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Abstract. A novel and efficient method is presented for grouping feature points
on the basis of their underlying symmetry and characterising the symmetries
present in an image. We show how symmetric pairs of features can be efficiently
detected, how the symmetry bonding each pair is extracted and evaluated, and
how these can be grouped into symmetric constellations that specify the domi-
nant symmetries present in the image. Symmetries over all orientations and radii
are considered simultaneously, and the method is able to detect local or global
symmetries, locate symmetric figures in complex backgrounds, detect bilateral or
rotational symmetry, and detect multiple incidences of symmetry.

1 Introduction

Symmetry is an intrinsic phenomenon in the world around us, occurring both naturally
and in artefacts and architecture. Symmetry is attractive, both aesthetically and as a cue
directing visual attention [2, 8, 15, 27]. Not only does it give balance and form to ap-
pearance, but it ties together features that can otherwise seem diffuse. With the recent
success of feature point methods in computer vision [9, 16, 21, 22] it is useful to estab-
lish mechanisms for grouping the features generated, and symmetry provides a natural
means of doing so.

The contribution of this paper is a simple and effective method for grouping sym-
metric constellations of features and detecting symmetry in the image plane. Modern
feature-based methods (such as [9, 16]) are used to establish pairs of symmetric point
matches from which either bilateral symmetry axes or centres of rotational symmetry
can be analytically determined. These pairs are grouped into symmetric constellations
of features about common symmetry foci, identifying both the dominant symmetries
present and a set features associated with each foci. The method is independent of the
feature detector and descriptor used, requiring only robust, rotation-invariant match-
ing and an orientation measure for each feature. Symmetries over all orientations and
radii are considered simultaneously, and the method can also detect multiple axes of
symmetry, rotational symmetry and symmetric figures in complex backgrounds.

The remainder of this paper is organised as follows, Section 2 reviews previous work,
Section 3 describes the method, Section 4 presents experimental results and discusses
the performance of the method, and Section 5 presents our conclusions.
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2 Background

Symmetry has fascinated people since ancient times, and in the computer vision litera-
ture there is a significant body of work dealing with the detection of symmetry in images
dating back to the 1970’s (e.g. [3, 10, 17, 19, 20, 24, 30, 31, 35, 37]). Symmetry detection
has been used for numerous applications, including facial image analysis [23], vehicle
detection [12, 38], reconstruction [1, 6, 14, 34], visual attention [17, 24, 27] indexing of
image databases [28], completion of occluded shapes [36], object detection [19, 37]
and detecting tumours in medical imaging [18]. The problem of symmetry detection
amounts to trying to find an image region of unknown size that, when flipped about
an unknown axis or rotated about an unknown point, is sufficiently similar to another
image region an unknown distance away. With so many unknown parameters it is not
surprising that symmetry detection is a complex task.

Some researchers have taken a global approach to the problem, treating the entire im-
age as a signal from which symmetric properties are inferred, often via frequency anal-
ysis. Marola [19] proposed a method for detecting symmetry in symmetric and “almost
symmetric” images, where the axis of symmetry intersects or passes near the centroid.
Keller and Shkolnisky [10] took an algebraic approach and employed Fourier analysis
to detect symmetry, and Sun [31] showed that the orientation of the dominant bilateral
symmetry axis could be computed from the histogram of gradient orientations. How-
ever, these global approaches have two key shortcomings: they are limited to detecting
a single incidence of symmetry, and are adversely influenced by background structure.

An alternative to the global approach is to use local features such as edge features,
contours or boundary points, to reduce the problem to one of grouping symmetric sets of
points or lines. Scott and Longuet-Higgins [26] grouped symmetric sets of dot-patterns
extracted from the wing markings of a butterfly using the eigenvectors of a proximity
matrix. Masuda et al. [20] adopted an image similarity measure based on the directional
correlation of edge features and proceeded to detect rotational and reflectional symme-
try. This required an exhaustive search of all congruent transformations (consisting of
translation, rotation and reflection) of an image to identify any such transformations
under which parts of the image were close to invariant.

Zabrodsky et al. [37] proposed the symmetry distance as a continuous measure of
the amount of symmetry present in a shape. This distance was defined as the minimum
mean squared distance required to move points of the original shape to obtain a perfectly
symmetrical shape, and enabled a comparison of the “amount” of symmetry present in
different shapes. Given the location and orientation of a symmetry axis, this method
was used in conjunction with active contours to extract symmetric regions such as faces.
However, this method required the foci of symmetry to be known a priori.

Tuytelaars et al. [32] detected regular repetitions of planar patterns under perspec-
tive skew using a geometric framework. The approach detected all planar homologies1

and could thus find reflections about a point, periodicities, and mirror symmetries. By
considering perspective skew this method dealt with a much more general and complex
problem than detection of two-dimensional symmetries within an image. Whilst this

1 A plane projective transformation is a planar homology if it has a line of fixed points (called
the axis), together with a fixed point (called the vertex) not on the line [5].
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approach could indeed detect mirror symmetries in the image plane, it was a slow and
involved means of doing so, and as posed was unable to detect rotational symmetries.
This method built clusters of matching points that were evaluated for symmetry, by con-
trast the new method forms pairs of matching features whose symmetry can be rapidly
assessed from their embedded orientation and scale information.

Lazebnik et al. [13] also noted that clusters of features could be matched within an
image to detect symmetries. However, the use of rotationally invariant descriptors (pro-
viding no orientation information) restricted this, like [32], to a cluster-based approach.

Shen et al. [29] used an affine invariant representation to detect skewed symmetries
in cleanly segmented contours. A set of ordered feature points is sampled around a
contour and an affine invariant feature vector is constructed for each feature point. A
similarity matrix is then constructed describing the similarities between the features, a
threshold is applied to the matrix, and symmetries are identified as diagonal lines in the
binarized similarity matrix. The method is able to detect skew symmetries and rotational
symmetries, but is only suitable for pre-segmented objects and requires a strict ordering
of feature points around the object contour.

Motivated by the ease with which humans and other creatures (even bees) detect
symmetries, Scognamillo et al. [25] constructed a biologically plausible model for sym-
metry detection. A 2D local energy function was calculated defining a salience map
of the image. The symmetry of this map was evaluated via convolution with a broad
Gaussian filter oriented approximately perpendicular to the proposed axis of symmetry.
Maxima were then detected in the filtered direction, and were expected to lie close to
the axis of symmetry for a symmetric figure. If multiple maxima were detected the aver-
age location was used, and consequentially the method became unsuitable for detecting
symmetric figures in complex backgrounds, where maxima can occur that are unrelated
to the symmetric object.

Kiryati and Gofman [11] combined local and global approaches to detect the dom-
inant reflective symmetry axis in an image. They used a symmetry measure similar to
Marola [19] and applied this to assess symmetry in local circular regions parameterised
by their location, size and symmetry axis orientation (x, y, s, θ). The global maximum
of this measure was then determined using a probabilistic genetic algorithm which was
typically able to find the global maximum of the local symmetry measure in around
1,000 iterations. As posed the method detects only a single axis of symmetry, although
it is feasible to extend the genetic algorithm approach to detect multiple symmetries.
However, owing to the parameterisation the method is limited to detecting circular re-
gions of symmetry.

3 Symmetry from Feature Constellations

Our approach is based on the simple idea of matching symmetric pairs of feature
points. This is achieved efficiently and robustly using modern feature point methods.
The “amount” of symmetry exhibited by each pair is quantified by the relative location,
orientation and scale of the features in the pair. These pair-wise symmetries are then ac-
cumulated in a Hough-style voting space to determine the dominant symmetries present
in the image.
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Modern feature point methods [9, 16, 21, 22] provide a proven robust means for gen-
erating dense sets of feature points and matching these between images, however, little
use has been made of matching points within a single image. Feature point methods
typically define the orientation and scale of each feature, and normalise with respect to
these parameters to compute matches independent of orientation and scale. The distinc-
tiveness of the matches obtained, together with their invariance to rotation make these
methods well suited to detecting pairs of symmetric features. Rotational and transla-
tional symmetric pairs can be detected by directly matching the feature points within an
image, and potential mirror symmetric matches can be obtained by constructing a set of
mirrored feature descriptors and matching these against the original feature descriptors.
Mirrored feature descriptors are defined as descriptors of mirrored copies of the local
image patches associated with the original feature points (the choice of mirroring axis
is arbitrary).

Matching pairs of features, mirrored or otherwise, generates a collection of matched
pairs of feature points. Each feature can be represented by a point vector describing
its location in x, y co-ordinates, its orientation φ and scale s. Symmetry can then be
computed directly from these pairs of point vectors.

The remainder of this section discusses the details of this procedure for detecting
bilateral and rotational symmetries.

3.1 Defining Feature Points

A set of feature points pi are determined using any rotationally invariant method,
such as SIFT [16], that detects distinctive points with good repeatability. Whilst a
scale-invariant detection method can be used, this is not necessary. The point vector
pi = (xi, yi, φi, si) assigned to each feature point describes its location, orientation
and (optionally) scale. Scale need only be determined if a scale-invariant feature de-
tection method is used. Orientation, however, must be determined as it is central to the
evaluation of symmetry.

Next a feature descriptor ki is generated for each feature point, encoding the local
appearance of the feature after its orientation (and scale) have been normalised. Any
feature descriptor suitable for matching can be used, see [21] for a review of leading
techniques. The experiments in this paper use the SIFT descriptor [16], which gives ki

as a 128 element vector.

3.2 Bilateral Symmetry

A set of mirrored feature descriptors mi is generated. Here mi describes a mirrored
version of the image patch associated with feature ki. The choice of mirroring axis is
arbitrary owing to the orientation normalisation in the generation of the descriptor.

The mirrored feature descriptors can be generated in one of two ways. The simplest,
which allows the feature detection and matching to be treated entirely as a “black box”,
is to flip the original image about the y (or x) axis, and compute the feature point
descriptors for the mirrored image. Each mirrored feature point is then assigned to the
corresponding feature point in the original image, so that mi is the mirrored version of
ki. The second, more efficient, yet slightly more involved approach requires knowledge
of the configuration of the feature descriptor ki, and generates the mirrored feature
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Fig. 1. Schematic illustrating the extraction and matching of a pair of symmetric features

Fig. 2. A pair of point vectors pi and pj under scrutiny for mirror symmetry

points mi by directly modifying this feature descriptor. For example, in the case of
Lowe’s SIFT descriptor [16] this can be achieved simply by reordering the elements of
the descriptor vector so they represent the original image patch flipped about the axis
aligned with the dominant orientation.

Matches are then sort between the features ki and the mirrored features mj to form
a set of (pi,pj) pairs of potentially symmetric features. Figure 1 shows a schematic
of the process of extracting and matching a pair of symmetric features from an image.
Each pair of symmetric features generates two matching pairs, but as these matches are
equivalent only one need be recorded.

The symmetry of each pair is quantified as a function of the relative location, orien-
tation and scale of pi and pj . An angular symmetry weighting Φij ∈ [−1, 1] (adapted
from the first component of Reisfeld’s [24] phase weighting function) is computed as

Φij = 1 − cos(φi + φj − 2θij), (1)

where the angles are defined as shown in Figure 2. A scale weighting Sij ∈ [0, 1]
quantifying the relative similarity in scale of the two vectors is computed as

Sij = exp
( −|si − sj |

σs(si + sj)

)2

(2)

where σs controls the amount of scale variation accepted, σs = 1 was used in our ex-
periments. Lastly an optional Gaussian distance weighting function Dij ∈ [0, 1] can be
introduced to reward matching pairs that are closer to the symmetry axis. This agrees
with psychophysical findings that symmetric features close to the symmetry axis con-
tribute more to human symmetry perception than features further away [33]. However,
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from a computer vision perspective introducing a distance weighting is only appropri-
ate if a bound can be given for the diameter of symmetry to be detected, i.e., how far
symmetry detection should extend perpendicular to the symmetry axis. Given such a
bound σd the distance weighting is defined as

Dij = exp
(−d2

2σ2
d

)
(3)

where d is the distance separating the feature pair, otherwise Dij = 1. Our experiments
used Dij = 1, imposing no constraint on the diameter of symmetry detected.

All these weightings are combined to form a symmetry magnitude for each (pi,pj)
pair defined by

Mij =
{

ΦijSijDij if Φij > 0
0 otherwise

(4)

The symmetry magnitude Mij quantifies the “amount” of symmetry exhibited by an
individual pair of point vectors. We now accumulate the symmetries exhibited by all
individual pairs in a voting space to determine the dominant symmetries present in the
image.

Each pair of matching points defines a potential axis of symmetry passing perpendic-
ularly through the mid-point of the line joining pi and pj , shown by the dash-dotted line
in Figure 2. These potential symmetry axis lines can be represented using the standard
rθ polar co-ordinate parameterisation with

rij = xc cos θij + yc sin θij

where (xc, yc) are the image centred co-ordinates of the mid-point of the line joining
pi and pj , and θij is the angle this line subtends with the x-axis.

The linear Hough transform can then be used to find dominant symmetry axes. Each
symmetric pair (pi,pj) casts a vote (rij , θij) in Hough space weighted by its symmetry
magnitude Mij . The resulting Hough space is blurred with a Gaussian and the maxima
extracted and taken to describe the dominant symmetry axes. The points lying in the
neighbourhood of these maxima in Hough space indicate the symmetric pairs that are
associated with this particular axis of symmetry. The spatial extent of each symmetry
axis in the image is bounded by the convex hull of the population of pairs associated
with the axis.

Figure 3 shows the steps involved in computing symmetry in an example image
containing a symmetric figure in a cluttered background.

This method can be adapted to detect translational symmetry by replacing the mir-
rored feature points with unmirrored ones and modifying the assessment of the angular
symmetry weighting in Equation 1 to Φij = cos(φi − φj).

3.3 Rotational Symmetry

Unlike bilateral symmetry detection, detecting rotational symmetry does not require the
manufacture of additional feature descriptors, and is detected by simply matching the
features ki against each other. Each match defines a pair of point vectors (pi,pj). If
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(a) (b) (c)

(d) (e) (f)
Original photograph by m a c s f, distributed under the Creative Commons Attribution-Non-Commercial-Share-Alike Licence, http://creativecommons.org.

Fig. 3. Example. (a) 254 × 254 original image, (b) 946 feature points detected, (c) axes of sym-
metry associated with the 254 reflective matches obtained, intensity is proportional to symmetry
magnitude Mij , (d) symmetry axes in Hough space, (e) 22 symmetric features associated with
the dominant symmetry axis, (f) dominant axis of symmetry and associated symmetric features.

Fig. 4. Centre of rotation cij defined by point vectors pi and pj

these vectors are parallel they do not exhibit rotational symmetry, but if they are not
parallel their exists a point about which they are rotationally symmetric.

Formally, given a pair of non-parallel point vectors pi and pj in general position
there exists a point cij a distance r from pi and pj about which pi can be rotated to
become precisely aligned and coincident with pj .

Figure 4 shows two such point vectors. The rotation centre cij is given by

cij =
(

xi

yi

)
+

(
r cos(β + γ)
r sin(β + γ)

)
(5)

where xi, yi are the Cartesian co-ordinates of pi, γ is the angle the line joining pi and
pj makes with the x-axis. By Pythagoras
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r2 =
(

d

2

)2

+
(

d

2
tanβ

)2

=⇒ r =
d
√

1 + tan2 β

2
,

where d is the distance between pi and pj . Denoting the orientations of the point vectors
pi by φi, it can be seen from Figure 4 that

φi = γ + β + ψ
φj = γ + π − β + ψ

}
=⇒ β =

φi − φj + π

2
which solves for all unknowns in Equation 5 and analytically specifies the centre of
rotation of two non-parallel point vectors.

Once the centres of rotational symmetry have been determined for every matching
feature pair the rotational symmetry magnitude Rij is computed for each pair,

Rij = SijDij (6)

where Sij is defined by Equation 2 or can be set to unity if all features have the same
scale, and Dij is defined by Equation 3 or is set to unity if no restriction on the size of
symmetric objects to be detected is given.

Finally, the dominant centres of rotational symmetry are determined by accumulating
the centres of rotation cij in a vote image the same size as the input image. Each vote
is weighted by its rotational symmetry magnitude Rij . The result is blurred with a
Gaussian and the maxima identified as dominant centres of rotational symmetry. All
centres of rotation close to a maxima are associated with that maxima.

If desired, the order of rotational symmetry can be estimated by examining the his-
togram of angles of rotation between matched features about each centre of rotation.
Each order of rotation n defines an set of rotation angles A = { 2πk

n : k = 1, 2, ..., n−1}
which should occur frequently in the angular histogram if this order of rotation is
present. A simple measure of the prevalence of different rotational orders can be ob-
tained by calculating the mean number of rotations in some vicinity q of the the angles
in A and subtracting the mean number of rotations that are 2π(k−1)

n out of phase with
these angles. This gives the order estimation function

O(n) =
1

n − 1

n−1∑
k=1

q∑
−q

(
h(2πk

n + q) − h(2π(k−1)
n + q)

)

Figure 5 shows the stages towards computing rotational symmetry in an example im-
age containing a rotationally symmetric region, (f) shows the order estimation function
O(n) with a clear peak at n = 10, and (e) shows the angular histogram with the shaded
areas above and below the axis indicating the regions sampled when determining O(n)
for n = 10 (here q = π

18 ). Figure 5 (d) shows the correctly detected rotational symme-
try foci of order 10, note the stray match lying off the wheel was introduced by allowing
more than one match per feature, this is discussed in Section 3.4.

3.4 Matching

A similarity matrix is constructed quantifying the similarity between feature points.
There are numerous ways to measure the similarity between feature vectors, for our ex-
periments we used the Euclidean distance between the SIFT descriptors. The similarity
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(a) (b) (c)

(d) (e) (f)
Original photograph by Sandro Menzel, distributed under the Creative Commons Attribution-Non-Commercial-Share-Alike Licence, http://creativecommons.org.

Fig. 5. Example. (a) original image, (b) feature points detected, (c) centres of rotation of matched
feature pairs, (d) dominant centre of rotational symmetry and associated rotationally symmetric
features, (e) histogram of angles of rotation (black) and mask applied when assessing order 10
symmetry, (f) response to detection of order of symmetry, order 10 detected.

matrix is symmetric, and as we are not interested in matching features with themselves
or their mirrored equivalents, we only need to calculate the upper off-diagonal portion
of the matrix. We can also limit the necessary comparisons by only attempting to match
features whose scales are sufficiently similar for them to exhibit significant symmetry.

The number of matches per feature is not limited by the algorithm. Using only one
match per feature works well in most situations. However, when there are repeated
objects in the scene, or when searching for rotational symmetry of order greater than
two there are obvious reasons to allow more than one match per feature. There is little
additional computational load to generate several matching pairs per feature — the
comparisons have been computed already — the only extra work is determining the
symmetry for the additional pairs, which is extremely fast.

Allowing more than one match per feature allows the feature matching some degree
of leeway when finding the correct match, however, it also increases the chance that
incorrect “fluke” matches will be found that align with a dominant symmetry foci and
are incorrectly grouped into a symmetric constellation. For our experiments we allowed
one match per feature when detecting bilateral symmetry and four matches per feature
when detecting rotational symmetry.

4 Performance

The new method was implemented in Matlab, with feature points detected and described
using Lowe’s SIFT code [16], and applied to detect bilateral and rotational symmetries
in a diverse range of real images. Bilateral symmetry detection results are shown in
Figure 6 and rotational symmetry detection results are shown in Figure 7.
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(a) (b) (c) (d)

(e) (f) (g)

Original photographs (a) Sandro Menzel, (b) David Martin, (c) BioID face database, (d) Stuart Maxwell, (e) elfintech, (f) Leo Reynolds, (g) ze1, distributed under the
Creative Commons Attribution-Non-Commercial-Share-AlikeLicence, http://creativecommons.org.

Fig. 6. Bilateral symmetry detection

Many objects and creatures exhibit a high degree of bilateral symmetry, especially
when viewed from the front or rear, this is particularly common for moving objects (and
creatures) whose dynamics benefit from symmetry about their direction of motion. In
Figure 6 we see examples of this with the detection of vehicles (a) and (b), and faces of
a person (c) and a cheetah (d). The symmetry axes detected together with the pairs of
reflective feature points contributing to the symmetry axis are illustrated. Figure 6 (d)
and (e) show creatures being detected with significant background clutter, (e) is partic-
ularly interesting as the subject appears partially camouflaged to a human eye. Many
static artefacts also exhibit symmetry such as the street lamp in Figure 6 (f). Figure 6 (g)
demonstrates the method detecting multiple axes of symmetry. When multiple axes are
drawn the brightness indicates the relative symmetry magnitudes of the constellations.

Figure 7 shows five images containing rotationally symmetric objects. The second
row shows the centres of rotational symmetry detected in each image, the feature points
associated with each centre of rotation, and arcs indicating the rotations linking match-
ing feature pairs. Figures 7 (a) and (b) illustrate the algorithm’s ability to detect rota-
tionally symmetric objects in cluttered scenes, (c) and (d) show the method applied to
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(a) (b) (c) (d) (e)

Original photographs by (a) Sandro Menzel, (b) coolmel, (c) Oliver Hammond, (d) Timothy K. Hamilton, (e) gregw, distributed under the Creative Commons
Attribution-Non-Commercial-Share-AlikeLicence, http://creativecommons.org.

Fig. 7. Rotational symmetry detection. Estimated orders of rotational symmetry for detected cen-
tres: (a) 5 and 5, (b) 2, (c) 10, (d) 4, and (e) 8.

(a) (b) (c) (d) (e)

Fig. 8. Some results from the BioID database where the bilateral symmetry of the face was de-
tected in 95.1% of cases, e.g. (a)-(c), and not detected in 4.9%, e.g. (d) and (e)

images with global and almost-global rotational symmetry, and (e) shows the method
detecting rotational symmetry under partial occlusion. The orders of symmetry detected
are also shown. Note that the order detected for (d) is 4 not 12, this is due to the cropping
of the symmetric figure by the square image border which has left numerous features in
the corners of the image with order 4 rotation.

To give an indication of the method’s robustness it was applied to detect axes of
symmetry in 1521 images from the BioID face database2. Ground truth symmetry axes
were determined from 20 facial feature points manually annotated on each image3. Up
to five symmetry axes were detected per image, and the axis of facial symmetry was
deemed detected if the (r, θ) values of at least one detected axis lay within ±5 pixels
and ±5o of the ground truth respectively. Figure 8 shows some results. The symmetry
axes of the faces were correctly identified in 95.1% of the images. The 4.9% of cases
where the symmetry of the faces were not detected (e.g. Figure 8 (d) and (e)) were
attributed to the non-symmetric appearance of facial features in some of the images, or
insufficient feature points on the face due to lack of contrast. Note that other (non-facial)
axes of symmetry detected in the images still exhibited a degree of symmetry.

2 http://www.bioid.com/downloads/facedb
3 FGNet Annotation of the BioID Dataset http://www-prima.inrialpes.fr/FGnet/
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The performance of the new algorithm is closely linked to the matching capability of
the feature method used, and it is important to generate a substantial number of feature
points on a symmetric object for it to be reliably detected. In essence our method is
matching instances of locally symmetric texture, so it works very well when applied
to detailed two-dimensional symmetric patterns such as butterfly wings (Figure 3 and
Figure 6 (e) and (g)), however, it works equally well for three-dimensional features
when these features form symmetric patterns in an image, such as the face, lamp and
vehicles in Figure 6. The method works less well for smooth textureless objects where
the number of feature points diminishes. It is feasible, however, that a shape-based
descriptor, such as [7], could provide sufficient features in such circumstances.

The new method is simple and fast with the majority of time consumed in computing
features and performing the matching. The computational order for matching n feature
points is O(n2), although the number of computations is reduced by only matching
across similar scales. If a non-unity distance weighting Dij (Equation 3) is used the
squared distance between pairs can be used to further limit the number of comparisons
necessary. This would be useful when searching for relatively small symmetric objects
in large scenes. The image can then be divided into grid squares as wide as the maxi-
mum expected symmetry diameter and features need only be matched against features
in the same or adjacent grid regions. However, at present with no such constraints, and
running unoptimised Matlab code on a 2.8 GHz Pentium 4, the method is quite fast, e.g.
it takes less than 1.5 seconds to compute symmetry in the image in Figure 6 (c) with
314 feature points, and under 7 seconds to compute the symmetry in Figure 3 with 946
feature points. The majority of time is spent generating and matching the features, for
Figure 3 this takes 1 and 5.5 seconds respectively (SIFT feature generation is done by
calling Lowe’s pre-compiled C code [16]).

There is a great deal of opportunity to extend the approach presented here. The sym-
metric constellations of features, together with the accurate characterisation of symme-
try foci, provide a strong basis for segmenting the symmetric regions. One possibility
is to generate additional feature points in the vicinity of the symmetric matches, verify
their symmetry and grow symmetric regions, in a similar fashion to Ferrari et al.’s ob-
ject segmentation approach [4]. Segmenting the symmetric regions would also provide
a more accurate measure of the extent of the axes of symmetry in the image.

5 Conclusions

A method has been presented that finds symmetric constellations of features in images
and allows efficient computation of symmetries in the image plane. Its performance
has been demonstrated on a diverse range of real images. The method simultaneously
considers symmetries over all locations, scales and orientations, and was shown to reli-
ably detect both bilaterally and rotationally symmetric figures in complex backgrounds,
and handle multiple occurrences of symmetry in a single image. The method relies on
the robust matching of feature points generated by modern feature techniques such as
SIFT [16]. However, it is not restricted to any one such technique, rather, it provides
a means to compute symmetry from features, with the requirements that these features
facilitate orientation invariant matching and have an associated orientation measure.
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The pair-wise matching underpinning this approach accounts for its efficiency, allow-
ing symmetric pairs to “vote” for symmetry foci rather than having to search the space
of all possible symmetries. Symmetric features are grouped into constellations based on
their underlying symmetry, characterising both the symmetries present and identifying
the features associated with each incidence of symmetry.
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