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Abstract. In this paper we propose a technique for detecting the similarity in the structure
of XML documents. The technique is based on the idea of representing the structure of an
XML document as a time series in which each occurrence of a tag corresponds to a given
impulse. By analyzing the frequencies of the corresponding Fourier transform, we can hence
state the degree of similarity between documents. The efficiency and effectiveness of this
approach are compelling when compared with traditional ones.

1 Introduction

In this work we address the problem of identifying similarities between XML documents. In recent
years, XML has been gaining increasing relevance as a means for exchange information. As a
matter of fact, most web applications deal with web data by translating them into XML format,
and many commercial database systems (Oracle, IBM DB2) provide tools to deliver information in
XML format and to store XML data into relations. An interesting approach to efficiently store and
retrieve XML documents is based on grouping together similar XML documents [6]. Algorithms for
clustering documents according to their structural similarity could be effectively supported by our
technique. Two relevant fields of application of our technique are the integration of semistructured
data and the web site structural analysis. Indeed, grouping structurally similar documents can
help in both recognizing sources providing the same kind of information and in presenting the
information provided by a site. Several methods for detecting the similarity of XML documents [5,
4] have been recently proposed, that are based on the concept of edit distance [9] and use graph-
matching algorithms to calculate a (minimum cost) edit script capable of transforming a document
into another. Most of these techniques are computationally expensive, i.e. at least O(N3), where
N is the number of element of the two documents. Actually, the sub-optimal technique proposed
in [5], works in quasi-linear time. However, all of them are concerned with the detection of changes
occurring in XML documents rather than comparing them on the basis of their structural similarity.
A different approach is adopted in [3], where a technique for measuring the similarity of a document
versus a DTD is introduced. This technique exploits a graph-matching algorithm, which associates
elements in the document with element definitions in the DTD. This approach does not seem to
be directly applicable to cluster documents without any knowledge about their DTDs, and is not
able to point out dissimilarities among documents referring to the same DTD.

Our aim and strategy are completely different. Indeed, we propose to represent the structure
of an XML document as a time series, where each tag occurrence corresponds to an impulse.
By analyzing the frequencies of the Fourier Transform of such series, we can state the degree of
(structural) similarity between documents. As a matter of fact, the exploitation of the Fourier
transform to check similarities among time series is not completely new (see, e.g., [1, 8]), and has
been proven successful. The main contribution of our approach is the systematic development of
an effective encoding scheme for XML documents, in a way that makes the use of the Fourier
Transform extremely profitable. Efficiency and effectiveness of our approach are compelling when
compared to the above mentioned ones, as we shall show in the rest of the paper.
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2 Preliminaries
To our purposes an XML document can be considered as a tree of elements. A pair of tags delimits
the area of the document that contains the information associated with any element. In turn, each
element may contain further elements, as well as unstructured data (e.g. text). As an example
consider the toy XML document shown below, and representing information about books.

<xml>

<book year="1997">

<title> A First Course in Database Systems </title>

<author> Ullman </author>

<author> Widom </author>

<publisher> Prentice-Hall </publisher>

</book>

</xml>

Given an XML document d, we denote by tags(d) the tag set of the document d, i.e. the set of
all the tags occurring within the document; moreover, tnames(d) denotes the set of all the dis-
tinct tag names appearing in d. As an example, the tag set of the XML document shown above is:
{<xml>, <book>, <title>, </title>, <author>, </author>, <author>, </author>, <publisher>, </publisher>,
</book>, </xml>}. Moreover, for the same document tnames = {xml, book, title, author, publisher}.
Observe that tags with the same name are not considered to be the same object, so that <author>
appears twice in the tag set, whereas the set of tag names does not contain duplicates. Furthermore,
given a element el of an XML document d, we denote by els the starting tag of el and with ele an
ending tag of el. Obviously, the definitions of the sets tags and tnames can be straightforwardly
extended to deal with sets of XML documents.

Given an XML document d, we define the skeleton of d as the sequence of tags appearing
within d, i.e. sk(d) is the sequence [t0, t1, · · · , tn] such that ti ∈ tags(d) ⇔ ti ∈ sk(d) and ti
precedes tj within d if and only if i > j. In our approach, the skeleton of an XML document
represents a description of the document structure. Moreover, it can be looked at as an XML
document (with empty element content). As an instance, the skeleton of the previous document
is: <xml>, <book>, <title>, </title>, <author>, </author>, <author>, </author>, <publisher>,
</publisher>, </book>, </xml>.

Finally, given a document d and a tag t in it, we define nestd(t) as the set of the start tags els in
d occurring before t and for which there is no end tag ele matching els and appearing before t. We
also denote by lt the nesting level of the tag t, i.e. lt = |nestd(t)|. For a given set D of documents,
maxdepth(D) denotes the maximum nesting level of tags appearing in a document d ∈ D.

3 Detecting Document Similarities
In this section we introduce our technique for detecting XML structural similarity. Intuitively, two
documents are said to have a similar structure if they correspond in the type of elements they
contain and in the way these elements are combined in the two documents. In the following we
provide a way to estimate this similarity by decomposing this high-level statement.

The main idea of the approach is that of representing the skeleton of a document as a time
series. More precisely, we can assume that we are visiting the tree-structure of an XML document in
a depth-first, left-to-right way. As soon as we visit a node of the tree, we emit an impulse containing
the information relevant to the tag. The resulting signal shall represent the original document as
a time series. As a consequence, the comparison of two documents is done by looking at their
corresponding signals. In the following, we first describe a technique for encoding the structure of
a document into a time series, and next we define how to measure the similarity of such signals.

3.1 Document Structure Coding
A simple association of each tag name with a given number usually does not suffice to specify a
suitable translation of a document. Indeed, the resulting time series is required to summarize the
main features of the document. Moreover, we need to represent these features in a suitable way, so
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that we can effectively distinguish two different documents by simply looking at their encodings.
In this respect, we have considered several ways of encoding an XML document, obtained by
specifying an encoding method for both the tags and the structure of the document. In a sense, a
tag encoding corresponds to the analysis of the locality of a tag. On the other side, the nesting of
different tags within the whole document provides an overall perspective: we look at the document
as a globally uniform entity.

Tag Encoding. Given a set D of XML documents, a function γ from tags(D) to IN is a tag encoding
function for D. We can assign a number n to each tag in several ways: for instance, by generating it
randomly, or using a hash function. However, a good tag encoding function should at least ensure
injectivity, i.e., tags having different name are associated with two different numbers: for obvious
reasons, collisions correspond to losing relevant information. A further desirable property is the
capability to contextualize a given tag, i.e., to capture information about its neighbors.

We studied several tag encoding functions and in this work we will explain the one that guar-
anteed a good compromise between efficiency and accuracy in the encoding. This tag encoding
function, called direct tag encoding and denoted by γd, is built up as below specified.

Given a set D of XML documents, we build a sequence of distinct tag names [tn1, tn2, · · · , tnk]
by considering a (randomly chosen) linear order on tnames(D). Given an element el, the di-
rect encoding simply associates each tag els with the position n of the tag name tn of el in
the sequence (γd(els) = n). For the end tags, we consider two possible versions: either symmet-
ric or null. A tag encoding function γ is said to be symmetric iff for each document d and for
each element el ∈ d, γ(ele) = −γ(els); γ is null if γ(ele) = 0 (for all d and el). For instance,
the direct symmetric encoding of the document shown above is: γd(<xml>) = 1, γd(<book>) =

2, γd(<title>) = 3, γd(</title>) = −3, γd(<author>) = 4, γd(</author>) = −4, γd(<publisher>) =

5, γd(</publisher>) = −5, γd(</book>) = −2, γd(</xml>) = −1.

Notice that choosing a nondeterministic order on tnames(D) avoids any possibility of exploit-
ing context information. A possibility for improving the proposed scheme is that of imposing a
significant order (e.g., by relating the position of each tag with its maximum nesting level within
the documents). However, different approaches for representing tag context information may be
defined, but we do not expose them here for the sake of conciseness.

Document Encoding. A document encoding is essentially a function that associates an XML doc-
ument with a time series, representing the structure of the document. Let D be the set of all the
possible XML documents. A document encoding is a function that associates each d ∈ D with a
sequence of positive integers, i.e. enc(d) = h0, h1, · · · , hn.

A document encoding enc is said to be without structural loss (WSL) iff for each pair of
documents d1, d2, enc(d1) = enc(d2) implies that sk(d1) = sk(d2). Of course, the WSL property is
desirable because it implies that we do not lose information about the document structure when
considering its encoding, and we can reconstruct the structure of a document from its encoding.
However, even if the WSL property holds, we are not guaranteed that we can effectively distinguish
two documents by simply comparing their encodings. We have examined several document encoding
functions for representing the document structure, that exploit a tag encoding function to identify
suitable sequences.

In this work we will show only one of them, namely the multilevel encoding, which captures, in
a satisfactory way, the structure of XML documents. This encoding strategy weights each tag t by
using its level of nesting lt. In particular, consider a set D of XML documents, a document d ∈ D
with sk(d) = [t0, · · · , tn] and γ a tag encoding function for D. Then, a multilevel encoding of d is
a sequence [S0, S1, · · · , Sn], where:

Si = γ(ti)×Bmaxdepth(D)−lti +
∑

tj∈nestd(ti)

γ(tj)×Bmaxdepth(D)−ltj
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Usually, we set B = |tnames(D)+1|. This choice, together with the use of the symmetric direct tag
encoding function, avoids to “mix” together the contributions of different nesting levels. Indeed,
by simply considering only a value in the time series, associated with a tag t, it is possible to
completely reconstruct the path name of t.

3.2 Similarity Measures
Faced with the above definitions, we can now detail the similarity measure for XML documents.
As already mentioned, we suppose that we are visiting the tree-structure of an XML document d
(in a depth-first, left-to-right way) starting from an initial time t0. We also assume each node (tag)
within the tree is found after a fixed time interval ∆. The total time spent to visit the document
shall be t0+N∆ (where N is the size of tags(d)). During the visit, as we find a start-tag, we produce
an impulse, that is assumed to stand until we reach the corresponding end-tag, and depends from a
given tag encoding e and the overall structure of the document (i.e., the document encoding enc).

As a result of the above physical simulation, the visit of the document produces a signal hd(t),
that usually changes its intensity, in the time interval [t0, t0 + N∆). The intensity variations are
directly related to the presence/absence of tags:

hd(t) =
{

[enc(d)](k) if t0 + k∆ ≤ t < t0 + (k + 1)∆
0 if t < t0 or t > t0 + N∆

Comparing two such signals, however, can be as difficult as comparing the original documents.
First of all, comparing documents having different lengths requires to combine resizing and align-
ment, in a way that can be particularly difficult to define. Stretching (or narrowing) signals is not
a solution, since even with two signals having equal length the problem of defining the correct
correspondences among the impulses can be extremely difficult. Finally, the intensity of a signal
strongly depends on the encoding scheme adopted, that, in turn, may depend on the context (as in
the case, e.g., of the multilevel document encoding scheme). To this purpose it is particularly con-
venient to examine the DFT of the signal, since it reveals much about the distribution and meaning
of signal frequencies. In a sense, given an encoding hd(t) = enc(d) of a document d, we can define
a function h̃d(t) as the periodic extension of the hd(t) function. Hence, we are windowing the time
series h̃d(t) of the document. In our particular case, we can compare the structure of two XML
documents by exploiting the Fourier transforms. Given a document d, we denote as DFT(enc(d))
the Discrete Fourier Transform of the time series resulting from the encoding. In particular, such
a transform represents the frequencies ranging within the interval [−.5, .5] (obtained by choosing
the value ∆ = 1).

In order to compare two documents di and dj , hence, we can work on their DFT transforms. In
particular, a possibility [1, 8] is to exploit that, from Parseval’s theorem, energy is an invariant in
the transformation. However, a more effective discrimination can simply exploit the difference in the
single frequencies: in a sense, we are interested (i) in abstracting from the length of the document,
and (ii) in knowing whether a given subsequence (representing a subtree in the original XML
document) exhibits a certain regularity, no matter where the subsequence is located within the
signal. Following the above interpretation, we can measure the distance between two documents
by computing the integral, over the given frequency range, of the magnitude difference of their
transforms. In the discrete interpretation of the Fourier transform, each point in the transform
corresponds to a given frequency. Now, if di and dj , have different size, the corresponding (discrete)
transform shows values corresponding to different frequencies. In order to approximate the above
integral, we have to interpolate the corresponding values. In particular, the interpolation shall
produce a new transform ˜DFT for each documents, having M = Ndi

+ Ndj
− 1 points (where

Ndi
= |tags(di)| and Ndj

= |tags(di)|).
More formally, the overall computation of the dissimilarity between documents can be done

as follows. Let d1, d2 be two XML documents, and enc be a document encoding, such that h1 =
enc(d1) and h2 = enc(d2). Let DFT be the Discrete Fourier Transform of the (normalized) signal.
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We define the Discrete Fourier Transform distance of the documents as the approximation of the
difference of the magnitudes of the two signals:

dist(d1, d2) =

M/2∑
k=1

(|[ ˜DFT(h1)](k)| − |[ ˜DFT(h2)](k)|)2
 1

2

where ˜DFT is an interpolation of DFT to the frequencies appearing in both h1 and h2, and M is the
total number of points appearing in the interpolation. Alternative ways of comparing the docu-
ments can be defined. For example, we can choose to compare only a given number of values in the
transforms, in the style of [1, 8]. However, it is important to stress here that we aim at comparing
w.r.t. graph-based approaches. To this purpose, it is worth noticing that the complexity of the
computation of the above distance is mainly influenced by the computation of the DFT .
As a matter of fact, when comparing two documents with length N , our method requires O(N log N),
since computing their transforms is O(N log N).

4 Experimental Results

In this section we describe some experiments we performed to evaluate the effectiveness of the
proposed method in measuring the structural similarity among XML documents. We assessed the
validity of the proposed approach by comparing its results to some prior knowledge about the
document similarities. Indeed, any dataset we considered consists of XML documents conforming
to one of some previously chosen DTDs, so that it may be looked at as a set of structurally
homogenous groups. For the sake of presentation we shall refer to any of such groups as document
class or, more shortly, as class. We carried out several experiments on both real and synthesized
datasets. In the following we describe some of the results on synthesized data, generated from the
5 DTDs shown in fig. 1. Some of the experiments we conducted on real data are presented in the
Appendix.

<!DOCTYPE DTD1 [

<!ELEMENT XML (a*) >

<!ELEMENT a (b,c,d,e*) >

<!ELEMENT b (f?) >

<!ELEMENT c (g|h) >

<!ELEMENT d EMPTY >

<!ELEMENT e EMPTY >

<!ELEMENT f EMPTY >

<!ELEMENT g EMPTY >

<!ELEMENT h EMPTY >

]>

<!DOCTYPE DTD2 [

<!ELEMENT XML (a1*) >

<!ELEMENT a1 (b1,c1,d1*,e1) >

<!ELEMENT b1 (f1?) >

<!ELEMENT c1 (g1|h1) >

<!ELEMENT d1 EMPTY >

<!ELEMENT e1 EMPTY >

<!ELEMENT f1 EMPTY >

<!ELEMENT g1 EMPTY >

<!ELEMENT h1 EMPTY >

]>

<!DOCTYPE DTD3 [

<!ELEMENT XML (h*) >

<!ELEMENT h (f,g) >

<!ELEMENT f (d*) >

<!ELEMENT g (b|c) >

<!ELEMENT d (a?) >

<!ELEMENT e EMPTY >

<!ELEMENT b EMPTY >

<!ELEMENT c EMPTY >

<!ELEMENT a EMPTY >

]>

<!DOCTYPE DTD4 [

<!ELEMENT XML ((x,y)*) >

<!ELEMENT x ((a,w)|z*) >

<!ELEMENT x ((a,w)|z*) >

<!ELEMENT x ((a,w)|z*) >

<!ELEMENT a EMPTY >

<!ELEMENT w (c?) >

<!ELEMENT c EMPTY >

<!ELEMENT z (v,c) >

<!ELEMENT v EMPTY >

]>

<!DOCTYPE DTD5 [

<!ELEMENT XML (m*,n) >

<!ELEMENT m (q*) >

<!ELEMENT q (x,y) >

<!ELEMENT x ((a,c)|z*) >

<!ELEMENT a EMPTY >

<!ELEMENT c EMPTY >

<!ELEMENT z EMPTY >

<!ELEMENT n EMPTY >

]>

Fig. 1. Example DTDs for Synthesized Data

In order to build synthetic data sets, we implemented an XML document generator, which can
produce a set of documents from a given DTD, according to various statistical models. Within each
expression defining a DTD element, this system associates any occurrences of the operators ∗ and +
with a log-normal stochastic variable representing the length of the sequence that may be produced.
Analogously, | and ? operators are modelled by Bernoulli tests. The result of the experiments is a
matrix representing the structural similarity degree for each pair of XML documents in the data
set. In order to give an immediate and overall perception of the similarity relationships in the data
set, we draw, in Figure 2, the similarity matrix as an image, where the grey level of each pixel is
proportional to the value stored in the corresponding cell of the matrix.

Moreover, we introduce some summary measures to support simple quantitative analysis. Since
we are interested in evaluating how much the similarity measure recognizes the a priori known
class affinities, we compute all average intra-class similarities and all inter-class similarities. To
this purpose, we report below a matrix CS, where the element CS(i, j) contains the average of the
similarity values corresponding to every pair of distinct documents such that the first belongs to
the class Ci and the second belongs to the class Cj .
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Fig. 2. Multilevel Encoding

C1 C2 C3 C4 C5

C1 0.9655 0.6418 0.8153 0.4822 0.3935
C2 0.6418 0.9684 0.7485 0.6586 0.5037
C3 0.8153 0.7485 0.9619 0.5402 0.4313
C4 0.4822 0.6586 0.5402 0.9782 0.6817
C5 0.3935 0.5037 0.4313 0.6817 0.9452

The results obtained by the encoding scheme here analyzed are very interesting. Indeed, they
show that the method produces a neat distinction between elements belonging to a class and
element outside that class. In addition, it is capable to capture structural affinities relating XML
documents belonging to different classes. For instance, the results evidence a relatively high degree
of resemblance between the classes 1 and 3, whose DTDs exhibit quite similar structures.

5 Conclusions and Future Works
In this paper we showed an approach for measuring the structural similarity between XML docu-
ments. We proposed to represent the XML documents as time series and compute the structural
similarity between two documents by exploiting the Discrete Fourier Transform of the correspond-
ing signals. Experimental results showed the effectiveness of our approach, with particular refer-
ence to the proposed encoding schemes. Our technique could be refined by exploiting information
retrieval techniques. In particular, the combination of the distance measure we propose with tra-
ditional techniques, such as Jaccard or Cosine similarity, can be extremely profitable. Furthermore
an FFT-based distance measures different from the one introduced here could be used.
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In this appendix we show further experiments we performed but this section is not required for
the understanding of the paper.

A Experiments on Real Data

This paragraph describes the results of the experiments we performed on real XML documents
extracted from collections available on the Internet. The documents used can be collected in three
main classes:

– astronomy, a sample of 217 documents extracted from the XML-based metadata repository.
Such a repository describes the archive of catalogs and journal publications maintained by
the Astronomical Data Center1 at NASA/GSFC. In particular, each document contains the
metadata for a dataset and all of the associated tables, descriptions, and history.

– sigmod, a sample of 51 XML documents containing issues of SIGMOD Record. Such documents
were obtained from the XML version of the ACM SIGMOD web site 2 produced within the
ARANEUS project [7].

– wrapper, 53 XML documents representing wrapper programs for web sites, obtained by means
of the LIXTO system [2].

Each of the three classes has an associated DTD. Thereby, we expect to obtain a first, loose-
grain separation of the documents according to their DTD. However, it is worth noticing that the
distributions of the tags within the documents is quite heterogeneous, due to the complexity of
the chosen DTDs and the semantic variety of the documents. In particular, wrapper programs
(belonging to the third class) may have substantially different forms, as a natural consequence
of the structural differences existing among the various web sites they are built on, and of the
dynamic nature of these sites. As a consequence, we expect a finer-grain analysis to be able of
detecting such differences.

In fig. 3 we show the similarity matrix produced by the Multilevel encoding scheme, and report
the corresponding average values in the following table.

C1 C2 C3

C1 0.8036 0.6195 0.0186
C2 0.6195 0.9772 0.0210
C3 0.0186 0.0210 0.2745

Fig. 3. Similarity Matrix for Multilevel Encoding on astronomy, sigmod and wrapper

1 http://adc.gsfc.nasa.gov/
2 http://www.dia.uniroma3.it/Araneus/Sigmod/
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