
1

Detecting Sybil Attacks using Proofs of Work and
Location in VANETs

Mohamed Baza∗, Mahmoud Nabil∗, Niclas Bewermeier∗, Kemal Fidan†,
Mohamed Mahmoud∗, Mohamed Abdallah‡

∗Department of Electrical and Computer Engineering, Tennessee Tech University, Cookeville, TN, USA
†Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA
‡Division of Information and Computing Technology, College of Science and Engineering, HBKU, Doha, Qata

Abstract—Vehicular Ad Hoc Networks (VANETs) has the
potential to enable the next-generation Intelligent Transportation
Systems (ITS). In ITS, data contributed from vehicles can
build a spatiotemporal view of traffic statistics, which can
consequently improve road safety and reduce slow traffic and
jams. To preserve vehicles’ privacy, vehicles should use multiple
pseudonyms instead of only one identity. However, vehicles may
exploit this abundance of pseudonyms and launch Sybil attacks
by pretending to be multiple vehicles. Then, these Sybil (or fake)
vehicles report false data, e.g., to create fake congestion or pollute
traffic management data. In this paper, we propose a Sybil attack
detection scheme using proofs of work and location. The idea is
that each road side unit (RSU) issues a signed time-stamped
tag as a proof for the vehicle’s anonymous location. Proofs
sent from multiple consecutive RSUs is used to create vehicle
trajectory which is used as vehicle anonymous identity. Also,
one RSU is not able to issue trajectories for vehicles, rather the
contributions of several RSUs are needed. By this way, attackers
need to compromise an infeasible number of RSUs to create
fake trajectories. Moreover, upon receiving the proof of location
from an RSU, the vehicle should solve a computational puzzle by
running proof of work (PoW) algorithm. So, it should provide
a valid solution (proof of work) to the next RSU before it can
obtain a proof of location. Using the PoW can prevent the vehicles
from creating multiple trajectories in case of low-dense RSUs.
Then, during any reported event, e.g., road congestion, the event
manager uses a matching technique to identify the trajectories
sent from Sybil vehicles. The scheme depends on the fact that the
Sybil trajectories are bounded physically to one vehicle; therefore,
their trajectories should overlap. Extensive experiments and
simulations demonstrate that our scheme achieves high detection
rate to Sybil attacks with low false negative and acceptable
communication and computation overhead.

Index Terms—Intelligent Transportation Systems, VANET,
Sybil attack, Proof-of-Work, Proof-of-Location, Threshold sig-
natures.

I. INTRODUCTION

Over the last two decades, Vehicular Ad Hoc Networks
(VANETs) have been emerging as a cornerstone to the next
generation Intelligent Transportation Systems (ITSs), con-
tributing to safer and more efficient roads. In VANETs, moving
vehicles are enabled to communicate with each other via
intervehicle communications as well as with road-side units
(RSUs) in vicinity via RSU-to-vehicle communications. As a
result, a wide spectrum of applications have been emerged
as promising solutions [1] to enable new forms of ubiquitous
traffic management applications that are not possible with our
current traditional transportation system. The core idea of these
applications is to enable vehicles to contribute with data and

feedback to an event manager which can build a spatiotem-
poral view of the traffic state and also to extract important
jam statistics [2]. These applications have the potential to
contribute to safer and more efficient roads by enabling a wide
range of applications such as pre-crash sensing and warning,
traffic flow control, local hazard notification, and enhanced
route guidance and navigation [3].

However, the aforementioned applications depend on in-
formation sent from participating vehicles. Therefore, it is
required to preserve drivers privacy especially location privacy
while still verifying their identities in an anonymous man-
ner [4], [5]. A naive solution is to allow each vehicle to have a
list of pseudonyms to be authenticated anonymously. However,
a malicious vehicle may abuse this privacy protection to
launch Sybil attack [6]. In Sybil attacks, a malicious vehicle
uses its pseudonyms to pretend as multiple fake (or Sybil)
nodes [7]. The consequences of a Sybil attack in VANETs can
be disastrous. For example, a malicious vehicle can launch the
attack to create an illusion of traffic congestion. Consequently,
other vehicles will choose an alternative route and evacuate the
road for the malicious vehicle. Another potential consequence
of a Sybil attack is in safety-related applications such as
collision avoidance and hazard warnings where a Sybil attack
can lead to biased results that may result in car accidents [3].
Hence, it is of great importance to detect Sybil attacks in
VANETs.

Existing works of detecting Sybil attacks can be categorized
into three categories, namely, identity registration, position
verification and trajectory-based approaches. The ultimate goal
of these detection mechanisms is to ensure each physical node
is bounded with a valid unique identity. Firstly, identity regis-
tration approaches [7–9] require a dedicated vehicular public
key infrastructure to certify individual vehicles with multiple
pseudonyms to ensure each physical node is bounded with
a valid unique identity. However, identity registration alone
cannot prevent Sybil attacks, because a malicious node may
get multiple identities by non-technical means such as stealing
or even collusion between vehicles [10]. Secondly, position
verification approaches depend on the fact that individual
vehicle can present at only one location at a time. In [11], [3],
localization techniques such as Global Positioning System
(GPS) are used to provide location information of vehicles
to detect Sybil nodes. However, these schemes fail due to
the highly mobile context of vehicular networks [12]. Thirdly,
trajectory-based approaches is based on the fact that individual
vehicles move independently, and therefore they should travel

ar
X

iv
:1

90
4.

05
84

5v
1

 [
cs

.C
R

]
 1

1
A

pr
 2

01
9

2

along different routes. In [4], the vehicle obtains its trajectory
by combining a consecutive tags from RSUs which it encoun-
ters. However, the scheme suffer RSU compromise attack in
which if one RSU is compromised, a malicious vehicle can
obtain infinite number of valid trajectories. Moreover, in case
of rural areas (RSUs are not dense), attackers can create valid
trajectories that look for different vehicles.

In this paper, we propose a novel Sybil attack detection
scheme using proofs of work and location. The main idea
is that when a vehicle encounters an RSU, the RSU should
issue authorized time-stamped tag which is a concatenation
of time of appearance and anonymous location tag of that
RSU. As the vehicle keeps moving, it creates its trajectory by
combining a set of consecutive authorized time-stamped tags
that are chronologically chained to each other. That trajectory
is used as an anonymous identity of the vehicle. Since RSUs
have the main responsibility to issue proof of location to
vehicles, the scheme should resist against RSU compromise
attack so we design the trajectory so that not only one RSU
is capable of creating trajectories for the vehicles. To achieve
this, threshold signature is adopted so that each RSU is only
able to generate a partial signature on a set of time-stamped
tags. Once a vehicle travels along a certain threshold number
of RSUs, a standard signature representing a proof of location
can be generated. Upon receiving an authorized message from
an RSU, the vehicle should use it as a seed to solve a puzzle
using a proof-of-work algorithm, similar to the one used in
Bitcoin [13]. The core idea of PoW is to provide a proof to
RSUs so they can ensure that the vehicle solved the puzzle
correctly. Comparing to Footprint [4], using PoW limits the
ability of a malicious vehicles to create multiple trajectories.
To detect Sybil trajectories, upon receiving an event from other
vehicles, the event manager first applies a set of heuristics to
construct a connected graph of Sybil nodes, then it uses the
maximum clique algorithm [14] to detect all Sybil nodes in
that graph.

Our main contributions and the challenges the paper aims
to address can be summarized as follows:
• We used threshold signatures to resist RSU compromise

attacks. The attacker needs to compromise an infeasible
number of RSUs to be able to create fake trajectories.

• We used the PoW algorithm to limit the ability of a
malicious vehicle to create multiple forged trajectories,
and more importantly, to reduce the detection time for
detecting Sybil trajectories which is a critical concern in
traffic management applications.

• We carefully analyzed the probabilistic nature of PoW
based scheme by examining the affecting parameters (e.g
travel time between two consecutive RSUs) experimen-
tally, and then we developed a mathematical model that
can be used for adjusting these parameters so that the
ability of a malicious vehicle to create forged trajectories
is reduced significantly.

• By experiments, we prove that using the proof of work
algorithm reduces the ability of a malicious vehicle to
maintain actual multiple trajectories simultaneously. Fur-
ther simulations, analysis, and practical experiments are
conducted to evaluate the proposed scheme and compare

it with the Footprint [4], the results indicate that the
proposed scheme can successfully detect and defend
against Sybil attacks in VANETs and more efficiently
compared to the Footprint.

The rest of the paper is organized as follows. We describe
the network and threat models in VANETs, followed by the
design goal of our Sybil detection scheme in Section II. In
Section III, we discuss preliminaries used by this research
work. Then, our proposed scheme is presented in Section IV.
In Section V, we show the selection of PoW parameters values
experimentally, and also we provide a mathematical proof of
the experimental results. Detailed security and performance
evaluations are provided in Section VI. We present the com-
putation complexity analysis of our scheme in Section VII.
Section VIII discusses the previous research work in Sybil
detection in VANETs. Finally, we give concluding remarks in
Section IX.

II. MODELS AND DESIGN GOALS

In this section, we present the considered network model
followed by the adversary and threat models, and then, we
introduce the design goals of our scheme.

A. Network Model

As depicted in Fig. 1, the considered network model has
the following entities.
• Roadside units (RSUs): RSUs act as a typical wireless

access points that can communicate with vehicles within
its vicinity. They can communicate with each other via a
dedicated network or the Internet [4].

• Vehicles: Vehicles are equipped with On-board units
(OBUs) that have two main parts: a short-range wireless
module (e.g., DSRC IEEE 802.11p [15]) and a GPS
receiver. Vehicles communicate with each other and with
RSUs that are deployed along the road.

• Offline Trusted Authority (TA): TA is responsi-
ble for vehicles registration, issuing digitally certified
pseudonyms to vehicles, deployment of RSUs, and en-
suring the security of VANETs. In practice, the TA can
be the Department of motor vehicles (DMV).

• Event Manger (EM): EM is responsible for managing
the traffic management applications and also detecting
Sybil trajectories upon receiving a reported event from
vehicles.

B. Adversary and Threat Model

The TA is fully trusted because it is operated by the
government which is interested in the security of the VANET.
RSUs are honest-but-curious in running the scheme correctly
but they are interested to collect the location information of the
drivers. Also, attackers can compromise a number of RSUs.
The vehicles are not trusted and may launch Sybil attacks by
pretending as multiple fake identities. Attackers can collude
with each other and share their pool of pseudonyms. The event
manager is honest-but-curious in running the Sybil attack
detection scheme, but it should not be able to reveal the actual
identities of drivers.

3

Figure 1: The considered network model where the purple dash
line indicates the travel path of a vehicle in which a number
of RSUs are encountered.

C. Design Goals

Our Sybil detecting scheme should achieve the following
objectives:

1) Resisting RSU compromise. Since RSUs are the respon-
sible for generating trajectories for vehicles, the scheme
should be resistant to RSU compromise attack.

2) Short Sybil attack detection time. The time to detect Sybil
attacks should be short. This objective is important in
time-sensitive applications such as traffic management.

3) Location privacy preserving. The location privacy of
vehicles’ drivers should be preserved while vehicles need
to authenticate themselves anonymously.

4) Unlinkability. The message sent by a vehicle at different
locations or times should not be linkable. Also the
messages of the same vehicle should not be linkable
over the time. This Unlinkability objective is important
because (i) by knowing the locations visited by anony-
mous drivers, the attacker can identify the driver; (ii) by
linking messages, too much location information can be
exposed if the attackers manages to know the sender of
the message.

III. PRELIMINARIES

In this section, we present the necessary background on
secret sharing and threshold signatures that we will use in our
scheme. The notation used in the paper are listed in Table. I

A. Secret Sharing

In a secret sharing schemes, a trusted party distribute a se-
cret key d among a group P = {P1, ..., Pn} of n participants,
each of which owns a share of the secret in such a way that at
least any t participants can use their secret shares to reconstruct
the secret.

Table I: System Notations.

Symbol Description
t The threshold of (t, n)−threshold signature protocol.
SKRi

The partial private key assigned to the RSU Ri

PKvi/SKvi Public/ Private key pair for vehicle Vi.
σRi

A partial signature from RSU Ri.
CTA(PKj

vi
) A certificate from the TA on PKj

vi
T A target from solving the PoW puzzle.
Ti The trajectory of a vehicle.
l Number of RSUs that a vehicle encounters.

Shamir [16] have proposed a (t, n)-threshold secret sharing
scheme in which at least t participants are capable of recov-
ering the secret. Indeed, let Zp be a finite field with p > n
and d ∈ Zp is the secret key to be shared. The TA chooses a
polynomial q(x) of degree at most t− 1 which can be written
as:

q(x) = d+

t−1∑

j=1

ajx
j

where aj ∈ Zq is randomly chosen. Each participant (Pi)
is assigned a secret share di = q(αi). The set of shares yields
a (t, n) threshold access structure where at least a set A ∈
P can retrieve the secret key d using Lagrange interpolation
technique as follows:

d =
∑

Pi∈A
diδ

A
i =

∑

Pi∈A
di(

∏

Pj∈(A\Pi)

−αj
αi − αj

)

Values δAi are known as Lagrange coefficients. It can be
proven that less than t participants cannot get the secret d.

B. Threshold signatures

A regular signature generation algorithm takes as inputs
message, m, and a sender’s private key SK and output a digital
signature σSK(m). The receiver can verify the signature using
the sender’s public key PK. A (t, n)-threshold signature is
used to share the signing operation between a subset t of n
participants rather than giving the power of signing to only one
participant. The idea is that a secret key, SK, is divided into
shares and each share (SKi) is assigned to one of the group
participants. To sign a message, a member can use his secret
share of the secret key to generate a partial signature called
signature share σi. Then, a subset of at least t participants can
compute a valid signature σSK(m) on m by combining their
signature shares. This signature can be verified by anybody
using a unique public key.

We adopt an efficient threshold signature scheme proposed
by Alexandra [17] that is based on Gap Diffie-Hellman (GDH)
groups [18] for forth reasons. First, it has proven to be secure.
Second, anonymity is provided by unlinking the SKi with
the identity of the signer. Third, generating a signature does
not require any interaction or any zero-knowledge proofs with
versifiers. Forth, the signature shares are short, and signature
reconstruction requires only the multiplication of signature
shares. Moreover, it imposes low computational overhead
since the signing process only requires hash computations and

4

modular exponentiation and the verification process requires
two pairing operations.

A brief description to the threshold signature scheme is as
follows. Let G be a GDH group of prime order p and g be a
generator of G and H : {0, 1}∗ → G is a public one-way and
collision-resistant hash function. Each participant Pi should
have a secret share SKi using methods described in [19]. A
participant Pi uses its secret share to compute the signature
share on a message (m) as:

σSKi
(m) = H(m)SKi

After a set A of at least t participants compute their
signature shares for message m, a standard signature for the
message can be calculated as:

σSK(m) =
∏

i∈A
σSKi

(m)δ
A
i = H(m)

∑
i∈A δAi SKi = H(m)SK

(1)
Where δAi are Lagrange coefficients.

IV. PROPOSED SCHEME

In this section, we present our Sybil detection scheme. We
first start with system initialization, then we show how vehicles
obtains proof-of-location messages. Then, we describe the role
of the PoW followed by an illustrative example of trajectory
creation in our scheme. Finally, we describe the how the event
manager can detect Sybil trajectories.

A. Overview

In our scheme, vehicles should request proof of location
form each RSU it encounters as a proof of its presence there.
The issued proof of location message should be temporarily
linkable to preserve the drivers’ locations privacy.

In our scheme, we used threshold signatures to prevent such
kind of attack. We introduce Proof-of-Work (PoW) algorithm
as first layer of defence to Sybil attacks since it reduces the
possibility of a malicious vehicle to obtain multiple trajectories
successfully. The vehicle should solve a puzzle while moving
to the next RSU. Then, an RSU can issue a proof of location
to the vehicle but after verifying the puzzle solution. However,
some malicious vehicles can create multiple trajectories to
launch a Sybil attack. Therefore, we apply a second layer of
defence using some heuristics that define forged trajectories
(created by malicious vehicles). So, once a vehicle reports
a particular event such as road congestion or accident, it
should also submit its trajectory (A set of consecutive proof of
locations issued for a vehicle by RSUs that are timely chained
together) for identification. Then, a event manager conducts
Sybil attack detection by first check the similarity relationship
among each pair of trajectories. Then, Sybil trajectories from
the same attacker are overlapped within the same "group".
Finally, each group will be considered as one single physical
vehicle. By this way, Sybil nodes can be eliminated. In the
following sections, we describe our scheme in details.

B. System Initialization

During this stage, RSUs are divided into groups in such a
way that each group cover a certain area or a road segment.
Then, the TA sends to the RSUs within each group the creden-
tials they need for a (t, n) threshold signature, where n is the
number of RSUs deployed in the group. In order to do this, a
polynomial of degree t−1 is calculated at different points αi,
for i = 1 to n. Then, the TA generates a public key PK and a
list of n secret key shares SKi ∀ i = {1, . . . , n} of the secret
key (SK). After that, TA sends to each RSU via a secure
channel a secret key share (SKi) and the public key (PK) as
well as a list of public keys corresponding to the secret key
shares of the neighbouring RSUs. To ensure RSUs are issuing
trajectories for legitimate vehicles, each vehicle generates a
set of public/private key pairs and obtain certificates for each
public key from the TA so that vehicles can anonymously
authenticate themselves to the RSUs. Getting these certificates
from the TA can be done during vehicle registration from, e.g.,
the Department of motor vehicles (DMV).

C. Exchanged Messages

In this subsection, we illustrate by an example of how a
vehicle can construct its trajectory through Fig. 2. Assume
a threshold signature with t = 3 and a vehicle v1 is trav-
eling along the following RSUs [R1, R2, R3, R4]. To ensure
anonymity, v1 should in advance generate a list of temporary
public/private keys. Then, v1 starts creating its trajectory as
follows:

1) When v1 first encounters R1, it can start its trajectory by
simply sending a public key PK1

v1 from the temporary
key pair [PK1

v1 , SK
1
v1] with the certificate of the TA

CTA(PK
1
v1).

2) R1 first authenticates the vehicle if it is legitimate to
request a proof of location by checking the vehicle’s
certificate. Then, it generates a proof of location message
m1 = {PK1

v1 , (t1, TagR1)} where t1 is the current time
stamp and σR1(m1) is signature share of R1 on m1.
Then, R1 sends T1 = m1||σR1

back to the vehicle.
3) Upon receiving the message (T1) and to limit a ma-

licious vehicle ability to generate multiple trajectories,
the vehicle should use it as a seed to run the proof of
work (PoW) algorithm. The idea of using Proof-of-work
concept, was proposed in [20] to defend against denial-of-
service attacks and email spams, and recently has become
more popular for its use to secure bitcoin [13]. In PoW, a
prover (i.e., a vehicle) before request a proof of location
from an RSU, he/she should solve a certain computational
challenging puzzle to prove that a certain amount of time
has been taken to solve this puzzle. The verifier (i.e.,
an RSU) on the other side can verify that the proof is
valid with a negligible computational cost. We adopt the
Hashcash PoW technique used in Bitcoin [13] as follows:

H(n||H(TR1
)) < T (2)

where H is a secure hash function e.g. SHA-256, TR1

is the authorized proof of location issued from an RSU

5

v1 generate a temporary key pair list
PK1

v1
‖CTA(PK1

v1
)

T1 = m1‖σR1(m1)
R1

Verifies CTA(PK1
v1

).

Generates m1 =
{
PK1

v1
, (t1, TagR1)

}

Computes ShR1(m1)

Run the PoW algorithm to get (ST1)
LR1 = (T1‖ST1‖PK2

v1
)‖

σSK1
v1

(T1, ST1 , PK
2
v1

)

LR1

T2 = m2‖σR2(m1)‖σR2(m2)
R2

Verifies LR1

Verifies ST1
Generates m2 =

{
PK2

v1
‖(t1, TagR1)‖

(t2, TagR2)
}

Computes σR2(m1)
Computes σR2(m2)

Run the PoW algorithm to get (ST2)
LR2 = (T2‖ST2‖PK3

v1
)‖

σSK2
v1

(T2, ST2 , PK
3
v1

)

LR2

T3 = m1‖σ(m1)‖m3‖σR3(m2)‖σR3(m3)
R3

Verifies LR2 and signature shares
Verifies ST2
Computes σR3(m1)
Computes σ(m1)
Generates m3 =

{
PK3

v1
‖(t1, TagR1)‖

(t2, TagR2‖(t3, TagR3)
}

Computes σR3(m2)
Computes σR3(m3)

Run the PoW algorithm to get (ST3)
LR3 = (T3‖ST3‖PK4

v1
)‖

σSK3
v1

(T3, ST3 , PK
4
v1

)

LR3

T4 = m2‖σ(m2)‖m4‖σR4(m3)‖σR4(m4)
R4

Verifies LR3 and signature shares
Verifies ST3
Computes σR4(m2)
Computes σ(m2)
Generates m4 =

{
PK4

v1
‖(t1, TagR1)‖

(t2, TagR2)‖(t3, TagR3)‖
(t4, TagR4)

}

Computes σR4(m3)
Computes σR4(m4)

Figure 2: Exchanged messages in our scheme with threshold of t = 3.

R1, T is an expected target value and n is a nonce value.
The puzzle problem is to find the appropriate nonce value
n to make the hash value less than a certain target, T .
Brute force is the only known way to solve the puzzle
problem. The computational difficulty of problem solving
depends on the value of T . The smaller the value T , the
more difficult it is to generate the proper nonce value and
more time is required to generate such nonce. Note that
the longer it takes a vehicle to travel between two RSUs,
the more time it has to solve the PoW puzzle and hence
the lower the expected target value should become. Upon
arriving at the next RSU, the vehicle should submit the
lowest T value resulted from running the PoW algorithm
to the RSU. To illustrate, after a vehicle v1 receives the
authorized message T1 from R1, it should use T1 as a
seed value to run the PoW algorithm. Once v1 encounters
the next RSU (i.e., R2), it should first generate a new
temporary public/private key pair PK2

v1 , SK
2
v1 and then

sends the solution of solving the PoW puzzle denoted
by ST1 included in following message to R2: LR1

=
(T1||ST1 ||PK2

v1)||σSK1
v1
(T1, ST1 , PK2

v1)
4) Once R2 receives LR1

from v1, R2 verifies the message
LR2

in two steps:
a) Ownership verification: R2 first take
PK1

v1 from T1, and check whether
VPK1

v1
(σSK1

v1
(TR1

, STR1
, PK2

v1)) =

TR1 ||STR1
||PK2

v1 . This is mandatory so that
authorized messages cannot be misused by other
vehicles since only the vehicle v1 knows SK1

v1 that

corresponds to its pairwise PK1
v1 . Furthermore, R2

further examines whether the signature share contained
in σR1

is signed by one of its neighboring RSUs.
b) PoW puzzle verification: Once LR1

succeeds the own-
ership verification step, R2 further check the validity
of PoW puzzle solution (STR1

) by (i) computing
H(STR1

||H(TR1
)) (ii) Determining the travel time

of v1:= t2 − t1 where the time stamp (t1) is taken
from TR1

and t2 is the current time of receiving LR1
.

Thereafter, it uses a look up target table to check
whether the target corresponding to the time taken by
v1 to travel between R1 and R2 is actually below a
certain target value. If the verification of STR1

does not
meet the required difficulty, an R2 refuses contributing
by its signature share to the corresponding trajectory,
forcing the vehicle to start over with a new trajectory.

Note that if a vehicle does not pass either the above steps,
such a vehicle will be considered as a malicious vehicle,
and the RSU will terminate any further communications
with it. It is worth mentioning that even if a malicious
vehicle passes the ownership verification step and due to
the limitation of a vehicle’s computational resources, it
would be difficult for it to generate multiple trajectories
simultaneously because it would have to solve a separate
puzzle for each authorized message it obtains from an
RSU.
Then, R2 generates m2 =
PK2

v1 ||(t1, TagR1
)||(t2, TagR2

) and sends
T2 = {m2||σR2

(m1)||σR2
(m2)} back to v1. Note

6

that σR2
(m1) and σR2

(m2) are signature shares of R2

on m1 and m2 respectively.
5) As this vehicle moves on and encounters R3, it

sends LR2
. The authorized message generation pro-

cess at R3 is similar to R2 but R3 further use
the threshold signature scheme to compute a stan-
dard signature σ(m1) for m1. Then, R3 sends T3 =
m1||σ(m1)||m3||σR3(m2)||σR3(m3) back to the vehicle,
where m3 = {PK3

v1 ||(t1, TagR1)||(t2, TagR2)
||(t3, TagR3

)}.
Note that m1||σ(m1) represents the proof of location for

the appearance of the vehicle at R1 at time t1. Hereafter, the
vehicle can start creating its trajectory.

D. Creating Trajectories and Reporting Events

The vehicle can start creating its own trajectory after she
encounters t RSUs. As in Fig. 2, upon v1 reaches at R4,
after it checks whether the received message LR3 passes
the ownership and PoW verification steps, it can gener-
ate a standard signature σ(m2) over m2. Here, m2||σ(m2)
represents a proof of location of v1 at both R1 and
R2. The process is repeated such that R4 sends T4 =
M2||σ(m2)||m4||σR4(m3)||σR4(m4) back to the vehicle,
where m4 = {PK4

v1 ||(t1, TagR1
)||(t2, TagR2

)||
(t3, TagR3

||(t4, TagR4
)}.

As the vehicle moves on, a set of consecutive time stamped
authorized location tags issued for a vehicle are tightly chained
together to form a trajectory of a vehicle. That trajectory is
used as the vehicle unique anonymous trajectory.

E. Detecting Sybil Attacks

In this subsection, we explain how the event manager can
detect and eliminate Sybil attacks. When a vehicle reports
an event (e.g. an accident or a traffic jam) to the event
manager, the vehicle should send its trajectory with the event
message. However, since the PoW algorithm limits (but not
eliminate) the chance for a malicious vehicle to obtain multiple
trajectories due to its probabilistic nature as will be discussed
in details in Section. V, we use a set of heuristics and graph
based representations as a second layer of defence to recognize
and remove trajectories sent from Sybil nodes. Note that the
use of PoW is the first line of defense. Basically, and similar
to [4], there are two main heuristics that can be used to decide
if two trajectories are distinct (created by real vehicles) or
forged (created by a malicious vehicle):

1) Check window size/Traverse time limit is the time re-
quired for a vehicle to travel between two consecutive
RSUs. This heuristic is used since a single vehicle should
not be able to traverse two consecutive RSUs in a time
shorter than a certain limit that is traverse time limit or
check window size.

2) Trajectory length limit is defined as the maximum number
of RSUs traversed by a single vehicle within a time
period. This heuristic is used since in practice vehicle will
not be able to exceed a certain limit of RSUs traversed
in a particular time.

Based on these two heuristics, upon receiving a number
of N trajectories by event manger, he/she can conduct Sybil
attack detection as shown in flow chart illustrated in Fig. 3 as
follows:

Phase 1: Conducting exclusion test. In this phase, the
event manger conduct an exclusion test for each pair of
received trajectories. Mainly, there are two cases where a pair
of trajectories can pass the test (positive test). First, if there are
two distinct RSUs tags appearing in the same check window.
Second, if the number of RSUs obtained by combining all
distinct RSUs in two trajectories is greater than the trajectory
length limit. In all other cases, the pair of trajectories fails
in the test (negative test) and they are considered suspicious.
Based on the exclusion test, similarity check S(Ti, Tj) between
the two trajectories can be defined as follows:

S(Ti, Tj) =

|Ti ∩ Tj |
Min{|Ti|, |Tj |}

negative test

−1 positive test,

where minus one represents that Ti and Tj are distinct, Ti∩
Tj denotes the set of common RSUs found when checking Ti
and Tj using the check window and |.| represents the length
of a trajectory.

Phase 2: Building graph and eliminate cliques. After
conducting the similarity check phase, the Sybil detection
problem can be transformed into finding all complete sub-
graghs (called cliques) in an undirected graph where graph
vertices are the vehicles’ submitted trajectories and edges
represents the negative result of the exclusion test. We adopt
maximum clique algorithm named "MCS" proposed by Tomita
et. al. in [14] since it is a simple and faster branch-and-bound
algorithm that can efficiently find a maximum clique for large
number of graphs. As illustrated in Fig. 4, the idea is to
pick a maximum clique (fully connected graph) iteratively and
to delete all vertices in that clique and all its corresponding
edges from the graph till there are no more vertices left in the
graph. In this way, a malicious vehicle is allowed to represent
itself once to the event manger no matter how many forged
trajectories it has generated.

V. SELECTION OF POW TARGETS

In this section, we discuss how to select PoW target values
that should be previously loaded in the look-up target table.
The table maintains two values: the expected target value
and the corresponding traverse time of a vehicle between
two neighboring RSUs. First, we compute the target values
experimentally. Then, we provide a mathematical model and
compare it with the experimental results. Finally, we evaluate
how the use of PoW in our scheme limits a malicious vehicle’s
ability to create multiple forged trajectories.

A. Experimental Results

The steps to obtain the look up target table experimentally
is as follows. First, using Raspberry Pi 3 devices, we compute
the probability distribution function (pmf) of computing PoW

7

Conversation holder
receives N trajectories

For each trajectory pair

Exclusion test

They are suspicious
(Connect them)

They are distinct
(No edge)

Generate Graph

Eliminate Cliques

T5T3T1 T2

Negative testPositive test

Figure 3: Flow chart of detecting Sybil nodes.

T1
T4

T5

T7

T3T2

T6

T1
T4

T5

T7

T3T2

T6

T236

A Sybil node

Eliminate Cliques

Figure 4: The graph has one maximum clique, the triangle
{T2, T3, T6}, and four more maximal cliques including the
pairs {T1, T4}, {T3, T4}, and {T3, T7}.

2
225

2
227

2
229

2
231

2
233

2
235

2
237

2
239

2
241

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 5: Probability mass function of computing PoW target
values at different traverse times.

target values by solving the PoW algorithm considering differ-
ent values of traverse times, then we compute the cumulative
distribution function (CDF) of solving the PoW target values.
Finally, we used the CDF to obtain the look up target table.
The details of our experiment is as follows;

to simulate a vehicle, we used Raspberry Pi 3 devices with
1.2 GHz Processor and 1 GB RAM. We selected four possible

2
225

2
227

2
229

2
231

2
233

2
235

2
237

2
239

2
241

0

0.2

0.4

0.6

0.8

1

Figure 6: Cumulative distribution function of PoW target
results with different traverse times.

10 30 50 70 90 110 130

0

2

4

6

8

10
71

Figure 7: Experimentally determined target values at different
traverse times (target lookup table).

traverse times particularly 10, 30, 90 and 130 seconds. Note
that these values represent the possible contact time between
a moving vehicle and an RSU [21]. In addition, We ran the
PoW algorithm 1000 times for each traverse time value. Then,
we divided the obtained target values to equal ranges and then
we estimated the probability of computing each of these target
ranges.

Fig. 5 shows the pmf of the obtained target values at
different traverse times. Using probability mass function in
Fig. 5, the cumulative distribution function of computing a
target is shown in Fig. 6. Note that the CDF is the probability
that a random variable (T , that is the target value in our case)
takes a value less than t [22] as follows:

Pr[T < t] =

∫ t

−∞
pmf(t) dt

For instance, from Fig. 6, at traverse time t = 130sec, the
probability of computing a target lower than T = 2239 is
0.98. That is, 98% of vehicles are able to compute a target
value equal or greater than T = 2239 at traverse time equal to
130sec.

8

k - Number of solutions
1 2 3 4 5 6 7 8 9 10 11 12

P
(k
)

0

0.05

0.1

0.15

0.2

0.25

0.3

Experimental: K=target(p = 0.99)
Theoretical: K=target(p = 0.99)
Experimental: K=target(p = 0.85)
Theoretical: K=target(p = 0.85)

P (k) =
(Kk)(

N−K
n−k)

(Nn)
N = 2256

n = 3.5× 106

Figure 8: Comparison between the experimental and theoreti-
cal probability distribution of finding k PoW solutions within
t = 90sec. for K = 16.74 × 1070 and K = 6.34 × 1070 at
target success rate 99 % and 85 % respectively.

Next, using the results shown in Fig. 6, we have estimated
the expected targets at different traverse times as illustrated in
Fig. 7 at different target success rate values. To illustrate, 95%
target success rate indicates that 95% of vehicles are able to
compute a certain target value. For example, at traverse time
50 seconds, 95% of vehicles are able to solve the PoW below a
target of 2×1071 while 80% of vehicles were able to compute
a target below 1× 1071. As depicted in Fig. 7, as the traverse
time of the vehicle increases, a lower target value is expected
by the next RSU. This is because the vehicles have more time
to solve the PoW algorithm. Now, the lookup table can be
constructed and loaded to each RSU so that RSUs can use
that table to verify whether a vehicle successfully solved a
PoW puzzle.

B. Mathematical Model

As discussed above, the experimental method can be used
to determine the target look-up table. However, experimental
method is complex due to many parameters involved such
as the hardware used, the hash function used in the PoW
algorithm, and the traverse times. Therefore, in this subsection,
we aim to provide a mathematical model for the probability
of computing targets and compare the model with our exper-
imental results.

Successfully solving k PoW puzzles by a vehicle during a
specific traverse time between two RSUs can be modeled by a
hypergeometric distribution [23] model. This model describes
the probability of having k successes in n draws from a finite
pool of size N that contains K objects that are successful. This
model can be mapped to our PoW computation as follows: a
vehicle’ hash rate during the traverse time is equivalent to the
number of n draws from a pool of hashes of size N to get k
successful solutions that satisfy the target which is K in that
case. Therefore, we are looking for a probability of success in
solving k PoW puzzles using the following formula:

P (k) =

(
K
k

)(
N−K
n−k

)
(
N
n

) (3)

We consider the following parameters:
• N = 2256 is the output space of the hash function SHA-

256.
• K is the target value with a certain success rate at a

particular traverse time. For the value of K, we used
results obtained in Fig. 7 to get the target values at the
traverse time equal to 90 sec. Basically, we used two
values, 16.73×1070 and 6.34×1070 which are the target
values at target success rate 99% and 85% respectively.

• n = 3.5× 106 is the number of hashes per traverse time
t = 90sec. This value is estimated in python.

Using the aforementioned parameters, we are able to obtain
the probability of finding k PoW solutions within a certain
traverse time t [24]. However, due to large numbers in our
case, it can be hard to compute the probability mass function
using Eq. 3. Nevertheless, since the range of k is small, we can
approximate the hypergeometric distribution using the Poisson
distribution according to [25] as follows:

F (k) =
λk exp−λ

k!
(4)

where λ =
nK

N
.

Both the experimental and theoretical results are shown in
Fig. 8. As per Fig. 8, We can conclude that, our experimental
results match the approximated hypergeometric distribution.
In addition, by using Eq. 4, we can generate the target look
up table in Fig. 7 mathematically by merely knowing the hash
rate during a certain traverse time.

C. Importance of using PoW
Now, we examine the effect of PoW algorithm for honest

vehicles and malicious vehicles. As discussed earlier, benign
vehicles should submit one valid PoW solution for every
puzzle. However, in case of a malicious vehicle trying to get i
trajectories, each of length j, it should be able to solve the
PoW puzzle at least i times for every RSU it encounters.
Failing to solve one puzzle at any RSU leads in failing to
create one of the trajectories. The probability of creating i
trajectories of length j RSUs can be obtained as follows: First,
the probability of computing i valid PoW puzzle solutions at
an RSU can be obtained by applying the survival function to
the formula in Eq. 4, where, the survival function means the
probability that a random variable (X) takes a value greater
than i as follows,

S(i) = Pr(X ≥ i) =

8∑

k=i

F (k) (5)

Then, the overall successful probability of creating i trajec-
tories of length j is computed as Pr(X ≥ i)j and can be
expressed mathematically as follows:

Pr(X ≥ i)j =
(8∑

k=i

F (k)

)j
≈
(8∑

k=i

λk exp−λ

k!

)j
(6)

9

1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

Figure 9: One trajectory computation successful probability in
generating a valid trajectory as a function of trajectory length.

In order to evaluate the importance of using the PoW, we
define the following two key metrics:

• One trajectory computation successful probability (PO):
is defined as the probability that an honest vehicle is able
to compute one valid trajectory. This probability can be
mathematically computed by using i = 1 in Eq. 6 since
to be able to create at least one trajectory, an honest
vehicle should be able to compute the target at each RSU
it encounters.

• Multiple trajectories computation successful probability
(PM): is defined as the probability that a malicious
vehicle can compute multiple trajectories i.e., solving
multiple puzzles and compute the expected targets at each
RSU it encounters. This probability can be obtained by
using i > 1 in Eq. 6 since to create multiple trajectories,
the malicious vehicle should be able to solve more than
one puzzle at each RSU it encounters.

Considering the target values obtained in Fig. 7 at traverse
time equal to 90 sec., Fig. 9 shows the one trajectory com-
putation successful probability (PO) in generating a trajectory
with different trajectory lengths as well as at different target
success rates namely, 99%, 98% and 97%. As shown in
Fig. 9, The higher the target success rate, the higher the
probability of honest vehicle is able to compute a valid longer
trajectory. However, setting the expected target too low at
certain traverse time results in that honest vehicle will slightly
sacrifice the possibility of computing a valid trajectory. Fig. 10
shows the probability of creating 2, 3 and 4 trajectories with
a trajectory length up to 10 as well as at different target
success rates namely, 99% and 98%. It is clearly seen from
Fig. 10 that the probability of creating multiple trajectories
decreases significantly with the increase of trajectory length
which can reduce the success of Sybil attacks by making
creating multiple trajectories difficult. It can be concluded that:

(i) Increasing the difficulty level of PoW puzzle by lowering
value significantly reduces the multiple trajectories com-

putation successful probability (PM). However, setting
the target value too low can result in honest vehicles not
being able to compute a successful trajectory. Therefore,
a target value should be well chosen to enable honest
vehicles to create trajectories with high probability while
reducing the chance of the malicious vehicles to create
many trajectories.

(ii) As the trajectory length increases, the lower the multi-
ple trajectories computation successful probability and it
becomes difficult for an malicious vehicle to compute
multiple trajectories.

VI. SECURITY AND EVALUATION ANALYSIS

In this section, we evaluate our proposed scheme and
compare it with the Footprint. We first start with performance
evaluation of Sybil attack detection and show by simulations
the efficiency of our scheme in terms of detecting Sybil attacks
and the detection time. Then, we discuss the security and
privacy analysis of our scheme.

A. Sybil Attack Detection

In this subsection, we discuss the performance of our
proposed scheme by investigating different system parameters
in recognizing forged trajectories (provided by a malicious
vehicle) and actual ones (issued by honest vehicles).

1) Simulation Design: Our proposed scheme was imple-
mented using Python, and trajectories were generated based
on real roadmap data. First, using OpenStreetMap project [26],
we extracted the roadmap shown in Fig. 11 for Nashville city,
TN, USA. The dimensions of the map are 75.5 km × 33
km. Second, using SUMO [27], we generated random routes
for about 160 vehicles. RSUs were deployed at the edges of
routes produced by the SUMO. Then, we recorded the actual
trajectories generated by vehicles and truncated each trajectory
into subtrajectories of lengths varying between 10 and 15
RSU’s. We then assigned every trajectory with a random start
time within a 5-second window and a traverse time between
two RSUs, chosen at random between 10 and 130 seconds.
Accordingly, our experiment simulates a large number of
vehicles with random trajectories, all starting their route within
a 5 seconds time window, and each travelling with random
but constant speed. From all vehicles in our simulation, we
arbitrarily chose 10 per cent to simulate malicious vehicles.
For every malicious vehicle, we randomly created between 1
and 10 forged Sybil trajectories.

2) Considered key metrics: We first define the following
terms regarding the classifications of output of running the
detection algorithm:
• False positives (FP): Number of Actual trajectories that

are incorrectly considered Sybil trajectories .
• True negatives (TN): Number of actual trajectories that

are correctly considered actual trajectories.
• True positives (TP): Number of Sybil trajectories that

correctly considered Sybil trajectories.
• False negatives (FN): Number of Sybil trajectories that

are incorrectly considered actual trajectories.

10

1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

(a) Target success rate 98%.

1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

(b) Target success rate 99%.

Figure 10: Malicious vehicle success probability in generating multiple trajectories with increasing trajectory length considering
98% and 99% success rates of solving a puzzle.

Figure 11: Map of Nashville city, TN, USA used for
simulation.

Based on the previous classifications, we consider the
following three key metrics in our performance evaluation:

1) False Positive Rate (FPR): The ratio of all actual
trajectories that are falsely identified as Sybil trajectories.
This metric can be expressed as:

FPR =
FP

FP + TN
(7)

2) False Negative Rate (FNR): The ratio of all Sybil trajec-
tories that are incorrectly identified as actual trajectories.
This can be expressed as:

FNR =
FN

FN + TP
(8)

3) Detection Rate (DR): The ratio of all Sybil trajectories
that are correctly identified as Sybil trajectories. The
detection rate is equal to 1− FNR, or alternatively:

DR =
TP

TP + FN
(9)

The abovementioned metrics are used to evaluate the
performance of our proposed scheme in comparison with
Footprint [4]. We show the simulation results considering
the two heuristics namely check window size and trajectory
length limit explained earlier in section IV-E. For each of the
two heuristics and each simulation configuration, we ran the
simulation 30 times and get the average of all runs.

3) Impact of the check window size: In this simulation, we
considered a constant trajectory length limit of 15 RSUs. Then,
we changed the check window size from 2 to 50 seconds with
an interval of 2 seconds. Fig. 12a, Fig. 12b, and Fig. 12c
shows the FPR, FNR, and DR respectively at variable check
window sizes for our scheme and Footprint. In both schemes,
as the check window size increases, the FPR decreases. This
happens because as the check window size increases, two
actual trajectories are more likely to distinguish each other
by having a negative similarity. Similarly, the larger the check
window, the higher the FNR, since it becomes more likely
that two distinct RSUs are inside the same check window
and hence malicious trajectories are being falsely identified as
honest. Nevertheless, the results clearly show that our scheme
is better than Footprint. While the FPR remains the same as in
Footprint, the FNR was decreased and the DR was increased
by up to 50% relative to Footprint, respectively. Moreover,
increasing the check window size results in a lower detection
rate in Footprint while in our scheme the DR is not affected
by the same ratio. This is because our PoW-based approach
that limits the possibility of a malicious vehicle to generate
multiple trajectories simultaneously.

4) Impact of the trajectory length limit: In this simulation,
we examine the effect of the trajectory length limit. We
consider the check window equal to 17 seconds ("best" check
window size that we obtained from previous simulation) and
vary trajectory length limit from 2 to 24 with an interval of
two. Fig. 12d, Fig. 12e, and Fig. 12f plots FPR, FNR, and
DR respectively as functions of the trajectory length limit.
Similar to the results shown in Section VI-A3, our scheme
outperforms the performance of Footprint. Specifically, our

11

Check Window Size [s]
2 7 12 17 22 27 32 37 42 47

F
al
se

P
os
it
iv
e
R
at
e

0

0.05

0.1

0.15

0.2

Our Scheme
Footprint

(a) Check window size versus false positive rate.

Check Window Size [s]
2 7 12 17 22 27 32 37 42 47

F
al
se

N
eg
at
iv
e
R
at
e

0

0.05

0.1

0.15

0.2

0.25

0.3

Our Scheme
Footprint

(b) Check window size versus false negative rate.

Check Window Size [s]
2 7 12 17 22 27 32 37 42 47

D
et
ec
ti
on

R
at
e

0.7

0.75

0.8

0.85

0.9

0.95

1

Our Scheme
Footprint

(c) Check window size versus detection rate.

Trajectory Length Limit [# of RSUs]
2 4 6 8 10 12 14 16 18 20 22 24

F
al
se

P
os
it
iv
e
R
at
e

0

0.05

0.1

0.15

0.2

Our Scheme
Footprint

(d) Trajectory length limit versus false positive rate.

Trajectory Length Limit [# of RSUs]
2 4 6 8 10 12 14 16 18 20 22 24

F
al
se

N
eg
at
iv
e
R
at
e

0

0.05

0.1

0.15

0.2

Our Scheme
Footprint

(e) Trajectory length limit versus false negative rate.

Trajectory Length Limit [# of RSUs]
2 4 6 8 10 12 14 16 18 20 22 24

D
et
ec
ti
on

R
at
e

0.8

0.85

0.9

0.95

1

Our Scheme
Footprint

(f) Simulation results at variable trajectory length
limit.

Figure 12: Simulation results comparison at variable check window sizes and trajectory length limit.

4 8 12 16 20 24 28 32 36 40 44 48
0

5

10

15

20

25
Footprint

Our Scheme

(a) Check window size versus detection time.

2 4 6 8 10 12 14 16 18 20 22 24
0

2

4

6

8

10

12 Footprint

Our Scheme

(b) Trajectory length limit versus detection time.

4 8 12 16 20 24 28 32 36 40
0

5

10

15

20

25

30

35

40

Footprint

Our Scheme

(c) Trajectory length limit versus detection time.

Figure 13: Detection time comparison.
proposed solution reduces the FPR by around 15% relative
to Footprint. Also, the FNR was decreased and the DR was
increased by up to 40% relative to Footprint. This is because
our PoW-based approach makes it harder for a malicious
vehicle to compute forged multiple trajectories simultaneously.

5) Detection time overhead of eliminating Sybil nodes:
Finally, we consider the detection time required by the event
manager to run the maximum clique algorithm and identify
Sybil trajectories in our proposed scheme and Footprint [4] at
different values of check window sizes and different trajectory
length limit values. The results is shown in Fig. 13a and
Fig. 13b respectively. Note that, the presented results represent
the average of running the maximum clique algorithm 30 times
at each value. It can be seen from both Fig. 13a, Fig. 13b that
detection time is much less than the case in Footprint. This
is because of our scheme leverage the PoW algorithm which
limits the attacker’s capability to create multiple successful
trajectories. And hence less number of forged trajectories
should be eliminated by the clique algorithm.

In another part of our evaluation, we choose a safe check
window size (17 seconds) as well as a safe trajectory length
limit (15) in our scheme and Footprint. Then, using Poisson
distribution, we changed the number of forged of trajectory
that a vehicle can generate. Each malicious vehicle can gen-

erate up to 40 trajectories with mean 10. Then, we run the
clique algorithm and take the average of all runs. The results
are shown in Fig. 13c. Our PoW based scheme outperforms
Footprint. In Footprint, as the number of Sybil trajectories
a malicious vehicle can generate, the computation time to
detect Sybil nodes increases and reaches several seconds. As
an example, if malicious vehicles were able to generate 28
forged trajectories, Footprint takes a round 26 seconds. How-
ever, our scheme can detect them in milliseconds. Therefore,
although Footprint can detect Sybil nodes, it suffers from high
computation cost to detect Sybil trajectories making it not
suitable in VANET especially in safety-related applications
which require online detection of Sybil attacks in range of
milliseconds which is the case in our scheme. In addition,
an attacker may try to leverage the detection time burden of
the clique algorithm performed by the event manger to launch
denial of service attack. This attack is very hard in our scheme
thanks to the PoW that we have used in our scheme.

B. Security/Privacy Analysis
Our scheme meet the following security and privacy fea-

tures,
1) Resist to RSU compromise attack: Since RSUs are mainly

responsible for issuing authorized messages for the ve-

12

hicles. An attacker may try to compromise an RSU to
issue forged trajectories that look like legitimate. But
using threshold signatures, only one RSU cannot issue a
proof of location for a specific vehicle. Alternatively, the
contribution of at least t RSUs are required. Therefore,
our scheme mitigates any possibility of RSU compromise
attack.

2) Resist to replay attacks: An attacker may try to eavesdrop
any of authorized messages from other honest vehicles
to misuse them to create Sybil nodes. However, such an
attack is prohibited in our scheme since RSUs should first
verify any received message before it can issue a proof
of location to that vehicle. An attacker shall know the
temporary private key of the message owner to pass the
message verification step which is difficult to achieve.

3) Resist to DoS attacks: Although Footprint can detect
Sybil nodes, vehicles are free to start creating its tra-
jectory whenever it wants. Therefore, a Sybil node can
cause a denial of service attack by overwhelming honest
vehicles/RSUs by a flood of forged trajectories which
may cause wrong decisions such as congestion, especially
in dense areas. However, in our scheme, using the PoW
approach limits the ability of a malicious vehicle to create
forged trajectories as discussed in Sec. V.

4) Preserve vehicles’ location privacy: Our scheme pre-
serve the privacy of vehicle locations since the signature
contained in the message is anonymous and signed by
a certain threshold number of RSUs which makes an
attacker unable to decide which RSU signed a particular
message. Thus, no information about the location can be
inferred by having an RSU signature. Also, the authorized
messages issued by RSUs contain temporary location tags
that change over time, therefore, if an attacker tried to
memorize such location tags, this would not help in future
as the RSUs changes their location tags over time.

5) No need for a predefined design for RSUs: Due to design
issues in the deployment of VANETs, there may be a
coverage overlap between two neighbouring RSUs trans-
mission power. This overlap can be a severe problem, for
example, in [4], when a vehicle requests proof of location
from an RSU, it is possible that multiple RSUs may
simultaneously receive that request and issue a proof of
location for this vehicle (especially in a dense deployment
of RSUs). Therefore, the vehicle can obtain multiple
trajectories from different RSUs that can be misused by
a malicious vehicle to launch a Sybil attack. However,
our scheme resists against such problem since the PoW
algorithm limits a malicious vehicle from obtaining valid
multiple proofs of locations since it should pass the PoW
verification step for each received puzzle. Therefore, our
scheme does not require a specific configuration or design
for RSUs especially in the early deployment of VANETs.

VII. COMPUTATION AND COMMUNICATION OVERHEAD

To evaluate the communication and computation overheads
of our scheme, we implemented the required cryptographic
operations using Python charm cryptographic library [28]

running on Raspberry Pi 3 devices with 1.2 GHz Processor
and 1 GB RAM. We used supersingular elliptic curve with the
asymmetric Type 3 pairing of size 160 bits (MNT159 curve)
for bilinear pairing to estimate the BLS signature used by our
underlying threshold signature scheme.

1) Computation overhead: The computation overhead mea-
sures the time required to create trajectories for vehicles.
Indead, the computation burden in creating trajectories lies
on the RSUs since the vehicle is just need to generate a
signature whenever it encounters an RSU which is cheap
operation. The signing and verification operations takes 0.39
ms and 6.27 ms, respectively. In our scheme, when the vehicle
requests a proof of location message, the RSU needs to
generate only t signature shares. Also, an RSU should verify
t signature shares to check whether a message received from
a vehicle is authentic and signed by a neighboring RSU or
not. Therefore, the overall computation cost by an RSU to
issue a proof of location message for a vehicle as a function
of t is 0.39 · t + 6.27 · t = 6.66 · t ms while in Footprint, is
about 27 modular exponentiations, which takes roughly 9.01
ms (i.e., 110 vehicles/second). So, to achieve trade-off between
the computation overhead and security (Resist against RSU
compromise), it is important to choose suitable threshold value
t (for different areas in VANETs). As an example, if t = 4,
RSU needs 24 ms to issue a proof of location for a vehicle (
i.e., 41 vehicles/second) which is practical even in urban area
settings (condense areas) where the traverse time is about 20
seconds [29] which is sufficiently long for issuing hundreds of
proof of location messages for vehicles. Therefore, our scheme
is practical in urban vehicular scenario.

2) Communication overhead: The communication over-
head is measured by the size of transmitted message between
an RSU and a vehicle in bytes so a vehicle can have its
own trajectory. A message issued by an RSU should issue
4-byte timestamp, 20-byte location tag, a 20-byte signature
share size in our scheme while a 372-byte signature in
Footprint. Therefore, in our scheme, the message size in bytes
exchanged between an RSU and a vehicle can be approximated
as 24 · l + 20 · t where l is the number of RSUs that a
vehicle encounters and t is the threshold t of underlying
(t, n)− threshold signature protocol. Also, the communication
overhead in Footprint [4] is 24 · l+372 bytes. It can be noted
that in both our scheme and Footprint, as the trajectory of a
vehicle continues to grow, the message size is increasing which
consumes more communication bandwidth. To limit the size
of messages and also achieve the temporary linkable feature
of location tags, an event with a short period of time should
be chosen. As an example, for an event with 30 minuets with
a mean of 60 seconds as the traverse time between RSUs, in
this case, l = 30 which is relatively small and hence the less
the messages’ size.

VIII. RELATED WORK

The detection of Sybil attacks relies on three cate-
gories, namely, identity registration, position verification and
trajectory-based approaches.

Identity registration approaches aims to ensure the trust-
worthy of each vehicle by using public key cryptographies,

13

Table II: Overall computation and communication overhead comparison.

Footprint [4] Our scheme
Computation overhead (ms) 27 Exp (1 · Exp + 2 · Pairing)× t
Communication overhead (Bytes) 24 · l + 372 24 · l + 20 · t
* Exp: group exponentiation operation (1024bit). Pairing: pairing operation. l is

the number of RSU that a vehicle encounters.

certificates and digital signatures. Zhou et al. [8] proposed a
privacy-preserving scheme based on certificates to detect Sybil
nodes. The department of motor vehicle (DMV) represents the
certificate authority, and is responsible for providing vehicles
with a pool of pseudonyms to be used to hide the vehicle’s
unique identity. The pseudonyms associated with each vehicle
are hashed to a common value. An RSU determines whether
the pseudonyms come from the same pool by calculating the
hashed values of the received pseudonyms. RSUs can detect
Sybil nodes and then report such suspected vehicles to DMV.
To resist against RSU compromise, the paper suggests two-
level hash functions with different keys (coarse-grained keys
and fine-grained keys). RSU holds each valid coarse-grained
key only for a short time which does not know whether
the pseudonyms belong to one vehicle or not. If an RSU is
compromised, the attacker only gets the coarse-grained hash
key for the current time interval while DMV stores all keys
and can detect Sybil nodes by two-level hashing. Although
deploying trusted certificates is the most efficient approach that
can completely eliminate Sybil attacks, it also violates both
anonymity and location privacy of entities. Also, relying on
a centralized authority to ensure each is assigned exactly one
identity which becomes a bottleneck in the large-scale network
such as VANETs. In [30], Chen et al. proposed a group
signature-based approach that can be used to enable a member
in the group to authenticate himself/ herself anonymously.
Meanwhile, if a particular node generates multiple signatures
on the same message, the verifier can recognize those signa-
tures. As a result, detecting duplicated signatures signed by
the same vehicles can eliminate Sybil attack. However, the
malicious vehicle can launch Sybil attack, if he can generate
different messages with similar meaning. Recently, Reddy et
al. [7] proposed a cryptographic digital signature based method
to establish the trust relationship among participating entities.

Location verification based approaches are another solution
to detects Sybil nodes based on physical measurements such
as Received Signal Strength Indicator (RSSI) and Time Dif-
ference of Arrival (TDoA). Bouassida et al. [11] proposed a
detection mechanism utilizing localization technique based on
RSSI. First, consecutive RSSI variations are checked if they
fall into a reasonable period or not. Some nodes which fail the
test are labeled as "suspected". Then, distinguishability degrees
are calculated for each suspected node by estimating its
geographical localizations. Identities with the same estimated
location are judged as Sybil nodes. However, the proposed
scheme was tested in a small-scale testbed where the distance
between two adjacent nodes was only 10m. Moreover, the
scheme assumes a predictable propagation model for position
estimation that may fail to capture notorious variations of
wireless channels. Recently, Jin. al [31] proposed a detection

method based on TDoA to locate the source of a message. The
authors suggest installing three or more receiving sensors on a
vehicle. Then, using the arrival time of a beacon message on
three time-synchronized sensors, the TDoA between the three
receiving sensors can be calculated. If the location is different
from the claimed location included in the beacon message,
then the node will be considered as a Sybil node. However,
extra expenses during vehicle manufacturing are needed to
implement this method.

The most relevant approach to our work is using trajectories
of vehicles as its identities to ensure trust between participating
nodes. In [32], RSUs broadcasts digital signatures with a
timestamp to vehicles which are under its coverage. Vehicles
store the RSUs signatures which they gathered in motion.
However, since the time stamp is not issued for a dedicated
vehicle, a malicious vehicle may claim its presence at certain
RSU by merely eavesdropping such broadcasted timestamp
on a wireless channel although it may have never been there
at that time. In [4], Footprint has been introduced to detect
Sybil attack. When a vehicle passes by an RSU, it obtains
a signed message as proof of presence at this location at a
particular time. A trajectory of a vehicle is a consecutive series
of authorized messages collected by the vehicle as it keeps
traveling. Sybil attack can be detected using the fact that the
trajectories generated by an attacker are very similar. However,
Footprint has some critical issues. First, in Footprint, RSUs are
assumed to be fully trustworthy. However, if an RSU is com-
promised, it can help a malicious vehicle generate fake legal
trajectories by concatenating any valid tags and timestamps.
In that case, Footprint cannot detect such trajectories. Second,
since any vehicle is free to start its trajectory at any time,
an attacker can construct multiple trajectories while moving,
causing not only Sybil attacks, but also denial of service attack
because of the complexity of finding similar Sybil trajectories
is very high in terms of time which is a critical concern
especially in safety-related applications in VANET [33]. Third,
vehicles may obtain proof of appearance from multiple RSUs
simultaneously (e.g., in a dense deployment). That can be used
by a malicious vehicle to launch a Sybil attack . To tackle
that problem, the paper suggests configuring the transmission
power of RSUs properly so that there is no coverage overlap
between two neighboring RSUs. That solution is hard to
achieve due to wireless communication properties.

IX. CONCLUSION

Sybil attacks can cause disastrous consequences in
VANETS. In this paper, we have introduced a novel approach
for detecting Sybil attacks using proofs of work and location.
An anonymous trajectory of a vehicle is formed by obtaining
a consecutive proof of locations from multiple RSUs which

14

it encounters. Instead of allowing only one RSU to issue
authorized messages for vehicles, at least t RSUs are required
for creating a proof of location message using threshold
signature to mitigate the RSU compromise attack. Also, the
use of proof-of-work algorithm can limit the ability of ma-
licious vehicles to create forged trajectories. Our evaluations
have demonstrated that our scheme can detect Sybil attacks
with high rate and low false negative rate. Moreover, the
communication and computation overhead of the exchanged
packets are acceptable.

REFERENCES

[1] F.-J. Wu and H. B. Lim, “Urbanmobilitysense: A user-centric participa-
tory sensing system for transportation activity surveys,” IEEE Sensors
Journal, vol. 14, no. 12, pp. 4165–4174, 2014.

[2] S. Hu, L. Su, H. Liu, H. Wang, and T. F. Abdelzaher, “Smartroad:
Smartphone-based crowd sensing for traffic regulator detection and
identification,” ACM Transactions on Sensor Networks (TOSN), vol. 11,
no. 4, p. 55, 2015.

[3] K. Rabieh, M. M. Mahmoud, T. N. Guo, and M. Younis, “Cross-layer
scheme for detecting large-scale colluding sybil attack in vanets,” in
2015 IEEE International Conference on Communications (ICC). IEEE,
2015, pp. 7298–7303.

[4] S. Chang, Y. Qi, H. Zhu, J. Zhao, and X. Shen, “Footprint: Detecting
sybil attacks in urban vehicular networks,” IEEE Transactions on
Parallel and Distributed Systems, vol. 23, no. 6, pp. 1103–1114, 2012.

[5] Z. MacHardy, A. Khan, K. Obana, and S. Iwashina, “V2x access
technologies: Regulation, research, and remaining challenges,” IEEE
Communications Surveys & Tutorials, vol. 20, no. 3, pp. 1858–1877,
2018.

[6] F. Qu, Z. Wu, F.-Y. Wang, and W. Cho, “A security and privacy review
of vanets,” IEEE Transactions on Intelligent Transportation Systems,
vol. 16, no. 6, pp. 2985–2996, 2015.

[7] D. S. Reddy, V. Bapuji, A. Govardhan, and S. Sarma, “Sybil attack
detection technique using session key certificate in vehicular ad hoc
networks,” in Algorithms, Methodology, Models and Applications in
Emerging Technologies (ICAMMAET), 2017 International Conference
on. IEEE, 2017, pp. 1–5.

[8] T. Zhou, R. R. Choudhury, P. Ning, and K. Chakrabarty, “P2dap-
sybil attacks detection in vehicular ad hoc networks,” IEEE journal on
selected areas in communications, vol. 29, no. 3, pp. 582–594, 2011.

[9] K. El Defrawy and G. Tsudik, “Privacy-preserving location-based on-
demand routing in manets,” IEEE journal on selected areas in commu-
nications, vol. 29, no. 10, pp. 1926–1934, 2011.

[10] Y. Yao, B. Xiao, G. Wu, X. Liu, Z. Yu, K. Zhang, and X. Zhou, “Multi-
channel based sybil attack detection in vehicular ad hoc networks using
rssi,” IEEE Transactions on Mobile Computing, 2018.

[11] M. S. Bouassida, G. Guette, M. Shawky, and B. Ducourthial, “Sybil
nodes detection based on received signal strength variations within
vanet.” IJ Network Security, vol. 9, no. 1, pp. 22–33, 2009.

[12] S. Syed and M. E. Cannon, “Fuzzy logic-based map matching algorithm
for vehicle navigation system in urban canyons,” in ION National
Technical Meeting, San Diego, CA, vol. 1, 2004, pp. 26–28.

[13] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[14] E. Tomita, Y. Sutani, T. Higashi, S. Takahashi, and M. Wakatsuki, “A

simple and faster branch-and-bound algorithm for finding a maximum
clique,” in International Workshop on Algorithms and Computation.
Springer, 2010, pp. 191–203.

[15] M. Alsabaan, W. Alasmary, A. Albasir, and K. Naik, “Vehicular net-
works for a greener environment: A survey.” IEEE Communications
Surveys and Tutorials, vol. 15, no. 3, pp. 1372–1388, 2013.

[16] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[17] A. Boldyreva, “Threshold signatures, multisignatures and blind sig-
natures based on the gap-diffie-hellman-group signature scheme,” in
International Workshop on Public Key Cryptography. Springer, 2003,
pp. 31–46.

[18] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil
pairing,” in International Conference on the Theory and Application of
Cryptology and Information Security. Springer, 2001, pp. 514–532.

[19] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Robust threshold
dss signatures,” in International Conference on the Theory and Appli-
cations of Cryptographic Techniques. Springer, 1996, pp. 354–371.

[20] A. Back et al., “Hashcash-a denial of service counter-measure,” 2002.
[21] J. B. Kenney, “Dedicated short-range communications (dsrc) standards

in the united states,” Proceedings of the IEEE, vol. 99, no. 7, pp. 1162–
1182, 2011.

[22] E. T. Lee and J. Wang, Statistical methods for survival data analysis.
John Wiley & Sons, 2003, vol. 476.

[23] A. Berkopec, “Hyperquick algorithm for discrete hypergeometric dis-
tribution,” Journal of Discrete Algorithms, vol. 5, no. 2, pp. 341–347,
2007.

[24] J. A. Rice, Discrete Random Variables, ser. Mathematical Statistics
and Data Analysis. Cengage Learning, 2007, ch. 2.1, pp. 35–47,
2005938314. [Online]. Available: https://books.google.com/books?id=
KfkYAQAAIAAJ

[25] D. Zelterman, Models for discreet data. Oxford University Press, USA,
1999.

[26] OpenStreetMap contributors, “Planet dump retrieved from
https://planet.osm.org ,” https://www.openstreetmap.org, 2017.

[27] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent devel-
opment and applications of SUMO - Simulation of Urban MObility,”
International Journal On Advances in Systems and Measurements,
vol. 5, no. 3&4, pp. 128–138, December 2012.

[28] J. A. Akinyele, C. Garman, I. Miers, M. W. Pagano, M. Rushanan,
M. Green, and A. D. Rubin, “Charm: a framework for rapidly proto-
typing cryptosystems,” Journal of Cryptographic Engineering, vol. 3,
no. 2, pp. 111–128, 2013.

[29] J. Eriksson, H. Balakrishnan, and S. Madden, “Cabernet: vehicular con-
tent delivery using wifi,” in Proceedings of the 14th ACM international
conference on Mobile computing and networking. ACM, 2008, pp.
199–210.

[30] Q. Wu, J. Domingo-Ferrer, and U. González-Nicolás, “Balanced trust-
worthiness, safety, and privacy in vehicle-to-vehicle communications,”
IEEE Transactions on Vehicular Technology, vol. 59, no. 2, pp. 559–573,
2010.

[31] D. Jin and J. Song, “A traffic flow theory aided physical measurement-
based sybil nodes detection mechanism in vehicular ad-hoc networks,”
in 2014 IEEE/ACIS 13th International Conference on Computer and
Information Science (ICIS). IEEE, 2014, pp. 281–286.

[32] C. Chen, X. Wang, W. Han, and B. Zang, “A robust detection of the sybil
attack in urban vanets,” in Distributed Computing Systems Workshops,
2009. ICDCS Workshops’ 09. 29th IEEE International Conference on.
IEEE, 2009, pp. 270–276.

[33] X. Ma, J. Zhang, X. Yin, and K. S. Trivedi, “Design and analysis
of a robust broadcast scheme for vanet safety-related services,” IEEE
Transactions on Vehicular Technology, vol. 61, no. 1, pp. 46–61, 2012.

Mohamed Baza is currently a Graduate Research
Assistant in the Department of Electrical & Com-
puter Engineering, Tennessee Tech. University, USA
and pursuing his Ph.D. degree in the same depart-
ment. He received the B.S. degree and the M.S.
degree in Computer Engineering from Benha uni-
versity, Egypt in 2012 and 2017, respectively. He
was a recipient of the prestigious 2nd place award
during his graduation in 2012. His research interests
include Blockchains, cryptography and network se-
curity, smart-grid and AMI networks, and vehicular

ad-hoc networks.

Mahmoud Nabil is currently a Graduate Research
Assistant in the Department of Electrical & Com-
puter Engineering, Tennessee Tech. University, USA
and pursuing his Ph.D. degree in the same depart-
ment. He received the B.S. degree and the M.S.
degree in Computer Engineering from Cairo Univer-
sity, Cairo, Egypt in 2012 and 2016, respectively. His
research interests include machine learning, cryp-
tography and network security, smart-grid and AMI
networks, and vehicular ad-hoc networks.

https://books.google.com/books?id=KfkYAQAAIAAJ
https://books.google.com/books?id=KfkYAQAAIAAJ
 https://www.openstreetmap.org

15

Niclas Bewermeier is currently working towards a
Master of Science degree in Electrical and Computer
Engineering at Tennessee Tech University, where he
has worked as a Graduate Research and Teaching
Assistant since 2016. His research focuses on pri-
vacy preservation and security threads in Vehicular
Ad-Hoc Networks. He is expected to graduate in
May of 2019. In 2012, Niclas began his studies at
Cologne University of Applied Sciences, where he
graduated in 2016 with a Bachelor of Science degree
in Electrical Engineering.

Kemal Fidan is currently an undergraduate at The
University of Tennessee, Knoxville pursuing a de-
gree in computer science. At UT, he works for the
NSF and DOE funded research center, CURENT.
His research interests include security of blockchain
technology, and its various applications.

Dr. Mohamed M. E. A. Mahmoud received PhD
degree from the University of Waterloo in April
2011. From May 2011 to May 2012, he worked as
a postdoctoral fellow in the Broadband Communica-
tions Research group - University of Waterloo. From
August 2012 to July 2013, he worked as a visiting
scholar in University of Waterloo, and a postdoc-
toral fellow in Ryerson University. Currently, Dr
Mahmoud is an associate professor in Department
Electrical and Computer Engineering, Tennessee
Tech University, USA. The research interests of Dr.

Mahmoud include security and privacy preserving schemes for smart grid
communication network, mobile ad hoc network, sensor network, and delay-
tolerant network. Dr. Mahmoud has received NSERC-PDF award. He won the
Best Paper Award from IEEE International Conference on Communications
(ICC’09), Dresden, Germany, 2009. Dr. Mahmoud is the author for more than
twenty three papers published in major IEEE conferences and journals, such
as INFOCOM conference and IEEE Transactions on Vehicular Technology,
Mobile Computing, and Parallel and Distributed Systems. He serves as
an Associate Editor in Springer journal of peer-to-peer networking and
applications. He served as a technical program committee member for several
IEEE conferences and as a reviewer for several journals and conferences such
as IEEE Transactions on Vehicular Technology, IEEE Transactions on Parallel
and Distributed Systems, and the journal of Peer-to-Peer Networking.

Mohamed Abdallah was born in Giza, Egypt. He
received the B.Sc. degree with honors from Cairo
University, Giza, Egypt, in 1996, and the M.Sc.
and Ph.D. degrees in electrical engineering from
University of Maryland at College Park, College
Park, MD, USA, in 2001 and 2006, respectively. He
joined Cairo University in 2006 where he holds the
position of Associate Professor in the Electronics
and Electrical Communication Department. He is
currently an Associate Research Scientist at Texas
A&M University at Qatar, Doha, Qatar. His current

research interests include the design and performance of physical layer
algorithms for cognitive networks, cellular heterogeneous networks, sensor
networks, smart grids, visible light and free-space optical communication
systems and reconfigurable smart antenna systems.

	I Introduction
	II Models And Design goals
	II-A Network Model
	II-B Adversary and Threat Model
	II-C Design Goals

	III Preliminaries
	III-A Secret Sharing
	III-B Threshold signatures

	IV Proposed scheme
	IV-A Overview
	IV-B System Initialization
	IV-C Exchanged Messages
	IV-D Creating Trajectories and Reporting Events
	IV-E Detecting Sybil Attacks

	V Selection of PoW targets
	V-A Experimental Results
	V-B Mathematical Model
	V-C Importance of using PoW

	VI Security and Evaluation Analysis
	VI-A Sybil Attack Detection
	VI-A1 Simulation Design
	VI-A2 Considered key metrics
	VI-A3 Impact of the check window size
	VI-A4 Impact of the trajectory length limit
	VI-A5 Detection time overhead of eliminating Sybil nodes

	VI-B Security/Privacy Analysis

	VII Computation and Communication Overhead
	VII-1 Computation overhead
	VII-2 Communication overhead

	VIII Related work
	IX CONCLUSION
	References
	Biographies
	Mohamed Baza
	Mahmoud Nabil
	Niclas Bewermeier
	Kemal Fidan
	Dr. Mohamed M. E. A. Mahmoud
	Mohamed Abdallah

