Detecting sugarcane ‘orange rust’ disease using EO-1 Hyperion
hyperspectral imagery

A. APAN
Geospatial Information and Remote Sensing (GIRS) Group, Faculty of Engineering and Surveying,
University of Southern Queensland, Toowoomba 4350 QLD, Australia; e-mail: apana@usq.edu.au

A. HELD
Environmental Remote Sensing Group, CSIRO Land and Water, PO Box 1666, Canberra, ACT 2601
Australia

S. PHINN
Biophysical Remote Sensing Group, School of Geography, Planning & Architecture, University of
Queensland, Brishane 4072, Australia

J. MARKLEY
Mackay Sugar, Post Office Pleystowe, Pleystowe 4741 QLD, Australia

Abstract

This Letter evaluates several narrow-band indices from EO-1 Hyperion imagery in
discriminating sugarcane areas affected by ‘orange rust’ (Puccinia kuehnii) disease.
Forty spectral vegetation indices (SVIs), focusing on bands related to leaf pigments, leaf
internal structure, and leaf water content, were generated from an image acquired over
Mackay, Queensland, Australia. Discriminant function analysis was used to select an
optimum set of indices based on their correlations with the discriminant function. The
predictive ability of each index was also assessed based on the accuracy of
classification. Results demonstrated that Hyperion imagery can be used to detect orange
rust disease in sugarcane crops. While some indices that only used visible near-infrared
(VNIR) bands (e.g. SIPI and R800/R680) offer separability, the combination of VNIR
bands with the moisture-sensitive band (1660 nm) yielded increased separability of rust-
affected areas. The newly formulated ‘Disease-Water Stress Indices’ (DWSI-
1~R800/R1660; DSWI-2~R1660/R550; DWSI-5~(R800zR550)/ (R1660zR680))
produced the largest correlations, indicating their superior ability to discriminate
sugarcane areas affected by orange rust disease.

1. Introduction

Disease management is important in maintaining the competitive advantage of the
Australian sugar industry (Croft et al. 2000). Pathogens can cause serious damage to
sugarcane (Saccharum spp.) crops that often lead to reduced crop yield and quality.
Dealing with this problem involves a variety of curative measures, where disease
detection and mapping play a central role. For instance, to apply chemicals for disease
control, the location and spatial extent of affected crops must be first determined.

Although the use of airborne and satellite remotely sensed data in detecting crop
diseases and in situ assessment of crop quality is not new (e.g. Kanemasu et al. 1974),
no scientific literature have been found on hyperspectral data processing to map
sugarcane disease. However, extensive work has been completed, successfully
demonstrating the use of narrow-band spectral indices for general assessment of crop
condition (Thenkabail et al. 2002). Therefore, the aim of the study was to examine the



potential of satellite hyperspectral imagery to detect the incidence of sugarcane ‘orange
rust’ disease. The specific objectives were:

(a) to test the utility of existing spectral vegetation indices (SVIs);

(b) to develop indices relevant to disease detection; and

(c) to gain insights on the relationship between sugarcane orange rust disease and
changes to the biochemical component of the crop.

2. Research methods
2.1. Study area, Hyperion data and pre-processing

The study area is approximately centred at 14914’ E and 21115 S and covers a portion
of Mackay’s sugarcane growing region in Queensland (figure 1). This is the largest
sugar-producing area in Australia.

An image from the Hyperion sensor on EO-1 was acquired on 2 April 2002, and
delivered as Level 1B_1 data in scaled radiance units. To facilitate the development of
indices, these values were converted to apparent surface reflectance using ACORN 4.10
software (Analytical Imaging and Geophysics LLC 2002). Prior to this conversion, the
following pre-processing steps were implemented: re-calibration, band selection, de-
streaking, and repair of ‘bad’ (non-responsive) pixel values

Mackay

Figure 1. Greyscale Hyperion image subset (800 nm) captured over a section of the Mackay
sugarcane region on 2 April 2002.
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Figure 2. Major steps in the processing of the Hyperion image for the spectral discrimination of sugarcane orange rust
in this study.

(figure 2) (Apan and Held 2002; Datt et al., 2003). A minimum noise fraction (MNF)
transformation smoothing was applied to the post-atmospheric correction reflectance
image to minimize uncorrelated spatial noise. The output image was further processed
by applying the Empirical Flat Field Optimal Reflectance Transformation (EFFORT)
polishing technique (Boardman 1998).

2.2. Sugarcane disease and generation of relevant hyperspectral indices

Orange rust is a fungal disease in sugarcane that produces orange leaf lesions
(pustules) and tend to be grouped in patches. The ruptured leaves allow water to escape
from the plant, leading to moisture stress (Croft et al. 2000). Orange rust occurs in
summer/autumn and is favoured by humid warm conditions. In this study, the infected
fields were rated at the canopy level as ‘4’, based on our 1-5 scale (1 has lowest severity
to 5 with highest severity). Referenced at the time of Hyperion overpass on 2 April
2002, the information on the location and severity rating of orange rust was sourced
from field officers of Mackay Sugar co-operative.

Diagnostic symptoms of orange rust in image datasets may be related to changes in
leaf pigments, internal leaf structure, and moisture content. Thus, SVIs focusing on one
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or more attributes associated with these symptoms were selected (table 1). The majority
of indices were sourced from the literature, while five indices were formulated in this

study based from the examination of detailed spectral reflectance plots.
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2.3. Statistical analyses

Polygons were digitized around sugarcane blocks affected with the orange rust
disease and several blocks not affected by the disease to produce 142 and 159 sample
pixels, respectively. The non-diseased blocks contained the same variety (Q124) and
age group of sugarcane as the diseased blocks. A discriminant function analysis was
used to generate discriminant functions based on linear combinations of Hyperion band
indices that provided optimum discrimination between rust affected and non-rust
affected areas (SPSS 2001). The evaluation of the model’s accuracy was performed by
classifying a ‘hold-out sample’ (i.e. those pixels not included in model generation)
corresponding to 30% of the total sample pixels.

3. Results and discussion

Reflectance spectra of Hyperion ‘raw’ bands show that sample areas with the
sugarcane orange rust disease exhibit difference in spectral reflectance signatures and
can be discriminated from non-diseased areas, at certain wavelengths (figure 3). The
highest separability was located in the NIR region (between 750 to 880 nm and 1070
nm). This was followed by selected ranges in the short wave infrared (SWIR; 1660 nm
and 2200 nm), green (550 nm) and red (680 nm) regions.
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Figure 3. Reflectance spectra of Hyperion sample pixels containing sugarcane orange rust disease and without orange

rust disease: (a) mean and standard deviations and (b) difference of means.

Disease-affected areas have relatively lower reflectance values than unaffected sites in
the green and NIR regions. However, the reverse is true for the red and the SWIR
domains, areas with orange rust have higher reflectance values than no-rust sugarcane.

The results of the discriminant function analysis (table 2) indicate the following.
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e The 1600 nm (SWIR) band, if combined by ratioing with either NIR band (800 nm)
or green band (550 nm), will produce the best (i.e. the largest correlation with the
discriminant function and the highest classification accuracy) among the indices.
This is the case for the four highest ranked indices (DWSI-1, DSWI-2, DSWI-5 and
MSI).

e The indices that only incorporate selected bands in the VNIR (e.g. Ave(750-850,
SIP1, DSWI-4, ND800/600, OSAVI, TCARI, PSSRa, etc.) performed moderately.

e The indices developed from the reflectance red-edge (690-720 nm) (e.g. REIP-Lagr
and REIP-poly) were relatively poor in discriminating diseased from non-diseased
sugarcane crops. They produced very small correlations with the discriminant
function and their classification accuracies were among the lowest.

The output discriminant function, a linear combination of DSWI-2, SR695/420 and
NDWI-Hyp, attained a classification accuracy of 96.9% for the hold-out sample pixels.

The results show that spectral discrimination of sugarcane with a moderate to high
severity of orange rust disease in the Mackay region sampled by the Hyperion image
could be significantly increased by incorporating moisture-sensitive bands in the SWIR
region. The loss of moisture due to lesions or ruptured leaves plays an important factor
in the disease detection (Croft et al. 2000). The high levels of discrimination provided
by the selected Disease—Water Stress Indices developed from this study reinforce the
point. However, water-stressed crops, but not necessarily afflicted with orange rust
disease, could potentially be differentiated from these indices. Such conditions would
complicate orange rust detection.

There is a need to assess if areas with low to moderate sugarcane orange rust
infection (i.e. early to middle stages) will produce significantly different reflectance
signatures from non-diseased areas. This will be the focus of the next phase of the
study, and is considered relevant. Early disease detection is crucial to enable swift
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deployment of curative and preventive measures. Thus, it is desirable to test the
Hyperion image in early-stage disease detection. Under this condition, however, it is not
known if moisture differentiation (hence using the SWIR bands) may be the most
crucial factor to rely on.

4. Conclusions

Several narrow band indices derived from Hyperion image data were able to
discriminate sugarcane crops severely affected by orange rust disease from non-diseased
areas in the Mackay region of Australia. The indices developed used spectral bands that
are known to be sensitive to changes in leaf pigments, internal leaf structure and
moisture content. The discriminant function analysis allowed the ‘ranking’ of each
index based on their ability to differentiate rust-affected from non rust-affected pixels.
While the VNIR-based indices offer significant separability, the incorporation of a 1660
nm SWIR band that led to the formulation of the Disease— Water Stress Indices
provided the maximum discrimination. The follow-on study on assessing Hyperion’s
ability to detect rust disease at various levels of severity will provide additional
information on the use of hyperspectral sensors in crop protection.
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