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Abstract

Mathematical models for complex systems are often accompanied with uncertain-
ties. The goal of this paper is to extract a stochastic differential equation governing
model with observation on stationary probability distributions. We develop a neural
network method to learn the drift and diffusion terms of the stochastic differential equa-
tion. We introduce a new loss function containing the Hellinger distance between the
observation data and the learned stationary probability density function. We discover
that the learnt stochastic differential equation provides a fair approximation of the
data-driven dynamical system after minimizing this loss function during the training
method. The effectiveness of our method is demonstrated in numerical experiments.

Key words: Stochastic dynamical systems; Fokker-Planck equations; Machine learn-
ing; Neural network.

1 Introduction

Mathematical models for scientific and engineering systems often involve uncertainties and
thus are often in the form of stochastic differential equations (SDE). These stochastic dynam-
ical systems are ubiquitous in biology, physics, geosciences and other fields. Stochastic dy-
namical systems provide an appropriate framework to investigate random phenomena [1–5].
Hence, the determination of SDE models is crucial for quantifying and predicting dynamical
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behaviors of the nonlinear system under random fluctuations. An SDE is characterized by
the drift term and diffusion terms. In this paper, we aim to detect appropriate drift and
diffusion terms with stationary probability distribution data.

The stationary probability distribution of a stochastic dynamical system does not change
with time and it is the stationary solution of the corresponding Fokker-Planck equation
[6–12]. The stationary probability distribution carries the information of the underlying
stochastic system [13,14]. The Hellinger distance is the distance between probability distri-
butions which characterizes how close two different distributions are. In this paper, we use
Hellinger distance to identify whether the constructed SDE is an appropriate approximation
of a data-driven stochastic dynamical system.

Neural networks can be represented as compositions of simple functions with parameters,
and such functional representations can be used for parameter estimation of time-series data
and kernel estimation [15]. There has been some progress in learning stochastic differential
equation models from noisy data. A variation estimation method was used to learn the drift
term with the observation trajectory data [16–19]. There was also an RNN-based variational
method [20], a sparse learning method [21], and a Kramers-Moyal formulae [22] for learning
stochastic dynamical systems. A stochastic adjoint sensitivity method was proposed to learn
stochastic differential equations [23] or stochastic differential equations with jumps [24].
In [25], they used small samples from just a few snapshots of unpaired data to infer the drift
and diffusion terms of stochastic differential equations. Moreover, in [26, 27], they learned
Lévy noise parameters by deep neural networks. In [28], they solved the steady-state Fokker-
Planck equation with a small amount of data through combining the deep KD-tree.

We have recently developed a data-driven approach [29, 30] to discover stochastic differ-
ential equations with non-Gaussian Lévy noise using the nonlocal Kramers-Moyal formulas,
and further learned the stochastic differential equations from discrete particle samples at
different time snapshots using the Fokker-Planck equation and physics-informed neural net-
works [31].

However, in addition to sample path observation data, there are recent advances in ob-
serving or measuring stationary probability distributions [7, 9, 11, 32]. To take advantage of
these new types of data, we devise a neural network method to extract stochastic dynamical
system models with stationary probability distribution or a long time trajectory as obser-
vation data. This motivates our research reported in this paper. Specifically, we develop a
neural network method to extract stochastic governing laws based on probability measures.
Given observation data, we learn the drift and diffusion terms which are approximated by
two neural networks. Since if we learn the drift and diffusion together, the results would
not be unique. So in this work we proposed two approaches. The first approach entails
simply learning the drift or diffusion terms. The second technique involves learning the
drift and diffusion terms simultaneously with one drift term observational data. We com-
pare our learned results in three-dimensional settings with Hellinger distance substituted by
Jensen-Shannon divergence and mean-square distance which demonstrate the efficacy of our
proposed approaches.
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This paper is organized as follows. In Section 2, we present two methods for learning
stochastic governing laws based on physics informed neural networks and Hellinger distance
of probability distributions. In Section 3, we present examples to learn the drift terms and
the diffusion terms. Finally, we end with some discussions in Section 4.

2 Methodology

2.1 Problem setup

Consider the following stochastic differential equation (SDE)

dXt = b(Xt)dt+ σ(Xt)dBt, X0 = x0, (1)

where the n-dimensional vector function b(·) is the drift term, the n×n matrix function σ(·)
is the diffusion term, and Bt is an n-dimensional Brownian motion.

The generator of the SDE (1) is [33]:

Au =
n∑
i=1

bi
∂u

∂xi
+

1

2

n∑
i,j=1

(σσT )i,j
∂2u

∂xi∂xj
.

The probability density function (PDF) is a quantity that carries information of the
stochastic system. The time evolving probability density function of the solution process Xt

is governed by the Fokker-Planck equation, which is written as follows:

∂tp(x, t) = A∗p(x, t), x ∈ Rn, t > 0,

p(x, 0) = p0(x),
(2)

where p0(x) is the initial probability density function, A∗ is the adjoint operator of the
generator A and has the following form:

A∗p =−
n∑
i=1

∂

∂xi
(bip) +

1

2

n∑
i,j=1

∂2

∂xi∂xj
((σσT )i,jp). (3)

Note that the Fokker-Planck equation is a deterministic linear partial differential equation
with an initial condition.

The stationary Fokker-Planck equation is:

A∗p(x) =0, (4)

with a condition
∫
Rn p(x)dx = 1. We assume that there exists a unique stationary probability

density function (still denote it by p(x)) in this paper.
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We consider the scenario when available data is time series observation data or probability
density function. Our objective is to infer the drift and diffusion terms. Because of the
stochasticity of the dynamical system, we could not use the mean square error to get the loss
function of the SDE (1). The main issue is how to quantify the stochastic dynamics with use
the deterministic indexes. For example, we can use the maximal likelihood estimation [34]
or the most transition pathway [35] to extract or learn the SDE model. Here we will use the
stationary probability density function as the deterministic index to learn the SDE. If the
available data is long time trajectory data of X(t), we may first use kernel density estimation
to learn the probability density function. We will propose a machine learning method to
learn the drift and the diffusion terms of the SDE, with different measures for the distance
of the observed probability density function.

2.2 Machine Learning

As the drift b and diffusion σ characterize the uncertainty of the SDE, we will estimate
them based on observations of probability distributions (i.e., probability measures) of the
system paths Xt. Now we introduce the Hellinger distance [36, 37] between two probability
distributions. It is used to quantify the distance between two probability distributions in the
space of probability measures. For our purpose here, the Hellinger distance H(p, q) between
two probability density functions p(x) and q(x) is defined as follows,

H(p, q) ,

√
1

2

∫
(
√
p(x)−

√
q(x) )2dx, (5)

which satisfies the property: 0 ≤ H(p, q) ≤ 1.

With the observed stationary probability density q(x), we determine or estimate the
drift term b(x) by minimizing the Hellinger distance between the true stationary probability
density p(x) for the solution process X(t) and the observation probability density q(x).

Note that Hellinger distance is a measure to describe the distance of two probability den-
sity functions. Other distance also can describe the distance. Such as, given the probability
density function p(x) and q(x), respectively, the Kullback-Leibler (KL) divergence is defined
as

HKL(p||q) =

∫
p(x) log(

p(x)

q(x)
)dx. (6)

While the Kullback-Leibler divergence is asymmetry, there also exists a symmetric measure
between two probability density, which is Jensen-Shannon divergence, introduced as follows:

HJS(p||q) =
1

2
HKL(p||q + p

2
) +

1

2
HKL(

q + p

2
||p). (7)

Later we will also use the Jensen-Shannon divergence to measure the distance.
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Given the noise intensity σ(x) and observation of the stationary probability density q(x),
we will learn the drift term b. We devise two neural networks to approximate the drift term
and stationary probability density p(x), where the input is the space domain x and the
output is the bNN(x) and pNN(x).

On the one hand, the output of pNN(x) should satisfy the functional (21). We define the
loss function as:

LossH =
1

2NH

NH∑
i=1

(
√
pNN(xi)−

√
q(xi))

2, (8)

where {xi}NHi=1 are the points in the spatial domain to compute the integral and NH is the
number of the observation data.

On the other hand, the neural networks of the drift term bNN(x) and the stationary
probability density pNN(x) should satisfy the steady Fokker-Planck equation (4).

Similar to the physics informed neural network [39, 40], we define the residual neural
network as

f(x) = −
n∑
i=1

∂

∂xi
(biNNpNN) +

1

2

n∑
i,j=1

∂2

∂xi∂xj
((σσT )i,jpNN). (9)

Then the loss function of the residual neural network is defined as:

Lossf =
1

Nf

Nf∑
i=1

(f(xi))
2, (10)

where {xi}
Nf
i=1 is the residual points in the spatial domain and Nf is the number of the

residual points. Here we randomly choose the residual points at each iteration step. The
sketch of the method is shown in Figure 1.

The total loss function is
Loss = LossH + Lossf . (11)

For the unknown drift term and diffusion term, because b(x) = 0 and σ(x) = 0 is also
the minimization solution of loss function, thus we could not learn the terms uniquely if we
train the loss function (11). The observation data [40] of drift term at some points need to
know. To avoid the zeros solution, the observation data of drift term at few points is given,
i.e. {xi, b(xi)}Nbi=1. The loss function of the drift term is:

Lossb =
1

Nb

Nb∑
i=1

(bNN(xi)− b(xi))2, (12)

so the loss function is defined as:

Loss2 = LossH + Lossf + Lossb. (13)

5



Figure 1: Schematic of the neural network for solving PDEs: two neural networks
for approximate the probability p and the drift term b, where the input is x and ϕ is the
activation function.

If we use the Jensen-Shannon divergence to measure the distance, we just replace the
lossH to

LossJS = HJS(pNN ||q). (14)

We also compare our method (11) with the traditional physics informed neural network
(PINN) method [39] for solving the inverse problem of the Fokker-Planck equation. With
the observation data of the stationary probability density function q(x), the loss function is
written as mean square error:

Lossob =
1

Nob

Nob∑
i=1

(pNN(xi)− q(xi))2. (15)

The total loss of PINN method is defined as:

LossPINN = Lossob + Lossf . (16)

If the observed data is the trajectory of stochastic differential equation, i.e., X =
(Xt0 , Xt1 , · · · , XtN ), we can use the kernel density estimation to obtain the probability den-
sity function, denoting as qKD. Similarly, we replace the probability density function loss
lossH in Eq. 8 or lossJS in Eq. 14 with another loss from the estimated density, as qKD.

Remark: For an SDE with non-Gaussian Lévy case

dXt = b(Xt)dt+ εdLαt , Xt ∈ Rn, (17)

where b(·) is the vector drift term, and Lαt is a symmetric α-stable Lévy process in Rn. The
generating triplet of the Lévy process is (0, 0, να).
The corresponding nonlocal Fokker-Planck operator is [33]

A∗p =−
n∑
i=1

∂

∂xi
(aip) + εα

∫
Rn\{0}

[p(x+ y)− p(x)]να(dy), (18)
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where να(dy) is the α-stable Lévy measure and να(dy) = Cn,α||y||−n−αdy, Cn,α = αΓ((n+α)/2)

21−απn/2Γ(1−α/2)
.

The stationary probability density function is the solution for the nonlocal equation A∗p = 0.
To use our method to learn the SDE (17) driven by Lévy noise, we only need to change the
loss function of residual neural network (10) to (18). As for the nonlocal integral term, we
discretize it with a scheme in our earlier work [45], and while for the first order derivative
term, we evaluate with automatic differentiation [44].

3 Numerical Experiments

We first present an analytical example to learn a simple stochastic system, with quite involved
calculations. For more complex stochastic systems, we will have to use our proposed machine
learning method as demonstrated in the following numerical experiments.

3.1 Analytical method for learning stochastic dynamical systems

Consider a scalar stochastic differential equation

dXt = b(Xt)dt+ σdBt, (19)

with appropriate conditions on drift b and diffusion σ (see [38, p.170]), such as, b ≤ 0 and
σ 6= 0 as well as some smoothness requirements, there exists a unique stationary probability
density p(x) for the SDE (19), as a solution of the steady Fokker-Planck equation,

p(x) =
C

σ2(x)
e
∫ x
x∗

2b(y)

σ2(y)
dy
, (20)

where the positive normalization constant C is chosen so that p > 0 and
∫
R p(x)dx = 1, i.e.,

C , 1/

∫ ∞
−∞

e
∫ x
x∗

2b(y)

σ2(y)
dy

σ2(x)
dx.

Note that x∗ here may be an arbitrary reference point so that the integral
∫ x
x∗

2b(y)
σ2(y)

dy exists.

Different choice of x∗ only affects the normalization constant C. (Say, take x∗ = 0 if that is
possible).

Given the observed stationary probability density q, we like to find out the true stationary
probability density p. Consider Hellinger distance H between probability densities p(x) and
q(x).

H(b, σ) ,

√
1

2

∫
R
(
√
p(x)−

√
q(x) )2dx, (21)
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where p(x) is in (20). The corresponding Euler-Lagrange equation for H2 is

d

dt
H2
σ = H2

b . (22)

Since the Euler-Lagrange equation is the necessary condition for the functional to obtain the
minimum. So we can solve the corresponding Euler-Lagrange equation to get the minimum
value of the functional.

Example 1. Consider a specific scalar stochastic model

dX = b(X)dt+ dBt,

with unknown drift b(x), and given diffusion σ = 1. Given an “observation” of the stationary

probability density q(x) = 1√
2π

e−
1
2
x2 (the Gaussian distribution). Find a function b(x) so

that the Hellinger distance H2(b(x)) = 1
2

∫
R[
√
p(x)−

√
q(x)]2dx is minimized.

The true stationary probability density for the solution process Xt is

p(x) =
e2

∫ x
0 b(y)dy∫∞

−∞ e
2
∫ x
0 b(y)dydx

. (23)

The Euler-Lagrange equation is a necessary condition for functional minima

I(b) =
1

2

∫
R
(p(x) + q(x)− 2

√
p(x)

√
q(x) )dx. (24)

Submitting Eq. (23) and q(x) into Eq. (24), we get

I(b) =
1

2
√

2π

∫
R
e−

1
2
x2dx+

1

2

∫
R

e2
∫ x
0 b(y)dy∫

R e
2
∫ x
0 b(y)dydx

dx−
∫
R

√
e−

1
2
x2+2

∫ x
0 b(y)dy

√
2π

∫
R e

2
∫ x
0 b(y)dydx

dx. (25)

In order to get the minima of I(b), we can obtain I ′(b) = 0 and b(x) = −kx, k ≥ 0.

Submitting b(x) into p(x), then p(x) =
√

k
π
e−kx

2
, which satisfies

∫∞
−∞ p(x)dx = 1.

The error Err = ‖p(x)− q(x)‖H , submitting p(x) and q(x) into Err:

Err =‖p(x)− q(x)‖H =
1

2

∫
R

(
√
p(x)−

√
q(x))2dx

=
1

4
√
π

+

√
k

2π
−

√
4k

2π(k + 1
2
)
.

(26)
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This is a function f(k) about variable k. fmin attains when k = 1
2
. So, b(x) = −1

2
x.

In this example, we can luckily find the optimal drift term b analytical. While it is
exceedingly difficult to compute the true drift term by hand in many problems. So, in the
cases below, we use our proposed machine learning method to learn the drift and diffusion
terms.

3.2 Machine learning for learning stochastic dynamical systems

The neural networks in our numerical experiments below have 4 hidden layers and 20 neurons
per layer, with tanh activation function. The weights are initialized with truncated normal
distributions. The biases are initialized as zero. We use the Adam optimizer with a learning
rate 10−4 to train the loss function.

Example 2. Consider a scalar stochastic model

dX = b(X)dt+ σdBt,

with drift function b(x) = x−x3. Given an “observation” of the stationary probability density

q(x) = 1
A
e

1
σ2
x2−x

4

2 , where A =
∫
R e

1
σ2
x2−x

4

2 dx. Find a drift function b(x) so that the Hellinger

distance I(b(x)) = 1
2

∫
R[
√
p(x)−

√
q(x)]2dx is minimized.

Given the noise intensity (diffusion) σ = 1, we use two fully connected neural networks
to approximate the drift term and stationary probability density respectively. We choose
NH = 1001, Nf = 10000 to train the loss function (11). The results we learned are shown
in Figure 2. In Figure 2 (a), we plot the true drift term (black line) and the learned drift
term (red line). The neural network can approximate the drift very well. In Figure 2 (b),
the given q(x) and neural network result of pNN(x) can approximate well too. We also plot
the loss function evolves with the number of iterative steps. The loss is less than 10−4.

(a) (b) (c)

Figure 2: Unknown drift of Example 2: (a) learned drift term; (b) learned probability;
(c) loss function.

For the unknown drift term and diffusion term, we train the loss function (13) to get the
optimal results. Only one observation data of the drift term at x = −2 is given. The results
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are shown in Figure 3. We present learned drift result in Figure 3 (a), and the diffusion term
evolution predictions as the iteration of the optimiser progresses in Figure 3 (b). The neural
network of probability density is shown in Figure 3 (c). We can see for one observation data
of the drift term, the drift and diffusion term can be learned well. When |x| > 2, the error
of the learned drift term becomes larger than that for the other x. The fundamental reason
for this is that the probability in bigger x is almost zero, providing very little information
there.

(a) (b) (c)

Figure 3: Unknown drift and diffusion of Example 2: (a) the learned drift term with
1 observation data at x = −2; (b) the learned diffusion term; (c)the learned probability
density.

We also use our method to learn the SDE model, with only one trajectory observation
data X(t). The observation data is the long time trajectory of X(t) and is shown in Figure
4 (a). We use kernel density estimation to get the probability density and then use our
method to learn the drift and diffusion terms. The results of the drift term are shown in
Figure 4 (b) and the probability density is shown in Figure 4 (c). The results validate that
our method also works with long time trajectory observation data, while the error of the
probability density function is larger than using the stationary probability density function
observation data. If we have more trajectory data of the X(t), we can learn the probability
density function better.

Figure 4: Unknown drift of Example 2 with one trajectory observation data:
(a) trajectory observation data X(t); (b) the learned drift term; (c)the learned probability
density.
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Example 3. Consider a scalar stochastic model

dX = b(X)dt+ σdBt,

with drift function b(x). Given an “observation” of the stationary probability density q(x) =
1
π

1
1+x2

. Find a function b(x) so that the Hellinger distance I(b(x)) = 1
2

∫
R[
√
p(x)−

√
q(x)]2dx

is minimized.

Similar to the last example, we fix the noise intensity (diffusion) σ = 1, and use two neural
networks to approximate the drift term and stationary probability density respectively. Here
we also choose NH = 1001, Nf = 10000.

I(b(x)) =
1

2

∫
R
(
√
p(x)−

√
q(x))2dx, (27)

where q(x) = 1
π

1
1+x2

.

The results are shown in Figure 5. In this case, the true drift term b(x) is unknown, so
we could not compare the drift term. By comparing the learned stationary distribution and
the observation data, the result shows that they match well. What is more, the loss function
is sufficiently small, and the probability density distribution is concentrated around zero. So
zero could be the stable point of this system. Our learned drift term b(x) has one stable
point zero, as in Figure 5. This is in line with our expectations.

(a) (b) (c)

Figure 5: Unknown drift of Example 3: (a) learned drift term; (b) learned probability;
(c) loss function of OM part lossH and equation part lossf .

Molecular and cell biology is playing an increasingly important role in life sciences. For
example, many research findings are about stochastic fluctuations inducing phenotypic di-
versity in gene expression. Here we consider a stochastic gene regulation model [41,42].

Example 4. This is a stochastic model for a transcription factor (i.e., a protein) concen-
tration evolution in a certain gene regulation network

dX = b(X)dt+ σdBt,
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with drift function b(x) =
kfx

2

x2+Kd
−kdx+Rbas. Here the parameters are Kd = 10, kd = 1min−1,

kf = 6min−1, and Rbas = 0.4min−1. We will find a drift function b(x) and diffusion σ so

that the Hellinger distance I(b(x), σ) = 1
2

∫
R[
√
p(x)−

√
q(x)]2dx is minimized.

Given the noise intensity σ = 1, two neural networks are used to approximate the drift
term and stationary probability density respectively. Here we still choose NH = 1001,
Nf = 10000. The result of the drift is shown in Figure 6 (a), where the black line is the true
drift term and the red line is the neural network result. We find that he learned drift term
can fit the true result very well. And the learned probability density function is shown in
Figure 6 (b), which fits very well with the observation probability q(x). We also show the
loss function of lossH and lossf in Figure 6 (c). We see that the loss function decreases fast
with the iteration steps increasing.

(a) (b) (c)

Figure 6: Unknown drift of Example 4: (a) The learned drift term; (b) The learned
probability; (c) The loss function.

For the unknown drift term and diffusion term case, we train the loss function (13) to get
the optimal result. Only one observation data of drift term at x = 5 is given. The results
are shown in Figure 7. We present learned drift result in Figure 7 (a), and the diffusion term
evolution predictions as the iteration of the optimiser progresses in Figure 7 (b). The neural
network result of probability density is shown in Figure 7 (c). From the figures, we see that
the drift and diffusion terms can be learned well.

(a) (b) (c)

Figure 7: Unknown drift of Example 4: (a) learned drift term with 1 observation data
at x = 5; (b) learned diffusion term; (c) learned probability density function.
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Example 5. We now consider the following three dimensional stochastic dynamical systems
with non-polynomial drift [31]:

d

 Xt

Yt
Zt

 =

 −∂XtΦ(Xt, Yt, Zt)
−∂YtΦ(Xt, Yt, Zt)
−∂ZtΦ(Xt, Yt, Zt)

 dt+

 σ1 0 0
0 σ2 0
0 0 σ3

 d
 B1,t

B2,t

B3,t

 , (28)

where the potential Φ(x, y, z) = −1
2

log[(2 exp(λ01(x−λ11)2 +λ02(y−λ12)2 +λ03(z−λ13)2) +
exp(λ04(x − λ14)2 + λ05(y − λ15)2 + λ06(z − λ16)2)], λ0i = −5,−2.5,−5,−1,−1,−1, λ1i =
1, 1, 1,−2,−1,−1 and σj = 1, where i = 1, 2, ..., 6 and j = 1, 2, 3. The “observation”
of the stationary probability density is q(x, y, z) = 1/Z exp(−2Φ(x, y, z)), where Z is the
normalization parameter such that the integral of q(x, y, z) on domain R3 is equal to 1.
Find the parameters in drift term and diffusion term so that the Hellinger distance I =
1
2

∫
R3 [

√
p(x, y, z)−

√
q(x, y, z)]2dxdydz is minimized.

We use neural network to approximate the stationary probability density. And here we
choose NH = 50000, Nf = 5000.

First, we learn all the parameters λ0i, λ1i and σj, for i = 1, 2, ...6 and j = 1, 2, 3. The
results are shown in Figure 8. In Figure 8(a) and (c), the parameters of λ0i and drift term
are learned not well. While the parameters λ2i can be learned well, see Figure 8 (b). So we
will learn the parameter in the drift term and diffusion term respectively.

(a) (b) (c)

Figure 8: Three dimensional results of Example 5: (a) learned λ0i; (b) learned λ1i; (c)
learned σj, where i = 1, 2, ..., 6 and j = 1, 2, 3.

On the one hand, we just learn the diffusion term given the drift term. The results are
shown in Figure 9. The parameters in the diffusion term approach to the true parameter as
the number of iterations increases.

On the other hand, we learn the parameters λ0i and λ1i in the drift term given the
diffusion term. The results are shown in Figure 10. We learn the results for three cases.
For case I: the observation data is clean, i.e. q(x, y, z). For case II: the observation data is
given with 5% noise, i.e. q(x, y, z) ∗ (1 + 0.05N(0, I)), and for case III: the observation data
is given with 10% noise, i.e. q(x, y, z) ∗ (1 + 0.1N(0, I)). Here N(0, I) mean the standard
normal distribution. The parameters we learned are well even the observation data has 10%
noise.
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Figure 9: 3D result the learned drift term of Example 5.

(Case I) (Case II) (Case III)

Figure 10: Three dimensional results of Example 5. Learn all parameters in the drift
terms with perturbation. Case I: clean observation data of the PDF; Case II: 5% noise
observation data of the PDF; Case III: 10% noise observation data of the PDF. Left: learned
λ0i; right: learned λ1i, where i = 1, 2, ..., 6 and j = 1, 2, 3.

In the following, We change the Hellinger distance to the Jensen-Shannon divergence in
the loss function. The results of learned parameters in the drift term are shown in Figure
(11). The unknown parameters can be learned well. While compared with the Hellinger
distance, this method needs more iteration steps to train.

Here we also compare our results with the traditional physics informed neural network
(PINN) with the case of learning the parameter in the drift term. The results are shown
in Figure 12. Only several parameters in the drift term can be learned well using PINN
method. Compared with PINN method using mean square error (16), our loss with Hellinger
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Figure 11: Three dimensional results of Example 5. Learn parameters in the drift terms
using Jensen-Shannon distance. Left: learned λ0i; right: learned λ1i, where i = 1, 2, ..., 6 and
j = 1, 2, 3.

distance (11) would get better results. We use the neural network to approximate the
probability density function and plot the learned probability density function when z =
−1, 0.5, 1 using different methods. The results are shown in Figure 13. Compared with the
true probability density function, the proposed method with Hillinger distance and Jensen-
Shannon divergence works better than the mean square distance.

Figure 12: Three dimensional results with PINN loss of Example 5. Learn all the
parameters in the drift term with clean observation data of the PDF. Left: learned λ0i; right:
learned λ1i, where i = 1, 2, ..., 6 and j = 1, 2, 3.

For the unknown drift term, we use our proposed method to recover the drift term. The
results are shown in Figure 14. The first row of the Figure 14 (a1,b1,c1,d1) are the the
projection of Φ(x, y, z) var minimization of z, i.e. minz Φ(x, y, z). The second and third
rows are projected on (x, z) domain and (y, z) domain separately. The true projections are
shown in Figure 14(a). The results with Hellinger distance are shown in Figure 14(b). Com-
paring with the true potential, this example illustrates our method with Hellinger distance
works well. However, it is difficult to recover the SDE with the Jensen-Shannon divergence
(see Figure 14(c)) and PINN losses (see Figure 14(d)). This indicates the efficiency of our
proposed method using the Hellinger distance in this example.
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(a1) (b2) (c1) (d1)

(a2) (b2) (c2) (d2)

(a3) (b3) (c3) (d3)

Figure 13: The probability density function of Example 5. (a1)-(a3): the true PDF
with z = −1, 0.5, 1; (b1)-(b3): the learned PDF using Hellinger distance (11); (c1)-(c3): the
learned PDF using Jensen-Shannon divergence loss (14 ); (d1)-(d3): the learned PDF using
PINN loss (16).

Example 6. Finally, We now consider the following five dimensional stochastic dynamical
systems with non-polynomial drift:

d


Xt

Yt
Zt
Vt
Wt

 =


−∂XtΦ(Xt, Yt, Zt, Vt,Wt)
−∂YtΦ(Xt, Yt, Zt, Vt,Wt)
−∂ZtΦ(Xt, Yt, Zt, Vt,Wt)
−∂VtΦ(Xt, Yt, Zt, Vt,Wt)
−∂WtΦ(Xt, Yt, Zt, Vt,Wt)

 dt+


σ1 0 0 0 0
0 σ2 0 0 0
0 0 σ3 0 0
0 0 0 σ4 0
0 0 0 0 σ5

 d


B1,t

B2,t

B3,t

B4,t

B5,t

 ,

where the potential Φ(x, y, z, v, w) = −1
2

log[exp((λ01(x−λ11)+λ02(y−λ12)+λ03(z−λ13)+
λ04(v−λ14)+λ05(w−λ15)))+exp((λ06(x−λ16)+λ07(y−λ17))+λ08(z−λ18)+λ09(v−λ19)+
λ10(w − λ110))], λ0i = −1, λ1i = (1, 1, 1, 1.5, 1.5,−2,−1,−1,−1,−2) where i = 1, 2, · · · , 10,
and σj = 1, j = 1, 2, 3, 4, 5. The “observation” of the stationary probability density is
q(x, y, z, v, w) = 1/Z exp(−2Φ(x, y, z, v, w)), where Z is the normalization parameter such
that the integral of q(x, y, z, v, w) on domain R5 is equal to 1. Find the parameters in drift
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Figure 14: The learned potential of Example 5. (a1)-(a3): the true potential; (b1)-
(b3): the learned potential using Hellinger distance (11); (c1)-(c3): the learned potential
using Jensen-Shannon divergence loss (14); (d1)-(d3): the learned potential using PINN loss
(16).

term so that the Hellinger distance I = 1
2

∫
R5 [

√
p(x, y, z, v, w)−

√
q(x, y, z, v, w)]2dxdydz is

minimized.

We use a neural network to approximate the stationary probability density. And here we
choose NH = 50000, Nf = 5000. We learn the parameters λ0i and λ1i with i = 1, 2, · · · , 10
in the drift term given the diffusion term. The results are shown in Figure 15, indicating
that our method also works for five dimensional case.

Remark: With only one observation trajectory data, we first use kernel density estimation
to approximate the stationary probability density function, and then learn the SDE model.
This works well for one dimension, while for high dimensional cases, we need data on multiple
trajectories.

4 Discussion

Based on minimizing Hellinger distance between two probability distributions, we have de-
vised a data-driven method to extract stochastic dynamical systems models from observation
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Figure 15: Five dimensional results of Example 6. Learn all the parameters in the drift
term with clean observation data of the PDF. Left: learned λ0i; right: learned λ1i, where
i = 1, 2, ..., 10.

data of either long time trajectories or stationary probability distributions. Our numerical
results in one, three dimensionaland five dimensional examples have verified that this method
is feasible. We may also take other distances, in the space of probability distributions, in
our method. Indeed, we have also tried our method using Jensen-Shannon divergence and
mean square distance.

In principle, we may extend our method to learn high dimensional stochastic dynamical
systems. But when dealing with a high dimensional case, the larger search space for the
Fokker-Planck equation makes it difficult to train the neural network. We will try to use
parallel computing [43] or active sampling [46] to train the neural network. Moreover, our
method is more stringent on data requirements for higher dimensions cases. Therefore, in
the future, we are going to explore other method to recover stochastic differential equation
models. We will also try to use our method to learn the stochastic differential equations
with non-Gaussian Lévy noise.

This approach leads to a data-driven stochastic dynamical systems study of random phe-
nomena, as we can further examine dynamical behaviors of the leaned stochastic governing
models [33].
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[42] X. Cheng, H. Wang, X. Wang, J. Duan, X. Li, Most probable transition pathways
and maximal likely trajectories in a genetic regulatory system. Physica A. 531 (2019)
121779.

[43] K. Shukla, D. Ameya, G. Karniadakis. Parallel physics-informed neural networks via
domain decomposition. Journal of Computational Physics 447 (2021): 110683.

[44] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, J. M. Siskind. Automatic differentiation
in machine learning: a survey. Journal of Marchine Learning Research, 18 (2018): 1-43.

[45] X. Chen, F. Wu, J. Duan,J. Kurths, X. Li. Most probable dynamics of a genetic
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