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Abstract— Business Process Modeling Notation (BPMN) has 
emerged as a standard notation to express the business process 
models. A lack of formal semantics in the BPMN can cause the 
syntactic and structural errors. The former requires less effort to 
be checked, while the later usually needs a complex state-space 
analysis to prove some properties, like the deadlock-freedom and 
the livelock-freedom. In this paper, we present an approach 
based on model checking for the automated verification of 
business process models. We illustrate the deadlocks, livelocks, 
and multiple termination problems, which can help the business 
modelers to avoid structural errors. 
 

Keywords-component; BPMN process models; Kripke structure 
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I. INTRODUCTION  
The Business Process Management (BPM) [1, 2] has been 

increasingly used for the identification, specification and 
modeling of business process. During the last decade, Business 
Process Modeling Notations (BPMN) [3] has become a 
standard, in this regard, for the modeling of business processes. 
It has been also used as a tool for expert analysis for decision 
making. This success is based on its simplicity of notations [4] 
and its exhaustive expressiveness. Nevertheless the widely 
used BPMN as modeling support for business process relies on 
the human expertise along with associated possible mistakes. 

The major distinct possible errors can be either syntactical 
or structural. The syntactical errors may occur by mistaking the 
use of modeling elements i.e. an AND-join, OR/XOR-join or an 
event when it does not allow more than one outgoing arc, etc. 
The valid or invalid combinations to be used are usually 
prescribed by the corresponding standard. The syntactical 
correctness of models can be verified by using some modeling 
tools such as BizAgi [5], Intalio [6], or Bonita [7].  

However, a syntactically correct process can exhibit 
unexpected behavior during its run-time, as a result of poorly 
controlled data or structural errors. The structural errors, such 
as wrong combination of the sequence of elements given by 
misaligned splits and joins are difficult to be detected due to 
lack of formal semantics of BPMN process models. 
Subsequently, the run-time behavior of a process should be 
analyzed to achieve a complete verification, showing whether 
the process model fulfills important structural criteria. These 
can be either deadlock-freedom or livelock-freedom to avoid 
the proper functioning of the process, which can cost 
financially expensive damages. 

For a business process consistency, business process 
modelers should check the accuracy and compliance of adopted 
models after each applied change on an existing model. The 
objective is to reach a verified changed model, which must be 
also able to provide satisfying responses to the questions 
related to the model consistency, such as: ’Does the processes 
terminate?’, ‘Is there a possible deadlock?’, ‘Does every task T 
of a certain process P is reachable?’, etc. The difficulty of 
responses depends on the scale of size and complexity of the 
evolving process which may cost more time and can involve a 
higher expertise level.  

In this paper, we propose an approach to automate the 
checking of some structural errors such as deadlocks, livelocks, 
and multiple terminations in BPMN process models based on 
model checking. The approach has two major advantages. 
Firstly, we assume a computable polynomial time, i.e. most of 
the structural errors are actually detectable. Secondly, if an 
error is found, it provides a direct graphical path leading to the 
error. The main idea is to map the BPMN process model to 
Kripke structure, and then check the validity of major 
properties (e.g. absence of deadlocks, livelocks and multiple 
terminations) expressed in Linear Temporal Logic (LTL) [8, 9] 
formulae. 

The rest of the paper is structured as follows. The section II 
briefly narrates the closely related work to the proposed 
approach. Section III, summarizes the preliminaries used to 
illustrate our approach. We describe the frequent structural 
errors in the section IV.  Section V discusses, in detail, the 
proposed approach, along with pertinent examples. Later in 
Section VI, we conclude our contribution. 

II. RELATED WORK 
The structural errors can interrupt the execution of business 

process models. We intend by the term structural errors as the 
deadlocks, livelocks, or multiple terminations. The motivation, 
of the current work, has been to provide a means for automated 
verification of absence of structural errors. The proposed 
approach allows the better identification of the non-compliant 
business processes, before their execution. During the last 
decade, there are many research works focused on detecting the 
structural errors in the business processes. In [10], an approach 
has been proposed for detecting deadlocks and multiple 
termination patterns in SAP reference model. It is intended to 
be applied on two popular modeling languages i.e. Event-
Process Chain (EPC) and PetriNet. Dijkman et al. [11] also 
propose PetriNet-based method to verify BPMN process 



 
 

models. However, it advocates the human judgment to detect 
and assess the correctness of structural errors. Their semantics 
does not strictly conform to the multiple instances of model, 
exception handling, and message flows. Furthermore, Awad et 
al. [12, 13] present an approach to detect deadlocks using a 
method in continuation of their previous work concerning 
BPMN-Q [14]. They use business process querying to detect 
the common structural errors. They propose a customized 
language to graphically interpret the deadlock patterns whose 
occurrence in process models lead to deadlocks. Such ad-hoc 
queries based on quantifications of based on structural 
properties may enhance the space and time complexities. In 
[15] Van der Aalst proposes soundness criterion to guide the 
modeling regarding the specification of EPC. They propose to 
map EPCs (without connectors of type V) onto Petri nets. As a 
result it gains the advantages of formal semantics and 
analyzing techniques available for Petri nets. However, their 
semantics does not properly model multiple instances, 
exception handling, and message flow using Petri nets. Another 
approach [16] proposes finite-state automata to detect 
deadlocks and multiple terminations.  They transform BPMN 
model to an automata-based formalism to verify the 
compatibility of transition function. The correctness of the 
BPMN model is assessed through the existence of process 
sequence, which could be accepted by the process automata. 
Although, their approach suites the deadlock and multiple 
termination problems, but it has attached inconveniences of 
complexities of automata-based formalism. Also, it is difficult 
to analyze the live-lock situations.  

Model checking can be used for the better detection of 
some structural errors. Our approach is aimed to provide an 
automated assistance to verify the soundness process model. It 
can be implemented by abundant model checker tools, e.g 
SPIN [17], NuSMV [18], etc.  

III. PRELIMINARIES 
The following sections, we briefly explain the concepts and 

technical terms used in the proposed approach. 

A. Business Process Modeling Notation 
       The Business Process Modeling Notation (BPMN), 
adopted by OMG, has been specified since February 2006 (3). 
It is used as a standard notation set. The primary goal of 
BPMN is to provide the notations which are readily 
understandable by all business users. BPMN creates a 
standardized bridge for the gap between the business process 
design and process implementation. 
 
 
 
 
 
 
 
 
 
 

Figure 1.  A core of BPMN elements 

As shown in Fig.1, BPMN process diagrams provide a 
number of graphical notations for business process. These can 
be categorized as below: 

• Flow Objects: are the main graphical elements to 
define the behavior of a business process. There are 
three kinds of flow objects, which are event, activity, 
and gateway. 

• Connectors: are the graphical elements to connect the 
Flow Objects to each other. There are three kinds of 
Connecting Objects, which are Sequence Flow, 
Message Flow, and Association. 

• Swimlanes: are the graphical elements to group the 
modeling elements. There are two ways of grouping 
the primary modeling elements, which are pools and 
lanes. 

• Artifacts: are used to provide additional information 
about the Process. There are two standardized 
Artifacts, which are Group and Text Annotation. 

B. Model Checking 
The model-checking [19] method is based on three phases: 

• The system modeling phase: The objective of this 
phase is to provide the formal semantics representation 
of the system. It represents transition systems where 
the nodes are system states and transitions describe the 
possible reachability of one state to another. It includes 
the Kripke structures, Petri nets, finite automata, timed 
automata, etc. 

• The specification phase of the property: It is a 
translation phase to specify the property to check, in a 
formal language, which was formerly written in natural 
language. Among the many formalisms proposed, there 
is a variation of temporal logic of linear time or 
branching time (LTL, PLTL, CTL, CTL*, TCTL, etc.), 
or a µ-calcul. 

• The verification phase: In this phase data are applied in 
an algorithm to check if the system model satisfies or 
not the specification model. This algorithm depends on 
the nature of the models chosen for the system and the 
property. 

Among the possible models to describe a system and a 
given property, the choice is often a compromise between 
expressiveness and ease of analysis. There exist many tools 
which widely used such as SPIN [17] and NuSMV [18] to 
achieve this goal. 

C. Kripke structure 
Kripke structure [20] is used to provide semantics, which 

allow the checking, whether a specific property holds or not. 
The semantics are based on temporal logics for most of the 
widely used specification languages for reactive systems.  

Let us assume, AP as a set of labels i.e., a set of atomic 
proposition such as variables, constants and predicate symbols. 

A Kripke structure is a 4-tuple M = (S, I, R, ℒ) where: 
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• S is a finite non-empty set of states 

• I � S is a set of initial states 

• R � S × S associates with each state s � S its possible 
successors are,   ,    such that ,  

• ℒ : S → 2AP , associates with each state s � S the set of 
atomic propositions ℒ(s) holds in s. 

D. Linear Temporal Logic (LTL) 
LTL [21] is the most commonly used language for 

specifying temporal properties of software or hardware 
designs.  

The set of alphabets of LTL is composed of: 

• Atomic proposition symbols: p, q, r … 

• Boolean connectives : ┬ (true), � (false), ¬ (not), � 
(or), � (and), → (imply), ↔ (one-to-one) 

• Temporal connectives : G, X, F, U 

The set of LTL formulae is as follows: 

• Any atomic proposition i.e. p, q is a formula. 

• If � and ψ are formulae, then ¬ �, � � ψ, � � ψ, � 
→ ψ and � ↔ ψ are also formulae. 

• If � and ψ are formulae, then G�, X�, F� and � U ψ 
are formulae.  

The four temporal connectives X, F, G, and U as shown in 
Fig.2, are explained as below: 

• G (‘always’): is read always in the future (in all future 
states of path).  Graphically, it can be denoted as : □ 

• X (‘next time’):  is read at the next time (in the next 
state of path), and denoted as:  ○ 

• F (‘eventually’): is read eventually (in some future 
state of path, and denoted as: ◊ 

• U (‘until’): is read until, which can be denoted as: u 

Figure 2.  LTL Temporal connectives representation 

1) Semantics of LTL: Let  = s0, s1, s2…sn be a sequence of 
states and L such as: 0, i) � AP.  

The sequence  satisfies �. It is denoted by  |= �. This 
relation can be defined inductively and gives semantics of LTL 
formulas as below: 

• p � AP, π |= p ↔ p � L (q0) 

• π |= p � q ↔ π |= p or  π |= q 

• π |= ¬ p ↔ π |  p 

• π |= Xp ↔ π1 |= p 

• π |= p U q ↔  j 0, πj |= q � ( k , k |= p). 

IV. STRUCTURAL ERRORS 
This section, presents some structural errors which can 

occur during run-time of BPMN process models. These are 
used to illustrate the proposed approach to ensure verification 
of the business process models. 

A. Deadlock patterns 
A deadlock in a process model is given if a certain instance 

of this model cannot continue working, while it has not reached 
the process end (i.e. deadlock is a condition used to describe a 
process that cannot be completed). According to Onada et al. 
[22] there are two complementary concepts, reachability and 
absolute transferability. Primarily, the reachability between 
process P1 and process P2, which means, there is at least one 
occurrence sequence from P1 to P2. Secondly, the absolute 
transferability, which means, it is a much stronger concept to 
state that a token can always be transferred from P1 to all input 
points of process P2. This makes absolute transferability to 
reduce reachability between two nodes, because of the 
existence of routing control nodes in between. The presentation 
of the business process by using only the reachability (without 
absolute transferability), can cause a deadlock.  

In [22], the authors have also identified several potential 
causes of deadlocks, as follows: 

• Loop deadlock: as shown in Fig.3.a, occurs when there 
is an execution path from the output of an AND-join 
back to its input points. If this path contains an XOR-
Split, deadlock can occur if the branch leading to the 
loop is chosen. In case there is a path that does not 
contain XOR-Splits, deadlock occurrence is certain. 

• Multiple sources: as shown in Fig.3.b, the multiple 
sources occur when two different sources lead at the 
input points of AND-join gateway. Assuming that none 
of the source nodes is the AND-Join itself, it can be 
observed that the multiple source patterns can occur 
when one of  the process structure is as follows: 

o Any of the two sources is an XOR-split 
gateway. 

o The process has multiple start points that will 
be synchronized later. In case of models 
specified in BPMN, multiple starts are 
permissible. Actually, multiple start points 
resemble an AND-split gateway between the 
start events; hence we can deduce that there 
is reachability between two or more sources 
(start events) to the AND-join node. 

• Improper structuring: as shown in Fig.3.c, occurs when 
an AND-join gateway receives input which contains 
XOR-split. 



 
 

B. Livelock patterns 
Livelock can be defined as a state from which it is possible 

to proceed, but it may be impossible to reach the desired final 
state.  

As shown in Fig.3.d, the livelock can result an infinite 
execution of process. In this case some of the process may run 
successfully but some may trap in an endless loop of execution. 
This can happen when an AND-split is used instead of an XOR-
split for modeling an existing loop. 

C. Multiple termination patterns 
The multiple terminations correspond to the situations 

where exists an AND-split before an XOR-join gateway, as 
shown in Fig.3.e 

In this case, only one sequence is traversed when the 
exclusive gateway is executed. This case leads to the violation 
of soundness criterion. Thus, the BPMN process model does 
not terminate in the predefined (expected) terminate processes. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.  Structural error in BPMN 

V. PROPOSED APPROACH 
This section explains the detection of prominent structural 

errors which can occur in a BPMN process. Our approach is 
broadly described in Fig. 4. The main idea is to map BPMN 
process model into a finite-state model (Kripke structure) for 
specifying the system behavior. We also attempt to provide the 
means for LTL formulae for the compliance checking, that may 
lead to verify the existence of structural errors and ensure the 
soundness of process model. Several LTL properties can be 
defined simultaneously for a Kripke structure. The model 
checker provides, as a result, a counterexample, which verifies, 
in turn, the existence of structural errors in the BPMN process 
model. The verification steps are detailed, as follows: 

A. Finite state generator 
    The business process models can be transformed or 

reduced to states and transitions between the states [23]. 
Furthermore, such automaton models may be subjected to an 
automated checking. Two typical approaches for such 
transformations can be found in [15] and [24]. In [15], the 

authors transform the business processes to Petri nets, followed 
by a transformation into Kripke structures which are then 
checked. Whereas, in [24], the author, transform the business 
processes directly into Kripke structures. 

We translate BPMN process models directly into Kripke 
structure to express the behavior of the process models. The 
states of a Kripke structure represent the behavior of the 
process model. This translation facilitates the better verification 
of the desired temporal properties such as: M |=� iff M, π |= � 
for all paths π  in a Kripke Structure M. 

TABLE I.  MAPPING OF BPMN OBJECTS TO KRIPKE STRUCTURE 

BPMN Object Kripke Structure 
 

 

 

 

 

 

 

 

 

Figure 4.   illustrates the translation of BPMN process model example to a 
Kripke structure 

The finite non-empty set of states S of the Kripke structure 
represents the nodes N of the process model. N is a finite set of  
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Figure 5.  Compliance checking approach

flow objects in BPMN process which can be partitioned into 
events E, activities A and gateways G. The transition 
relations R represent the edge relations T (where, Transition 
T ⊆ F × F is a finite set of sequence flows connecting 
objects). 

To obtain a Kripke structure, we define AP as the set of 
Atomic Propositions and assign labels to states. The defined 
set of atomic propositions AP is associated with each state s 
∈ S such as ℒ(s) holds in s (ℒ is the labeling function of 
Kripke Structure M). It expresses all properties of a given 
state.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.  Mapping BPMN process model to Kripke structure 

The initial state I ⊆ S is the start point E s (start event) of 
the process model. Each state s is labeled with enabled and 
executed transitions. Where, E_A signifies that the transition 

A is enabled and ex_A signifies that the transition A is 
executed (completed). A brief description of the mapping 
from a set of BPMN tasks, events, and gateways to Kripke 
structure is given in Tab. I. 

Once the Kripke structure is obtained, we then proceed to 
define the desired correctness temporal properties. 

B. LTL formulae generator 
The soundness of BPMN process model to avoid 

structural errors can be ensured by satisfying the following 
temporal properties: 

1) Detect absence of deadlocks 
As mentioned above a deadlock situation can occur when 

no final state is reached, or some part of the process cannot 
be executed.  

A Kripke structure is said to be deadlock-free if it does 
not contain any computation that can lead to a deadlock. The 
deadlock freedom is a safety property (i.e. something bad 
never happens). Let us assume a temporal formula (final), 
which represents the set of final states. In such a case, we can 
express deadlock-freedom by the following LTL formula: 

□ (○� → Final) 
 

This formula must be satisfied as valid on every path. 
The formula ○⊥ (means that “there is no next state”) is easy 
to deduce, i.e. no transition is possible. Likewise, we can 
express reachability of a given deadlock state as the 
existence of a state with the dual property. 

◊ (○⊥ → ¬Final) 
 

2) Detect absence of livelocks 
As described in section IV, the livelock state is a state 

from which it is impossible to reach the desired final state. A 
property which expresses the non-existence of livelock is a 
liveness property (i.e. something good eventually happens). 
A typical LTL formula is shown below: 

◊□ϕ → □◊ψ 
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If a task tries to run infinitely, then it will be always in 
the execution state. This simplifies to ¬ ◊□� (i.e. it will not 
succeed ‘at run’ forever). In A counterexample of these 
properties is an infinite execution according to which any of 
the expected behavior does not happens (i.e. the process does 
not terminate). Detection of a livelock (as explained in 
section IV Fig.3.d), can be expressed in the LTL formula, as 
shown below: 

◊□exA → □◊Final 
3) Detect absence of multiple termination 

To recall, the multiple termination is a situation in which 
there exists an AND-split before an XOR-join gateway. 
Detection of this case is based on checking the safety 
property of LTL (i.e. something bad never happens). It can 
be verified by the following formula: 

□ ¬ (◊ (ϕ ∧  ○ψ) → Final) 
 

A counterexample of these properties is a finite execution 
which leads to unexpected behavior. 
C. Model Checking 

    The finite state machines and the temporal logic 
formulae are presented as input to a model checker. The 
model checker verifies whether the temporal logic formulae 
are respected by the given finite state machines or not. As a 
result, it confirms the soundness of the process models. 
Otherwise, it returns a counterexample in cases of structural 
errors. 

D. Determine impacted zone 
Ensuring the unsoundness of business process is 

necessary to help modelers to avoid structural errors. Formal 
approaches such as model checking have the capability of 
providing counterexamples when the temporal properties to 
be checked are not satisfied by the process model [25, 26]. 
Mostly, these counterexamples are given in terms of internal 
state transitions rather than in terms of process models that 
are difficult to understand by a non-technical user. To benefit 
from these counterexamples, the output of the model checker 
should be translated in the visual notation, which is easier for 
the user to understand. 

To map a counterexample to the source BPMN process 
model supports the better determination of the impacted zone 
(by structural errors). We use model checker dependency, it 
contain a tool chain that translates the output of the model 
checker back to the process model notations. This allows us 
to map each state to the original BPMN process model 
element and colored as red to highlight the errors to business 
modelers, in order to correct them. 

To illustrate further, we take the example of multi source 
deadlock with multiple start sources (as depicted in section 
IV). The verification process is described in Fig.6. 

If we observe execution sequences of above process 
model, the following execution traces can be obtained: 

σ1
1 = ({S1}, {E_A}, {exA, exB}) 

σ2 = ({S2}, {E_B}, {exA, exB}) 

σ3 = ({S1}, {S2}, {E_A}, {E_B}, {exA, exB}, {E_C}, {exC},  

        {Final}) 

If execution sequences σ1 and σ2 refers that model 
checker return a counterexample where S1 and S2 (start 
points) did not start synchronously, that causes a deadlock 
because ℒ (exA, exB) cannot hold in {exA, exB} state, which 
is not a final state. So, the LTL formula to detect the absence 
of deadlock is not satisfied. The only condition for the 
process model to work correctly and to satisfy the LTL 
formula (to detect the absence of deadlock) is that the S1, S2, 
E_A, E_B start and run synchronously in corresponding 
branches (as is the case of σ3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.  Detection of multiple source deadlock with multiple start points 

Currently, we implement a prototype tool to validate the 
presented approach for detecting structural errors in BPMN. 
It is developed as a set of Eclipse IDE plug-ins. We make use 
of Eclipse BPMN 2.0 Modeler1 plug-in. As model checker, 
we opted for EpiSpin2 plug-in. The objective is to transform 
automatically the BPMN process model to Promela model. 
This is, then, provided as input along with pre-defined LTL 
formulae to the EpiSpin model checker to detect the 
deadlocks, live-locks, and multiple terminations. 

VI. CONCLUSION 
Using the model checking techniques can help to better 

detect structural errors in process models. The automated 
                                                           

1svn+ssh://svn.java.net/bpmn-modeler~source-code-repository/ 
2http://epispin.ewi.tudelft.nl/ 
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checking of such errors has two basic advantages i.e. to 
compute the polynomial time and the error traceability. 

The presented approach emphasizes to map the BPMN 
process model to Kripke structures to express the behavior of 
the process models. The resulted mapping is used to satisfy 
the temporal properties (e.g. absence of deadlocks, livelocks 
and multiple terminations), which are expressed using the 
Linear Temporal Logic (LTL) formulae. 

We discuss, in detail, the error cases and the properties to 
be checked to validate the verification of structural errors via 
model checking. The generated finite states (Kripke 
structures) are validated in conformance with LTL formulae.  
The resulting compliance checking can verify the soundness 
of the process model, otherwise it return a counterexample, 
which can facilitate to determine the impacted zone. 

The objective is to provide assistance to the process 
modelers for the better detection of errors and their 
correction. In the future, we intend to continue this approach 
and particularly to focus the compliance checking rules for 
the post change scenarios. 
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