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Abstract

We present a method that detects stable keypoints from

an event stream at high speed with a low memory footprint.

Our key observation connects two points: It should be eas-

ier to reconstruct the image gradients rather than the image

itself from the events, and the Harris corner detector, one of

the most reliable keypoint detectors for short baseline reg-

ular images, depends on the image gradients, not the im-

age. We therefore introduce a recurrent convolutional neu-

ral network to predict image gradients from events. As im-

age gradients and events are correlated, this prediction task

is relatively easy and we can keep this network very small.

We train our network solely on synthetic data. Extracting

Harris corners from these gradients is then very efficient.

Moreover, in contrast to learned methods, we can change

the hyperparameters of the detector without retraining. Our

experiments confirm that predicting image gradients rather

than images is much more efficient, and that our approach

predicts stable corner points which are easier to track for a

longer time compared to state-of-the-art event-based meth-

ods.

1. Introduction

Corner detection is an important computer vision prob-

lem, with downstream applications in Simultaneous Local-

ization and Mapping (SLAM), Structure from Motion, ob-

ject recognition and tracking [30, 40, 14, 37]. Event cam-

eras [16, 35, 8] are sensors that capture visual informa-

tion with high dynamic range and high temporal resolution,

while maintaining power consumption and data rate accept-

able for real time applications on embedded platforms [9].

As a consequence, reliable and efficient corner detection

on event cameras enables vision pipelines to work in chal-

lenging illumination conditions and with very fast move-

ments [39], situations where conventional frame-based sen-

sors would require heavy computation and introduce la-

tency.

For these reasons, corner detection has been among the

Figure 1. To detect keypoints in a stream of events, we propose

to first predict the image gradients from the events using a small

recurrent network. Then, we apply the Harris corner detector rule

on the predicted gradients. Finally, we track the corners by simple

nearest neighbor matching. The figure shows the predicted gradi-

ents with overlaid tracked corners (best seen in electronic format).

first problems studied in even-based vision [4, 38, 21, 1].

Early approaches rely on hand-crafted rules inspired by

frame-based corner detection algorithms [38, 21]. How-

ever, it is hard to define a single rule which is robust to

the variability and noise patterns of event camera data. To

overcome this, the authors of [20] propose a machine learn-

ing approach to classify corner events. This method is

more robust than the hand-crafted ones and can still be ap-

plied event-by-event. However, to be real time for increas-

ing input event rates, only a simple random forest model

is used, which has limited generalization and expressive

power. Moreover, it is not possible to change hyperparam-

eters to control the keypoint detection: Hand-crafted meth-

ods for keypoint detections often depend on hyperparame-

ters that are easy to change to adapt to the input images. De-

tectors using machine learning, random forest, or deep net-

works, do not have such hyperparameters that can be tuned,

and multiple models would need to be trained instead.



Our approach to developing a keypoint detector for event

streams that can be tuned while relying on the performance

of deep learning is motivated by the recent work presented

in [25]. [25] showed that it is possible to reconstruct high-

quality gray-level images from events. They also show

that applying standard gray-level visual-inertial odometry

methods [23] on the images generated by their network

gives more accurate results than state-of-the-art event-based

methods [39]. The limitation of this approach is that they

need a large neural network to reconstruct accurate gray-

level images. Thus, their approach is not well adapted for

low power and real-time applications—which are usually

the motivation for using event-based cameras.

We observe that many gray-level corner detectors rely on

image derivatives rather than intensity values [11, 33, 18,

19]. Moreover, since event cameras are sensitive to illumi-

nation changes, the events they produce are directly related

to the spatio-temporal gradients of the scene.

We therefore propose to train a recurrent neural network

to predict image gradients from events rather than intensity

values, and apply the Harris detection using these gradients

rather than gradients computed from image intensities (Fig-

ure 1). This approach has many advantages:

• Since predicting the gradients from events is a simpler

task than predicting images, we can use a very light

recurrent neural network.

• The Harris detector [11] remains a method of choice

for short baseline matching, which is the target ap-

plication of previous keypoint detection methods for

event-based cameras. Note that the popular Good Fea-

tures to Track method from [33] is essentially the same

as the Harris detector. The only difference is that [33]

relies on the eigenvalues of the auto-correlation matrix,

while [11] proposes a score that avoids computing the

eigenvalues, which can be relatively costly.

• By contrast with [20], we do not require a training set

of event streams annotated with keypoints, which is

difficult to build. We only need a video from which we

can obtain events by using a standard simulator [24,

10].

We evaluate our approach on a standard event-based

datasets [20], showing comparable accuracy than previous

method. Our method can be combined with most event-

based tracking algorithms, here we show that a very simple

tracking rule, based on nearest neighbor matching, already

gives much longer tracks compared to the state-of-the-art.

2. Related Work

2.1. Keypoint Detection in Images

Keypoint detection has a long history in computer vision,

as it is very important for many downstream applications.

Some detectors are designed for short baseline matching of

images [34, 11, 33, 29], others for wide baseline match-

ing [19, 2, 42, 7, 6], as the requirements are not the same

depending on the exact target application.

2.2. Keypoint Detection in Event Streams

Handcrafted methods. [38] adapts the Harris corner de-

tector to event streams by creating a binary image created

by the last n events in the frame. This image is updated at

every new event and the Harris score is computed on this bi-

nary image. There exists a number of other methods detect-

ing points of interest via local pattern matching [4, 22, 15].

Unfortunately, these methods are very sensitive to noise and

require careful tuning of the parameters.

Several existing detectors are based on a representation

called the Surface of Active Events [3], which is constructed

from past events and is structured as a pair of 2D images.

Given the 2D location (x, y), polarity p, and time stamp of

an upcoming event, the Surface of Active Events stores the

time stamp at the location and polarity of the event:

SAE[x, y, t]← t . (1)

This representation makes easier the adaptation of hand-

crafted corner detectors originally developed for regular

cameras to event-based cameras: The Fast Event-based

Corner Detection method [21] analyzes the distribution of

timestamps around the latest event. If they are divided into

two clear regions of old and new timestamps the event is

considered a corner. [1] introduced an improved version

of [21] changing the SAE to a ”more restrictive SAE” by

filtering redundant and noisy events. It improves the repre-

sentation of high contrast regions and reduces the amount

of computation of the following steps.

Those methods are computed for every new event and

can therefore be a bottleneck when the event rate increases

dramatically which can happen with new higher resolution

sensors.

Learned methods. In contrast to image-based corner de-

tection, to the best of our knowledge, there is only one

method based on machine learning for corner detection in

event streams: [20] relies on a Random Forest to learn to

discriminate corners from non corners events. The Random

Forest uses tests on a variant of the Time Surface that de-

pends less of the firing time of the events compared to the

standard Time Surface. This method suffers from the same

problem as handcrafted methods with the added computa-

tion of the speed invariant time surface and the random for-

est making it too slow for real sensors.

2.3. Reconstructing Events from Images

Our approach is based on the reconstruction of the image

gradients from the events. Several methods have already



been proposed for the reconstruction of the image itself.

The first efforts in video and gradients reconstruction were

made by [36] using a K-SVD algorithm to learn patch-based

dictionary atoms. [31] introduced asynchronous spatial im-

age convolutions to reconstruct an image from events. The

linear spatial kernel acts as an internal state and reconstructs

gray-level images. They also produce gradients and detect

corners with the Harris score but do not show quantitative

results on known datasets.

[25] on the other hand trained an architecture called

E2VID inspired by U-Net [28] on a large amount of sim-

ulated data, which was later improved in [26]. E2VID was

also revisited in FireNet [32] improving vastly on the speed

and memory footprint of the model. We take inspiration

from their model as well as their approach for our paper.

However, as we do not require the image itself but the gra-

dients which are closer in nature to the events, we can re-

duce even further the architecture to a minimal five layer

convolutional recurrent neural network.

3. Method

Let us consider an event camera of H ×W pixels. Let

L(x, y, t), be the light intensity at pixel (x, y) and time

t ≥ 0. The pixels in the event camera will not record abso-

lute intensity, but will send an output event as soon as they

detect a big enough change of L. Formally, given a contrast

threshold θ, an event ei = (xi, yi, pi, ti) is generated for

pixel (xi, yi) if
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where ti−1 is the time of the last event at (xi, yi) and

pi, called polarity of the event, is the sign of the contrast

change:

pi = sign

(

log

(

L(xi, yi, ti)

L(xi, yi, ti−1)

))

. (3)

Let e = {ei}
N
i=1

be a generic sequence of events gener-

ated by the camera in time interval [t1, tN ]. Our goal is to

find a function F mapping an event sequence e to the corre-

sponding gradient image G ∈ R
H×W×2 at time tN , where

G(x, y, tN ) is given by

G(x, y, tN ) = ∇xyL(x, y, tN )

= (Lx(x, y, tN ), Ly(x, y, tN ))
⊤

.
(4)

For simplicity of notation, we will omit the dependency on

tN in the following.

In [31], F is implemented as a model-based filtering

method. This approach has the advantage of being easily

interpretable. However, since it is a local method with a

very limited memory mechanism, it can not reach accurate

enough results when applied to noisy real world data. By

contrast, we use a recurrent convolutional neural network

which gives better results. The advantage of using a deep

learning approach is that we can directly learn the best func-

tion F from the data being robust to its variability. More-

over, by using ConvLSTM layers [41], our model can han-

dle long spatio-temporal dependencies on the events.

Once G is computed, it is straightforward to estimate

corners locations using Harris rule. We first compute the

structure tensor M as

M = wσ ∗ (G ·G
⊤) , (5)

where wσ is a Gaussian kernel of standard deviation σ. For

each image location, G is a 2D vector, so M can be seen as

a 2 × 2 matrix for each image location. Following Harris

detection method, we then compute the score map:

S = det(M)− k · tr(M)2 . (6)

Corners locations are given by the local maxima of S that

are above a given threshold. Note that we can change hy-

perparameters σ and k to tune keypoint detection without

having to retrain our network.

In the following, we detail our architecture for F and

how we train it.

3.1. Architecture

As mentioned in the previous section, we learn the func-

tion F , predicting the image gradients from events, as a re-

current neural network. The architecture we use is shown in

Figure 2. It is a 5-layer fully convolutional network of 3×3
kernels. Each layer has 12 channels and residual connec-

tions [12]. The second and fourth layers are ConvLSTM,

the last layer predicting the gradients is a standard convolu-

tional layer, while for the remaining feed-forward ones we

use Squeeze-Excite (SE) connections [13]. This results in

a very efficient architecture, but still able to learn gradients

from event data. In the following, we describe how we train

our network and the events representation used as input.

3.2. Training

For training, we use a subset of the training images in

the COCO dataset [17]. As shown in Figure 3, for each

image, we create a smooth video sequence from random

homographies simulating camera movement in front of a

planar scene and simulate events from said video. We

draw the contrast threshold from a uniform distribution in

[0.01, 0.2]. Each image yields a 5000 frame video. Ev-

ery 5 frames, we generate events with our own simulator,

which is based on a combination of [24] and [5]. From

the events, we build an event cube (see Section 3.4) com-

posed of 5 channels. At each iteration, we use a batch made

of 8 different sequences of 20 time bins. The input size



Skip connection
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Figure 2. Proposed Architecture. Our architecture combines recurrent connections with convolutional and Squeeze-and-Excite ResNet

connections. The input to the network is given by an event cube E(x, y, t) [43], computed at every N events. The event cube is given as

input to a Squeeze and Excite ResNet connection, followed by a ConvLSTM with residual connection. This block of two layers is repeated

once. Finally, a simple convolutional layer is used to predict the gradients G(x, y).

Figure 3. Generating Training Data. First row: Given a training image, we apply homographies to warp it and generate a video sequence.

Second row: From the video sequence we generate events using a simulator and then compute the event cubes [43] used as input to our

network. Third row: Ground-truth gradients of the video sequence. We train the architecture of Figure 2 to predict image gradients from

events. Finally, at inference time, we compute the Harris score from the predicted gradients.

is (T,Ba,B,H,W ) = (20, 8, 5, 320, 240). For each in-

put tensor, we have a corresponding image. We use it to

compute its spatial gradient using kornia [27]. Our loss

is simply the smooth L1 metric between the spatial gradi-

ent computed using the Sobel kernels and the 2 channels

output of our network. We use truncated-backpropagation-

through-time of 20 time steps, detaching the state at each

batch never resetting for each video. We train for 10 epochs

with a learning rate of 1e−4.

3.3. Inference

At inference, we build an event cube (see Section 3.4)

and feed it to our network. The event cube depends on a hy-

perparameter N (the length of the sequence of events used

to predict the image gradients), if it is large the quality of the

tracks will improve, but the network might be a bottleneck.

The network outputs a prediction of the image gradients. In

practice, we notice that some values are erroneously large,

and we clamp all values exceeding 3 times the standard de-

viation of the output values. Then, we compute the Harris

score as given in Eq. (6) using the kornia [27] implemen-

tation. We simply extract the local maxima of this score

map as keypoints. Example of predicted gradients and cor-

responding events and ground-truth are shown in Figure 4.



Input Event Cube Ground-truth Image Gradients Predicted Image Gradients
Figure 4. Predicting Image Gradients. Events from a camera are directly correlated to the spatio-temporal gradients of the scene. For

this reason, in our method, we train a small neural network to predict image gradients from events. The gradients can be directly used to

estimate corner locations using the Harris rule.

3.4. Input Representation

The input to our network is a H ×W × B event tensor

E(x, y, t), as proposed in [43]. H , W are the image sensor

height and width respectively and B is the number of tem-

poral bins. In the event tensor computation, each input event

(xi, yi, ti, pi) contributes by its polarity to the two closest

temporal bins using a triangular kernel. More formally, E

is computed as

E(x, y, tn) =
∑

i

pi max(0, 1− |tn − t⋆i |) , (7)

with

t⋆i =
(ti − tmin)

(tmax − tmin)
(B − 1) , (8)

and where n is the temporal bin index, pi is the polarity, and

t⋆i is the normalized timestamp of the ith event. In practice,

we use B = 5.

At runtime, we select the N latest events to create the

event cube. Running by N events enables us to follow the

rate of the event stream naturally and avoid useless compu-

tation when there are no new incoming events.

4. Results

4.1. Quantitative Results

For evaluating our method, we consider the ATIS Cor-

ner Dataset [20], which is specifically designed to evaluate

event-based corner detection and tracking methods. This

dataset is composed of 7 sequences of planar scenes ac-

quired with a HVGA event sensor. We use the same evalua-

tion metrics as in [20], that is we compute reprojection error

by estimating a homography form the tracked corners. As

in [20], we also consider average track length.

For tracking, we use a very simple nearest neighbor rule:

Two corners are assigned to the same track if their distance

in pixel and in timestamp is lower than a threshold.

The results are shown in Table 1. As can be seen, our

method has the best tracking length, almost 5 times longer

than the second best method [20]. This is thanks to the

memory of the recurrent layers which can stabilize the de-

tection and also to the robustness of the Harris detector.

Our method has slightly worse reprojection error. This is

probably due to the smoothing effect introduced by the net-

work on the predicted gradients. The other methods suffer

less from this problem, since they operate event by event.

4.2. Qualitative Results

Figure 4 compares ground truth gradients with gradients

predicted by our architecture, and shows the predicted gra-

dients are very similar to the real ones.

Figure 5 compares Harris keypoints extracted using gra-

dients predicted with our recurrent architecture and Harris

keypoints extracted using gradients estimated by the hand-

crafted method [31]. Only the gradient computation is dif-



Figure 5. Qualitative Results on the ATIS Corner Dataset. First row: Gradients predicted by our network, with overlaid tracks returned

by our method. Second row: Results obtained by replacing our network by the method of [31], which predicts gradients from events by

using a model-based approach. As we can see, our gradients are better localized. Moreover, thanks to the recurrent layers of the network,

we do not have a trailing effect on the gradients. As a consequence, we can track more corner points, more accurately.

Figure 6. Qualitative comparison to previous state-of-the-art

methods. First row: we visually compare our method with the

previous state-of-the art SILC [20]. Second row: Our method is

compared to evFast method [21]. Here we visualize the events

with different polarities for an easier comparison but our method

still computes corners on the predicted gradients (best seen in elec-

tronic format).

ferent, all the other computations are the identical. Our

method predicts much more accurate gradients, yielding

much more stable keypoints.

Figure 6 shows a visual comparison of our method with

previous state-of-the art. Our stable gradient prediction en-

ables the corner tracks to be longer and more accurate than

other methods.

Table 1. Evaluation on the ATIS Corner Dataset [20] for ∆t =
25ms. Our method has 5 times longer tracks, while maintaining

similar reprojection error as the state-of-the-art.

evHarris evFast Arc SILC∗ Ours

[38] [21] [1] [20]

Reprj. error (pix) 2.57 2.12 3.8 2.45 2.56

Track length (sec) 0.74 0.69 0.91 1.12 5.46

4.3. Computation Times and Memory Footprint

Our network has less than 26K parameters and runs in

7ms on a GTX 1080 GPU, for a HVGA input event sen-

sor. For comparison, the network of [25] reconstructing

graylevel intensities runs in 35ms and has more than 5.1M

parameters. This low footprint enables fast computation of

corners and makes our approach suitable for real-time ap-

plications.

5. Conclusion

In this paper, we proposed to predict image gradients

from events for keypoint detection, as it is a relatively easy

task for a deep network and the Harris corner detector, an

attractive option for short baseline keypoint detection, de-

pends only on the image gradients rather than the image

itself. More generally, many image analysis methods de-

veloped for regular cameras depend on image derivatives

rather than the image intensities, such as the SIFT descrip-

tor and the SIFT detector (the Difference-of-Gaussians in

SIFT approximates the Laplacian-of-Gaussian i.e. the sum

of the second order derivatives). We therefore believe that,



beyond the Harris detector, our approach could be extended

to other image analysis tasks by relying on methods devel-

oped for regular cameras.

In fact, the first layer of a deep network trained on reg-

ular images often learns to extract oriented gradients from

the input image. It should be possible to learn to predict

such oriented gradients and reuse architectures trained on

regular images. Thus we could reuse architectures trained

on datasets of regular images by applying them from their

second layer on the predicted gradients. This would make

possible the use of the many datasets created for regular

images and their annotations for applications using event-

based cameras.
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