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Trustworthy artificial intelligence researchers should seek 

to better detect and characterize systematic deviations in 

data and models (that is, bias). This article provides data 

scientists with motivation, theory, code, and examples 

on how to perform disciplined discovery of systematic 

deviations in data and models at the subset level.

Data scientists and decision-makers seek to 
understand their data at the subset level. This 
subset-level of understanding can reveal anom-
alous patterns relevant to trustworthy artificial 

intelligence (AI), such as under/over representation in data, 
predictive model bias, and distribution shifts. Critically, 
these patterns may not be evident at a global (all records) 

level or at individual-record levels. For example, know-
ing that approximately 24% of census respondents make 
more than US$50,000 per year provides no information 
about how that outcome is distributed across age, educa-
tion, or employment levels. Furthermore, knowing that a 
44-year-old married woman who works 24 h a week makes 
less than US$50,000 per year contains little information on 
how that generalizes to larger groups.

To bridge this gap between the global and individ-
ual levels of understanding, data scientists will often 
stratify an outcome of interest across individual features 
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such as age, gender, ethnicity, or edu-
cation. Many dashboards-like solutions 
perform these “cross tab” tasks to better 
understand how the outcome of interest 
is distributed across the predetermined 
subsets. If this manual process reveals 
that one of the predetermined subpopu-
lations has outcomes that deviate from 
its expectation, then researchers may 
invoke a claim of bias or shift in the data 
or model. Although well intentioned, 
these researchers are not appropriately 
accounting for the true scale of scanning 
over subsets of data and models, which 
means they may miss the true bias in their 
data or be unable to statistically defend 
the deviation that they found manually. 
Therefore, the goal of this trustworthy AI 
article is to provide data scientists with 
motivation, theory, code, and examples 
on how to perform disciplined discovery 
of systematic deviations in data and mod-
els at the subset level.

Anomalous subset discovery is 
challenging for two primary reasons. 
The first reason is that there are expo-
nentially many subsets to consider. 
Even moderate-sized datasets will 
contain trillions of possible subsets to 
investigate for anomalous deviations 
away from expectations. In the face of 
such an insurmountable task, investi-
gators will often simplify their search 
to a tiny fraction of subsets which hin-
ders the larger goal of discovery. Nobel 
prize winner Herbert Simon studied 
this human bias called satisficing and 
bounded rationality in the 1970s.

“Decision makers can satisfice 
either by finding optimum solu-
tions for a simplified world, or 
by finding satisfactory solutions 
for a more realistic world.”16

Trustworthy AI researchers study-
ing fairness and bias fall into this exact 

same tension 50 years later. They often 
perform a search over a simplified 
world looking for a satisfactory solution 
because maximizing over the exponen-
tially large space is difficult.

The second common issue of work-
ing with data at the subset level, is the 
statistical challenge of claiming signif-
icance of the detected pattern due to 
extreme multiple hypothesis testing. To 
borrow a phrase, “if you torture your data 
enough, you can get it to say anything.” 
Undisciplined (manual) searching over 
subsets creates a quagmire of false dis-
coveries and unreproducible results.

To address these concerns for trust-
worthy AI applications, this article uses 
techniques from a growing body of work 
known as subset scanning.13,18 Subset 
scanning exploits mathematical proper-
ties of commonly used measures of diver-
gence called scoring functions (for exam-
ple, likelihood ratios) that allow for exact 
and efficient maximization over subsets 
of feature values. Critically, this property 
allows discovery and understanding of 
data at the subset level while overcoming 
the computational complexity and sta-
tistical challenges associated with expo-
nentially many subsets to consider. Sub-
set scanning ideas originated at Carnegie 
Mellon University in the 2000s out of the 
scan statistics literature with a focus on 
epidemiology and disease surveillance. 
However, the work is now expanding 
with connections to information theory, 
rule-mining, predictive bias and fair-
ness,20 out-of-distribution detection,5 dis-
tribution shifts,9 and causal discovery.11,14

Before continuing into more details 
of subset scanning and its applications to 
trustworthy AI, we conclude this intro-
duction with a motivating example of 
identifying anomalous subpopulations 
in one of the most recognized datasets in 
machine learning and data science: the 
Adult census data.10 Subset scanning 

discovered novel subsets of the data 
with extreme under (or over) representa-
tion of the outcome of interest.

The binary target outcome in Adult 
is whether the individual had an annual 
income exceeding US$50,000. Approx-
imately 23.6% of the records have this 
outcome (see Figure 1). Trustworthy AI 
research may be concerned with how 
this outcome is distributed across age, 
gender, race, education, and many other 
features collected as part of the census.

Scanning identified the following 
subset of records: All individuals who 
had no capital gains and had one of 
the following four relationship status: 
“not-in-family,” “other-relative,” or “own-
child,” or “unmarried.” This subset con-
tains 52% of the records but only 10% of 
the individuals exceeding US$50,000 
income. Given the outcome of inter-
est is Y and a subset in a given data are 
defined as S and probability is defined 
as P, another way of stating this result 
is that the global (marginal) probability 
of the outcome is P(Y = 1) = 0.236 but this 
subset has a conditional probability of 
P(Y = 1 | S) = 0.047. Only 4.7% of the indi-
viduals in this group made more than 
US$50,000, and this group represents 
more than half of the data! This large 
divergence between P(Y) and P(Y | S) can 
also be viewed as the amount of infor-
mation that knowing S provides about 
the outcome Y. More details on the scor-
ing functions optimized in subset scan-
ning are provided next.

Subset scanning performs this effi-
cient search over trillions and trillions 
of possible subsets in just a few seconds 
using standard personal computers (no 
GPUs required). The runtime for the 
multidimensional subset scan (MDScan 
algorithm) on the Adult data set is sum-
marized in Figure 2. The runtime is 
reported against the size of the search 
space measured by the number of features 
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and the number of subsets with the lat-
ter growing exponentially. We encour-
age interested readers to try the publicly 
available code and notebooks (https://

github.com/Trusted-AI/AIF360/blob/ 
master/examples/demo_mdss_detector. 
ipynb) to recreate some of the results 
for themselves. The code is available 

in the open source AI-Fairness 360 
tool kit.3

SCORING FUNCTIONS FOR 
MEASURING DEVIATIONS
Measures of deviation such as cross- 
entropy and likelihood ratios form 
the basis of many statistical machine 
learning tasks. They quantify diver-
gence using probabilistic or informa-
tion-theoretic founded assumptions. 
The goal of subset scanning in the con-
text of detecting bias (and trustworthy 
AI more broadly) is to identify subsets 
of data and models where these mea-
sures of deviation are maximized.

Previous work has shown that com-
monly used measures of divergence 
(scoring functions) satisfy the (addi-
tive) linear-time subset scanning prop-
erty (ALTSS).13,18 A feature containing 
k unique values (such as 15 values in 
“occupation” from the Adult data set) 
contain O(2k) possible combinations 
of feature values. For scoring func-
tions that satisfy the ALTSS property, 
the vast majority of these subsets are 
provably suboptimal and cannot be 
the highest scoring (most anomalous) 
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FIGURE 1. The proportion of adults making greater than US$50,000 and the size and proportion of the same outcome in the 
subset identified by subset scanning in (a) Adult and (b) Folktable datasets. Only 4.7% and 3.8% of the adults in the anoma-
lous subsets of Adult and Folktables, respectively, have the outcome compared to the 23.6% and 39.1% expected from the 
corresponding whole population. 
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FIGURE 2. The average runtime for scanning over the Adult dataset. One hundred scans 
were performed over different numbers of randomly selected features in the search 
space, and the average is reported. In practice, multiple random restarts of the iterative 
ascent procedure are used to approach the global maximum and these can be done in 
parallel. Features with high numbers of unique values like “native-country” and “occupa-
tion” increase this search space dramatically.
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subset. In fact, only linearly many, 
O(k), subsets have the potential to be 
the highest scoring. The ALTSS prop-
erty of scoring functions decreases 
the search space from exponential 
to linearly many subsets to consider 
while still guaranteeing that the most 
divergent (highest scoring) subset 
of the O(2k) possible subsets will be 
identified. This fundamental prop-
erty of scoring functions is then used 
as a building block to enable more 
sophisticated search algorithms such 
as the multidimensional subset scan 
(MDScan)13 described next.

Table 1 lists the measures of devi-
ation (scoring functions) referenced in 
this article. The first two rows assume 
all records have the same expectation 
for the outcome Y. When the expec-
tation-based binomial scan statistic 
(first row) is evaluated at its maxi-
mum likelihood estimate (qmle), then 

it is equivalent to a directed version 
of the J-Measure (second row). The 
third row is different in that it allows 
the expectation to vary for each indi-
vidual record. More details on this 
distinction are provided next.

The expectation-based binomial 
scan statistic satisfies ALTSS.18 This 
scoring function is a likelihood ratio 
based on the binomial distribution. It 
identifies anomalous subsets where the 
number of Y = 1 outcomes in a subset S 
shows evidence of being increased by 
a multiplicative factor q, (sometimes 
referred to as a relative risk) above 
the expected count. More specifically, 
the highest scoring subset is one that 
shows the most evidence of q > 1.

The second scoring function in Table 1  
is a directed version of the informa-
tion-theoretic J-measure.17 J-measure 
quantifies the average information 
about the outcome Y when conditioning 

only on the records in subset S. It is the 
size of the subset times the cross entropy 
or Kullback–Leilbler divergence between 
the global (marginal) probability of the 
outcome Y and the probability of the 
outcome Y conditioned on the subset 
S. We make the additional assumption 
that the positive directed version of the 
J-Measure is 0 whenever P(Y | S) < P(Y). 
This allows it to only detect increases in 
the outcome of interest. Scanning in the 
negative direction is also possible. This 
directed version of J-Measure proposed 
here satisfies the three desired proper-
ties of a measure;15 however, the original 
undirected J-measure does not.

One may derive an alternative form 
of these two scoring functions using 
terminology from classification rule 
mining. These scoring functions are 
finding the subset S that maximizes the 
correct balance of the support1 and lift4 
of the rule (S  Y) as shown as follows:

TABLE 1. The scoring functions ‑ is to find the subset S that maximizes the divergence 
between the expected outcomes in S and observed outcomes in S. 

Scoring functions (measures of deviation at subset level)

Name 
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P(Y) = p: the expectation (mean) of the outcome over the entire data; pi : the expectation (predicted probability of the outcome from some model) for a single record, i;. KL(.,.): 
Kullback–Leibler divergence.  
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Supp (S  Y) · ln (Lift (S  Y))
+ Supp (S  ¬Y) · ln (Lift (S  ¬Y)). (1)

The third scoring function in Table  1 
is the expectation-based Bernoulli 
scan statistic, also known as the bias 
score.20 This scoring function differs 
from the previous ones in two ways. 
First, it allows the expectation of the 
outcome to vary per record and does 
not rely on the global mean of the out-
come. This makes it particularly use-
ful in scanning over predictions made 

by classification models that were 
trained on separate data (see “Setting 
Expectations” section). Second, the 
previous two scoring functions look for 
an increase in the number of observed 
outcomes in a subset (as compared 
to the expected number) whereas 
bias scan looks for an increase in the 
observed odds of the outcome in a sub-
set compared to the expected odds.

The scoring functions in Table 1 are 
written to detect an increase in the out-
comes. These functions can also scan for 

decreases by maximizing over 0 < q < 1 
instead of q > 1 and defining the Directed 
J-Measure to be 0 whenever P(Y | S) > P(Y) .

Finally, we emphasize that this is 
far from an exhaustive list of scor-
ing functions that satisfy the ALTSS 
property. Likelihood ratios from other 
members of the exponential family as 
well as many nonparametric scan sta-
tistics can be maximized efficiently 
over subsets of feature values.

SCALING SCANNING FROM 
SINGLE TO MULTIPLE 
DIMENSIONS
MDScan13 exploits the additive linear- 
time subset scanning property of scor-
ing functions to efficiently scan for anoma-
lous subsets spanning multiple features. 
The additive linear-time subset scanning 
property12,18 allows exact and efficient 
maximization of scoring functions over a 
single feature by only considering linearly 
many subsets of its feature values. Using 
boolean logic terms, these subsets of fea-
ture values from a single feature repre-
sent the “or” operator such as occupation: 
{tech-support or prof-specialty}. In con-
trast, a subset spanning two or more 
features represents the “and” operator 
between features. An example of this 
would be relationship status: {unmar-
ried or not-in-family} and occupation: 
{tech-support or prof-specialty}. More 
generally, subsets of this form are said to 
be in conjunctive normal form which are 
“ANDs of ORs” and these subsets form the 
exponentially large search space when 
scanning over multiple features.

MDScan is an iterative ascent pro-
cedure where each step is efficient and 
exact due to the ALTSS property of the 
scoring function being maximized 
(see Algorithm 1 for pseudocode). Each 
step scans over an individual feature’s 
values to determine if there is a large 
divergence between the observed and 

ALGORITHM 1: PSEUDOCODE FOR MDSCAN
1  # Input and output definition; 
 input:  Dataset: 
 D = {(xi, yi)| i=1,2,...,N},
 Set of features:
 F= [f1,f2,..., fm, ..., fM]
 output: AnomSubset, 
 AnomScore 
2 # Initialization; 
3 AnomSubset ← {}; 
4 AnomScore ← −∞; 
5 UnCheckedF ← F; 
6 #Iterate until convergence; 
7 while UnCheckedF isNot {} do 
8 # Randomly select unchecked feature; 
9  fm ← Random(UnCheckedF); 
10  # Mark the feature as checked;
11  UnCheckedF ← UnCheckedF \ fm;
12  # Compute the anomalous score;
13 Score, Subset ← ALTSS 
 (fm | AnomSubset); 
14 # Compare the new score with previous best;
15  if Score > AnomScore then
16  # Update the score, subset and reset the flag to unchecked;
17  AnomScore ← Score; 
18  AnomSubset ←  Subset;
19  UnCheckedF ← F; 
20  else
21  Go to Step 4; 
22 # Return the most anomalous score and its subset;
23 return AnomSubset, AnomScore
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expected outcomes for some subset 
of the feature values. Each time a new 
high-scoring subset is found in the 
ascent then all features are rescanned. 
This is in stark contrast to greedy tree-
based methods that do not reconsider 
previous splits. The ascent continues 
until no single change to the subset will 
increase its score. At this point the ascent 
procedure has converged and multiple 
random restarts are used to approach 
the global maximum.

SETTING EXPECTATIONS
At the heart of detecting systematic 
deviations between observed and 
expected outcomes is the task of how to 
set the expectations from data and mod-
els. Three scenarios for setting expecta-
tions are considered in this article, and 
each scenario has a set of tasks relevant 
for trustworthy AI. These scenarios are 
summarized in Figure 3 as A, B, and C. 
These scenarios are distinguishable 
from each other between Intrinsic 
and Extrinsic expectations.

Intrinsic expectation is when the 
data being scanned is also used to 
form the expectation of the outcome. 
Extrinsic expectations are when the 
expectations are formed from data 
other the scanning data. Scenarios A 
and B have intrinsic expectations.

Scenario A: Intrinsic expectation 
from outcome mean
Scenario A is the simplest of the three 
and the motivating example from the 
Adult dataset in the introduction of 
this article demonstrates the scenario 
well. The expectation of the outcome 
for all subsets was set by the mean of 
the outcome in the data, P(Y) = 0.236. 
This expectation means that approx-
imately 24% of records in any sub-
set should have the outcome Y. Once 
the expectation for the outcome of 

interest is set, then MDScan is able 
to maximize the appropriate scoring 
function over all subsets of feature 
va lues. W hen ma x i m izi ng d iver-
gence away from the outcome mean, 
(that is, Scenario A) the goal of scan-
ning is to identify subsets that are 
extremely over or underrepresented 
in the outcome. These may be vul-
nerable populations that are experi-
encing higher-than-expected rates of 
an undesired outcome (or protected 
subpopulations that are experiencing 
high rates of a preferred outcome).

Another example of scanning for 
vulnerable subpopulations comes 
from the National COVID Cohort 
Collaborative (N3C) data.8 Invasive 
ventilation (intubation) of hospital-
ized COVID patients is one of many 
possible outcomes of interest in this 
large cohort. Approximately 6.7% of 

hospitalized patients were intubated. 
Subset scanning provides a disci-
plined way of discovering subpop-
ulations where intubation rates were 
much higher than expected. Scenario 
A-scanning revealed patients older 
than 50 (or age unknown) that did 
not have dementia and lived in either 
the South or West parts of the United 
States had anomalously high rates 
of intubation.

The (naive) expectation from the out-
come mean was that this subset would 
also have 6.7% intubated patients. How-
ever 14% of the patients in this subset 
were intubated. The subset observed 
3756 intubations (compared to the 1940 
expected), which is q = 1.94 times more 
than expected. Another intepretation 
of this result is that patients in this sub-
set were 2.24 times more likely to be 
intubated as compared to the average 

A B C

Intrinsic Expectation
(Expectations Come From

the Same Data Being Scanned)

Extrinsic Expectation
(Expectations Come From
a Different Dataset than
the One Being Scanned)

Tasks:
Detecting Vulnerable or

Protected Sub-Populations

Mining Informative
Classification Rules

Tasks:
Identifying Feature

Interactions Not Captured
by the Model

Detecting Predictive Bias
Induced by Held-Out
(Protected) Attributes

Tasks:
Detecting Data Distribution

Shifts Such as Concept Drift

Detecting Heterogeneous
Treatment Effects in
Randomized Trials

Expectation From the
Outcome Mean

Expectation From Outcome-
Prediction Models

FIGURE 3. Expectations may be formed under three different scenarios of increasing 
complexity. The simplest, Scenario A, is when the expectation for each record’s out-
come is simply the mean of the outcome in the dataset. Scenario B allows the expec-
tation of each record’s outcome to vary according to some predictive model trained 
on the same data. Finally, Scenario C is the most complex and allows the expectation 
(predicted probability) to be based on a model trained on a different dataset than the 
one being scanned. Potential trustworhty AI tasks of these three scenarios are high-
lighted in each cell.
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patient. More details on this subset are 
provided below.

In addition to detecting vulnerable 
subpopulations, Scenario A can also 
be viewed as making contributions 
to Explainable AI through mining 
informative, interpretable classifi-
cation rules. The identified subset of 
individuals in the Adult data set with 
zero capital gains and one of four rela-
tionship status had an anomalously 
high amount of support and lift. That 
is, the rule covered a large number 
of records (more than half the data) 
and had a large difference between 
P(Y) and P(Y | S). Subset scanning 
(away from the expectation set by the 
intrinsic mean) provides a powerful 
alternative to popular apriori-based 
methods for identifying informative 
classification rules.2

Scenario B: Intrinsic expectation 
from outcome prediction model
Scenario B also has intrinsic expecta-
tions that are informed by the same 
data being scanned. However, it dif-
fers from Scenario A in that the out-
come expectation may vary for each 
record. Scenario A has a very naive 
predictive model that assigns the 
same probability of the outcome to 
every record (the mean). Scenario B, 
however, replaces that naive model 
with any classification model that 
provides a (calibrated) predicted prob-
ability pi  for record i to have the out-
come. This subtle difference between 
Scenarios A and B changes the scan-
ning focus from the data (Scenario A) 
to the model (Scenario B). Scenario B 
is scanning over the model predictions 
to discover subsets where the model 
is making systematic errors in its pre-
dictions as compared to the observed 
outcomes. This is predictive bias and 
subset scanning identifies the subset 

of data records where predictive bias 
is highest.

Predictive bias from an intrinsic 
model may exist for a couple different 
reasons. One reason is that the model 
is underfitting the data and has failed 
to capture an interaction that exists in 
the data. A real-world example of this 
from the N3C data are provided next. 
Another reason for predictive bias to 
exist in an intrinsic expectation is due 
to held-out (protected) features that 
are not used to form the expectation 
but are part of the subset scanning 
search space. Withholding age and 
gender features of the Adult data set 
when training a predictive model for 
income may induce a predictive bias 
in some subset of feature values. Sub-
set scanning in Scenario B will detect 
these systematic deviations in a disci-
plined, scalable way.

Returning to the N3C dataset, we 
now consider the outcome of hospi-
tal mortality. These are patients that 
died in a hospital setting and do not 
consider patient deaths outside the 
hospital. Approximately 13.4% of hos-
pitalized patients died. Scenario B 
does not use this outcome mean as 
the expected outcome for all patients. 
Instead, a simple (first-order) logistic 
regression model was trained on the 
data to provide a predicted probabil-
ity pi for each record. The model had 
an area-under-receiver-operator char-
acteristic curve of 0.71, which is on 
the low side but respectable for a sim-
ple, interpretable model trained on 
complex data. Scanning in Scenario 
B searches for the subset where this 
model is making the most systematic, 
biased predictions.

An anomalous subset identified 
in this scenario were cancer patients 
under the age of 50. The logistic regres-
sion model pred icted 80.4 deat hs 

among this group. However, in reality 
there were 195 observed deaths among 
young cancer patients. The observed 
odds of mortality among this group 
were 2.6 times higher than the odds 
of mortality predicted by the model. 
This predictive bias exists because 
of a strong interaction between mor-
tality, cancer, and young patients. 
First-order logistic regression does 
not a l low f or  s u c h i n t e r a c t ion s 
between age and cancer when mod-
eling the odds of mortality and there-
fore underfits the data in this subset. 
Young cancer patients have a funda-
mentally different relationship with 
COVID mortality than young patients 
or cancer patients separately. This 
interaction was revealed by scan-
ning for systematic deviations with 
expectations learned from an intrin-
sic model.

Scenario C: Extrinsic expectation 
from outcome prediction model
Finally, we consider Scenario C, which 
is the most complex formulation of 
expectations. Setting expectations in 
Scenario C is similar to Scenario B in 
that each record i may have a different 
expected outcome pi informed by some 
classification or prediction model. 
However, unlike Scenario B, Scenario 
C’s classification model is trained 
on different data than the data being 
scanned for systematic deviations. 
Scenario C has an extrinsic expectation 
for the outcome.

Systematic deviations in Scenario 
C can come from a much wider vari-
ety of sources than the predictive bias 
in Scenario B. This is not because the 
extrinsic model is “wrong” but rather 
because of fundamental data shifts 
between training and scanning data. 
Subset scanning can detect these dis-
tribution shifts that cause the most 
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bias in the extrinsic model at the sub-
set level.

An applied example of Scenario 
C is detecting heterogeneous treat-
ment effects in randomized trials11 
(that is, causal discovery). This is done 
by training a classification model to 
predict the outcome of interest (set-
ting expectations) on the control arm 
and then predicting the outcome of 
interest with this model on the treat-
ment arm. Any systematic deviation 
between the outcomes in the treat-
ment arm and the expectations set by 
the control arm can be attributed to 
the effect of the treatment due to the 
randomly assigned treatment status. 
A real-world example of discovering 
heterogeneous treatment effects with 
subset scanning comes from the Bet-
terBirth study. This study tested the 
intervention of training care provid-
ers on how to use a Safe Childbirth 
Checklist developed by the World 
Health Organization.6 Unfortunately, 
no  average treatment effect was 
detected. This means the outcomes in 
the control arm were similar to those 
in the treatment arm.

Scanning detected an anomalous 
subpopulation in the treatment arm 
of the BetterBirth study that had 2.6% 
neonatal mortality. This was deemed 
anomalous because the same subset 
in the control arm had 3.7% neonatal 
mortality (OR: 0.70,95% CI:0.62 −0.79). 
Our goal with these types of results 
from data-driven hypotheses is to 
encourage funders of clinical trials to 
allow data science methods to analyze 
trial results instead of relying on strict 
pre-analysis plans which hinder dis-
covery. Scanning options in Scenario C 
allow for the most creative use of data 
and models and will continue to be an 
active area of research for computer 
and social scientists a like.

SCANNING FOR  
SIMPLER SUBSETS
Multidimensional subset scan is able 
to scale to datasets with dozens of 
features and maximize measures of 
divergence over trillions of possible 
subsets. However, this scaling power 
can also be a curse because the most 
anomalous subset in these datasets 
may span eight features and contain 
20 or more literals to describe it. There-
fore, a key component of the MDScan 
algorithm is the incorporation of a 
complexity penalty that acts as a regu-
larization term on the search process. 
This regularization term penalizes 
subsets based on the number of literals 
used to describe the subset of feature 
values. The subset, relationship sta-
tus: {unmarried or not-in-family} and 
occupation: {tech-support or prof-spe-
cialty} has a description length of 
four literals (spanning two features). 
Using the likelihood ratio interpreta-
tion of scoring functions, this penalty 
on complexity may be thought of as a 
prior probability that informs the like-
lihood into a posterior. Without a com-
plexity penalty in place, all subsets are 
equally likely to be the highest scor-
ing one. With the complexity penalty 
in place, subsets with longer descrip-
tion lengths are less likely to be the 
most anomalous subset. These penal-
ties were first described by Speakman 
et al.18 and then formalized into com-
plexity penalties by Zhang and Neill.20

To better demonstrate the impact of 
the complexity penalty on MDScan, we 
return once again to the N3C COVID 
patient dataset and the invasive ven-
tilation (intubation) outcome used as 
an example in Scenario A previously. 
The anomalous subset used in that 
example was described with a total of 
six literals: No dementia (1) and living 
in South or West regions (2) and age in 

the ranges 50–65, or 65+, or unknown 
(3). This subset was returned when a 
complexity penalty of 25 was used to 
penalize overly complex (long descrip-
tion length) subsets.

Figure 4 shows the 6-literal subset 
as the green dot. Integers on the dots 
denote the description length of the 
subset. The x-axis of this figure mea-
sures the size of the subset as the pro-
portion of the total number of records. 
The y-axis displays the observed out-
comes contained in the subset as a por-
tion of the total number of outcomes 
in the data. Any subset lying on the 
blue line is not anomalous because it 
contains a similar number of expected 
and observed outcomes. Subsets above 
the line have more observed outcomes 
than expected and the farther from 
this line, the more anomalous the sub-
set is. These graphs have axes similar 
to Lorenz curves but should not be con-
fused with cumulative distributions 
of wealth.

The role of the complexity penalty 
is to find anomalous subsets with dif-
ferent description lengths (number 
of literals). Running MDScan with 
a large penalty on complexity (150) 
returns a subset described by a sin-
gle literal: body mass index: {Obese}. 
This 1-literal subset is less anomalous 
than the 6-literal subset. It contains 
a similar number of observed intu-
bations as the 6-literal subset (nearly 
identical y-axis) but it is larger and 
therefore expected to contain more 
intubations (larger x-axis). In other 
words, the purple ➀ dot is closer to 
the blue line than the green ➅ dot. 
However the 1-literal subset may be 
much easier to interpret than the 
6-literal subset and balancing this 
tradeoff is done by varying the com-
plexity penalty. Relaxing the pen-
alty down to 100 allows MDScan to 
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identify a subset described by two lit-
erals: Region: {South} or {West}. This 
group contains nearly 30% of the data 
records and approximately 46% of 
the ventilations.

Removing the complexity penalty 
allows MDScan to aggressively slice 
and dice the dataset in search for the 
most anomalous subset of feature-val-
ues. In this setting it resulted in a sub-
set described by 15 literals (blue dot). 
Although this subset had the “best” 
combination of expected and observed 
outcomes, it is too obtuse for domain 
experts to understand. Automatically 
choosing the best complexity penalty 
for a given discovery task is an area 
of future research. Meanwhile, it is 
recommended that investigators try a 
range of penalty values and perform 
an “elbow” heuristic for a large change 

in the returned subset score as a func-
tion of the complexity penalty.

SCANNING FOR SIGNIFICANT 
SUBSETS
Computer scientists may be impressed 
with the speed and scalability of subset 
scanning methods. However, statisti-
cians are likely annoyed by the obvious 
problems of multiple hypothesis test-
ing that arise when maximizing scor-
ing functions over trillions of possible 
subsets (hypotheses). To be clear, statis-
tical significance of deviations found 
by subset scanning cannot be tested 
using the standard techniques that are 
designed around a single hypothesis 
test. Doing so would essentially guar-
antee rejection of the null hypothesis 
because of how aggressive scanning 
seeks for evidence against it.

To account for this extreme multi-
ple hypothesis testing problem, subset 
scanning uses randomization testing7 
to maintain a low false discovery rate. 
Randomization testing creates replica 
datasets where the observed outcome 
from each record is replaced by ran-
domly assigned new one. In a replica 
world the null hypothesis is true and 
the observed outcomes are drawn from 
the same distribution as the expected 
outcomes. MDScan is then called to 
detect and score the highest scoring 
subset in the replica world. This will 
return a score of an anomalous sub-
set that existed by chance. R different 
replica worlds are created and scanned. 
The distribution of scores from these 
R replica worlds provide a significance 
threshold such that scores above the 
threshold would result in a false posi-
tive only a portion of times. Similarly, 
a p-value of an observed score may 
be calculated by comparing which 
portion of the replica world scores 
exceeded the observed score. At least 
R = 100 replica worlds are recommended 
in order to form a smooth distribution of 
anomalous subset scores when the null 
hypothesis is true. Alternatives to ran-
domization testing for significance is an 
area of future research.

Systematic deviations in data and 
models are everywhere. How-
ever, looking for satisfactory 

deviations in manual, undisciplined, 
unrepeatable ways does a disservice to 
trustworthy AI and data science more 
broadly. In this article, we provided 
motivation, theory, code, and examples 
for disciplined detection of systematic 
deviations at the subset level of data 
and models.

This narrative required three com-
plimentary parts. First is how deviations 
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are defined and measured. These are 
the scoring functions based on likeli-
hood ratios, information theory, and 
rule mining that quantify how far way 
observations are from their expec-
tations. Second is an algorithm that 
efficiently maximizes these scoring 
functions over the exponentially 
large search space of feature-values: 
MDScan. Third is the critical compo-
nent of how expectations are formed. 
Expectations may be as simple as 
the observed mean of a binary out-
come. They could also be incredibly 
complex deep neural networks that 
are susceptible to subtle distribution 
shifts in data. How expectations are 
formed changes the focus of MDScan 
to either scanning over data or scan-
ning over models.

No machine learning task is com-
plete without a regularization term and 
subset scanning is no different. Not all 
anomalous subsets are created equal 
and MDScan allows the search process 
to give preference to simpler subsets 
with shorter description lengths. This 
lever allows MDScan to return a single 
feature-value as the anomalous subset 
or to relax the constraint and let scan-
ning push the (obtuse) boundaries of 
anomalous pattern detection at the 
subset-level.

The article concluded with notes 
about statistical significance and why 
it is important to not use off-the-shelf 
testing metrics. Subset scanning may 
be viewed as testing all hypotheses in 
a data set and returning the one with 
the most evidence. This power must be 
appropriately controlled through rig-
orous randomization testing.

John Tukey is famously quoted 
as saying: “Science does not begin 
with a tidy question nor does it end 
with a tidy answer.”19 Trustworthy 
AI researchers, particularly those in 

the fairness and bias areas, must be 
reminded of this truth. “Biases,” these 
systematic deviations in data and 

models, are likely far more complex 
and far more useful than is currently  
given credit. 
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