increased, the 
more TTL values we observed. Examining the raw data 
showed that the TTL values generally clustered about one 
value.  

We see several explanations for this. The majority of 
UDP packets observed appears to be streaming media. It 
appears that routers are forwarding these UDP packets 
over a different path than TCP or ICMP packet. Also, 
some of the IP addresses appear to be executing traceroute 
[26] against destination IP addresses that are behind 
firewalls on our subnet. Traceroute seeks to discover the 
network path between the originating host and the target by 
using the fact that a packet sent with a TTL too small to 
reach its target will cause the router at which the TTL 
becomes zero to send a “ICMP TTL expired” error 
message to the claimed originator. Traceroute begins by 
sending a UDP packet to the target with the TTL set to 
one. If traceroute receives a time-expired message in reply, 
it increments the TTL and retries. If the UDP packet 
successfully reaches the target host, this host will return a 
port-not-found message (assuming the chosen port is not 
active or otherwise blocked by a firewall). This probe 
manifests itself as a series of UDP packets with an 
increasing TTL value. 

A few IP addresses on the UCD network, but not on the 
monitored subnet, had over 100 values. These packets, the 
result of by network experimentation, caused a small 
increase in C.E. values. 

In any case, TTL values appear to be highly predicable 
and can be the basis for spoofed packet detection. 

 
 

Table 2. All packets 

Protocol H mean H-var. # Addresses # Packets 

All 0.055759 0.029728 23461 22999999 

ICMP 0.027458 0.023726 801 223341 

IGMP 0 0 23 297 

TCP 0.046149 0.023114 15891 20925893 

UDP 0.065164 0.040655 7397 1850468 

 
 
 

Table 3. External addresses only 

Protocol H mean H variance Number 
Addresses 

Number 
Packets 

All 0.055505 0.029731 23351 9229608 

ICMP 0.026159 0.023271 780 88371 

IGMP 0 0 3 26 

TCP 0.046324 0.023201 15825 8857983 

UDP 0.065537 0.041015 7306 283228 

 
 
 

Table 4. Internal Addresses Only 
Protocol H mean H variance Number 

Addresses 
Number 
Packets 

All 0.109633 0.026097 110 13770391 

ICMP 0.075714 0.03822 21 134970 

IGMP 0 0 20 271 

TCP 0.004189 0.000321 66 12067910 

UDP 0.035207 0.010859 91 1567240 

 
 
 
Table 5. Only Addresses with more than 10 packets 

Protocol H mean H variance Number 
Addresses 

Number 
Packets 

All 0.073805 0.036386 12846 22970416 

ICMP 0.098512 0.121612 77 221392 

IGMP 0 0 10 258 

TCP 0.056556 0.027002 11371 20912732 

UDP 0.155195 0.087024 1509 1834509 

 
 



 

Table 6. Only Addresses with more than 50 
packets 

Protocol H mean H variance Number 
Addresses 

Number 
Packets 

All 0.064924 0.034027 7712 22833787 

ICMP 0.049445 0.024978 42 220729 

IGMP 0 0 1 69 

TCP 0.056169 0.028653 7284 20798541 

UDP 0.152776 0.102203 441 1812386 

 
 

Table 7. Only Addresses with more than 250 
packets 

Protocol H mean H variance Number 
Addresses 

Number 
Packets 

All 0.060041 0.035521 2876 22338795 

ICMP 0.035778 0.020212 33 219605 

IGMP 0 0 1 0 

TCP 0.051132 0.027288 2713 20332940 

UDP 0.165818 0.175238 148 1779896 

 
 

Table 8. Only Addresses with more than 500 
packets 

Protocol H mean H variance Number 
Addresses 

Number 
Packets 

All 0.050635 0.031506 2306 22140140 

ICMP 0.022401 0.014516 30 218560 

IGMP 0 0 1 0 

TCP 0.042716 0.022273 2190 20150197 

UDP 0.164326 0.209436 104 1764716 

 

6.2. Active Methods 

We constructed a tool to check the TTL and IP ID for a 
sampling of packets received over a 2-week period. Each 
packet received had a 1:10 chance of being probed. This 
resulted in approximately 230,000 probes. These were 
performed immediately after observation of the questioned 
packet. 71 packets or 0.031% showed a difference in TTL. 
Difference in ID had a mean of 4.2, variance 5.8. Further 
analysis of active detection methods is currently under 
study. 

7. Discussion 

All the above methods have limitations however, the 
methods discussed significantly increase the level of 
difficulty required to spoof packets. They have shown 
themselves to be effective and in general relatively easy to 
implement. Only strong end-to-end authentication can 
prevent packet spoofing. When this is done at or above the 
transport layer [6][25] concern about spoofed packets 
affecting applications is minimal. However, this does 
nothing to mitigate the effects of existing denial-of-service 
attacks that exploit vulnerabilities in the IP stack.  

In many cases the presumption is that the attack is from 
a spoofed source. If we always assume this, then there is 
little risk to the attacker of using his/her own computer. 
Similarly, if an attacker sought to hide his true activity 
amongst many spoofed packets, these methods could help 
isolate the true attack source. 

While it is useful to detect and prevent spoofed packets, 
there are legitimate reasons for them. Typically these 
would be to test security. Example include running 
NESSUS [13], detect sniffers [20], or running the spoofed 
packet detection system described in this document. These 
should not lessen the value for detecting and preventing 
spoofed packets, as they are very rare situations.  

8. Limitations 

While the methods describe appear to be effective at 
detecting spoofed packets, they are not perfect. The 
intricacies of the modern computer networks can create 
situations that complicated detecting spoofed packets. 
Also, an attacker who knows that a system is being 
monitored for spoofed packets may craft more 
sophisticated packets to defeat the spoofed packet detector. 
This section discuses some of these problems and how we 
may work around them. 

8.1. Asymmetric routes 

Routing on the Internet is known to not be symmetric 
[21]. That is, packets from one host to another may be 
routed differently than packets in the reverse direction. 
Because we are comparing the reply packet to the original, 
we do not care if our probe was routed differently than the 
replies.  

8.2. Redundant routes 

In many cases there will be more than one routing path 
between the claimed source and the target. This was 
observed during our monitoring period. However, the 
variations seen were generally only 1 or 2 hops. When the 
number was greater (as in external UDP packets) they 



 

were clustered about one or two values. Much greater 
differences are possible and might occur if significant 
network outages were occurring. This however would 
cause widespread changes in routing and would result in 
many packets showing anomalous TTLs. However, active 
probes would likely result in the same TTLs as packets 
recently sent. 

8.3. DHCP 

Computers connecting via dial-up modem, wireless 
networks, and non-static DSL commonly use DHCP [14] 
to assign their IP addresses. This results in computers 
having different addresses at different times. In most cases, 
the number of hops from such a computer to the monitored 
site will be the same, however IP ID number and other OS 
specific data would not change. 

8.4. Network Address Translation 

Some routers provide network address translation 
(NAT) as a means of obscuring the internal network and 
allowing multiple hosts to share a common external IP 
address. Unless this is done via a proxy, only the source 
address and checksum would be altered. The rest of the IP 
header would pass through unchanged. Because of this, 
active detection methods would work against NATed 
claimed sources. When multiple hosts share the same 
external address, anomaly detection methods may not be 
able to distinguish one internal host from another. Also, if 
the observed TTLs, IP IDs, etc. were extremely varied 
across the hosts being NATed, the resulting distribution of 
values would reduce the effectiveness of static detection. 

8.5. Proxies 

In cases where the claimed site is behind a firewall that 
proxies the questionable packets, we will be unable to 
distinguish any packets from sites behind the firewall. That 
is, an attacker behind the firewall could spoof packets from 
any internal host. However, the firewall could use anti-
spoofing techniques and prevent this as an additional form 
of egress filtering. 

8.6. Forged TTLs and IP IDs 

Because an attacker can send a packet with any initial 
TTL desired, using observed TTLs as a means to 
determine spoofed packets might seem futile. However, for 
a spoofed packet to arrive at the target with the expected 
TTL, the attacker must (1) know the expected TTL, (2) 
know the number of hops from the spoofed source to the 
target, and (3) be able to set the initial TTL such that it 
will arrive with the expected value. Any other initial TTL 
will result in a packet that is suspect. Determining the first 

two may not be easy, the third requirement may be 
impossible.  

Traceroute has been suggested as a trivial way to 
determine the number of hops between the spoofed source 
and the target. However, this will work only if the source 
of the traceroute and the target are on the same network 
path as the attacker and the target.  

Depending on the initial TTL value that is expected 
from the target, if the attacker is further away from the 
target than the spoofed host, given that each hop 
decrements the TTL by one, the attacker may be required 
to start with a value greater than 255. This is not possible 
given the IP header format. For this reason it may be 
beneficial to use 255 as the initial TTL for all packets; it 
will make it more difficult for an attacker to provide the 
expected value. 

Similar to forging TTLs, an attacker could also forge IP 
identification numbers.  An attacker could first probe the 
claimed sources ID numbers, and then forge packets with 
the ID field set to values in this range.  

Alternatively, by arbitrarily modifying the TTL and IP 
fields it would be easy for an attacker to make non-spoofed 
packets appear to be spoofed. These packets may be 
included in a large number of truly spoofed packets to 
conceal the attacker’s true location. This would be a 
logical action when the attacker must receive the return 
packets but wishes to remain unknown. We know of no 
certain way to defeat this.  

9. Current and Future Work 

We are in the process of analyzing the effectiveness of 
the active and static methods discussed above as well as 
determining estimations of the false-positive and false-
negative rates. We will present the predictability of the 
various methods in terms of conditional entropy, as well as 
a report of how many potentially spoofed packets were 
observed during subsequent monitoring. This report also 
includes the results of trial packet spoofing attacks against 
our research network from several different locations. 

Additionally, we are constructing an IDS component 
integrating anomaly detection and active probes. This 
module monitors the network for packets that are 
anomalous relative to learned expected TTL values. When 
an anomaly occurs the active component seeks to 
corroborate the anomaly detection system. Questionable 
packets are reported as “anomalous packets” or “believed 
spoofed packet” depending on the results of the active 
component.  

While the static method described here has shown to be 
effective, when implemented as a simple lookup table, it is 
useful only for detecting spoofed packets from hosts we 
have seen before. Currently we are working on a system 
that generalizes beyond previously observed packets, 



 

making inferences about packets from previously unseen 
IP addresses. We assume that in general there is a relation 
between subnet and number of hops. This assumption is 
used in our classifier design to minimize error and can be 
used to explain the relations learned. Because we would 
like to know how likely the classifier’s expected TTL is to 
be correct, the classifier will also output a certainty factor. 
This is based on number of supporting examples, observed 
entropy, and distance from known values. 

As a means to empirically test the claims of this work, 
we are looking for sites to send spoofed packet from, and 
to run the data collection/spoofed packet detector from. 
Although our results look very good, we are collecting on 
a single network segment and have sent spoofed packets to 
the monitored segment from only a few sites. While we 
expect the work to be validated by broader testing, we feel 
such testing should be done.  

It may also be possible to combine static classifiers 
between sites. This would allow better detection by 
incorporating local knowledge about network topology.  

Detecting spoofed packets is only half of the solution: 
we need to be able to localize the true source of the 
packets. A number of projects have looked at this, but 
either required specially instrumented routers [27][15], or 
changes in the underlying network protocol [18]. While 
these are possible solutions, we feel that methods that do 
not have these requirements are more attractive. We 
believe that for some spoofing attacks, it is possible to use 
search techniques built upon some of the active detection 
methods described in this paper to accomplish this. 

10. Conclusion 

The original motivation for this research was our work 
in model based intrusion detection [29]. At issue was a 
lack of sensors to provide needed information to support 
correlation of events. Generally, these sensors required 
inferring something not directly in an observed packet. 
Some examples include, are attack packets are from the 
same attacker, was an attack successful, is a sniffer 
present, and if a packet was spoofed. We quickly found 
that such sensors are possible and could be used to support 
an IDS. 

Furthermore, while investigating commercial IDSs, we 
observed that many of the alerts generated were false-
positives and could be eliminated if corroborating 
information were available. The ability to know if the 
packets that generated the alerts were spoofed is just one 
example of supplemental information that would help in 
filtering out those alerts of low significance. 

The utility of detecting spoofed packets extends beyond 
simple detection and assessment. When used at a firewall 
to detect and block spoofed packets, the discussed 
techniques can be used to prevent spoofed packet attacks. 

As spoofed packets are a common component of many 
attacks, detecting and possibly preventing them is an 
important aid to improving network security. For TCP 
connections, stateless methods such as SYN-cookies are 
invaluable. The alternative to automated methods is to 
ignore identification of spoofed packets or to have security 
staff at the attacked site contact security staff at the 
supposed source. In practice this is inefficient and 
generally fruitless.  

We have shown that a wide variety of alternative 
techniques is available to detect spoofed packets. These 
can be used alone or in combination to improve detection 
effectiveness. They are easy to implement and have 
reasonable resource requirements. We acknowledge that 
these methods are not complete and there are cases where 
an attacker can still send spoofed packets undetected. No 
current intrusion detection method is 100% correct. That 
does not lessen their utility; an incremental improvement is 
better than doing nothing. These techniques are such an 
example. They are not a total solution, however they can 
greatly increase the ability to identify spoofed packet 
attacks.  
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