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Abstract 
 

We present a novel image operator that seeks to find the value 

of stroke width for each image pixel, and demonstrate its use on 

the task of text detection in natural images. The suggested 

operator is local and data dependent, which makes it fast and 

robust enough to eliminate the need for multi-scale computation 

or scanning windows.  Extensive testing shows that the suggested 

scheme outperforms the latest published algorithms. Its 

simplicity allows the algorithm to detect texts in many fonts and 

languages.  

1. Introduction 

Detecting text in natural images, as opposed to scans of 

printed pages, faxes and business cards, is an important 

step for a number of Computer Vision applications, such 

as computerized aid for visually impaired, automatic geo-

coding of businesses, and robotic navigation in urban 

environments. Retrieving texts in both indoor and outdoor 

environments provides contextual clues for a wide variety 

of vision tasks. Moreover, it has been shown that the 

performance of image retrieval algorithms depends 

critically on the performance of their text detection 

modules. For example, two book covers of similar design 

but with different text, prove to be virtually 

indistinguishable without detecting and OCRing the text. 

The problem of text detection was considered in a number 

of recent studies [1, 2, 3, 4, 5, 6, 7]. Two competitions 

(Text Location Competition at ICDAR 2003 [8] and 

ICDAR 2005 [9]) have been held in order to assess the 

state of the art.  The qualitative results of the competitions 

demonstrate that there is still room for improvement (the 

winner of ICDAR 2005 text location competition shows 

recall=67% and precision=62%).  This work deviates from 

the previous ones by defining a suitable image operator 

whose output enables fast and dependable detection of 

text. We call this operator the Stroke Width Transform 

(SWT), since it transforms the image data from containing 

color values per pixel to containing the most likely stroke 

width. The resulting system is able to detect text 

regardless of its scale, direction, font and language.   

When applied to images of natural scenes, the success 

rates of OCR drop drastically, as shown in Figure 11. 

There are several reasons for this.  First, the majority of 

OCR engines are designed for scanned text and so depend 

on segmentation which correctly separates text from 

background pixels.   While this is usually simple for 

scanned text, it is much harder in natural images.  Second. 

natural images exhibit a wide range of imaging conditions, 

such as color noise, blur, occlusions, etc. Finally, while the 

page layout for traditional OCR is simple and structured, 

in natural images it is much harder, because there is far 

less text, and there exists less overall structure with high 

variability both in geometry and appearance. 

(a) (b) 

(c) (d) 
Figure 1: The SWT converts the image (a) from containing 

gray values to an array containing likely stroke widths for 

each pixel (b).  This information suffices for extracting the 

text by measuring the width variance in each component as 

shown in (c) because text tends to maintain fixed stroke 

width.  This puts it apart from other image elements such 

as foliage.  The detected text is shown in (d). 

One feature that separates text from other elements of a 

scene is its nearly constant stroke width. This can be 

utilized to recover regions that are likely to contain text. In 

this work, we leverage this fact. We show that a local 

image operator combined with geometric reasoning can be 
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Finding such groups is a significant filtering mechanism as 

single letters do not usually appear in images and this 

reasoning allows us to remove randomly scattered noise. 

An important cue for text is that it appears in a linear 

form. Text on a line is expected to have similarities, 

including similar stroke width, letter width, height and 

spaces between the letters and words.  Including this 

reasoning proves to be both straightforward and valuable.   

For example, a lamp post next to a car wheel would not be 

mistaken for the combination of letters “O” and “I” as the 

post is much higher than the wheel.  We consider each pair 

of letter candidates for the possibility of belonging to the 

same text line.  Two letter candidates should have similar 

stroke width (ratio between the median stroke widths has 

to be less than 2.0).  The height ratio of the letters must 

not exceed 2.0 (due to the difference between capital and 

lower case letters).  The distance between letters must not 

exceed three times the width of the wider one.  

Additionally, average colors of candidates for pairing are 

compared, as letters in the same word are typically 

expected to be written in the same color. All parameters 

were learned by optimizing performance on the training 

set, as described in Section 3.2. 

At the next step of the algorithm, the candidate pairs 

determined above are clustered together into chains. 

Initially, each chain consists of a single pair of letter 

candidates. Two chains can be merged together if they 

share one end and have similar direction. The process ends 

when no chains can be merged. Each produced chain of 

sufficient length (at least 3 letters in our experiments) is 

considered to be a text line. 

 Finally, text lines are broken into separate words, using 

a heuristic that computes a histogram of horizontal 

distances between consecutive letters and estimates the 

distance threshold that separates intra-word letter distances 

from inter-word letter distances. While the problem in 

general does not require this step, we do it in order to 

compare our results with the ones in ICDAR 2003 

database [8]. In the results shown for our database [26] we 

do not employ this step, as we have marked whole text 

lines. 

4. Experiments 

In order to provide a baseline comparison, we ran our 

algorithm on the publicly available dataset in [24]. It was 

used in two most recent text detection competitions: 

ICDAR 2003 [8] and ICDAR 2005 [9].  Although several 

text detection works have been published after the 

competitions, no one claimed to achieve better results on 

this database; moreover, the ICDAR dataset remains the 

most widely used benchmark for text detection in natural 

scenes.  

Many other works remain impossible to compare to due 

to unavailability of their custom datasets. The ICDAR 

dataset contains 258 images in the training set and 251 

images in the test set. The images are full-color and vary 

in size from 307×93 to 1280×960 pixels.  Algorithms are 

compared with respect to f-measure which is in itself a 

combination of two measures:  precision and recall.  We 

follow [8] and describe these here for completeness sake. 

 
Figure 6: Text detection results on several images from the 

ICDAR test set.  Notice the low number of false positives. 

The output of each algorithm is a set of rectangles 

designating bounding boxes for detected words.  This set 

is called the estimate (see Fig. 6).  A set of ground truth 

boxes, called the targets is provided in the dataset.  The 

match mp between two rectangles is defined as the area of 

intersection divided by the area of the minimum bounding 

box containing both rectangles. This number has the value 

one for identical rectangles and zero for rectangles that 

have no intersection.  For each estimated rectangle, the 

closest match was found in the set of targets, and vice 

versa. Hence, the best match ݉ሺݎ; ܴሻ for a rectangle ݎ in a 

set of rectangles ܴ is defined by ݉ሺݎ; ܴሻ ൌ ;ݎሼ݉௣ሺ ݔܽ݉  א 0ݎ |  0ሻݎ   ܴሽ                        (1) 

Then, the definitions for precision and recall is ܲ݊݋݅ݏ݅ܿ݁ݎ ൌ  ∑ ௠ሺ௥೐,்ሻೝ೐אಶ|ா|                                                 (2) ܴ݈݈݁ܿܽ ൌ  ∑ ௠ሺ௥೟,ாሻೝ೟א೅|்|                                                       (3) 

where T and E are the sets of ground-truth and estimated 

rectangles respectively. 

The standard f measure was used to combine the precision 

and recall figures into a single measure of quality. The 

relative weights of these are controlled by a parameter ߙ, 

which we set to 0.5 to give equal weight to precision and 

recall:  ݂ ൌ ଵഀುೝ೐೎೔ೞ೔೚೙ା భషഀೃ೐೎ೌ೗೗                                                            (4) 
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The comparison between precision, recall and f-measure 

of different algorithms tested on the ICDAR database is 

shown in Table 1. 

In order to determine the importance of stroke width 

information (Section 3.1) and geometric filtering (Section 

3.2), we additionally run the algorithm on the test set in 

two more configurations: configuration #1 had all the 

stroke width values less than ∞ set to 5 (changing this 

constant did not affect the results significantly). 

Configuration #2 had the geometric filtering turned off. In 

both cases, the precision and recall dropped (p=0.66, 

r=0.55 in configuration #1, p=0.65, r=0.5 in configuration 

#2). This shows the importance of information provided 

by the SWT. 

In Figure 7 we show typical cases where text was not 

detected.  These are due to strong highlights, transparency 

of the text, size that is out of bounds, excessive blur, and 

curved baseline. 

Algorithm Precisi

on 

Recall f Time 

(sec.) 

Our system 0.73 0.60 0.66 0.94 

Hinnerk Becker* 0.62 0.67 0.62 14.4 

Alex Chen 0.60 0.60 0.58 0.35 

Qiang Zhu 0.33 0.40 0.33 1.6 

Jisoo Kim 0.22 0.28 0.22 2.2 

Nobuo Ezaki 0.18 0.36 0.22 2.8 

Ashida 0.55 0.46 0.50 8.7 

HWDavid 0.44 0.46 0.45 0.3 

Wolf 0.30 0.44 0.35 17.0 

Todoran 0.19 0.18 0.18 0.3 

Full 0.1 0.06 0.08 0.2 

Table 1: Performance comparison of text detection algorithms. 

For more details on ICDAR 2003 and ICDAR 2005 text 

detection competitions, as well as the participating algorithms, 

see [9] and [10]. 
*The algorithm is not published. 

In order to compare our results with [7], we have 

implemented the comparison measures proposed there. 

Our algorithm performance is as follows: the Word Recall  

rate is 79.04%, and the Stroke Precision is 79.59% (since 

our definition of a stroke is different from [7], we counted 

connected components inside and outside the ground truth 

rectangles. Additionally, we counted Pixel Precision, the 

number of pixels inside ground truth rectangles divided by 

the total number of detected pixels. This ratio is 90.39%. 

This outperforms the results shown in  [7] 

In addition to providing result on ICDAR database, we 

propose a new benchmark database for text detection in 

natural images [26]. The database, which will be made 

freely downloadable from our website, consists of 307 

color images of sizes ranging from 1024x1360 to 

1024x768. The database is much harder than ICDAR, due 

to the presence of vegetations, repeating patterns, such as 

windows, virtually undistinguishable from text without 

OCR, etc. Our algorithm's performance on the database is 

as follows:  precision: 0.54, recall:  0.42, f-measure: 0.47. 

Again, in measuring these values we followed the 

methodology described in [8].  

Since one of the byproducts of our algorithm is a letter 

mask, this mask can be used as a text segmentation mask. 

In order to evaluate the usability of the text segmentation  

produced by our algorithm, we presented an off-the-shelf 

OCR package with several natural images, containing text 

and, additionally, with the binarized images representing 

text-background segmentation. The results of the OCR in 

both cases are shown in Figure 11. 

5. Conclusion 

In this work we show how to leverage on the idea of the 

recovery of stroke width for text detection.   We define the 

notion of a stroke and derive an efficient algorithm to 

compute it, producing a new image feature.   Once 

recovered, it provides a feature that has proven to be 

reliable and flexible for text detection.  Unlike previous 

features used for text detection, the proposed SWT 

combines dense estimation (computed at every pixel) with 

non-local scope (stroke width depends on information 

contained sometimes in very far apart pixels). Compared 

to the most recent available tests, our algorithm reached 

first place and was about 15 times faster than the speed 

reported there.   The feature was dominant enough to be 

used by itself, without the need for actual character 

recognition step as used in some previous works [3].  This 

allows us to apply the method to many languages and 

fonts.    

There are several possible extensions for this work.  

The grouping of letters can be improved by considering 

the directions of the recovered strokes. This may allow the 

detection of curved text lines as well.   We intend to 

explore these directions in the future 
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                   (d)                                        (e) 

Figure 7: Examples of failure cases.  These include: strong 

highlights (a), transparent text (b), text that is too small (c), 

blurred text (d) and text with curvature beyond our range (e) 

 

Figure 8: The algorithm was able to detect text in very 

challenging scenarios such as blurry images, non planar surfaces, 

non uniform backgrounds, fancy fonts and even three 

dimensional fonts. All examples here are from the ICDAR 

dataset. 

 
Figure 9: Detected text in various languages. The photos were 

taken from the web. These include printed and hand written, 

connected and disjoint scripts. 

 
 

Figure 10: A mix of text detection in images taken on a city 

street using a video camera.  Note the large variability of 

detected texts, including hard cases such as obscured texts and 

three-dimensional texts. 
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Figure 11: OCR results on the original image and on the recovered text segmentation masks. Columns, from left to right: original image, 

OCR output on the original image, text segmentation mask (superimposed on graylevel versions of original images), OCR output on the 

masks. 

 

 
 

 
Figure 12: Additional examples of detecting text in streetside images. 
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