
Detecting Targeted Attacks Using Shadow Honeypots

K. G. Anagnostakis†, S. Sidiroglou‡, P. Akritidis?, K. Xinidis?, E. Markatos?, A. D. Keromytis‡

†CIS Department, Univ. of Pennsylvania? Institute of Computer Science - FORTH
anagnost@dsl.cis.upenn.edu {akritid,xinidis,markatos}@ics.forth.gr

‡ Department of Computer Science, Columbia University
{stelios,angelos}@cs.columbia.edu

Abstract

We presentShadow Honeypots, a novel hybrid archi-
tecture that combines the best features of honeypots and
anomaly detection. At a high level, we use a variety of
anomaly detectors to monitor all traffic to a protected net-
work/service. Traffic that is considered anomalous is pro-
cessed by a “shadow honeypot” to determine the accuracy
of the anomaly prediction. The shadow is an instance of
the protected software that shares all internal state with a
regular (“production”) instance of the application, and is
instrumented to detect potential attacks. Attacks against
the shadow are caught, and any incurred state changes
are discarded. Legitimate traffic that was misclassified
will be validated by the shadow and will be handled cor-
rectly by the system transparently to the end user. The
outcome of processing a request by the shadow is used to
filter future attack instances and could be used to update
the anomaly detector.

Our architecture allows system designers to fine-tune
systems for performance, since false positives will be fil-
tered by the shadow. Contrary to regular honeypots, our
architecture can be used both for server and client appli-
cations. We demonstrate the feasibility of our approach in
a proof-of-concept implementation of the Shadow Hon-
eypot architecture for the Apache web server and the
Mozilla Firefox browser. We show that despite a con-
siderable overhead in the instrumentation of the shadow
honeypot (up to 20% for Apache), the overall impact on
the system is diminished by the ability to minimize the
rate of false-positives.

1 Introduction

Due to the increasing level of malicious activity seen
on today’s Internet, organizations are beginning to de-
ploy mechanisms for detecting and responding to new at-
tacks or suspicious activity, called Intrusion Prevention
Systems (IPS). Since current IPS’s use rule-based intru-
sion detection systems (IDS) such as Snort [32] to detect
attacks, they are limited to protecting, for the most part,
against already known attacks. As a result, new detection
mechanisms are being developed for use in more pow-
erful reactive-defense systems. The two primary such
mechanisms are honeypots [28, 13, 58, 40, 20, 9] and
anomaly detection systems (ADS) [49, 53, 48, 10, 19]. In
contrast with IDS’s, honeypots and ADS’s offer the pos-
sibility of detecting (and thus responding to) previously
unknown attacks, also referred to aszero-day attacks.

Honeypots and anomaly detection systems offer differ-
ent tradeoffs between accuracy and scope of attacks that
can be detected, as shown in Figure 1. Honeypots can be
heavily instrumented to accurately detect attacks, but de-
pend on an attacker attempting to exploit a vulnerability
against them. This makes them good for detecting scan-
ning worms [3, 5, 13], but ineffective against manual di-
rected attacks or topological and hit-list worms [43, 42].
Furthermore, honeypots can typically only be used for
server-type applications. Anomaly detection systems can
theoretically detect both types of attacks, but are usually
much less accurate. Most such systems offer a tradeoff
between false positive (FP) and false negative (FN) rates.
For example, it is often possible to tune the system to
detect morepotentialattacks, at an increased risk ofmis-
classifyinglegitimate traffic (low FN, high FP); alterna-
tively, it is possible to make an anomaly detection system
more insensitive to attacks, at the risk of missing some
real attacks (high FN, low FP). Because an ADS-based

IPS can adversely affect legitimate traffic (e.g.,drop a le-
gitimate request), system designers often tune the system
for low false positive rates, potentially misclassifying at-
tacks as legitimate traffic.

All Attacks
(Random + Targeted)

Accuracy

ScopeScan/Random
Attacks Only

Honeypot

DetectionAnomaly

Honeypot

Shadow

Figure 1:A simple classification of honeypots and anomaly
detection systems, based on attack detection accuracy and
scope of detected attacks. Targeted attacks may use lists of
known (potentially) vulnerable servers, while scan-basedat-
tacks will target any system that is believed to run a vulner-
able service. AD systems can detect both types of attacks,
but with lower accuracy than a specially instrumented sys-
tem (honeypot). However, honeypots are blind to targeted
attacks, and may not see a scanning attack until after it has
succeeded against the real server.

We propose a novel hybrid approach that combines the
best features of honeypots and anomaly detection, named
Shadow Honeypots. At a high level, we use a variety of
anomaly detectors to monitor all traffic to a protected net-
work. Traffic that is considered anomalous is processed
by a shadow honeypot. The shadow version is an instance
of the protected application (e.g.,a web server or client)
that shares all internal state with a “normal” instance of
the application, but is instrumented to detect potential at-
tacks. Attacks against the shadow honeypot are caught
and any incurred state changes are discarded. Legitimate
traffic that was misclassified by the anomaly detector will
be validated by the shadow honeypot and will betrans-
parentlyhandled correctly by the system (i.e., an HTTP
request that was mistakenly flagged as suspicious will be
served correctly). Our approach offers several advantages
over stand-alone ADS’s or honeypots:

• First, it allows system designers to tune the anomaly
detection system for low false negative rates, min-

imizing the risk of misclassifying a real attack as
legitimate traffic, since any false positives will be
weeded out by the shadow honeypot.

• Second, and in contrast to typical honeypots, our ap-
proach can defend against attacks that aretailored
against a specific site with a particular internal state.
Honeypots may be blind to such attacks, since they
are not typically mirror images of the protected ap-
plication.

• Third, shadow honeypots can also be instantiated in
a form that is particularly well-suited for protect-
ing againstclient-sideattacks, such as those directed
against web browsers and P2P file sharing clients.

• Finally, our system architecture facilitates easy inte-
gration of additional detection mechanisms.

We apply the concept of shadow honeypots to a proof-
of-concept prototype implementation tailored against
memory-violation attacks. Specifically, we developed a
tool that allows for automatic transformation of existing
code into its “shadow version”. The resulting code al-
lows for traffic handling to happen through the regular
or shadow version of the code, contingent on input de-
rived from an array of anomaly detection sensors. When
an attack is detected by the shadow version of the code,
state changes effected by the malicious request are rolled
back. Legitimate traffic handled by the shadow is pro-
cessed successfully, albeit at higher latency.

In addition to the server-side scenario, we also investi-
gate a client-targeting attack-detection scenario, unique
to shadow honeypots, where we apply the detection
heuristics to content retrieved by protected clients and
feed any positives to shadow honeypots for further anal-
ysis. Unlike traditional honeypots, which are idle whilst
waiting for active attackers to probe them, this scenario
enables the detection of passive attacks, where the at-
tacker lures a victim user to download malicious data.
We use the recentlibpng vulnerability of Mozilla [7]
(which is similar to the buffer overflow vulnerability in
the Internet Explorer’s JPEG-handling logic) to demon-
strate the ability of our system to protect client-side ap-
plications.

Our shadow honeypot prototype consists of several
components. At the front-end of our system, we use a
high-performance intrusion-prevention system based on
the Intel IXP network processor and a set of modified
snortsensors running on normal PCs. The network pro-
cessor is used as a smart load-balancer, distributing the
workload to the sensors. The sensors are responsible for

2

testing the traffic against a variety of anomaly detection
heuristics, and coordinating with the IXP to tag traffic that
needs to be inspected by shadow honeypots. This design
leads to the scalability needed in high-end environments
such as web server farms, as only a fraction of the servers
need to incur the penalty of providing shadow honeypot
functionality.

In our implementation, we have used a variety of
anomaly detection techniques, including Abstract Pay-
load Execution (APE) [48], and the Earlybird algorithm
[36]. The feasibility of our approach is demonstrated
by examining both false-positive and true attack scenar-
ios. We show that our system has the capacity to process
all false-positives generated by APE and EarlyBird and
successfully detect attacks. We also show that when the
anomaly detection techniques are tuned to increase detec-
tion accuracy, the resulting additional false positives are
still within the processing budget of our system. More
specifically, our benchmarks show that although instru-
mentation is expensive (20-50% overhead), the shadow
version of the Apache Web server can process around
1300 requests per second, while the shadow version of
the Mozilla Firefox client can process between 1 and 4
requests per second. At the same time, the front-end and
anomaly detection algorithms can process a fully-loaded
Gbit/s link, producing 0.3-0.5 false positives per minute
when tuned for high sensitivity, which is well within the
processing budget of our shadow honeypot implementa-
tion.

Paper Organization The remainder of this paper is or-
ganized as follows. Section 2 discusses the shadow hon-
eypot architecture in greater detail. We describe our im-
plementation in Section 3, and our experimental and per-
formance results in Section 4. Some of the limitations of
our approach are briefly discussed in Section 5. We give
an overview of related work in Section 6, and conclude
the paper with a summary of our work and plans for fu-
ture work in Section 7.

2 Architecture

The Shadow Honeypot architecture is a systems ap-
proach to handling network-based attacks, combining fil-
tering, anomaly detection systems and honeypots in a
way that exploits the best features of these mechanisms,
while shielding their limitations. We focus on transac-
tional applications,i.e., those that handle a series of dis-
crete requests. Our architecture isnot limited to server
applications, but can be used for client-side applications

such as web browsers, P2P clients,etc. As illustrated
in Figure 2, the architecture is composed of three main
components: a filtering engine, an array of anomaly de-
tection sensors and the shadow honeypot, which validates
the predictions of the anomaly detectors. The processing
logic of the system is shown graphically in Figure 3.

The filtering component blocks known attacks. Such
filtering is done based either on payload content [52, 2]
or on the source of the attack, if it can be identified
with reasonable confidence (e.g., confirmed traffic bi-
directionality). Effectively, the filtering component short-
circuits the detection heuristics or shadow testing results
by immediately dropping specific types of requests before
any further processing is done.

Traffic passing the first stage is processed by one or
more anomaly detectors. There are several types of
anomaly detectors that may be used in our system, in-
cluding payload analysis [53, 36, 17, 48] and network
behavior [15, 56]. Although we do not impose any par-
ticular requirements on the AD component of our sys-
tem, it is preferable to tune such detectors towards high
sensitivity (at the cost of increased false positives). The
anomaly detectors, in turn, signal to the protected appli-
cation whether a request is potentially dangerous.

Depending on this prediction by the anomaly detectors,
the system invokes either the regular instance of the ap-
plication or itsshadow. The shadow is an instrumented
instance of the application that can detect specific types
of failures and rollback any state changes to a known (or
presumed) good state,e.g.,before the malicious request
was processed. Because the shadow is (or should be) in-
voked relatively infrequently, we can employ computa-
tionally expensive instrumentation to detect attacks. The
shadow and the regular application fully share state, to
avoid attacks that exploit differences between the two;
we assume that an attacker can only interact with the ap-
plication through the filtering and AD stages,i.e., there
are no side-channels. The level of instrumentation used
in the shadow depends on the amount of latency we are
willing to impose on suspicious traffic (whether truly ma-
licious or misclassified legitimate traffic). In our imple-
mentation, described in Section 3, we focus on memory-
violation attacks, but any attack that can be determined
algorithmically can be detected and recovered from, at
the cost of increased complexity and potentially higher
latency.

If the shadow detects an actual attack, we notify the
filtering component to block further attacks. If no attack
is detected, we update the prediction models used by the
anomaly detectors. Thus, our system could in fact self-
train and fine-tune itself using verifiably bad traffic and

3

Traffic from the network

Address Space

Update filters

Protected System

User processes

OS Kernel

Protected Service

Regular
Service
Code

Shadow
Honeypot

Code

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

Predictors
Update

Filtering

Process

State

State Rollback

Anomaly Detection Sensors

Figure 2:Shadow Honeypot architecture.

Input arrives

Yes

No

Drop request

Input Based
Suspect Yes

No

Bad Input?
Known

on AD?

No

Yes

Handle request normally; if
attack, system gets compromised

Use Shadow

Use Shadow
Attack

Detected?

Yes

No

No

Yes

Detected?
Attack Indicate Hit to AD

Indicate False Negative to AD
Update AD Model

Update Filtering Component
Update AD Model

Indicate False Positive to AD
Update AD Model

Handle request normally

Anyway?
ShadowUse

Randomly

Figure 3:System workflow.

known mis-predictions, although this aspect of the ap-
proach is outside the scope of the present paper.

As we mentioned above, shadow honeypots can be in-
tegrated with servers as well as clients. In this paper, we
consider tight coupling with both server and client ap-
plications, where the shadow resides in the same address
space as the protected application.

• Tightly coupled with server This is the most prac-
tical scenario, in which we protect a server by divert-
ing suspicious requests to its shadow. The applica-
tion and the honeypot are tightly coupled, mirroring
functionality and state. We have implemented this
configuration with the Apache web server, described
in Section 3.

• Tightly coupled with client Unlike traditional hon-
eypots, which remain idle while waiting for active
attacks, this scenario targets passive attacks, where
the attacker lures a victim user to download data
containing an attack, as with the recent buffer over-
flow vulnerability in Internet Explorer’s JPEG han-
dling. In this scenario, the context of an attack is an
important consideration in replaying the attack in the
shadow. It may range from data contained in a single
packet to an entire flow, or even set of flows. Alter-
natively, it may be defined at the application layer.

For our testing scenario, specifically on HTTP, the
request/response pair is a convenient context.

Tight coupling assumes that the application can be
modified. The advantage of this configuration is that at-
tacks that exploit differences in the state of the shadow
vs. the application itself become impossible. However, it
is also possible to deploy shadow honeypots in aloosely
coupledconfiguration, where the shadow resides on a dif-
ferent system and does not share state with the protected
application. The advantage of this configuration is that
management of the shadows can be “outsourced” to a
third entity.

Note that the filtering and anomaly detection compo-
nents can also be tightly coupled with the protected ap-
plication, or may be centralized at a natural aggregation
point in the network topology (e.g.,at the firewall).

Finally, it is worth considering how our system would
behave against different types of attacks. For most attacks
we have seen thus far, once the AD component has iden-
tified an anomaly and the shadow has validated it, the fil-
tering component will block all future instances of it from
getting to the application. However, we cannot depend on
the filtering component to prevent polymorphic or meta-
morphic [46] attacks. For low-volume events, the cost
of invoking the shadow for each attack may be accept-
able. For high-volume events, such as a Slammer-like

4

Figure 4: High-level diagram of prototype shadow honey-
pot implementation.

outbreak, the system will detect a large number of correct
AD predictions (verified by the shadow) in a short period
of time; should a configurable threshold be exceeded, the
system can enable filtering at the second stage, based on
the unverified verdict of the anomaly detectors. Although
this will cause some legitimate requests to be dropped,
this could be acceptable for the duration of the incident.
Once the number of (perceived) attacks seen by the ADS
drop beyond a threshold, the system can revert to normal
operation.

3 Implementation

3.1 Filtering and anomaly detection

During the composition of our system, we were faced
with numerous design issues with respect to perfor-
mance and extensibility. When considering the deploy-
ment of the shadow honeypot architecture in a high-
performance environment, such as a Web server farm,
where speeds of at least 1 Gbit/s are common and we
cannot afford to missclassify traffic, the choice for off-
the-shelf components becomes very limited. To the best
of our knowledge, current solutions, both standalone PCs
and network-processor-based network intrusion detection
systems (NIDSes), are well under the 1 Gbit/s mark
[11, 33].

Faced with these limitations, we considered a dis-
tributed design, similar in principle to [47, 18]: we use
a network processor (NP) as a scalable, custom load bal-

ancer, and implement all detection heuristics on an array
of (modified) snort sensors running on standard PCs that
are connected to the network processor board. We chose
not to implement any of the detection heuristics on the
NP for two reasons. First, currently available NPs are de-
signed primarily for simple forwarding and lack the pro-
cessing capacity required for speeds in excess of 1 Gbit/s.
Second, they remain harder to program and debug than
standard general purpose processors. For our implemen-
tation, we used the IXP1200 network processor. A high-
level view of our implementation is shown in Figure 4.

A primary function of the anomaly detection sensor is
the ability to divert potentially malicious requests to the
shadow honeypot. For web servers in particular, a reason-
able definition of the attack context is the HTTP request.
For this purpose, the sensor must construct a request, run
the detection heuristics, and forward the request depend-
ing on the outcome. This processing must be performed
at the HTTP level thus an HTTP proxy-like function is
needed. We implemented the anomaly detection sensors
for the tightly-coupled shadow server case by augmenting
an HTTP proxy with ability to apply the APE detection
heuristic on incoming requests and route them according
to its outcome.

For the shadow client scenario, we use an alternative
solution based on passive monitoring. Employing the
proxy approach in this situation would be prohibitively
expensive, in terms of latency, since we only require de-
tection capabilities. For this scenario, we reconstruct the
TCP streams of HTTP connections and decode the HTTP
protocol to extract suspicious objects.

As part of our proof-of-concept implementation we
have used two anomaly detection heuristics: payload sift-
ing and abstract payload execution. Payload sifting as
developed in [36] derives fingerprints of rapidly spread-
ing worms by identifying popular substrings in network
traffic. It is a prime example of an anomaly detection
based system that is able to detect novel attacks at the
expense of false positives. However, if used in isola-
tion (e.g.,outside our shadow honeypot environment) by
the time it has reliably detected a worm epidemic, it is
very likely that many systems would have already been
compromised. This may reduce its usage potential in the
tightly-coupled server protection scenario without exter-
nal help. Nevertheless, if fingerprints generated by a dis-
tributed payload sifting system are disseminated to inter-
ested parties that run shadow honeypots locally, matching
traffic against such fingerprints can be of use as a detec-
tion heuristic in the shadow honeypot system. Of further
interest is the ability to use this technique in the loosely-
coupled shadow server scenario, although we do not fur-

5

ther consider this scenario here.
The second heuristic we have implemented is buffer

overflow detection via abstract payload execution (APE),
as proposed in [48]. The heuristic detects buffer over-
flow attacks by searching for sufficiently long sequences
of valid instructions in network traffic. Long sequences of
valid instructions can appear in non-malicious data, and
this is where the shadow honeypot fits in. Such detec-
tion mechanisms are particularly attractive because they
are applied to individual attacks and will trigger detection
upon encountering the first instance of an attack, unlike
many anomaly detection mechanisms that must witness
multiple attacks before flagging them as anomalous.

3.2 Shadow Honeypot Creation

To create shadow honeypots, we use a code-
transformation tool that takes as input the original appli-
cation source code and “weaves” into it the shadow hon-
eypot code. In this paper, we focus on memory-violation
errors and show source-code transformations that detect
buffer overflows, although other types of failures can be
caught (e.g., input that causes illegal memory derefer-
ences) with the appropriate instrumentation, but at the
cost of higher complexity and larger performance bottle-
neck. For the code transformations we use TXL [22],
a hybrid functional and rule-based language which is
well-suited for performing source-to-source transforma-
tion and for rapidly prototyping new languages and lan-
guage processors. The grammar responsible for parsing
the source input is specified in a notation similar to Ex-
tended Backus-Naur (BNF). In our prototype, called DY-
BOC, we use TXL forC-to-C transformations with the
GCCC front-end.

The instrumentation itself is conceptually straightfor-
ward: we move all static buffers to the heap, by dy-
namically allocating the buffer upon entering the func-
tion in which it was previously declared; we de-allocate
these buffers upon exiting the function, whether implic-
itly (by reaching the end of the function body) or explic-
itly (through areturnstatement). We take care to properly
handle thesizeofconstruct, a fairly straightforward task
with TXL. Pointer aliasing is not a problem with our sys-
tem, since we instrument the allocated memory regions;
any illegal accesses to these will be caught.

For memory allocation, we use our own version ofmal-
loc(), calledpmalloc(), that allocates two additional zero-
filled, write-protected pages that bracket the requested
buffer, as shown in Figure 5. The guard pages are
mmap()’ed from /dev/zeroas read-only. Asmmap()oper-
ates at memory page granularity, every memory request

Write Protected

Memory Page

Write Protected

Memory Page

1024 bytes

x000

x4096

ptr

3

Memory
Pages

Allocated

by
pmalloc

Figure 5: Example of pmalloc()-based memory allocation:
the trailer and edge regions (above and below the write-
protected pages) indicate “waste” memory. This is needed to
ensure thatmprotect()is applied on complete memory pages.

is rounded up to the nearest page. The pointer that is re-
turned bypmalloc()can be adjusted to immediately catch
any buffer overflow or underflow depending on where at-
tention is focused. This functionality is similar to that
offered by theElectricFencememory-debugging library,
the difference being thatpmalloc() catches both buffer
overflow and underflow attacks. Because wemmap()
pages from/dev/zero, we do not waste physical mem-
ory for the guards (just page-table entries). Memory is
wasted, however, for each allocated buffer, since we al-
locate to the next closest page. While this can lead to
considerable memory waste, we note that this is only in-
curred when executing in shadow mode, and in practice
has proven easily manageable.

Figure 6 shows an example of such a translation.
Buffers that are already allocated viamalloc() are sim-
ply switched topmalloc(). This is achieved by examin-
ing declarations in the source and transforming them to
pointers where the size is allocated with amalloc()func-
tion call. Furthermore, we adjust theC grammar to free
the variables before the function returns. After making
changes to the standard ANSIC grammar that allow en-
tries such asmalloc()to be inserted between declarations
and statements, the transformation step is trivial. For

6

Original code
int func()
{

char buf[100];
...

other func(buf, sizeof(buf);
...

return 0;
}

Modified code
int func()
{

char *buf;
char buf[100];
if (shadow enable())

buf = pmalloc(100);
else

buf = buf;
...

other func(buf, sizeof(buf));
...

if (shadow enable()) {
pfree(buf);

}
return 0;

}

Figure 6:Transforming a function to its shadow-supporting version.The shadowenable()macro simply checks the status
of a shared-memory variable (controlled by the anomaly detection system) on whether the shadow honeypot should be
executing instead of the regular code.

single-threaded, non-reentrant code, it is possible to only
usepmalloc()once for each previously-static buffer. Gen-
erally, however, this allocation needs to be done each time
the function is invoked.

Any overflow (or underflow) on a buffer allocated via
pmalloc()will cause the process to receive a Segmenta-
tion Violation (SEGV) signal, which is caught by a sig-
nal handler we have added to the source code inmain().
The signal handler simply notifies the operating system to
abort all state changes made by the process while process-
ing this request. To do this, we added a new system call
to the operating system,transaction(). This is condition-
ally (as directed by theshadowenable()macro) invoked
at three locations in the code:

• Inside the main processing loop, prior to the begin-
ning of handling of a new request, to indicate to the
operating system that a new transaction has begun.
The operating system makes a backup of all memory
page permissions, and marks all heap memory pages
as read-only. As the process executes and modifies
these pages, the operating system maintains a copy
of the original page and allocates a new page (which
is given the permissions the original page had from
the backup) for the process to use, in exactly the
same way copy-on-write works in modern operating
system. Both copies of the page are maintained until
transaction()is called again, as we describe below.
This call to transaction()must be placed manually
by the programmer or system designer.

• Inside the main processing loop, immediately after

the end of handling a request, to indicate to the oper-
ating system that a transaction has successfully com-
pleted. The operating system then discards all origi-
nal copies of memory pages that have been modified
during processing this request. This call totransac-
tion() must also be placed manually.

• Inside the signal handler that is installed automati-
cally by our tool, to indicate to the operating system
that an exception (attack) has been detected. The
operating system then discards all modified memory
pages by restoring the original pages.

Although we have not implemented this, a similar
mechanism can be built around the filesystem by using a
private copy of the buffer cache for the process executing
in shadow mode. The only difficulty arises when the pro-
cess must itself communicate with another process while
servicing a request; unless the second process is also in-
cluded in the transaction definition (which may be impos-
sible, if it is a remote process on another system), overall
system state may change without the ability to roll it back.
For example, this may happen when a web server com-
municates with a remote back-end database. Our system
does not currently address this,i.e., we assume that any
such state changes are benign or irrelevant (e.g.,a DNS
query). Specifically for the case of a back-end database,
these inherently support the concept of a transaction roll-
back, so it is possible to undo any changes.

The signal handler may also notify external logic to
indicate that an attack associated with a particular input
from a specific source has been detected. The external

7

logic may then instantiate a filter, either based on the net-
work source of the request or the contents of the pay-
load [52].

4 Experimental Evaluation

We have tested our shadow honeypot implementation
against a number of exploits, including a recent Mozilla
PNG bug and several Apache-specific exploits. In this
section, we report on performance benchmarks that illus-
trate the efficacy of our implementation.

First, we measure the cost of instantiating and op-
erating shadow instances of specific services using the
Apache web server and the Mozilla Firefox web browser.
Second, we evaluate the filtering and anomaly detec-
tion components, and determine the throughput of the
IXP1200-based load balancer as well as the cost of run-
ning the detection heuristics. Third, we look at the false
positive rates and the trade-offs associated with detec-
tion performance. Based on these results, we determine
how to tune the anomaly detection heuristics in order to
increase detection performance while not exceeding the
budget alloted by the shadow services.

4.1 Performance of shadow services

Apache To determine the workload capacity of the
shadow honeypot environment, we used DYBOC on the
Apache web server, version 2.0.49. Apache was chosen
due to its popularity and source-code availability. Ba-
sic Apache functionality was tested, omitting additional
modules. The tests were conducted on a PC with a 2GHz
Intel P4 processor and 1GB of RAM, running Debian
Linux (2.6.5-1 kernel).

We used ApacheBench [4], a complete benchmarking
and regression testing suite. Examination of application
response is preferable to explicit measurements in the
case of complex systems, as we seek to understand the
effect on overall system performance.

Figure 7 illustrates the requests per second that Apache
can handle. There is a 20.1% overhead for the patched
version of Apache over the original, which is expected
since the majority of the patched buffers belong to utility
functions that are not heavily used. This result is an indi-
cation of the worst-case analysis, since all the protection
flags were enabled; although the performance penalty is
high, it is not outright prohibitive for some applications.
For the instrumentation of a single buffer and a vulnera-
ble function that is invoked once per HTTP transaction,
the overhead is 1.18%.

Of further interest is the increase in memory require-
ments for the patched version. A naive implementation of
pmalloc()would require two additional memory pages for
each transformed buffer. Full transformation of Apache
translates into 297 buffers that are allocated withpmal-
loc(), adding an overhead of 2.3MB if all of these buffers
are invoked simultaneously during program execution.
When protectingmalloc()’ed buffers, the amount of re-
quired memory can skyrocket.

To avoid this overhead, we use anmmap()based allo-
cator. The two guard pages aremmap’ed write-protected
from /dev/zero, without requiring additional physical
memory to be allocated. Instead, the overhead of our
mechanism is 2 page-table entries (PTEs) per allocated
buffer, plus one file descriptor (for/dev/zero) per pro-
gram. As most modern processors use an MMU cache
for frequently used PTEs, and since the guard pages are
only accessed when a fault occurs, we expect their impact
on performance to be small.

Mozilla Firefox For the evaluation of the client case,
we used the Mozilla Firefox browser. For the initial vali-
dation tests, we back-ported the recently reportedlibpng
vulnerability [7] that enables arbitrary code execution if
Firefox (or any application usinglibpng) attempts to dis-
play a specially crafted PNG image. Interestingly, this ex-
ample mirrors a recent vulnerability of Internet Explorer,
and JPEG image handling [6], which again enabled ar-
bitrary code execution when displaying specially crafted
images.

In the tightly-coupled scenario, the protected version of
the application shares the address space with the unmodi-
fied version. This is achieved by transforming the original
source code with our DYBOC tool. Suspicious requests
are tagged by the ADS so that they are processed by the
protected version of the code as discussed in Section 3.2.

For the loosely-coupled case, when the AD component
marks a request for processing on the shadow honeypot,
we launch the instrumented version of Firefox to replay
the request. The browser is configured to use a null X
server as provided byXvfb. All requests are handled by
a transparent proxy that redirects these requests to an in-
ternal Web server. The Web server then responds with
the objects served by the original server, as captured in
the original session. The workload that the shadow hon-
eypot can process in the case of Firefox is determined by
how many responses per second a browser can process
and how many different browser versions can be checked.

Our measurements show that a single instance of Fire-
fox can handle about one request per second with restart-
ing after processing each response. Doing this only after

8

Figure 7:Apache benchmark results. Figure 8: Normalized Mozilla Firefox benchmark results
using modified version of i-Bench.

detecting a successful attack improves the result to about
four requests per second. By restarting, we avoid the ac-
cumulation of various pop-ups and other side-effects. Un-
like the server scenario, instrumenting the browser does
not seem to have any significant impact on performance.
If that was the case, we could have used the rollback
mechanism discussed previously to reduce the cost of
launching new instances of the browser.

We further evaluate the performance implications of
fully instrumenting a web browser. These observa-
tions apply to both loosely-coupled and tightly-coupled
shadow honeypots. Web browsing performance was mea-
sured using a Mozilla Firefox 1.0 browser to run a bench-
mark based on the i-Bench benchmark suite [1]. i-Bench
is a comprehensive, cross-platform benchmark that tests
the performance and capability of Web clients. Specifi-
cally, we use a variant of the benchmark that allows for
scrolling of a web page and uses cookies to store the load
times for each page. Scrolling is performed in order to
render the whole page, providing a pessimistic emula-
tion of a typical attack. The benchmark consists of a
sequence of 10 web pages containing a mix of text and
graphics; the benchmark was ran using both the scrolling
option and the standard page load mechanisms. For the
standard page load configuration, the performance degra-
dation for instrumentation was 35%. For the scrolling
configuration, where in addition to the page load time,
the time taken to scroll through the page is recorded, the
overhead was 50%. The results follow our intuition as
more calls tomallocare required to fully render the page.
Figure 8 illustrates the normalized performance results.
It should be noted that depending on the browser imple-
mentation (whether the entire page is rendered on page

load) mechanisms such at the automatic scrolling need to
be implemented in order to protected against targeted at-
tacks. Attackers may hide malicious code in unrendered
parts of a page or in javascript code activated by user-
guided pointer movement.

 0

 100000

 200000

 300000

 400000

 500000

 600000

1.
8b

1.
8a

6
1.

8a
5

1.
8a

4
1.

8a
3

1.
8a

2
1.

7b
1.

7.
5

1.
7.

3
1.

7.
2

1.
7.

1
1.

7
1.

6a1.
6

1.
5a1.
5

1.
4b

1.
4.

3
1.

4.
2

1.
4.

1
1.

4
1.

3.
1

1.
3

1.
2.

1
1.

1
1.

0.
2

1.
0.

1
1.

0.
0

0.
9.

9
0.

9.
8

0.
9.

4.
2

0.
9.

4.
1

0.
9.

4
0.

9.
2.

1
0.

9.
2

P
op

ul
ar

ity
 (

R
eq

ue
st

s)

Mozilla version

Popularity of different mozilla versions

Figure 9:Popularity of different Mozilla versions, as mea-
sured in the logs of CIS Department Web server at the Uni-
versity of Pennsylvania.

How many different browser versions would have to be
checked by the system? Figure 9 presents some statistics
concerning different browser versions of Mozilla. The
browser statistics were collected over a 5-week period
from the CIS Department web server at the University of
Pennsylvania. As evidenced by the figure, one can expect
to check up to 6 versions of a particular client. We expect

9

Detection method Throughput/sensor

Content matching 225 Mbit/s
APE 190 Mbit/s

Payload Sifting 268 Mbit/s

Table 1: PC Sensor throughput for different detection
mechanisms.

that this distribution will be more stabilized around final
release versions and expect to minimize the number of
different versions that need to be checked based on their
popularity.

4.2 Filtering and anomaly detection

IXP1200-based firewall/load-balancer. We first
determine the performance of the IXP1200-based
firewall/load-balancer. The IXP1200 evaluation board
we use has two Gigabit Ethernet interfaces and eight
Fast Ethernet interfaces. The Gigabit Ethernet interfaces
are used to connect to the internal and external network
and the Fast Ethernet interfaces to communicate with the
sensors. A set of client workstations is used to generate
traffic through the firewall. The firewall forwards traffic
to the sensors for processing and the sensors determine
if the traffic should be dropped, redirected to the shadow
honeypot, or forwarded to the internal network.

Previous studies [38] have reported forwarding rates
of at least 1600 Mbit/s for the IXP1200, when used as a
simple forwarder/router, which is sufficient to saturate a
Gigabit Ethernet interface. Our measurements show that
despite the added cost of load balancing, filtering and co-
ordinating with the sensors, the firewall can still handle
the Gigabit Ethernet interface at line rate.

To gain insight into the actual overhead of our imple-
mentation we carry out a second experiment, using Intel’s
cycle-accurate IXP1200 simulator. We assume a clock
frequency of 232 MHz for the IXP1200, and an IX bus
configured to be 64-bit wide with a clock frequency of
104 MHz. In the simulated environment, we obtain de-
tailed utilization measurements for themicroenginesof
the IXP1200. The results are shown in Table 10. The re-
sults show that even at line rate and worst-case traffic the
implementation is quite efficient, as the microengines op-
erate at 50.9%-71.5% of their processing capacity. These
results provide further insight into the scalability of our
design.

PC-based sensor performance. We also measure the
throughput of the PC-based sensors that cooperate

Packet Size (bytes)
64 512 1024 1518

U
til

iz
at

io
n

of
 M

ic
ro

en
gi

ne
s(

%
)

20

30

40

50

60

70

80
FWD
LB
SPLITTER
LB+FWD

Figure 10: Utilization(%) of the IXP1200 Microengines,
for forwarding-only (FWD), load-balancing-only (LB), bot h
(LB+FWD), and full implementation (FULL), in stress-tests
with 800 Mbit/s worst-case 64-byte-packet traffic.

with the IXP1200 for analyzing traffic and performing
anomaly detection. For this experiment, we use a 2.66
GHz Pentium IV Xeon processor with hyper-threading
disabled. The PC has 512 Mbytes of DDR DRAM at
266 MHz. The PCI bus is 64-bit wide clocked at 66
MHz. The host operating system is Linux (kernel version
2.4.22, Red-Hat 9.0).

We use LAN traces to stress-test a single sensor run-
ning a modified version ofsnort that, in addition to basic
signature matching, provides the hooks needed to coor-
dinate with the IXP1200 as well as the APE and payload
sifting heuristics. We replay the traces from a remote sys-
tem through the IXP1200 at different rates to determine
themaximum loss-free rate(MLFR) of the sensor. For the
purpose of this experiment, we connected a sensor to the
second Gigabit Ethernet interface of the IXP1200 board.

The measured throughput of the sensor for signature
matching using APE and Earlybird is shown in Table 1.
The throughput per sensor ranges between 190 Mbit/s
(APE) and 268 Mbit/s (payload sifting), while stan-
dard signature matching can be performed at 225 Mbit/s.
This means that we need at least 4-5 sensors behind the
IXP1200 for each of these mechanisms. Note, however,
that these results are rather conservative and based on un-
optimized code, and thus only serve the purpose of pro-
viding a ballpark figure on the cost of anomaly detection.

False positive vs. detection rate trade-offs We deter-
mine the workload that is generated by the AD heuristics,
by measuring the false positive rate. We also consider
the trade-off between false positives and detection rate,
to demonstrate how the AD heuristics could be tuned to

10

 0

 5

 10

 15

 20

 2 3 4 5 6 7 8 9 10 11 12 13
 0

 10

 20

 30

 40

 50

F
al

se
 p

os
iti

ve
s

(p
er

 m
in

ut
e)

D
et

ec
tio

n
de

la
y

(%
 in

fe
ct

ed
)

Distinct destination threshold

Payload sifting performance

detection delay
false positives

Figure 11:FPs for payload sifting

 0

 5

 10

 15

 20

 30 35 40 45 50

F
al

se
 p

os
iti

ve
s

(p
er

 m
in

ut
e)

MEL threshold (number of sled instructions)

APE performance

APE

Figure 12:FPs for APE

increase detection rate in our shadow honeypot environ-
ment. We use the payload sifting implementation from
[8], and the APE algorithm from [48]. The APE ex-
periment corresponds to a tightly-coupled shadow server
scenario, while the payload sifting experiment examines
a loosely-coupled shadow honeypot scenario that can be
used for worm detection.

We run the modified snort sensor implementing APE
and payload sifting on packet-level traces captured on an
enterprise LAN with roughly 150 hosts. Furthermore,
the traces contain several instances of the Welchia worm.
APE was applied on the URIs contained in roughly one-
billion HTTP requests gathered by monitoring the same
LAN.

Figure 11 demonstrates the effects of varying the dis-
tinct destinations threshold of the content sifting AD on
the false positives (measured in requests to the shadow
services per minute) and the (Welchia worm) detection
delay (measured in ratio of hosts in the monitored LAN
infected by the time of the detection).

Increasing the threshold means more attack instances
are required for triggering detection, and therefore in-
creases the detection delay and reduces the false posi-
tives. It is evident that to achieve a zero false positives
rate without shadow honeypots we must operate the sys-
tem with parameters that yield a suboptimal detection de-
lay.

The detection rate for APE is the minimum sled length
that it can detect and depends on the sampling factor and
the MEL parameter (the number of valid instructions that
trigger detection). A high MEL value means less false
positives due to random valid sequences but also makes
the heuristic blind to sleds of smaller lengths.

Figure 12 shows the effects of MEL threshold on the
false positives. APE can be used in a tightly coupled
scenario, where the suspect requests are redirected to the
instrumented server instances. The false positives (mea-
sured in requests to the shadow services per minute by
each of the normal services under maximum load) can
be handled easily by a shadow honeypot. APE alone has
false positives for the entire range of acceptable opera-
tional parameters; it is the combination with shadow hon-
eypots that removes the problem.

5 Limitations

There are three limitations of the shadow honeypot de-
sign presented in this paper that we are aware of. First, the
effectiveness of the rollback mechanism depends on the
proper placement of calls totransaction() for commit-
ting state changes, and the latency of the detector. The
detector used in this paper can instantly detect attempts
to overwrite a buffer, and therefore the system cannot be
corrupted. Other detectors, however, may have higher
latency, and the placement of commit calls is critical to
recovering from the attack. Depending on the detector
latency and how it relates to the cost of implementing
rollback, one may have to consider different approaches.
The trade-offs involved in designing such mechanisms
are thoroughly examined in the fault-tolerance literature
(c.f. [14]).

Second, the loosely coupled client shadow honeypot
is limited to protecting against relatively static attacks.
The honeypot cannot effectively emulate user behavior
that may be involved in triggering the attack, for exam-

11

ple, through DHTML or Javascript. The loosely coupled
version is also weak against attacks that depend on local
system state on the user’s host that is difficult to replicate.
This is not a problem with tightly coupled shadows, be-
cause we accurately mirror the state of the real system. In
some cases, it may be possible to mirror state on loosely
coupled shadows as well, but we have not considered this
case in the experiments presented in this paper.

Finally, we have not explored in depth the use of feed-
back from the shadow honeypot to tune the anomaly de-
tection components. Although this is likely to lead to
substantial performance benefits, we need to be careful
so that an attacker cannot launch blinding attacks,e.g.,
“softening” the anomaly detection component through a
barrage of false positives before launching a real attack.

6 Related Work

Much of the work in automated attack reaction has fo-
cused on the problem of network worms, which has taken
truly epidemic dimensions (pun intended). For example,
the system described in [56] detects worms by monitoring
probes to unassigned IP addresses (“dark space”) or inac-
tive ports and computing statistics on scan traffic, such as
the number of source/destination addresses and the vol-
ume of the captured traffic. By measuring the increase
on the number of source addresses seen in a unit of time,
it is possible to infer the existence of a new worm when
as little as 4% of the vulnerable machines have been in-
fected. A similar approach for isolating infected nodes
inside an enterprise network [41] is taken in [15], where
it was shown that as little as 4 probes may be sufficient
in detecting a new port-scanning worm. [54] describes
an approximating algorithm for quickly detecting scan-
ning activity that can be efficiently implemented in hard-
ware. [34] describes a combination of reverse sequen-
tial hypothesis testing and credit-based connection throt-
tling to quickly detect and quarantine local infected hosts.
These systems are effective only against scanning worms
(not topological, or “hit-list” worms), and rely on the as-
sumption that most scans will result in non-connections.
As such, they as susceptible to false positives, either ac-
cidentally (e.g.,when a host is joining a peer-to-peer net-
work such as Gnutella, or during a temporary network
outage) or on purpose (e.g.,a malicious web page with
many links to images in random/not-used IP addresses).
Furthermore, it may be possible for several instances of
a worm to collaborate in providing the illusion of several
successful connections, or to use a list ofknown repliers
to blind the anomaly detector. Another algorithm for find-

ing fast-spreading worms using 2-level filtering based on
sampling from the set of distinct source-destination pairs
is described in [50].

[55] correlates DNS queries/replies with outgoing con-
nections from an enterprise network to detect anomalous
behavior. The main intuition is that connections due to
random-scanning (and, to a degree, hit-list) worms will
not be preceded by DNS transactions. This approach can
be used to detect other types of malicious behavior, such
as mass-mailing worms and network reconnaissance.

[17] describes an algorithm for correlating packet pay-
loads from different traffic flows, towards deriving a
worm signature that can then be filtered [23]. The tech-
nique is promising, although further improvements are
required to allow it to operate in real time. Earlybird
[36] presents a more practical algorithm for doing pay-
load sifting, and correlates these with a range of unique
sources generating infections and destinations being tar-
geted. However, polymorphic and metamorphic worms
[46] remain a challenge; Spinelis [39] shows that it is
an NP-hard problem. Buttercup [25] attempts to detect
polymorphic buffer overflow attacks by identifying the
ranges of the possible return memory addresses for ex-
isting buffer overflow vulnerabilities. Unfortunately, this
heuristic cannot be employed against some of the more
sophisticated overflow attack techniques [26]. Further-
more, the false positive rate is very high, ranging from
0.01% to 1.13%. Vignaet al. [51] discuss a method for
testing detection signatures against mutations of known
vulnerabilities to determine the quality of the detection
model and mechanism. In [52], the authors describe
a mechanism for pushing to workstations vulnerability-
specific, application-aware filters expressed as programs
in a simple language. These programs roughly mirror the
state of the protected service, allowing for more intelli-
gent application of content filters, as opposed to simplis-
tic payload string matching.

HoneyStat [13] runs sacrificial services inside a vir-
tual machine, and monitors memory, disk, and network
events to detect abnormal behavior. For some classes of
attacks (e.g.,buffer overflows), this can produce highly
accurate alerts with relatively few false positives, and can
detect zero-day worms. Although the system only pro-
tects against scanning worms, “active honeypot” tech-
niques [58] may be used to make it more difficult for an
automated attacker to differentiate between HoneyStats
and real servers. The Internet Motion Sensor [9] is a dis-
tributed blackhole monitoring system aimed at measur-
ing, characterizing, and tracking Internet-based threats,
including worms. [12] explores the various options in lo-
cating honeypots and correlating their findings, and their

12

impact on the speed and accuracy in detecting worms and
other attacks.

Reference [35] proposes the use of honeypots with in-
strumented versions of software services to be protected,
coupled with an automated patch-generation facility. This
allows for quick (< 1 minute) fixing of buffer overflow
vulnerabilities, even against zero-day worms, but depends
on scanning behavior on the part of worms. Toth and
Kruegel [48] propose to detect buffer overflow payloads
(including previously unseen ones) by treating inputs re-
ceived over the network as code fragments; they show
that legitimate requests will appear to contain relatively
short sequences of validx86 instruction opcodes, com-
pared to attacks that will contain long sequences. They
integrate this mechanism into the Apache web server, re-
sulting in a small performance degradation.

The HACQIT architecture [16, 31, 29, 30] uses var-
ious sensors to detect new types of attacks against se-
cure servers, access to which is limited to small num-
bers of users at a time. Any deviation from expected or
known behavior results in the possibly subverted server
to be taken off-line. A sandboxed instance of the server
is used to conduct “clean room” analysis, comparing the
outputs from two different implementations of the ser-
vice (in their prototype, the Microsoft IIS and Apache
web servers were used to provide application diver-
sity). Machine-learning techniques are used to general-
ize attack features from observed instances of the attack.
Content-based filtering is then used, either at the firewall
or the end host, to block inputs that may have resulted in
attacks, and the infected servers are restarted. Due to the
feature-generalization approach, trivial variants of theat-
tack will also be caught by the filter. [49] takes a roughly
similar approach, although filtering is done based on port
numbers, which can affect service availability. Cisco’s
Network-Based Application Recognition (NBAR) [2] al-
lows routers to block TCP sessions based on the presence
of specific strings in the TCP stream. This feature was
used to block CodeRed probes, without affecting regu-
lar web-server access. Porraset al. [27] argue that hy-
brid defenses using complementary techniques (in their
case, connection throttling at the domain gateway and a
peer-based coordination mechanism), can be much more
effective against a wide variety of worms.

DOMINO [57] is an overlay system for cooperative in-
trusion detection. The system is organized in two layers,
with a small core of trusted nodes and a larger collection
of nodes connected to the core. The experimental analy-
sis demonstrates that a coordinated approach has the po-
tential of providing early warning for large-scale attacks
while reducing potential false alarms. Reference [59] de-

scribes an architecture and models for an early warning
system, where the participating nodes/routers propagate
alarm reports towards a centralized site for analysis. The
question of how to respond to alerts is not addressed, and,
similar to DOMINO, the use of a centralized collection
and analysis facility is weak against worms attacking the
early warning infrastructure.

Suh et al. [44], propose a hardware-based solution
that can be used to thwart control-transfer attacks and re-
strict executable instructions by monitoring “tainted” in-
put data. In order to identify “tainted” data, they rely
on the operating system. If the processor detects the use
of this tainted data as a jump address or an executed in-
struction, it raises an exception that can be handled by
the operating system. The authors do not address the is-
sue of recovering program execution and suggest the im-
mediate termination of the offending process. DIRA [37]
is a technique for automatic detection, identification and
repair of control-hijaking attacks. This solution is imple-
mented as a GCC compiler extension that transforms a
program’s source code adding heavy instrumentation so
that the resulting program can perform these tasks. The
use of checkpoints throughout the program ensures that
corruption of state can be detected if control sensitive
data structures are overwritten. Unfortunately, the per-
formance implications of the system make it unusable as
a front line defense mechanism. Song and Newsome [24]
propose dynamic taint analysis for automatic detection of
overwrite attacks. Tainted data is monitored throughout
the program execution and modified buffers with tainted
information will result in protection faults. Once an at-
tack has been identified, signatures are generated using
automatic semantic analysis. The technique is imple-
mented as an extension to Valgrind and does not require
any modifications to the program’s source code but suf-
fers from severe performance degradation.

The Safe Execution Environment (SEE) [45] allows
users to deploy and test untrusted software without fear
of damaging their system. This is done by creating a
virtual environment where the software has read access
to the real data; all writes are local to this virtual envi-
ronment. The user can inspect these changes and decide
whether to commit them or not. We envision use of this
technique for unrolling the effects of filesystem changes
in our system, as part of our future work plans. A similar
proposal is presented in [21] for executing untrusted Java
applets in a safe “playground” that is isolated from the
user’s environment.

13

7 Conclusion

We have described a novel approach to dealing with
zero-day attacks by combining features found today in
honeypots and anomaly detection systems. The main ad-
vantage of this architecture is providing system designers
the ability to fine tune systems with impunity, since any
false positives (legitimate traffic) will be filtered by the
underlying components.

We have implemented this approach in an architecture
called Shadow Honeypots. In this approach, we employ
an array of anomaly detectors to monitor and classify all
traffic to a protected network; traffic deemed anomalous
is processed by a shadow honeypot, a protected instru-
mented instance of the application we are trying to pro-
tect. Attacks against the shadow honeypot are detected
and caught before they infect the state of the protected ap-
plication. This enables the system to implement policies
that trade off between performance and risk, retaining the
capability to re-evaluate this trade-off effortlessly.

Finally, the preliminary performance experiments indi-
cate that despite the considerable cost of processing sus-
picious traffic on our Shadow Honeypots and overhead
imposed by instrumentation, our system is capable of sus-
taining the overall workload of protecting services such
as a Web server farm, as well as vulnerable Web browsers.
In the future, we expect that the impact on performance
can be minimized by reducing the rate of false positives
and tuning the AD heuristics using a feedback loop with
the shadow honeypot. Our plans for future work also in-
clude evaluating different components and extending the
performance evaluation.

Acknowledgments

The work of Kostas Anagnostakis is supported by
OSD/ONR CIP/SW URI under grants N00014-01-1-
0795 and N00014-04-1-0725. The work of P. Akritidis,
K. Xinidis and E. Markatos was supported in part by
the GSRT project EAR (USA-022) funded by the Greek
Secretariat for Research and Technology and by the IST
project NoAH (011923) funded by the European Union.
P. Akritidis, K. Xinidis and E. Markatos are also with the
University of Crete.

References

[1] i-Bench. http://http://www.veritest.com/
benchmarks/i-bench/default.asp.

[2] Using Network-Based Application Recognition and Access Con-
trol Lists for Blocking the ”Code Red” Worm at Network Ingress
Points. Technical report, Cisco Systems, Inc.

[3] CERT Advisory CA-2001-19: ‘Code Red’ Worm Exploiting
Buffer Overflow in IIS Indexing Service DLL.http://www.
cert.org/advisories/CA-2001-19.html, July 2001.

[4] ApacheBench: A complete benchmarking and regression
testing suite. http://freshmeat.net/projects/
apachebench/, July 2003.

[5] Cert Advisory CA-2003-04: MS-SQL Server Worm.http://
www.cert.org/advisories/CA-2003-04.html, Jan-
uary 2003.

[6] Microsoft Security Bulletin MS04-028: Buffer Over-
run in JPEG Processing Could Allow Code Execution.
http://www.microsoft.com/technet/security/
bulletin/MS04-028.mspx, September 2004.

[7] US-CERT Technical Cyber Security Alert TA04-217A: Multi-
ple Vulnerabilities in libpng.http://www.us-cert.gov/
cas/techalerts/TA04-217A.html, August 2004.

[8] P. Akritidis, K. Anagnostakis, and E. P. Markatos. Efficient
content-based fingerprinting of zero-day worms. InProceedings
of the IEEE International Conference on Communications (ICC),
May 2005.

[9] M. Bailey, E. Cooke, F. Jahanian, J. Nazario, and D. Watson. The
Internet Motion Sensor: A Distributed Blackhole Monitoring Sys-
tem. InProceedings of the12th ISOC Symposium on Network and
Distributed Systems Security (SNDSS), pages 167–179, February
2005.

[10] M. Bhattacharyya, M. G. Schultz, E. Eskin, S. Hershkop,and
S. J. Stolfo. MET: An Experimental System for Malicious Email
Tracking. InProceedings of the New Security Paradigms Work-
shop (NSPW), pages 1–12, September 2002.

[11] C. Clark, W. Lee, D. Schimmel, D. Contis, M. Kone, and
A. Thomas. A Hardware Platform for Network Intrusion De-
tection and Prevention. InProceedings of the3rd Workshop on
Network Processors and Applications (NP3), February 2004.

[12] E. Cook, M. Bailey, Z. M. Mao, and D. McPherson. Toward Un-
derstanding Distributed Blackhole Placement. InProceedings of
the ACM Workshop on Rapid Malcode (WORM), pages 54–64,
October 2004.

[13] D. Dagon, X. Qin, G. Gu, W. Lee, J. Grizzard, J. Levine, and
H. Owen. HoneyStat: Local Worm Detection Using Honepots.
In Proceedings of the7th International Symposium on Recent
Advances in Intrusion Detection (RAID), pages 39–58, October
2004.

[14] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson.A sur-
vey of rollback-recovery protocols in message-passing systems.
ACM Comput. Surv., 34(3):375–408, 2002.

[15] J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan. Fast
Portscan Detection Using Sequential Hypothesis Testing. In Pro-
ceedings of the IEEE Symposium on Security and Privacy, May
2004.

[16] J. E. Just, L. A. Clough, M. Danforth, K. N. Levitt, R. Maglich,
J. C. Reynolds, and J. Rowe. Learning Unknown Attacks – A
Start. InProceedings of the5th International Symposium on Re-
cent Advances in Intrusion Detection (RAID), October 2002.

[17] H. Kim and B. Karp. Autograph: Toward Automated, Distributed
Worm Signature Detection. InProceedings of the13th USENIX
Security Symposium, pages 271–286, August 2004.

14

[18] C. Kruegel, F. Valeur, G. Vigna, and R. Kemmerer. Stateful Intru-
sion Detection for High-Speed Networks. InProceedings of the
IEEE Symposium on Security and Privacy, pages 285–294, May
2002.

[19] C. Kruegel and G. Vigna. Anomaly Detection of Web-basedAt-
tacks. InProceedings of the10th ACM Conference on Computer
and Communications Security (CCS), pages 251–261, October
2003.

[20] J. G. Levine, J. B. Grizzard, and H. L. Owen. Using Honeynets
to Protect Large Enterprise Networks.IEEE Security & Privacy,
2(6):73–75, November/December 2004.

[21] D. Malkhi and M. K. Reiter. Secure execution of java applets us-
ing a remote playground.IEEE Trans. Softw. Eng., 26(12):1197–
1209, 2000.

[22] A. J. Malton. The Denotational Semantics of a Functional Tree-
Manipulation Language.Computer Languages, 19(3):157–168,
1993.

[23] D. Moore, C. Shannon, G. Voelker, and S. Savage. Internet Quar-
antine: Requirements for Containing Self-Propagating Code. In
Proceedings of the IEEE Infocom Conference, April 2003.

[24] J. Newsome and D. Dong. Dynamic Taint Analysis for Auto-
matic Detection, Analysis, and Signature Generation of Exploits
on Commodity Software. InProceedings of the12th ISOC Sym-
posium on Network and Distributed System Security (SNDSS),
pages 221–237, February 2005.

[25] A. Pasupulati, J. Coit, K. Levitt, S. F. Wu, S. H. Li, J. C.Kuo,
and K. P. Fan. Buttercup: On Network-based Detection of Poly-
morphic Buffer Overflow Vulnerabilities. InProceedings of the
Network Operations and Management Symposium (NOMS), pages
235–248, vol. 1, April 2004.

[26] J. Pincus and B. Baker. Beyond Stack Smashing: Recent Ad-
vances in Exploiting Buffer Overflows.IEEE Security & Privacy,
2(4):20–27, July/August 2004.

[27] P. Porras, L. Briesemeister, K. Levitt, J. Rowe, and Y.-C. A. Ting.
A Hybrid Quarantine Defense. InProceedings of the ACM Work-
shop on Rapid Malcode (WORM), pages 73–82, October 2004.

[28] N. Provos. A Virtual Honeypot Framework. InProceedings of the
13

th USENIX Security Symposium, pages 1–14, August 2004.

[29] J. Reynolds, J. Just, E. Lawson, L. Clough, and R. Maglich. On-
line Intrusion Protection by Detecting Attacks with Diversity. In
Proceedings of the16th Annual IFIP 11.3 Working Conference
on Data and Application Security Conference, April 2002.

[30] J. C. Reynolds, J. Just, L. Clough, and R. Maglich. On-Line Intru-
sion Detection and Attack Prevention Using Diversity, Generate-
and-Test, and Generalization. InProceedings of the36th Annual
Hawaii International Conference on System Sciences (HICSS),
January 2003.

[31] J. C. Reynolds, J. Just, E. Lawson, L. Clough, and R. Maglich.
The Design and Implementation of an Intrusion Tolerant System.
In Proceedings of the International Conference on Dependable
Systems and Networks (DSN), June 2002.

[32] M. Roesch. Snort: Lightweight intrusion detection fornetworks.
In Proceedings of USENIX LISA, November 1999. (software
available fromhttp://www.snort.org/).

[33] L. Schaelicke, T. Slabach, B. Moore, and C. Freeland. Character-
izing the Performance of Network Intrusion Detection Sensors. In
Proceedings of Recent Advances in Intrusion Detection (RAID),
September 2003.

[34] S. E. Schechter, J. Jung, and A. W. Berger. Fast Detection of Scan-
ning Worm Infections. InProceedings of the7th International
Symposium on Recent Advances in Intrusion Detection (RAID),
pages 59–81, October 2004.

[35] S. Sidiroglou and A. D. Keromytis. A Network Worm Vaccine
Architecture. InProceedings of the IEEE Workshop on Enterprise
Technologies: Infrastructure for Collaborative Enterprises (WET-
ICE), Workshop on Enterprise Security, pages 220–225, June
2003.

[36] S. Singh, C. Estan, G. Varghese, and S. Savage. Automated worm
fingerprinting. InProceedings of the6th Symposium on Operat-
ing Systems Design & Implementation (OSDI), December 2004.

[37] A. Smirnov and T. Chiueh. DIRA: Automatic Detection, Identifi-
cation, and Repair of Control-Hijacking Attacks. InProceedings
of the12

th ISOC Symposium on Network and Distributed System
Security (SNDSS), February 2005.

[38] T. Spalink, S. Karlin, L. Peterson, and Y. Gottlieb. Building a
Robust Software-Based Router Using Network Processors. In
Proceedings of the18th ACM Symposium on Operating Systems
Principles (SOSP), pages 216–229, Chateau Lake Louise, Banff,
Alberta, Canada, October 2001.

[39] D. Spinellis. Reliable identification of bounded-length viruses
is NP-complete. IEEE Transactions on Information Theory,
49(1):280–284, January 2003.

[40] L. Spitzner. Honeypots: Tracking Hackers. Addison-Wesley,
2003.

[41] S. Staniford. Containment of Scanning Worms in Enterprise Net-
works. Journal of Computer Security, 2005. (to appear).

[42] S. Staniford, D. Moore, V. Paxson, and N. Weaver. The TopSpeed
of Flash Worms. InProceedings of the ACM Workshop on Rapid
Malcode (WORM), pages 33–42, October 2004.

[43] S. Staniford, V. Paxson, and N. Weaver. How to Own the Internet
in Your Spare Time. InProceedings of the11th USENIX Security
Symposium, pages 149–167, August 2002.

[44] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure program
execution via dynamic information flow tracking.SIGOPS Oper-
ating Systems Review, 38(5):85–96, 2004.

[45] W. Sun, Z. Liang, R. Sekar, and V. N. Venkatakrishnan. One-way
Isolation: An Effective Approach for Realizing Safe Execution
Environments. InProceedings of the12th ISOC Symposium on
Network and Distributed Systems Security (SNDSS), pages 265–
278, February 2005.

[46] P. Ször and P. Ferrie. Hunting for Metamorphic. Technical report,
Symantec Corporation, June 2003.

[47] Top Layer Networks.http://www.toplayer.com.

[48] T. Toth and C. Kruegel. Accurate Buffer Overflow Detection via
Abstract Payload Execution. InProceedings of the5th Sympo-
sium on Recent Advances in Intrusion Detection (RAID), October
2002.

[49] T. Toth and C. Kruegel. Connection-history Based Anomaly De-
tection. InProceedings of the IEEE Workshop on Information
Assurance and Security, June 2002.

[50] S. Venkataraman, D. Song, P. B. Gibbons, and A. Blum. New
Streaming Algorithms for Fast Detection of Superspreaders. In
Proceedings of the12th ISOC Symposium on Network and Dis-
tributed Systems Security (SNDSS), pages 149–166, February
2005.

15

[51] G. Vigna, W. Robertson, and D. Balzarotti. Testing Network-
based Intrusion Detection Signatures Using Mutant Exploits. In
Proceedings of the11th ACM Conference on Computer and Com-
munications Security (CCS), pages 21–30, October 2004.

[52] H. J. Wang, C. Guo, D. R. Simon, and A. Zugenmaier. Shield:
Vulnerability-Driven Network Filters for Preventing Known Vul-
nerability Exploits. InProceedings of the ACM SIGCOMM Con-
ference, pages 193–204, August 2004.

[53] K. Wang and S. J. Stolfo. Anomalous Payload-based Network
Intrusion Detection. InProceedings of the7th International Sym-
posium on Recent Advanced in Intrusion Detection (RAID), pages
201–222, September 2004.

[54] N. Weaver, S. Staniford, and V. Paxson. Very Fast Containment of
Scanning Worms. InProceedings of the13th USENIX Security
Symposium, pages 29–44, August 2004.

[55] D. Whyte, E. Kranakis, and P. van Oorschot. DNS-based Detec-
tion of Scanning Worms in an Enterprise Network. InProceedings
of the12

th ISOC Symposium on Network and Distributed Systems
Security (SNDSS), pages 181–195, February 2005.

[56] J. Wu, S. Vangala, L. Gao, and K. Kwiat. An Effective Architec-
ture and Algorithm for Detecting Worms with Various Scan Tech-
niques. InProceedings of the ISOC Symposium on Network and
Distributed System Security (SNDSS), pages 143–156, February
2004.

[57] V. Yegneswaran, P. Barford, and S. Jha. Global Intrusion Detec-
tion in the DOMINO Overlay System. InProceedings of the ISOC
Symposium on Network and Distributed System Security (SNDSS),
February 2004.

[58] V. Yegneswaran, P. Barford, and D. Plonka. On the Designand
Use of Internet Sinks for Network Abuse Monitoring. InPro-
ceedings of the7th International Symposium on Recent Advances
in Intrusion Detection (RAID), pages 146–165, October 2004.

[59] C. C. Zou, L. Gao, W. Gong, and D. Towsley. Monitoring and
Early Warning for Internet Worms. InProceedings of the10th

ACM International Conference on Computer and Communica-
tions Security (CCS), pages 190–199, October 2003.

16

