

Detecting Spoofed Packets

Steven J. Templeton, Karl E. Levitt
Department of Computer Science

U.C. Davis
{templets,levitt}@cs.ucdavis.edu

Abstract
Packets sent using the IP protocol include the IP address
of the sending host. The recipient directs replies to the
sender using this source address. However, the
correctness of this address is not verified by the protocol.
The IP protocol specifies no method for validating the
authenticity of the packet’s source. This implies that an
attacker can forge the source address to be any desired.
This is almost exclusively done for malicious or at least
inappropriate purposes. Given that attackers can exploit
this weakness for many attacks, it would be beneficial to
know if network traffic has spoofed source addresses. This
knowledge can be particularly useful as an adjunct to
reduce false positive from intrusion detection systems. This
paper discusses attacks using spoofed packets and a wide
variety of methods for detecting spoofed packets. These
include both active and passive host-based methods as
well as the more commonly discussed routing-based
methods. Additionally, we present the results of
experiments to verify the effectiveness of passive methods.

1. Introduction

Packets sent using the IP protocol [22] include the IP
address of the sending host. The recipient directs replies to
the sender using this source address. However, the
correctness of this address is not verified by the protocol.
The IP protocol specifies no method for validating the
authenticity of the packet’s source. This implies that an
attacker could forge the source address to be any he
desires. This is a well-known problem and has been well
described [5][10][12]. In all but a few rare cases, sending
spoofed packets is done for illegitimate purposes.

Sending IP packets with forged source addresses is
known as packet spoofing and is used by attackers for
several purposes. These include obscuring the true source
of the attack, implicating another site as the attack origin,
pretending to be a trusted host, hijacking or intercepting
network traffic, or causing replies to target another system.

Because none of these are desirable, it is useful to
determine if a packet has a spoofed source address. In
cases where an ongoing attack is occurring it is beneficial
to determine if the attack is from a particular location. In
many cases we are able to determine when packets are
spoofed, and generally from where they originate.

Spoofing of network traffic can occur at many layers.
Examples include network layer spoofing (e.g. Ethernet
MAC spoofing), non-IP transport layer spoofing (e.g. IPX,
NetBEUI), as well as session and application layer
spoofing (e.g. email spoofing). All of these have
significant security concerns. However, for the purposes of
this paper we will focus only IP packet spoofing.

A related issue is attacks that cause packets to be routed
to a different host than the sender intends. These are
attacks on routing [9][31] and the DNS system [4]. Packet
spoofing is restricted to false source addresses in the IP
packet header.

This paper discusses a variety of methods that can help
determine if received packets have spoofed source
addresses. Routing-based methods rely on routers and
other network devices to identify traffic with unexpected
source addresses or can aid spoofed packet detection. Non-
routing methods include both active and passive
techniques a host can use to determine if a received packet
is spoofed. Active methods involve either probes, such that
the response will corroborate the authenticity of a received
packet, or methods that cause changes in network behavior
such that the observed change (or lack of change) can
corroborate the authenticity of the packets. Passive
methods involve observing packet data that would be
anomalous in legitimate packets.

These methods are not intended to function in isolation,
rather to provide supplemental information to other IDS
components or to help assess the significance of far to
common nuisance alerts generated by commercial IDSs.
Spoofed packet detection is an example of techniques to
provide supplemental information to corroborate other IDS
reports when needed.

The paper is organized as follows. Section 1 provides
an overview of the various detection methods. Section 2
discusses routing methods. Section 3 discusses active
methods. Section 4 discusses passive methods. Section 5
discusses work related to detecting spoofed packets.
Section 6 discusses our experiment in passive detection.
The last section is a discussion of the experimental results
and further issues in detecting spoofed packets.

2. Packet Spoofing Attacks

Because packet spoofing can be part of many different
types of attacks, it is important to have an understanding of
how they are used. A key factor in all packet-spoofing
attacks is that it is not necessary for the attacker to directly
receive packet replies from the target. Replies are either
unimportant, their contents can be inferred, or the packets
can be observed in transit. This section describes several
such attacks and discusses their security implications.

2.1. SYN-flood

Perhaps the archetypal denial-of-service attack, SYN-
flooding demonstrates an attack where replies are
irrelevant. SYN-flooding requires the attacker to
continually sends a large number of TCP SYN packets to
the target. For each SYN-packet received, the target host
sends an acknowledgement packet to the supposed sender.
The target then waits for a reply to the acknowledgment.
The attacker never sends the reply, causing the target to
continue to wait. This ties up a buffer on the target host
When all buffers are used no further network connections
to the target are possible. Eventually the waiting
connection will time-out, the kernel will free the buffer and
make it available for new connections. Because of the high
volume of packets sent during a SYN-flood, an attacker’s
packets is more likely to use the buffer than a packet from
a legitimate connection.

In this attack, return packets are irrelevant to the
attacker. However, for this attack to be successful, the
attacker must spoof source addresses from hosts that are
non-existent or inactive. If the source address is of an
active host, because this host did not send the initial SYN-
packet, when it receives the acknowledgement packet from
the target, it will reply with a reset and thus release the
waiting slot.

2.2. Smurf

In the Smurf attack [8], spoofed ICMP echo request
(ping) packets are sent to a subnet broadcast address. This
will cause each active host to send an echo reply to the
source. In this attack the source address is set to the
address of the target. This causes a large number of replies

to be sent to the target causing degradation of service on
its network. The Smurf attack exploits the concepts of
packet amplification and address spoofing to overwhelm
the target network.

Again, seeing return packets is not important to the
attacker; in fact, it is generally not desired. For this attack
to be successful, the attacker must have access to a
broadcast address that responds to ICMP echo requests.
Unfortunately, these are widely available.

2.3. TCP Connection Spoofing

This attack requires coordination of several attacks;
primarily denial-of-service of a trusted host, and packet
spoofing of the attack target. The DoS component can be
anything that prevents the trusted host from sending reset
packets to the target. One such means would be a SYN-
flood. The other component requires sending packets
spoofed to be from the trusted host to the target. Because
of the DoS attack, the trusted host cannot reply to packets
received from the target, and the attacker can cause the
target to believe the packets are from the trusted host. This
will allow the attacker to use the target as if it were the
trusted host.

This attack is made difficult because TCP requires reply
packets to include the sequence number of the preceding
packet. If the attacker cannot directly observe the packets,
it must guess the sequence numbers. RFC 1948[6]
provides recommendations for increasing the difficulty of
predicting sequence numbers. Theoretically sequence
numbers could be made unguessable. However, while
more difficult than in the past, it is still possible and not as
difficult as is widely believed [32].

2.4. Bounce Scan

A difficulty in scanning computer sites is that the
attacker must see the replies. This makes it difficult to used
spoofed addresses. The simplest way to do this is to spoof
the address of another computer on your network segment
and monitor network traffic for replies to the spoofed
address. However, movement to switched Ethernet
environments or away broadcast networks altogether
makes this less feasible. A clever alternative to is to use
spoofed packets and to indirectly observe the target’s
replies. This is illustrated by the bounce scan attack [1].

This attack takes advantage of the regular nature of the
IP header “identification number” field. In most
implementations, this number is increased by one with
each packet sent. The bounce attack uses this by sending
spoofed SYN packets to a port on the target host. If the
port is closed, the target replies with a reset. The spoofed
host takes no action on receipt of a reset [31]. If the port is
open, the target replies to the spoofed source with an

acknowledgment. Because the spoofed host did not initiate
the SYN, it sends a reset to the target, and increments its
IP id number. The attack requires three steps: (i) probe the
spoofed host to find its current id number; (ii) send the
spoofed scan packet to the target; (iii) recheck the id
number on the spoofed host. From this the attacker can
learn if the target host’s port was open or not: if the id
number went up by one, the port was closed, if it went up
by two it was open.

To ensure that other packets are not sent to the spoofed
host during the scan, the attacker should select a host to
spoof with little or no network traffic (e.g. a networked
printer, late at night). Alternatively, or if the spoofed host
does not increment id numbers by one, the attacker can
uses multiple probes to each port and infer its state by
profiling the observed changes in id numbers.

2.5. Zombie Control

Distributed denial-of-service attacks such as Trinoo and
Stacheldraht [19], send one-way control messages to their
“zombies”. This allows the attacker to control the zombies
without observing a reply, and consequently to be able to
spoof the origin of the control messages. Also, because
these are one-way communications, any protocol can be
used. This makes it easier to send control messages
through firewalls that may block some traffic.

Similar to the bounce scan, control messages can be
sent indirectly. By sending a packet to any host on the
network, but setting the TTL to be shorter than the
required number of hops, when the TTL reaches zero, the
router will send a TTL expired packet to the expired
packets source. By spoofing this to be the address of the
zombie and encoding control information in the original IP
header, this method can effectively send indirect spoofed
control methods to the zombies.

The above illustrates some of the many ways spoofed

packets can be used in attacks. For some of these it is
useful to know if the packets are spoofed or not. This can
help rule out potential attack sources, prevent false
attribution of the attack, estimate the level of sophistication
of the attacker, the stealth of the attack, and possibly lead
to discovery the true attack source. Next we describe how
spoofed packets can be detected.

3. Spoofed Packets Detection Methods

Detection methods can be classified as those requiring
router support, active host-based methods, passive host-
based methods, and administrative methods.
Administrative methods are the most commonly used
methods today. When an attack is observed, security

personnel at the attacked site contact the security personnel
at the supposed attack site and ask for corroboration. This
is extremely inefficient and generally fruitless. An
automated method of determining the whether packets are
likely to have been spoofed is clearly needed. This section
describes a number of such methods.

3.1. Routing methods

Because routers (or IP level switches) can know which
IP addresses originate with which network interface, it is
possible for them to identify packets that should not have
been received by a particular interface. For example, a
border router or gateway will know whether addresses are
internal to the network or external. If the router receives IP
packets with external IP addresses on an internal interface,
or it receives IP packets with an internal IP address on an
external interface, the packet source is most likely spoofed.

In the wake of recent denial-of-service attacks involving
spoofed attack packets, ISPs and other network operators
have been urged to filter packets using the above-described
method. Filtering inbound packets, known as ingress
filtering, protects the organization from outside attacks.
Similarly, filtering outbound packets prevents internal
computers from being involved in spoofing attacks. Such
filtering is known as egress filtering. It is interesting to
note that if all routers were configured to use ingress
and/or egress filtering, attacks would be limited to those
staged within an organization or require an attacker to
subvert a router.

Internal routers with a strong notion of inside/outside
can also detect spoofed packets. However, certain network
topologies may contain redundant routes making this
distinction unclear. In these cases, host based methods
(discussed in section 4.2) can be used at the router.

A number of IP addresses are reserved by the IANA for
special purposes. These are listed in table 1. The addresses
in the first group are private addresses and should not be
routed beyond a local network. Seeing these on an outside
interface may indicate spoofed packets. Depending on the
particular site, seeing these on an internal address would
also be suspicious. The other addresses in table 1 are
special purpose, local only addresses and should never be
seen on an outer interface.

Many firewalls look for the packets described in this
section. Typically they are dropped when received.
Because firewalls have been a popular security product,
research into routing methods has been active. Most all
research has been in this area.

Routers can also take a more active role in detecting
spoofed packets. A number of advanced router projects
have dealt with this and spoofed packet traceback [27][28].
These are discussed in section 6. We have proposed a

number of proactive methods that can be used to detect
and prevent spoofed packets.

One limitation of routing methods is that they are
effective only when packets pass through them. An
attacker on the same subnet as the target could still spoof
packets. When the attacker is on the same Ethernet subnet
as the target, both the source IP address and the Ethernet
MAC would be spoofed. If the spoofed source address was
an external address, the MAC would be that of the router.
This implies that other techniques are required.

3.2. Non-routing methods

Computers receiving a packet can determine if the
packet is spoofed by a number of active and passive ways.
We use the term active to mean the host must perform
some network action to verify that the packet was sent
from the claimed source. Passive methods require no such
action, however an active method may be used to validate
cases where the passive method indicates the packet was
spoofed.

3.2.1. Active Methods
Active methods either make queries to determine the

true source of the packet (reactive), or affect protocol
specific commands for the sender to act upon (proactive).
These methods have an advantage over routing methods in
that they do not require cooperation between ISPs and can
be effective even when the attacker is on the same subnet
as the target.

Active methods require a response from the claimed
source. Only if the spoofed host is active (i.e. connected to
the network and receiving and processing packets) can it
be probed. A host that is heavy firewalled and cannot
respond to probes is effectively inactive. Because inactive
hosts are commonly used as source addresses in spoofed
packets, if these packets are seen in an attack, it is likely
they are spoofed. When hosts will not respond to any

probes, passive methods will be required for
corroboration.

TTL methods. As IP packets are routed across the
Internet, the time-to-live (TTL) field is decremented. This
field in the IP packet header is used to prevent packets
from being routed endlessly when the destination host can
not be located in a fixed number of hops[26]. It is also
used by some networked devices to prevent packets from
being sent beyond a host’s network subnet.

The TTL is a useful value for detecting spoofed
packets. Its use is based on several assumptions, which,
from our network observations, appear to be true.

• When a packet is sent between two hosts, as long as the
same route is taken, the number of hops will be the
same. This means that the initial TTL will be
decremented by the same amount.

• Packets sent near in time to each other will take the
same route to the destination.

• Routes change infrequently.
• When routes change, they do not result in a significant

change in the number of hops.
If these assumptions do not hold, the described methods

may result in false positives, that is, valid packets may
appear to be spoofed. However, repeated checks should
not consistently violate these assumptions. In general, they
will hold. This allows improved accuracy by repeating the
detection method to corroborate the results. Also, other
non-TTL methods may be used for further corroboration.

Direct TTL probes. By sending a packet to the claimed
host that will cause a reply we can check to see if the TTL
in the reply is the same as the packet being checked. If
they are of the same protocol, they generally have the same
TTL. Because different protocols use different initial
TTLs, when the probe packet is of a different protocol, we
must infer the actual hop count. Only a few initial TTL
values are commonly used. For TCP/UDP, 64 and 128 are
most commonly seen. ICMP commonly uses 128 and 255
as the initial value. By subtracting the observed TTL from
the supposed initial value we can estimate the number of
hops. For example, for an ICMP packet with an observed
TTL of 241, we get 255-241 or 14 as the estimated number
of hops. If we are checking a TCP packet with an observed
TTL of 50, we get 128-50=78 and 64-50=14. Because 14
is the expected value, we can assume the packet was not
spoofed. If we knew the actual initial TTL for the host this
would be more certain. Using information about a
particular host is discussed in the section on passive
methods, but it should be noted here that combined
methods are feasible and will result in better detection.

If the attacker happened to be the same number of hops
from the target as the spoofed source, this method would
result in a false negative. Similarly, if the attacker knew the
number of hops between the spoofed host and target, it

Table #1: Special IP Addresses

Private Networks (RFC 1918) --

10.0.0.0/8
172.16.0.0/12
192.168.0.0/16

Special / IANA Reserved --

0.0.0.0/8 - Historical Broadcast
127.0.0.0/8 - Loopback
169.254.0.0/16 - Link Local Networks
192.0.2.0/24 - TEST-NET
240.0.0.0/5 - Class E Reserved
248.0.0.0/5 - Unallocated
255.255.255.255/32 - Broadcast

may be possible to spoof the TTL field as well. Issues
related to this are discussed in section 9.

IP Identification Number
As discussed in the section on Bounce Scanning, the

sending host increments the Identification Number (ID) in
the IP header with each packet sent. Because this is a value
that is easily probed and changes in its value are
predictable, we can use it to determine if a packet is
spoofed. Unlike TTL values, IP ID numbers can be used to
detect spoofed packets even when the attacker and the
target are on the same subnet.

If we send probe packets to the claimed source and we
receive a reply, the ID values should be near the value of
questionable packets recently received from the host. Also,
the ID values observed in the probe should be greater than
the ID values in the questionable packets. If not the
packets were likely not sent by the claimed source. If the
host associated with the claimed source is very active, the
ID values may change rapidly. To be effective, the probes
must be done very close in time to receipt of the
questionable packets.

Some systems change initial ID values using more
sophisticated method than increment by or some other
constant value. To avoid violating RFC 79I [22], for
fragmented packet assembly, ID numbers only need be
sequential for the fragments of a particular datagram. This
allows for more complicated ID number usage. Two
common alternatives are to use a separate counter for each
packet stream, or to use pseudo-random values. The
implementation challenge is to prevent overlapping
existing IP data streams.

In cases where sophisticated ID number assignments
are implemented, using ID numbers to detect spoofed
packets may be problematic. However, if the attacker’s
computer does not use the same ID number creation
method, probes to classify the ID numbering method used
would readily show a difference. Also, some OSs exhibit
quirky ID number assignment for certain protocols or
services. For example, the Linux (kernel 2.4.0-2.4.4)
ICMP echo request/reply packets always set the ID to zero.
This defeats the simplest ID number probes, but it does
facilitate more sophisticated probes.

OS Fingerprinting
The above techniques illustrate aspects of the more

general task of OS fingerprinting where a series of various
probes are used to identify the operating system of a
particular host. Active fingerprinting refers to direct
probing of a computer, while passive fingerprinting refers
to monitoring traffic and comparing it to expected norms
for different OSs. We can perform a limited passive
fingerprint as we observe network traffic from a particular
host, then by comparing this to an active OS fingerprint,

we can determine if the two are likely to be the same OS.
If not we can infer the packets are spoofed.

TCP Specific Methods. Spoofed TCP packets can be
checked using a number of methods in addition to the IP
packet methods discussed above. TCP assures reliable
packet transmission. To implement this, communication
between both sides of the connection must occur. This
allows us to detect spoofed packets by taking advantage of
the fact that the sender’s spoofed packets will not respond
to any packets from the receiver. TCP’s primary control
messages are acknowledgement packets (ACK-packets).
We will discuss two methods detection methods using
ACK-packets. One causes the sender to pause sending
packets; the other causes the sender to retransmit a packet.

Flow Control. The TCP header includes a window size
field. This is used to communicate the maximum amount
of data the recipient can currently receive. This can also be
interpreted as the maximum amount of data the sender can
transmit without an acknowledgement from the recipient.
This is the TCP flow control method. If the window size is
set to zero, the sender should not send more data.

If the packets we are receiving are spoofed, then the
sender will never see the recipient’s ACK-packets. This
implies that the sender will not respond to flow control. If
the recipient does not send any ACK-packets, the sender
should stop after the initial window size is exhausted. If it
does not, it is likely the packets are spoofed. One way of
implementing this check is to always send an initial
window size that is extremely small. If packets received
exceed this threshold, we can infer the packets are
spoofed.

Because spoofing replies with the correct sequence
number to multiple TCP packets may be challenging, most
spoofed TCP connections do not progress past the first
ACK-packet. This implies that the best chance to detect
spoofed packets requires it be done in the handshake.
Fortunately the TCP handshake requires the host sending
the initial SYN wait for the returned SYN-ACK prior to
sending its first ACK packet. By setting the window size in
the SYN-ACK to zero, we can we can determine if the
sender is receiving (and responding to) our packets. If the
sender sends an ACK-packet with any data, we know the
true source is not responding to our packets, and was likely
a spoofed packet.

Packet Retransmission. TCP uses sequence numbers to
determine which packets have been acknowledged. An
ACK-packet communicates to the recipient that all packets
it has sent, up to and including the packet with the
sequence number in the packet have been successfully
received. When a packet is received with an ACK-number
that is less than the minimum expected, or greater than the

max expected, the packet is dropped and as a way to
resynchronize the connection, a reply with the minimum
expected ACK-number is sent. We can exploit these
replies to probe for spoofed packets. By sending a probe
packet, spoofed to be from the internal host, with an ACK-
number greater than the minimum expected, we can induce
a resynchronization ACK from the host being probed. If
the probe receives a RST in reply, we can infer the
connection was spoofed. A concern with this method is
that it may lead to an ACK-storm as both sides attempt to
resynchronize [17]. This method is best performed on a
firewall where the probe reply could be captured. This will
prevent the internal host from seeing the reply, and will
prevent an ACK-storm.

Traceroute
Traceroute [26] is a widely used network tool to

discover the route from the site traceroute is executed on to
another. When used to detect spoofed packets, it may tell
you the number of hops to the true source. Unfortunately it
is very slow and generally fails when the site being
checked is behind a firewall. If the firewall blocks the
probing UDP packets (or the ICMP replies), the traceroute
program will know only the number of hops to the firewall.
However, when the firewall is more hops away from the
monitored site than the true site, traceroute will return a
hop count greater than expected of the questionable
packet. In this case, traceroute can be useful as a detector.

Because of its performance, traceroute is a poor general
technique for spoofed packet detection. However, in cases
where the attacker is nearer the target than the true source
site’s firewalls, and the firewall will not allow probes to
succeed, traceroute or similar techniques should be
considered.

The issues with traceroute introduce a different method
of spoofed packet detection base only on previously
observed packets. Because the TTL and ID fields are set
by the true source, we can learn the expected values for a
particular host. Such passive methods are discussed in the
next section.

3.2.2. Passive Methods
Passive methods are a logical extension of the reactive

methods discussed earlier. Where observed data will have
a predictable value, not relative to some prior packet, we
can learn what values are to be expected and consider
packets with unexpected values suspicious. Because TTL
values are a function of a host’s OS, the packet’s protocol,
and the network topology, all which are reasonably static,
TTLs can be used as a basis for passive detection.
Conversely, IP ID numbers, which generally have a strong
relation to prior packets, do not make good candidates for
the basis of a passive system. The next section describes

several different passive methods and how they could be
used to detect spoofed packets.

Passive TTL Methods
As discussed in section 4.2.1.1, TTL values are an

indication of how many network hops exist between a
packet’s source and destination. By recording, over a
period of time, the TTL values of distinct source IP
address/protocols we can learn which values are expected
from particular hosts. We believe that these are reliable,
predictable values of a given IP address/protocol. (See
section 7 for experimental validation of this.) This will
give us a reasonable basis for identifying suspicious
packets from previously observed hosts.

Our implementation of this compares observed packets
to the expected TTL values for that packet. If the values
were anomalous, the packet would be flagged as
suspicious.

In many cases, we will receive packets from hosts not
previously encountered. These will have no entry in the
table. Without further information we will not be able to
know if the packet’s TTL values are suspicious. How to
flag such packets should be left up to the particular
application.

However, by taking advantage of the fact that similar IP
addresses are commonly the same number of hops away
from a monitoring point, we can expand the above method
to predict values for previously unseen packets. In addition
to learning IP address/protocol to TTL relations we can
also learn IP subnet to TTL relations. The predictability
based on subnets is not expected to be as high as specific
IP address/protocols, but will provide additional
information.

Rather than use passive methods alone, by using them
in combination with reactive methods we can construct an
efficient spoofed packet detection system. The reactive
method can be initiated only when the packet seems
suspicious. This minimizes the amount of probing
required, and allows us to test packets using a number of
methods. The specifics or our implementation are
described in sections 5 and 7.

One of the strengths of passive TTL methods is that
they are resistant to network routing attacks. These occur
when packets intended for a particular host are routed to
another host posing as the first. Such an attack is not
strictly packet spoofing because the packets are coming
from the effective IP address of the sender. However, if the
network distance between the two hosts has changed, we
will identify these packets as spoofed. This allows passive
spoofed packet detection to also act as a routing change
detector.

OS Idiosyncrasies. We have identified a number of other
features that can be used to find suspicious (possibly

spoofed) packets. These include the expected source port
for a TCP or UDP communication, expected ID values for
certain packets, and type of service (ToS) or differential
service code point (DSCP) values. The TCP window size
has also been observed to be highly predictable given the
source [33]. Other useful features are likely. Basically, any
that is specific to a particular host, OS, NIC, etc. is a
potential identifier for that host.

How useful a particular feature is depends on how
predictable a particular feature is and how likely another
computer will generate the same value as the claimed
source. Features with values common to many computers
will tend to generate false negatives while those that vary
significantly will tend to generate false positives. This
illustrates why these methods are best used in combination.
The more useful features we use the more likely our
assessment will be correct.

4. Use in Intrusion Detection Systems

Spoofed packet detection can be implemented as either
an IDS sensor or as a firewall process. As a sensor, packets
believed to have spoofed source addresses will generate
alerts for use by the IDS. Used in a firewall, the packets
can be dropped or passed but flagged as possibly spoofed.
Security monitoring systems could use this in detecting
attacks.

A robust and efficient spoofed packet detection process
should use a combination of methods to make its
determinations. The system we are constructing first
determines if the packet is suspicious using passive
techniques then active probes to corroborate the passive
detectors prediction. A number of different probes are used
to determine if the packet was spoofed. If the probes
indicate the packet is not spoofed, the system will update
the static classifier to include the new values. Although
updating the detector could incorporate router attacks as
valid packet sources, it also allows us to learn more of the
existing network relations.

While it is possible to check all packets, for efficiency
we see these methods being most useful as an on-demand
adjunct to a primary IDS.

We are finalizing an IDS module for detecting spoofed
packets. This will incorporate many of the techniques
discussed above. Details are described in section 9,
Current and Future Work.

5. Related Work

We found no published work discussing detection of
spoofed packets. However there are a number of papers on
other spoofing attacks.

ARP spoofing [30] involves sending packets with
Ethernet MAC of a different host than the IP address in the

packet. This will cause hosts on the local network segment
to direct packets to the wrong interface on the network.
Work to detect ARP spoofing has been discussed in [2].

Because SMTP does not have the provision to relate
email addresses to actual users it is possible to send email
that appears to come from any user desired. Email
spoofing is discussed in detail in [11].

Another type of spoofing is when a filename is created
which is a link to some other file. This is a common tactic
in many “race condition” attacks.

Efforts to detect the source of a spoofed packet are
discussed in [15] and [24].

Some firewalls use “SYN-cookies”[3] as a means of
minimizing the effects of SYN-flood type denial-of-service
attacks. A SYN-cookie is a cryptographically chosen initial
TCP sequence number. These are based on time, source IP
address, port, etc. When a SYN packet is received, rather
than open a buffer for the connection, the server sends the
SYN-ACK packet with the SYN-cookie initial sequence
number. No information about the connection is saved.
This creates a stateless handshake. When an ACK packet
is received for a socket that is not active, the returned
sequence number is checked to see if it is valid for SYN
packets sent from that host in recent time. If the sequence
number is valid, a buffer is allocated and the connection
begins. If the sequence number is not valid, the packet is
dropped. While SYN-cookies do not detect spoofed
packets per se, they do serve to mitigate SYN-flood attacks
that utilize spoofed packets.

6. Experiments

This section describes the experiments we performed to
support the assumptions made earlier and to evaluate the
effectiveness of various techniques at detecting spoofed
packets.

6.1. TTL Predictability

We collected packet data on our research lab network
for 2 weeks. During this time approximately 23,000,000 IP
packets were observed. These included packets from
23,461 unique IP addresses. Of these, 110 were hosts on
the local network segment. The purpose of collecting this
data was to assess the predictability of TTLs and evaluate
them as a means of detecting spoofed packets.

The measure of predictability we used was conditional
entropy. This measures the amount of information that
knowing the source IP address (and IP protocol) provides
us in estimating the true expected TTL of the host.

Conditional entropy

∑−=
yx

yxPyxPXYH
,

)|(log),()|(

is a measure of unpredictability; values closer to zero are
highly predictable, those numbers closer to one are highly
unpredictable. Here, x is a particular IP address/Protocol,
while y ranges over all possible TTL values (0..255).

We calculated the conditional entropy for each host and
protocol seen and determined the mean C.E. and variance
for all IP addresses, only source addresses outside our
subnet, and only source addresses inside our subnet. The
results are summarized in Tables 2-8. Only four IP
protocols were observed: ICMP, IGMP, TCP, and UDP.
Conditional entropies were very low. To eliminate the
effect of hosts who connected only once, or a few times,
we recalculated the C.E.s with only IP addresses included
with a minimum number of observed packets: 10 packets,
50 packets, 250 packets and 500 packets. All had higher
C.E.s than when IP addresses with single connections were
included, however the C.E. values remained very low
indicating that the TTLs were highly predictable given an
IP address and protocol.

Plots of the data consistently show low values for all
protocols. An interesting feature is that as the number of
UDP packets received from an IP address increased, the
more TTL values we observed. Examining the raw data
showed that the TTL values generally clustered about one
value.

We see several explanations for this. The majority of
UDP packets observed appears to be streaming media. It
appears that routers are forwarding these UDP packets
over a different path than TCP or ICMP packet. Also,
some of the IP addresses appear to be executing traceroute
[26] against destination IP addresses that are behind
firewalls on our subnet. Traceroute seeks to discover the
network path between the originating host and the target by
using the fact that a packet sent with a TTL too small to
reach its target will cause the router at which the TTL
becomes zero to send a “ICMP TTL expired” error
message to the claimed originator. Traceroute begins by
sending a UDP packet to the target with the TTL set to
one. If traceroute receives a time-expired message in reply,
it increments the TTL and retries. If the UDP packet
successfully reaches the target host, this host will return a
port-not-found message (assuming the chosen port is not
active or otherwise blocked by a firewall). This probe
manifests itself as a series of UDP packets with an
increasing TTL value.

A few IP addresses on the UCD network, but not on the
monitored subnet, had over 100 values. These packets, the
result of by network experimentation, caused a small
increase in C.E. values.

In any case, TTL values appear to be highly predicable
and can be the basis for spoofed packet detection.

Table 2. All packets

Protocol H mean H-var. # Addresses # Packets

All 0.055759 0.029728 23461 22999999

ICMP 0.027458 0.023726 801 223341

IGMP 0 0 23 297

TCP 0.046149 0.023114 15891 20925893

UDP 0.065164 0.040655 7397 1850468

Table 3. External addresses only

Protocol H mean H variance Number
Addresses

Number
Packets

All 0.055505 0.029731 23351 9229608

ICMP 0.026159 0.023271 780 88371

IGMP 0 0 3 26

TCP 0.046324 0.023201 15825 8857983

UDP 0.065537 0.041015 7306 283228

Table 4. Internal Addresses Only
Protocol H mean H variance Number

Addresses
Number
Packets

All 0.109633 0.026097 110 13770391

ICMP 0.075714 0.03822 21 134970

IGMP 0 0 20 271

TCP 0.004189 0.000321 66 12067910

UDP 0.035207 0.010859 91 1567240

Table 5. Only Addresses with more than 10 packets

Protocol H mean H variance Number
Addresses

Number
Packets

All 0.073805 0.036386 12846 22970416

ICMP 0.098512 0.121612 77 221392

IGMP 0 0 10 258

TCP 0.056556 0.027002 11371 20912732

UDP 0.155195 0.087024 1509 1834509

Table 6. Only Addresses with more than 50
packets

Protocol H mean H variance Number
Addresses

Number
Packets

All 0.064924 0.034027 7712 22833787

ICMP 0.049445 0.024978 42 220729

IGMP 0 0 1 69

TCP 0.056169 0.028653 7284 20798541

UDP 0.152776 0.102203 441 1812386

Table 7. Only Addresses with more than 250
packets

Protocol H mean H variance Number
Addresses

Number
Packets

All 0.060041 0.035521 2876 22338795

ICMP 0.035778 0.020212 33 219605

IGMP 0 0 1 0

TCP 0.051132 0.027288 2713 20332940

UDP 0.165818 0.175238 148 1779896

Table 8. Only Addresses with more than 500
packets

Protocol H mean H variance Number
Addresses

Number
Packets

All 0.050635 0.031506 2306 22140140

ICMP 0.022401 0.014516 30 218560

IGMP 0 0 1 0

TCP 0.042716 0.022273 2190 20150197

UDP 0.164326 0.209436 104 1764716

6.2. Active Methods

We constructed a tool to check the TTL and IP ID for a
sampling of packets received over a 2-week period. Each
packet received had a 1:10 chance of being probed. This
resulted in approximately 230,000 probes. These were
performed immediately after observation of the questioned
packet. 71 packets or 0.031% showed a difference in TTL.
Difference in ID had a mean of 4.2, variance 5.8. Further
analysis of active detection methods is currently under
study.

7. Discussion

All the above methods have limitations however, the
methods discussed significantly increase the level of
difficulty required to spoof packets. They have shown
themselves to be effective and in general relatively easy to
implement. Only strong end-to-end authentication can
prevent packet spoofing. When this is done at or above the
transport layer [6][25] concern about spoofed packets
affecting applications is minimal. However, this does
nothing to mitigate the effects of existing denial-of-service
attacks that exploit vulnerabilities in the IP stack.

In many cases the presumption is that the attack is from
a spoofed source. If we always assume this, then there is
little risk to the attacker of using his/her own computer.
Similarly, if an attacker sought to hide his true activity
amongst many spoofed packets, these methods could help
isolate the true attack source.

While it is useful to detect and prevent spoofed packets,
there are legitimate reasons for them. Typically these
would be to test security. Example include running
NESSUS [13], detect sniffers [20], or running the spoofed
packet detection system described in this document. These
should not lessen the value for detecting and preventing
spoofed packets, as they are very rare situations.

8. Limitations

While the methods describe appear to be effective at
detecting spoofed packets, they are not perfect. The
intricacies of the modern computer networks can create
situations that complicated detecting spoofed packets.
Also, an attacker who knows that a system is being
monitored for spoofed packets may craft more
sophisticated packets to defeat the spoofed packet detector.
This section discuses some of these problems and how we
may work around them.

8.1. Asymmetric routes

Routing on the Internet is known to not be symmetric
[21]. That is, packets from one host to another may be
routed differently than packets in the reverse direction.
Because we are comparing the reply packet to the original,
we do not care if our probe was routed differently than the
replies.

8.2. Redundant routes

In many cases there will be more than one routing path
between the claimed source and the target. This was
observed during our monitoring period. However, the
variations seen were generally only 1 or 2 hops. When the
number was greater (as in external UDP packets) they

were clustered about one or two values. Much greater
differences are possible and might occur if significant
network outages were occurring. This however would
cause widespread changes in routing and would result in
many packets showing anomalous TTLs. However, active
probes would likely result in the same TTLs as packets
recently sent.

8.3. DHCP

Computers connecting via dial-up modem, wireless
networks, and non-static DSL commonly use DHCP [14]
to assign their IP addresses. This results in computers
having different addresses at different times. In most cases,
the number of hops from such a computer to the monitored
site will be the same, however IP ID number and other OS
specific data would not change.

8.4. Network Address Translation

Some routers provide network address translation
(NAT) as a means of obscuring the internal network and
allowing multiple hosts to share a common external IP
address. Unless this is done via a proxy, only the source
address and checksum would be altered. The rest of the IP
header would pass through unchanged. Because of this,
active detection methods would work against NATed
claimed sources. When multiple hosts share the same
external address, anomaly detection methods may not be
able to distinguish one internal host from another. Also, if
the observed TTLs, IP IDs, etc. were extremely varied
across the hosts being NATed, the resulting distribution of
values would reduce the effectiveness of static detection.

8.5. Proxies

In cases where the claimed site is behind a firewall that
proxies the questionable packets, we will be unable to
distinguish any packets from sites behind the firewall. That
is, an attacker behind the firewall could spoof packets from
any internal host. However, the firewall could use anti-
spoofing techniques and prevent this as an additional form
of egress filtering.

8.6. Forged TTLs and IP IDs

Because an attacker can send a packet with any initial
TTL desired, using observed TTLs as a means to
determine spoofed packets might seem futile. However, for
a spoofed packet to arrive at the target with the expected
TTL, the attacker must (1) know the expected TTL, (2)
know the number of hops from the spoofed source to the
target, and (3) be able to set the initial TTL such that it
will arrive with the expected value. Any other initial TTL
will result in a packet that is suspect. Determining the first

two may not be easy, the third requirement may be
impossible.

Traceroute has been suggested as a trivial way to
determine the number of hops between the spoofed source
and the target. However, this will work only if the source
of the traceroute and the target are on the same network
path as the attacker and the target.

Depending on the initial TTL value that is expected
from the target, if the attacker is further away from the
target than the spoofed host, given that each hop
decrements the TTL by one, the attacker may be required
to start with a value greater than 255. This is not possible
given the IP header format. For this reason it may be
beneficial to use 255 as the initial TTL for all packets; it
will make it more difficult for an attacker to provide the
expected value.

Similar to forging TTLs, an attacker could also forge IP
identification numbers. An attacker could first probe the
claimed sources ID numbers, and then forge packets with
the ID field set to values in this range.

Alternatively, by arbitrarily modifying the TTL and IP
fields it would be easy for an attacker to make non-spoofed
packets appear to be spoofed. These packets may be
included in a large number of truly spoofed packets to
conceal the attacker’s true location. This would be a
logical action when the attacker must receive the return
packets but wishes to remain unknown. We know of no
certain way to defeat this.

9. Current and Future Work

We are in the process of analyzing the effectiveness of
the active and static methods discussed above as well as
determining estimations of the false-positive and false-
negative rates. We will present the predictability of the
various methods in terms of conditional entropy, as well as
a report of how many potentially spoofed packets were
observed during subsequent monitoring. This report also
includes the results of trial packet spoofing attacks against
our research network from several different locations.

Additionally, we are constructing an IDS component
integrating anomaly detection and active probes. This
module monitors the network for packets that are
anomalous relative to learned expected TTL values. When
an anomaly occurs the active component seeks to
corroborate the anomaly detection system. Questionable
packets are reported as “anomalous packets” or “believed
spoofed packet” depending on the results of the active
component.

While the static method described here has shown to be
effective, when implemented as a simple lookup table, it is
useful only for detecting spoofed packets from hosts we
have seen before. Currently we are working on a system
that generalizes beyond previously observed packets,

making inferences about packets from previously unseen
IP addresses. We assume that in general there is a relation
between subnet and number of hops. This assumption is
used in our classifier design to minimize error and can be
used to explain the relations learned. Because we would
like to know how likely the classifier’s expected TTL is to
be correct, the classifier will also output a certainty factor.
This is based on number of supporting examples, observed
entropy, and distance from known values.

As a means to empirically test the claims of this work,
we are looking for sites to send spoofed packet from, and
to run the data collection/spoofed packet detector from.
Although our results look very good, we are collecting on
a single network segment and have sent spoofed packets to
the monitored segment from only a few sites. While we
expect the work to be validated by broader testing, we feel
such testing should be done.

It may also be possible to combine static classifiers
between sites. This would allow better detection by
incorporating local knowledge about network topology.

Detecting spoofed packets is only half of the solution:
we need to be able to localize the true source of the
packets. A number of projects have looked at this, but
either required specially instrumented routers [27][15], or
changes in the underlying network protocol [18]. While
these are possible solutions, we feel that methods that do
not have these requirements are more attractive. We
believe that for some spoofing attacks, it is possible to use
search techniques built upon some of the active detection
methods described in this paper to accomplish this.

10. Conclusion

The original motivation for this research was our work
in model based intrusion detection [29]. At issue was a
lack of sensors to provide needed information to support
correlation of events. Generally, these sensors required
inferring something not directly in an observed packet.
Some examples include, are attack packets are from the
same attacker, was an attack successful, is a sniffer
present, and if a packet was spoofed. We quickly found
that such sensors are possible and could be used to support
an IDS.

Furthermore, while investigating commercial IDSs, we
observed that many of the alerts generated were false-
positives and could be eliminated if corroborating
information were available. The ability to know if the
packets that generated the alerts were spoofed is just one
example of supplemental information that would help in
filtering out those alerts of low significance.

The utility of detecting spoofed packets extends beyond
simple detection and assessment. When used at a firewall
to detect and block spoofed packets, the discussed
techniques can be used to prevent spoofed packet attacks.

As spoofed packets are a common component of many
attacks, detecting and possibly preventing them is an
important aid to improving network security. For TCP
connections, stateless methods such as SYN-cookies are
invaluable. The alternative to automated methods is to
ignore identification of spoofed packets or to have security
staff at the attacked site contact security staff at the
supposed source. In practice this is inefficient and
generally fruitless.

We have shown that a wide variety of alternative
techniques is available to detect spoofed packets. These
can be used alone or in combination to improve detection
effectiveness. They are easy to implement and have
reasonable resource requirements. We acknowledge that
these methods are not complete and there are cases where
an attacker can still send spoofed packets undetected. No
current intrusion detection method is 100% correct. That
does not lessen their utility; an incremental improvement is
better than doing nothing. These techniques are such an
example. They are not a total solution, however they can
greatly increase the ability to identify spoofed packet
attacks.

11. Acknowledgement

This work is supported in part by the DARPA IA&S
program under contract #F30602-00-C-0201 as part of the
NAI/U.C. Davis SHIM project, and by NSA contract
MDA904-01-C-1007 as part of the U.C. Davis "Model
Based Scenario Intrusion Correlation" project. The authors
would like to thank the anonymous reviewers for their
valuable comments.

12. References

[1] antirez. New tcp scan method. BugTraq,
http://www.securityfocus.com/archive/1/11581, February
2001.
[2] ARPwatch. Lawrence Berkely National Labs Network
Research Group, http://ftp.ee.lbl.gov.
[3] T. Aura and P. Nikander. Stateless connections. Proc.
International Conference on Information and
Communications Security (ICICS’97), Beijing, China,
1997.
[4] S. Bellovin. Using the Domain Name System for
System Break-ins. Proc. of the 5th UNIX Security
Symposium, pp.199-208, June 1995.
[5] S. Bellovin. Security Problems in the TCP/IP Protocol
Suite. Computer Communications Review, vol. 19, no. 2,
pp. 32-48, April 1989.
[6] S. Bellovin. RFC 1948: Defending Against Sequence
Number Attacks. http://www.ietf.org/rfc/rfc1948.txt, May
1996.

[7] H. Chang, R. Narayan, S. Wu, B. Vetter, X. Wang, M.
Brown, J. Yuill, C. Sargor, F. Jou, and F. Gong.
DECIDUOUS: decentralized source identification for
network-based intrusions. Proc. of the Sixth IFIP/IEEE
International Symposium on Integrated Network
Management, May 1999.
[8] CERT Coordination Center. Smurf IP denial-of-service
attacks. CERT Advisory CA-1998-01, Computer
Emergency Response Team,
http://www.cert.org/advisories/CA-1998-01.html, January
1998.
[9] H. Chang, S. Wu and Y. Jou. "Real-Time Protocol
Analysis for Detecting Link-State Routing Protocol
Attacks". ACM Transaction on Information and System
Security (TISSEC), Feb. 2001.
[10] Computer Incident Advisory Committee (CIAC) .
Advisory Notice F-08 Internet Spoofing and Hijacked
Session Attacks. 1995.
[11] CERT Coordination Center. Spoofed/Forged Email.
http://www.cert.org/tech_tips/email_spoofing.html, April
1999.
[12] Daemon9. IP Spoofing Demystified. Phrack
Magazine Review, Vol 7, No. 48, 48-14, June 1996.
[13] R. Deraison. Nessus Security Scanner.
http://www.nessus.org, 1998.
[14] R. Droms. RFC 2131: Dynamic Host Configuration
Protocol. http://www.ietf.org/rfc/rfc2131, March 1997.
[15] T. Dunigan. Backtracking spoofed packets.
http://www.epm.ornl.gov/~dunigan/oci/back.ps, 2000.
[16] L. T. Heberlein and M. Bishop. Attack Class: Address
Spoofing. Proc. of the 19th National Information Systems
Security Conference, pages 371-377, October 1996.
[17] L. Joncheray. A Simple Active Attack Against TCP.
Proc. Fifth Usenix UNIX Security Symposium, 1995.
[18] S. Kent and R. Atkinson. Security architecture for the
Internet protocol. RFC 2401: Internet Engineering Task
Force, November 1998.
[19] F. Lau, S. H. Rubin, M. H. Smith, and Lj. Trajkovic.
Distributed denial of service attacks. Proc. 2000 IEEE Int.
Conf. on Systems, Man, and Cybernetics, Nashville, TN,
pp. 2275-2280, October 2000.
[20] L0pht Heavy Industries. Antisniff Technical
Documentation. http://www.l0pht.com/antisniff/tech-
aper.html, October 2000.
[21] V. Paxson. End-to-end Routing Behavior in the
Internet. to appear in Proc. SIGCOMM '96, August 1996.
[22] J. Postel. RFC 791: DARPA Internet Program
Protocol Specification. http://www.ietf.org/rfc/rfc791,
September 1981.
[23] J. Postel. Transmission Control Protocol. RFC 793.
http://www.ietf.org/rfc/rfc793.txt, September 1981.
[24] S. Savage, D. Wetherall, A. Karlin, and T. Anderson.
Practical network support for IP traceback. Proc. of the
2000 ACM SIGCOMM Conference, August 2000.

[25] C. Schuba and E. Spafford. Countering abuse of
name-based authentication. Proc. 22nd Annual
Telecommunications Policy Research Conference, 1996.
[26] W. Richard Stevens. TCP/IP Illustrated. Volume I –
The Protocols. Addison-Wesley. 1st edition. December
1994.
[27] D. Schnackenberg, K. Djahandari., and D. Sterne.
Infrastructure for Intrusion Detection and Response. Proc.
of the DARPA Information Survivability Conference and
Exposition (DISCEX '00), 2000.
[28] S. Staniford-Chen and L. T. Heberlein. Holding
Intruders Accountable on the Internet. Proc. of the 1995
IEEE Symposium on Security and Privacy, Oakland, CA,
pages 39-49, May 1995.
[29] S. Templeton and K. Levitt. A Requires/Provides
Model for Computer Attacks. Proc. of the New Security
Paradigms Workshop 2000, Cork Ireland, September
2000.
[30] S. Whalen. An Introduction to ARP Spoofing.
http://packetstorm.securify.com/papers/protocols/intro_to_
arp_spoofing.pdf, June 2001.
[31] S. Wu, H. Chang, et al. JiNao: Design and
Implementation of a Scalable Intrusion Detection System
for the OSPF Routing Protocol. Journal of Computer
Networks and ISDN Systems, 1999.
[32] M. Zalewski. Strange Attractors and TCP/IP
Sequence Number Analysis.
http://razor.bindview.com/publish/papers/tcpseq.html,
2001.
[33] S. Staniford, J. Hoagland, and J. McAlerney.
Practical Automated Detection of Stealthy Portscans. To
be published, Journal of Computer Security.
http://www.silicondefense.com/pptntext/Spice-JCS.pdf

