
HAL Id: hal-03108820
https://hal.archives-ouvertes.fr/hal-03108820

Submitted on 13 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Detecting structural errors in BPMN process models
Mohammed Oussama Kherbouche, Adeel Ahmad, Henri Basson

To cite this version:
Mohammed Oussama Kherbouche, Adeel Ahmad, Henri Basson. Detecting structural errors in BPMN
process models. 15th IEEE International Multitopic Conference (INMIC), Dec 2012, Islamabad,
Pakistan. �hal-03108820�

https://hal.archives-ouvertes.fr/hal-03108820
https://hal.archives-ouvertes.fr

Detecting structural errors in BPMN process models

Oussama Mohammed Kherbouche, Adeel Ahmad, Henri Basson
Université Lille Nord de France

Laboratoire d’Informatique, Signal et Image de la Côte d’Opale
BP-719 62228 CALAIS Cedex FRANCE

Email: {kherbouche, ahmad, basson}@lisic.univ-littoral.fr

Abstract— Business Process Modeling Notation (BPMN) has
emerged as a standard notation to express the business process
models. A lack of formal semantics in the BPMN can cause the
syntactic and structural errors. The former requires less effort to
be checked, while the later usually needs a complex state-space
analysis to prove some properties, like the deadlock-freedom and
the livelock-freedom. In this paper, we present an approach
based on model checking for the automated verification of
business process models. We illustrate the deadlocks, livelocks,
and multiple termination problems, which can help the business
modelers to avoid structural errors.

Keywords-component; BPMN process models; Kripke structure
LTL; Model checking.

I. INTRODUCTION
The Business Process Management (BPM) [1, 2] has been

increasingly used for the identification, specification and
modeling of business process. During the last decade, Business
Process Modeling Notations (BPMN) [3] has become a
standard, in this regard, for the modeling of business processes.
It has been also used as a tool for expert analysis for decision
making. This success is based on its simplicity of notations [4]
and its exhaustive expressiveness. Nevertheless the widely
used BPMN as modeling support for business process relies on
the human expertise along with associated possible mistakes.

The major distinct possible errors can be either syntactical
or structural. The syntactical errors may occur by mistaking the
use of modeling elements i.e. an AND-join, OR/XOR-join or an
event when it does not allow more than one outgoing arc, etc.
The valid or invalid combinations to be used are usually
prescribed by the corresponding standard. The syntactical
correctness of models can be verified by using some modeling
tools such as BizAgi [5], Intalio [6], or Bonita [7].

However, a syntactically correct process can exhibit
unexpected behavior during its run-time, as a result of poorly
controlled data or structural errors. The structural errors, such
as wrong combination of the sequence of elements given by
misaligned splits and joins are difficult to be detected due to
lack of formal semantics of BPMN process models.
Subsequently, the run-time behavior of a process should be
analyzed to achieve a complete verification, showing whether
the process model fulfills important structural criteria. These
can be either deadlock-freedom or livelock-freedom to avoid
the proper functioning of the process, which can cost
financially expensive damages.

For a business process consistency, business process
modelers should check the accuracy and compliance of adopted
models after each applied change on an existing model. The
objective is to reach a verified changed model, which must be
also able to provide satisfying responses to the questions
related to the model consistency, such as: ’Does the processes
terminate?’, ‘Is there a possible deadlock?’, ‘Does every task T
of a certain process P is reachable?’, etc. The difficulty of
responses depends on the scale of size and complexity of the
evolving process which may cost more time and can involve a
higher expertise level.

In this paper, we propose an approach to automate the
checking of some structural errors such as deadlocks, livelocks,
and multiple terminations in BPMN process models based on
model checking. The approach has two major advantages.
Firstly, we assume a computable polynomial time, i.e. most of
the structural errors are actually detectable. Secondly, if an
error is found, it provides a direct graphical path leading to the
error. The main idea is to map the BPMN process model to
Kripke structure, and then check the validity of major
properties (e.g. absence of deadlocks, livelocks and multiple
terminations) expressed in Linear Temporal Logic (LTL) [8, 9]
formulae.

The rest of the paper is structured as follows. The section II
briefly narrates the closely related work to the proposed
approach. Section III, summarizes the preliminaries used to
illustrate our approach. We describe the frequent structural
errors in the section IV. Section V discusses, in detail, the
proposed approach, along with pertinent examples. Later in
Section VI, we conclude our contribution.

II. RELATED WORK
The structural errors can interrupt the execution of business

process models. We intend by the term structural errors as the
deadlocks, livelocks, or multiple terminations. The motivation,
of the current work, has been to provide a means for automated
verification of absence of structural errors. The proposed
approach allows the better identification of the non-compliant
business processes, before their execution. During the last
decade, there are many research works focused on detecting the
structural errors in the business processes. In [10], an approach
has been proposed for detecting deadlocks and multiple
termination patterns in SAP reference model. It is intended to
be applied on two popular modeling languages i.e. Event-
Process Chain (EPC) and PetriNet. Dijkman et al. [11] also
propose PetriNet-based method to verify BPMN process

models. However, it advocates the human judgment to detect
and assess the correctness of structural errors. Their semantics
does not strictly conform to the multiple instances of model,
exception handling, and message flows. Furthermore, Awad et
al. [12, 13] present an approach to detect deadlocks using a
method in continuation of their previous work concerning
BPMN-Q [14]. They use business process querying to detect
the common structural errors. They propose a customized
language to graphically interpret the deadlock patterns whose
occurrence in process models lead to deadlocks. Such ad-hoc
queries based on quantifications of based on structural
properties may enhance the space and time complexities. In
[15] Van der Aalst proposes soundness criterion to guide the
modeling regarding the specification of EPC. They propose to
map EPCs (without connectors of type V) onto Petri nets. As a
result it gains the advantages of formal semantics and
analyzing techniques available for Petri nets. However, their
semantics does not properly model multiple instances,
exception handling, and message flow using Petri nets. Another
approach [16] proposes finite-state automata to detect
deadlocks and multiple terminations. They transform BPMN
model to an automata-based formalism to verify the
compatibility of transition function. The correctness of the
BPMN model is assessed through the existence of process
sequence, which could be accepted by the process automata.
Although, their approach suites the deadlock and multiple
termination problems, but it has attached inconveniences of
complexities of automata-based formalism. Also, it is difficult
to analyze the live-lock situations.

Model checking can be used for the better detection of
some structural errors. Our approach is aimed to provide an
automated assistance to verify the soundness process model. It
can be implemented by abundant model checker tools, e.g
SPIN [17], NuSMV [18], etc.

III. PRELIMINARIES
The following sections, we briefly explain the concepts and

technical terms used in the proposed approach.

A. Business Process Modeling Notation
 The Business Process Modeling Notation (BPMN),
adopted by OMG, has been specified since February 2006 (3).
It is used as a standard notation set. The primary goal of
BPMN is to provide the notations which are readily
understandable by all business users. BPMN creates a
standardized bridge for the gap between the business process
design and process implementation.

Figure 1. A core of BPMN elements

As shown in Fig.1, BPMN process diagrams provide a
number of graphical notations for business process. These can
be categorized as below:

• Flow Objects: are the main graphical elements to
define the behavior of a business process. There are
three kinds of flow objects, which are event, activity,
and gateway.

• Connectors: are the graphical elements to connect the
Flow Objects to each other. There are three kinds of
Connecting Objects, which are Sequence Flow,
Message Flow, and Association.

• Swimlanes: are the graphical elements to group the
modeling elements. There are two ways of grouping
the primary modeling elements, which are pools and
lanes.

• Artifacts: are used to provide additional information
about the Process. There are two standardized
Artifacts, which are Group and Text Annotation.

B. Model Checking
The model-checking [19] method is based on three phases:

• The system modeling phase: The objective of this
phase is to provide the formal semantics representation
of the system. It represents transition systems where
the nodes are system states and transitions describe the
possible reachability of one state to another. It includes
the Kripke structures, Petri nets, finite automata, timed
automata, etc.

• The specification phase of the property: It is a
translation phase to specify the property to check, in a
formal language, which was formerly written in natural
language. Among the many formalisms proposed, there
is a variation of temporal logic of linear time or
branching time (LTL, PLTL, CTL, CTL*, TCTL, etc.),
or a µ-calcul.

• The verification phase: In this phase data are applied in
an algorithm to check if the system model satisfies or
not the specification model. This algorithm depends on
the nature of the models chosen for the system and the
property.

Among the possible models to describe a system and a
given property, the choice is often a compromise between
expressiveness and ease of analysis. There exist many tools
which widely used such as SPIN [17] and NuSMV [18] to
achieve this goal.

C. Kripke structure
Kripke structure [20] is used to provide semantics, which

allow the checking, whether a specific property holds or not.
The semantics are based on temporal logics for most of the
widely used specification languages for reactive systems.

Let us assume, AP as a set of labels i.e., a set of atomic
proposition such as variables, constants and predicate symbols.

A Kripke structure is a 4-tuple M = (S, I, R, ℒ) where:

Events

Activities

Gateways

Sequence
Flow

Association

Message
Flow

Flow
Object

Group

Text
Annotation

This Is
Annotation

Data Object

Connecting
Object

Swimlanes Artifacts

Pool

Lane

• S is a finite non-empty set of states

• I � S is a set of initial states

• R � S × S associates with each state s � S its possible
successors are, , such that ,

• ℒ : S → 2AP , associates with each state s � S the set of
atomic propositions ℒ(s) holds in s.

D. Linear Temporal Logic (LTL)
LTL [21] is the most commonly used language for

specifying temporal properties of software or hardware
designs.

The set of alphabets of LTL is composed of:

• Atomic proposition symbols: p, q, r …

• Boolean connectives : ┬ (true), � (false), ¬ (not), �
(or), � (and), → (imply), ↔ (one-to-one)

• Temporal connectives : G, X, F, U

The set of LTL formulae is as follows:

• Any atomic proposition i.e. p, q is a formula.

• If � and ψ are formulae, then ¬ �, � � ψ, � � ψ, �
→ ψ and � ↔ ψ are also formulae.

• If � and ψ are formulae, then G�, X�, F� and � U ψ
are formulae.

The four temporal connectives X, F, G, and U as shown in
Fig.2, are explained as below:

• G (‘always’): is read always in the future (in all future
states of path). Graphically, it can be denoted as : □

• X (‘next time’): is read at the next time (in the next
state of path), and denoted as: ○

• F (‘eventually’): is read eventually (in some future
state of path, and denoted as: ◊

• U (‘until’): is read until, which can be denoted as: u

Figure 2. LTL Temporal connectives representation

1) Semantics of LTL: Let = s0, s1, s2…sn be a sequence of
states and L such as: 0, i) � AP.

The sequence satisfies �. It is denoted by |= �. This
relation can be defined inductively and gives semantics of LTL
formulas as below:

• p � AP, π |= p ↔ p � L (q0)

• π |= p � q ↔ π |= p or π |= q

• π |= ¬ p ↔ π | p

• π |= Xp ↔ π1 |= p

• π |= p U q ↔ j 0, πj |= q � (k , k |= p).

IV. STRUCTURAL ERRORS
This section, presents some structural errors which can

occur during run-time of BPMN process models. These are
used to illustrate the proposed approach to ensure verification
of the business process models.

A. Deadlock patterns
A deadlock in a process model is given if a certain instance

of this model cannot continue working, while it has not reached
the process end (i.e. deadlock is a condition used to describe a
process that cannot be completed). According to Onada et al.
[22] there are two complementary concepts, reachability and
absolute transferability. Primarily, the reachability between
process P1 and process P2, which means, there is at least one
occurrence sequence from P1 to P2. Secondly, the absolute
transferability, which means, it is a much stronger concept to
state that a token can always be transferred from P1 to all input
points of process P2. This makes absolute transferability to
reduce reachability between two nodes, because of the
existence of routing control nodes in between. The presentation
of the business process by using only the reachability (without
absolute transferability), can cause a deadlock.

In [22], the authors have also identified several potential
causes of deadlocks, as follows:

• Loop deadlock: as shown in Fig.3.a, occurs when there
is an execution path from the output of an AND-join
back to its input points. If this path contains an XOR-
Split, deadlock can occur if the branch leading to the
loop is chosen. In case there is a path that does not
contain XOR-Splits, deadlock occurrence is certain.

• Multiple sources: as shown in Fig.3.b, the multiple
sources occur when two different sources lead at the
input points of AND-join gateway. Assuming that none
of the source nodes is the AND-Join itself, it can be
observed that the multiple source patterns can occur
when one of the process structure is as follows:

o Any of the two sources is an XOR-split
gateway.

o The process has multiple start points that will
be synchronized later. In case of models
specified in BPMN, multiple starts are
permissible. Actually, multiple start points
resemble an AND-split gateway between the
start events; hence we can deduce that there
is reachability between two or more sources
(start events) to the AND-join node.

• Improper structuring: as shown in Fig.3.c, occurs when
an AND-join gateway receives input which contains
XOR-split.

B. Livelock patterns
Livelock can be defined as a state from which it is possible

to proceed, but it may be impossible to reach the desired final
state.

As shown in Fig.3.d, the livelock can result an infinite
execution of process. In this case some of the process may run
successfully but some may trap in an endless loop of execution.
This can happen when an AND-split is used instead of an XOR-
split for modeling an existing loop.

C. Multiple termination patterns
The multiple terminations correspond to the situations

where exists an AND-split before an XOR-join gateway, as
shown in Fig.3.e

In this case, only one sequence is traversed when the
exclusive gateway is executed. This case leads to the violation
of soundness criterion. Thus, the BPMN process model does
not terminate in the predefined (expected) terminate processes.

Figure 3. Structural error in BPMN

V. PROPOSED APPROACH
This section explains the detection of prominent structural

errors which can occur in a BPMN process. Our approach is
broadly described in Fig. 4. The main idea is to map BPMN
process model into a finite-state model (Kripke structure) for
specifying the system behavior. We also attempt to provide the
means for LTL formulae for the compliance checking, that may
lead to verify the existence of structural errors and ensure the
soundness of process model. Several LTL properties can be
defined simultaneously for a Kripke structure. The model
checker provides, as a result, a counterexample, which verifies,
in turn, the existence of structural errors in the BPMN process
model. The verification steps are detailed, as follows:

A. Finite state generator
 The business process models can be transformed or

reduced to states and transitions between the states [23].
Furthermore, such automaton models may be subjected to an
automated checking. Two typical approaches for such
transformations can be found in [15] and [24]. In [15], the

authors transform the business processes to Petri nets, followed
by a transformation into Kripke structures which are then
checked. Whereas, in [24], the author, transform the business
processes directly into Kripke structures.

We translate BPMN process models directly into Kripke
structure to express the behavior of the process models. The
states of a Kripke structure represent the behavior of the
process model. This translation facilitates the better verification
of the desired temporal properties such as: M |=� iff M, π |= �
for all paths π in a Kripke Structure M.

TABLE I. MAPPING OF BPMN OBJECTS TO KRIPKE STRUCTURE

BPMN Object Kripke Structure

Figure 4. illustrates the translation of BPMN process model example to a
Kripke structure

The finite non-empty set of states S of the Kripke structure
represents the nodes N of the process model. N is a finite set of

Start s
Start

End e

Task T

T

A
B

C
+

C
A

B
+

A
B

C
X

C
A

B
X

A

E_B

E_A exA

exB B
E_C

Message M

Ex

T

Tx

X X A

(a) BPMN contains loop deadlock

(c) BPMN contains improper structuring
 deadlock

B

X +
A

(d) BPMN contains livelock

BX +A

(e) BPMN contains multiple terminations

+ X A
B

C

(b) BPMN contains multi source deadlock with
 multiple start points

+
B

C

A Final

T
E_T

TE_Tx exTx

exT

exA exB
exC

E_A
A

E_C

E_B B

C

exA

E_C

E_B exB

exC

B

C

M
E_M exM

T
E_T exT

E_B

E_A
C

exC exA
exB

E_C

A

B

Figure 5. Compliance checking approach

flow objects in BPMN process which can be partitioned into
events E, activities A and gateways G. The transition
relations R represent the edge relations T (where, Transition
T ⊆ F × F is a finite set of sequence flows connecting
objects).

To obtain a Kripke structure, we define AP as the set of
Atomic Propositions and assign labels to states. The defined
set of atomic propositions AP is associated with each state s
∈ S such as ℒ(s) holds in s (ℒ is the labeling function of
Kripke Structure M). It expresses all properties of a given
state.

Figure 6. Mapping BPMN process model to Kripke structure

The initial state I ⊆ S is the start point E s (start event) of
the process model. Each state s is labeled with enabled and
executed transitions. Where, E_A signifies that the transition

A is enabled and ex_A signifies that the transition A is
executed (completed). A brief description of the mapping
from a set of BPMN tasks, events, and gateways to Kripke
structure is given in Tab. I.

Once the Kripke structure is obtained, we then proceed to
define the desired correctness temporal properties.

B. LTL formulae generator
The soundness of BPMN process model to avoid

structural errors can be ensured by satisfying the following
temporal properties:

1) Detect absence of deadlocks
As mentioned above a deadlock situation can occur when

no final state is reached, or some part of the process cannot
be executed.

A Kripke structure is said to be deadlock-free if it does
not contain any computation that can lead to a deadlock. The
deadlock freedom is a safety property (i.e. something bad
never happens). Let us assume a temporal formula (final),
which represents the set of final states. In such a case, we can
express deadlock-freedom by the following LTL formula:

□ (○� → Final)

This formula must be satisfied as valid on every path.
The formula ○⊥ (means that “there is no next state”) is easy
to deduce, i.e. no transition is possible. Likewise, we can
express reachability of a given deadlock state as the
existence of a state with the dual property.

◊ (○⊥ → ¬Final)

2) Detect absence of livelocks
As described in section IV, the livelock state is a state

from which it is impossible to reach the desired final state. A
property which expresses the non-existence of livelock is a
liveness property (i.e. something good eventually happens).
A typical LTL formula is shown below:

◊□ϕ → □◊ψ

Determine
impacted

zone

Model
checker

Kripke structure
generator

Deadlocks, livelocks and
Multiple termination LTL formulae

BPMN
Process
Model

Requirement
LTL

Formulae

Finite-States
Model

Compliance
checking

result

Valid
(BPMN process

model is soundness)

Invalid
(counterexample) Impacted zone

generator

X X X

X

X

X A B

C

D

E

F

G

AP = {Start, E_A, exA, E_B, exB, E_C, exC, E_D, exD, E_E, exE, E_F, exF,
 E_G, exG, Final}

D

Start E_A

exF

exG

exD

exC

exE Final exBexA

E_G

E_B

E_D

E_E

E_C

E_F

A

G

B

F

E

C

If a task tries to run infinitely, then it will be always in
the execution state. This simplifies to ¬ ◊□� (i.e. it will not
succeed ‘at run’ forever). In A counterexample of these
properties is an infinite execution according to which any of
the expected behavior does not happens (i.e. the process does
not terminate). Detection of a livelock (as explained in
section IV Fig.3.d), can be expressed in the LTL formula, as
shown below:

◊□exA → □◊Final
3) Detect absence of multiple termination

To recall, the multiple termination is a situation in which
there exists an AND-split before an XOR-join gateway.
Detection of this case is based on checking the safety
property of LTL (i.e. something bad never happens). It can
be verified by the following formula:

□ ¬ (◊ (ϕ ∧ ○ψ) → Final)

A counterexample of these properties is a finite execution
which leads to unexpected behavior.
C. Model Checking

 The finite state machines and the temporal logic
formulae are presented as input to a model checker. The
model checker verifies whether the temporal logic formulae
are respected by the given finite state machines or not. As a
result, it confirms the soundness of the process models.
Otherwise, it returns a counterexample in cases of structural
errors.

D. Determine impacted zone
Ensuring the unsoundness of business process is

necessary to help modelers to avoid structural errors. Formal
approaches such as model checking have the capability of
providing counterexamples when the temporal properties to
be checked are not satisfied by the process model [25, 26].
Mostly, these counterexamples are given in terms of internal
state transitions rather than in terms of process models that
are difficult to understand by a non-technical user. To benefit
from these counterexamples, the output of the model checker
should be translated in the visual notation, which is easier for
the user to understand.

To map a counterexample to the source BPMN process
model supports the better determination of the impacted zone
(by structural errors). We use model checker dependency, it
contain a tool chain that translates the output of the model
checker back to the process model notations. This allows us
to map each state to the original BPMN process model
element and colored as red to highlight the errors to business
modelers, in order to correct them.

To illustrate further, we take the example of multi source
deadlock with multiple start sources (as depicted in section
IV). The verification process is described in Fig.6.

If we observe execution sequences of above process
model, the following execution traces can be obtained:

σ1
1 = ({S1}, {E_A}, {exA, exB})

σ2 = ({S2}, {E_B}, {exA, exB})

σ3 = ({S1}, {S2}, {E_A}, {E_B}, {exA, exB}, {E_C}, {exC},

 {Final})

If execution sequences σ1 and σ2 refers that model
checker return a counterexample where S1 and S2 (start
points) did not start synchronously, that causes a deadlock
because ℒ (exA, exB) cannot hold in {exA, exB} state, which
is not a final state. So, the LTL formula to detect the absence
of deadlock is not satisfied. The only condition for the
process model to work correctly and to satisfy the LTL
formula (to detect the absence of deadlock) is that the S1, S2,
E_A, E_B start and run synchronously in corresponding
branches (as is the case of σ3).

Figure 7. Detection of multiple source deadlock with multiple start points

Currently, we implement a prototype tool to validate the
presented approach for detecting structural errors in BPMN.
It is developed as a set of Eclipse IDE plug-ins. We make use
of Eclipse BPMN 2.0 Modeler1 plug-in. As model checker,
we opted for EpiSpin2 plug-in. The objective is to transform
automatically the BPMN process model to Promela model.
This is, then, provided as input along with pre-defined LTL
formulae to the EpiSpin model checker to detect the
deadlocks, live-locks, and multiple terminations.

VI. CONCLUSION
Using the model checking techniques can help to better

detect structural errors in process models. The automated

1svn+ssh://svn.java.net/bpmn-modeler~source-code-repository/
2http://epispin.ewi.tudelft.nl/

AP = {S1, S2, E_A, exA, E_B, exB, E_C, exC, Final}

S1 E_A

exC Final

E_B

E_C
C

S2

exA
exB

A

B

□ (○� → Final)

Invalid
(Counterexample)

Determine impacted
zone

C +
B

A

LTL formula to detect
deadlockModel

Checker

checking of such errors has two basic advantages i.e. to
compute the polynomial time and the error traceability.

The presented approach emphasizes to map the BPMN
process model to Kripke structures to express the behavior of
the process models. The resulted mapping is used to satisfy
the temporal properties (e.g. absence of deadlocks, livelocks
and multiple terminations), which are expressed using the
Linear Temporal Logic (LTL) formulae.

We discuss, in detail, the error cases and the properties to
be checked to validate the verification of structural errors via
model checking. The generated finite states (Kripke
structures) are validated in conformance with LTL formulae.
The resulting compliance checking can verify the soundness
of the process model, otherwise it return a counterexample,
which can facilitate to determine the impacted zone.

The objective is to provide assistance to the process
modelers for the better detection of errors and their
correction. In the future, we intend to continue this approach
and particularly to focus the compliance checking rules for
the post change scenarios.

REFERENCES
[1] R.Lu “Constraint-Based Flexible Business Process Management," in

School of Information Technology and Electrical Engineering,
University of Queensland, 2008.

[2] W. van der Aalst, and al, "Business Process Management: A Survey,"
in Proceedings of Conference on Business Process Management
(BPM 2003), Eindhoven, Netherlands 2003.

[3] Object Management Group. BPMN 2.0: OMG final adopted
specification DOI= http://www.omg.org/spec/BPMN/2.0/PDF.

[4] I. Kitzmann, C. Konig, D. Lubke, and L. Singer, “A simple algorithm
for automatic layout of bpmn processes,” in CEC ’09: Proceedings of
the 2009 IEEE Conference on Commerce and Enterprise Computing.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 391–398.

[5] Bizagi Process Modeler DOI=http://www.bizagi.com/
[6] Intalio designer DOI=http://www.intalio.com/
[7] Bonita designer DOI=http://fr.bonitasoft.com/
[8] Kristin Y. Rozier. 2010. Linear Temporal Logic Symbolic Model

Checking. NASA Ames Research Center,Moffett Field,CA
94035,USA.

[9] Temporal Logics and Model Checking
DOI=http://users.encs.concordia.ca/~tahar/coen7501/notes/3-mc-
02.05-4p.pdf

[10] B. F. van Dongen, M. H. Jansen-Vullers, H. M. W. Verbeek,and W.
M. P. van der Aalst, “Verification of the sap reference models using
epc reduction, state-space analysis, and invariants,” Comput. Ind.,
vol. 58, no. 6, pp. 578–601, 2007.

[11] R. M. Dijkman, M. Dumas, and C. Ouyang, “Formal semantics and
automated analysis of bpmn process models,” Tech. Rep., 2007.

[12] A. Awad and F. Puhlmann, “Structural detection of deadlocks in
business process models,” in BIS, 2008, pp. 239–250.

[13] Ralf Laue, A. Awad, “Visual suggestions for improvements in
business process diagrams,” J. Vis. Lang. Comput. 22 (5): 385-399
(2011).

[14] Awad, A, “BPMN-Q: A Language to Query Business Processes,” In:
EMISA, pp.115–128 (2007).

[15] W. van der Aalst, “Formalization and verification of event driven
process chains,” Information and Software Technology, vol. 41, no.
10, pp. 639–650, July 1999. [Online].
DOI=http://dx.doi.org/10.1016/S0950-5849(99)00016-6

[16] N. Tantitharanukul and al, “Detecting deadlock and multiple
termination in BPMN model using process automata” Electrical
Engineering/Electronics Computer Telecommunications and
Information Technology (ECTI-CON), 2010.

[17] Gerard J. Holzmann. 1997. The Model Checker SPIN. In Proceedings
of IEEE Transactions on software Engineering – Special issue on
formal methods in software practice. (IEEE Press Piscataway, NJ,
USA).

[18] A. Cimatti and al, "NUSMV: a new symbolic model checker (2000) "
International Journal on Software Tools for Technology Transfer.

[19] Tutorial Model Checking
DOI=http://etr05.loria.fr/slides/mardi/slides.pdf

[20] M. C. Browne and al,."Characterizing finite Kripke structures in
propositional temporal logic". Theoretical Computer Science -
International Joint Conference on Theory and Practice of Software
Development. Elsevier Science Publishers Ltd. Essex, UK.

[21] (Temporal) Logic Tutorial
DOI=http://www.scss.tcd.ie/edsko.de.vries/talks/temporal_logic.pdf

[22] S. Onada and al, “Definition of deadlock patterns for business
processes workflow models”. In HICSS ’99: Proceedings of the
Thirtysecond Annual Hawaii International Conference on System
Sciences-Volume 5, pages 50–65, Washington, DC, USA, 1999.
IEEE Computer Society.

[23] Mahleko, B., Wombacher, A.: “Indexing Business Processes based on
Annotated Finite State Automata,” In: IEEE International Conference
on Web Services (ICWS 2006). pp. 303–311. IEEE Computer
Society, Los Alamitos, CA, USA (2006).

[24] Pulvermüller, E.: “Composition and correctness,” Electronic Notes in
Theoretical Computer Science (ENTCS) 65(4) (2002) .

[25] Y. Lui, S. Müller, and K. Xu.: “A static compliance-checking
framework for business process models,” IBM SYSTEMS
JOURNAL, 46(2):335-362, 2007.

[26] A. F orster, G. Engels, and T. Schattkowsky.: “Activity diagram
patterns for modeling quality constraints in business processes,” In
MoDELS, pages 2{16}, 2005.

