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Abstract

The ubiquitous use of smartphones has spurred the re-

search in iris recognition on mobile devices in both con-

strained and unconstrained environments. Secure usage

of iris recognition also requires it to be robust to presen-

tation attacks. Motivated by these observations, this pa-

per presents two key contributions. First, a new Uncon-

strained WVU Multi-sensor Iris Presentation Attack (Un-

MIPA) database is created. It consists of more than 18,000

iris images of subjects with and without wearing textured

contact lens captured in both indoor and outdoor environ-

ment using multiple iris sensors. The second contribution of

this paper is a novel algorithm, DensePAD, which utilizes

DenseNet based convolutional neural network architecture

for iris presentation attack detection. In-depth experimen-

tal evaluation of this algorithm reveals its superior perfor-

mance in detecting iris presentation attack images on multi-

ple databases. The performance of the proposed DensePAD

algorithm is also evaluated in real-world scenarios of open-

set iris presentation attacks which highlights the challeng-

ing nature of detecting iris presentation attack images from

unseen distributions.

1. Introduction

It is estimated that over 5 billion individuals will own a

smartphone by the year 2019 [1]. This astounding growth

of smartphones has contributed to the emerging field of mo-

bile biometrics. Apart from the robust nature of traditional

biometrics, mobile biometrics offer portability as a key ad-

vantage [9]. The mobile nature of these sensors facilitates

their deployment in a variety of settings such as e-banking

and authentication for e-commerce.

Due to the reliable nature of iris biometrics [13], iris

sensors and recognition systems are being made available

in the new generation mobile devices [14]. Even though

this feature has been found to be advantageous for numer-

ous applications, it has also introduced unforeseen research

challenges of iris recognition. For instance, acquisition of

iris images may be challenging in outdoor locations during

daytime and in high illumination settings due to reflection.

However, the majority of the research is focused on con-

trolled environment and existing iris image databases con-

tain images acquired using traditional close-capture iris de-

vices.

Apart from uncontrolled environment, another key chal-

lenge to iris recognition systems is presentation attacks such

as print/scan attacks [7], textured contact lens [10], and syn-

thetic irises [17]. In the literature, different approaches have

been developed to detect textured contact lenses as iris pre-

sentation attack [3, 5, 10, 11, 12, 15, 16, 22]. However, this

problem of textured contact lens detection is compounded

by the variations in contact lens manufacturers, contact lens

colors, and iris image acquisition environment. Thus, there

is a need to evaluate the efficacy of iris presentation attack

detection (PAD) algorithms on a database with such unique

characteristics. With these motivations, the main contribu-

tions of this paper are:

• Introduced a novel database named as WVU Uncon-

strained Multi-sensor Iris Presentation Attack (Un-

MIPA) database. This database consists of with and

without textured contact lens iris images acquired in

uncontrolled environmental variations. It contains over

18,000 iris images belonging to 162 eye classes and is

the single largest iris presentation attack database con-

sisting of real and attack iris images.

• Proposed a novel framework named as DensePAD

which utilizes DenseNet based deep learning architec-

ture for iris presentation attack detection. It uses three

dense convolutional blocks to distinguish between real

and attack iris images.

• Showcased state-of-the-art iris presentation attack de-

tection performance of DensePAD on the proposed

WVU UnMIPA and other existing databases.

• Demonstrated the efficacy of the proposed DensePAD

algorithm in detecting open-set iris presentation at-

tacks, specifically, textured contact lenses from unseen

manufacturers and unseen lens color.
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Table 1. Summarizing existing iris presentation attack databases available to the research community. - indicates that the number of subjects

is not available.

Database
No. of

Subjects

No. of

Images

Textured

Contact Lens

Uncontrolled

Environment

Mobile

Sensor

Multiple

Sensors

ND-Iris-Contact-Lens-2010 [2] 211 21,700 ✓ ✗ ✗ ✗

ND-Contact-Lens-2015 [4] 326 7,300 ✓ ✗ ✗ ✓

IIIT-Delhi Contact Lens Iris

Database [19]
101 6,570 ✓ ✗ ✗ ✓

IIIT-Delhi Iris Spoofing Database

[7]
101 4,848 ✗ ✗ ✗ ✓

ATVS-FIr [6] 50 1,600 ✗ ✗ ✗ ✗

LivDet-Iris-2013-Warsaw [23] 284 1,667 ✓ ✗ ✗ ✓

LivDet-Iris-2015-Clarkson [24] 45 3,726 ✓ ✗ ✗ ✗

LivDet-Iris-2017-NotreDame [21] - 4,800 ✓ ✗ ✗ ✓

MUIPAD [20] 35 10,296 ✓ ✓ ✓ ✗

Proposed WVU UnMIPA 81 18,706 ✓ ✓ ✓ ✓

2. Proposed WVU Unconstrained Multi-sensor

Iris Presentation Attack Database

The portable nature of mobile iris based systems enables

their usage in outdoor scenarios. However, acquiring iris

images in uncontrolled settings may deteriorate the perfor-

mance of iris recognition systems and PAD algorithms [20].

To facilitate the research in mobile iris recognition and pre-

sentation attack detection (PAD), there is a need to develop

databases which encompass iris images with and without

textured contact lens acquired in unconstrained settings.

To bridge these gaps, WVU Unconstrained Multi-sensor

Iris Presentation Attack (UnMIPA) database is collected.

The WVU UnMIPA database consists of 18,706 iris images

from 81 subjects. As observed in Table 1, this new database

is the largest iris presentation attack database containing

real and textured contact lens iris images collected in both

controlled indoor and unconstrained outdoor environment.

Figure 1. Scatter plot illustrating the variation in intensity values

at the time of iris image acquisition in WVU UnMIPA database.

Table 2. Highlights of WVU UnMIPA database.

No. of subjects
81 (40 males and 41

females)

Total number of iris images 18,706

No. of real iris images

(without textured contact

lens)

9,319

No. of textured contact lens

iris images
9,387

No. of iris images per sensor

6,607 (EMX-30)

6,611 (BK 2121U)

5,488 (MK 2120U)

No. of contact lens

manufacturers
4

Contact lens manufacturers

Bausch and Lomb,

Freshlook Dailies,

Freshlook

Colorblends,

Celebration

Contact lens colors
Blue, Green, Gray,

Violet, Brown

Data collection environment

Indoors (controlled)

and Outdoors

(unconstrained)

No. of sessions per

participant
2

No. of iris images in indoor

environment
9,295

No. of iris images in outdoor

environment
9,411

It contains textured contact lenses of blue, green, gray, vi-

olet, and brown colors from the following brands: Bausch

and Lomb, Freshlook Dailies, Freshlook Colorblends, and

Celebration. For each subject, iris images are acquired
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Figure 2. Sample iris images in the constrained and unconstrained environment from the proposed WVU UnMIPA database.

using 3 iris scanners: CMITECH EMX-30, IriShield BK

2121U, and IriShield MK 2120U.

For each subject in the database, iris images have been

captured using different cameras with and without textured

contact lens in both indoor (controlled) and outdoor (un-

constrained) environment. The iris images acquired outdoor

have been acquired at different times of the day as well as in

different weather conditions. A luxmeter is used to record

the intensity value while acquiring iris images in indoor as

well as outdoor environment. Figure 1 shows the scatter

plot of intensity values at the time of iris image acquisition

from all the 81 subjects. It is seen that the intensity values

in the outdoor (unconstrained) environment have more vari-

ations as compared to the indoor (controlled) environment.

Table 2 summarizes the characteristics of the WVU Un-

MIPA database and Figure 2 shows sample iris images of

a subject from the database. The database is available

to the research community at http://iab-rubric.

org/resources/UnMIPA.html to advance the re-

search in the field of iris presentation attack detection.

3. Proposed DensePAD Algorithm for Iris Pre-

sentation Attack Detection

Literature has demonstrated that textured contact lenses

can be utilized for identity impersonation as well as ob-

fuscation [19, 20, 23]. Therefore, it is critical to design

effective algorithms to detect presentation attack images.

In this paper, we propose a deep learning based algorithm

for classifying an input iris image as real or attack. Re-

cently, different deep learning approaches have been suc-

cessfully used for various supervised and unsupervised ma-

chine learning tasks. More specifically, DenseNet based

convolutional neural network architectures have shown re-

markable performance for several image classification tasks

[8]. However, there is no existing work in the literature of

iris presentation attack detection or textured contact lens de-

tection which employs this architecture.

In DenseNet, each layer is connected to every other layer

in a feed-forward fashion as compared to traditional con-

volutional networks where there is a single connection be-

tween each layer and its subsequent layers. For an input

iris image x0, the ith layer obtains the concatenation of the

feature representations from all the previous layers as input.

Thus, the output xi from layer i is computed as:

xi = Li([x0, x1, . . . , xi−1]) (1)

where [x0, x1, . . . , xi−1] indicates the concatenation of the

feature-maps generated from layers 0, . . . , i − 1 and Li

refers to the non-linear transformations such as batch nor-

malization and pooling.
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Figure 3. Architecture of the proposed DensePAD algorithm for

textured contact lens detection.

The unique architecture of the DenseNet network

strengthens feature propagation, encourages feature reuse,

and substantially reduces the number of parameters in the

trained model. As per the architecture of DenseNet, each

layer receives all preceding layers as input which leads to

diverse and rich features. These characteristics allow the

DenseNet network to learn the difference between the in-

formation content of real iris and textured contact lenses

which in turn leads to an accurate supervised model. The

DenseNet architecture utilizes feature vectors of varying

complexity levels which may lead to more generalizable

classification boundaries and is advantageous in open-set

iris presentation attack detection.

In this paper, we propose a DenseNet based architecture

for presentation attack detection (DensePAD) of depth 22

with three densely connected blocks to classify an input iris

image as real or attack (containing textured contact lens) as

shown in Figure 3. Every dense block is followed by a tran-

sition block that consists of a convolution layer and pooling

layer to reduce the size of the output. Each dense block in

our algorithm consists of six convolution blocks where ev-

ery convolution block is densely connected. A convolution

block itself consists of a convolution layer, batch normaliza-

tion layer, convolution layer, and dropout layer. A growth

rate of 12 is used which determines the rate at which the

concatenated filters grow. For training the network, Adam

optimizer is utilized with a batch size of 64.

While training DensePAD, iris images of size 120× 160
are first normalized and then provided as input. In this ar-

chitecture, labeled iris images of both classes, real and at-

tack, are utilized and the model is trained to encode discrim-

inatory features for the binary classification task of real vs.

attack iris images. In the testing phase, the input iris im-

age is normalized and passed through each dense block of

the trained DensePAD network. The final iris image classi-

fication is achieved at the end by thresholding the Sigmoid

output indicating whether the input iris image is real or at-

tack.

4. Experimental Evaluation

The performance of the proposed DensePAD algorithm

is evaluated on the following databases:

• Combined Iris database: Yadav et al. [18] prepared

this database by combining existing iris presentation

attack databases. It contains more than 270,000 real

and attack iris images.

• MUIPAD: This database [20] contains print attack and

textured contact lens iris images of 35 subjects.

• Proposed WVU UnMIPA database: It comprises

18,706 real and textured contact lens iris images cap-

tured indoors and outdoors.



For experimental evaluation, each database is split into

five cross-validation folds. It is ensured that the subjects in

the training and testing partitions are disjoint in every fold.

Comparative analysis is performed with existing iris PAD

algorithms: Local Binary Patterns (LBP) [7], Weighted Lo-

cal Binary Patterns (WLBP) [25], and DEtection of iriS

spoofIng using Structural and Textural feature (DESIST)

[11]. The iris presentation attack detection performance is

evaluated using the following performance metrics:

• Total Error: Error rate of all misclassified iris images.

• Attack Presentation Classification Error Rate

(APCER): Error rate of misclassified attack iris

images.

• Bonafide Presentation Classification Error Rate

(BPCER): Error rate of misclassified real iris images.

4.1. Results on Combined Iris Database

The average total error, APCER, and BPCER values

across the five cross-validation folds of the Combined Iris

database [18] are summarized in Table 3. It is observed that

the proposed DensePAD algorithm yields the best results

with a minimum total error of 0.90%. It achieves 16.57%

error in detecting presentation attack iris images and 0.06%

error in detecting real iris images.

Comparative analysis of the proposed DensePAD algo-

rithm is also performed with existing iris PAD algorithms:

LBP [7], WLBP [25], and DESIST framework [11]. It is

observed that the DensePAD algorithm outperforms the ex-

isting algorithms on the Combined Iris database. It achieves

at least 3% lower total error as compared to LBP, WLBP,

and DESIST. With respect to detecting attack iris images,

DensePAD achieves at least 31% lower APCER as com-

pared to existing algorithms. Similarly, for detecting real

iris images, it yields at least 0.14% lower BPCER as com-

pared to the other algorithms. It also outperforms the Multi-

level Haralick VGG Fusion (MHVF) algorithm [18].

4.2. Results on MUIPAD

The performance of the proposed DensePAD algorithm

is also analyzed on the Mobile Uncontrolled Iris Presenta-

Table 3. Iris PAD performance (%) of the proposed DensePAD and

existing algorithms on the Combined Iris database [18].

Algorithm Total Error APCER BPCER

LBP [7] 22.94 80.00 20.00

WLBP [25] 52.75 48.18 53.00

DESIST [11] 4.13 77.48 0.20

MHVF [18] 1.01 18.58 0.07

Proposed

DensePAD
0.90 16.57 0.06

Table 4. Iris PAD performance (%) of the proposed DensePAD

algorithm on MUIPAD [20].

Algorithm Total Error APCER BPCER

LBP [7] 13.00 15.36 1.23

W-LBP [25] 23.36 23.90 20.69

DESIST [11] 16.36 18.17 7.32

AlexNet [20] 10.21 11.79 2.28

Proposed

DensePAD
9.06 10.15 2.15

tion Attack Database (MUIPAD) [20] and the results are

summarized in Table 4.

With respect to the total error, it is observed that the

proposed DensePAD algorithm demonstrates improved per-

formance as compared to the other PAD algorithms on

MUIPAD. It also achieves the lowest APCER value of

10.15% and yields the lowest BPCER value of 2.15%.

These results demonstrate the efficacy of the proposed

DensePAD in detecting iris presentation attacks on the

MUIPAD. As seen from Table 4, it outperforms the AlexNet

based iris presentation attack detection algorithm [20] pro-

posed by the creators of MUIPAD.

4.3. Results on Proposed WVU UnMIPA Database

The average total error, APCER, and BPCER values

across the five cross-validation folds of the proposed WVU

UnMIPA database are shown in Table 5. It is observed

that the proposed DensePAD algorithm for detecting real

and textured contact lens iris images outperforms the ex-

isting iris presentation attack detection algorithms on this

database. It achieves the lowest total error of 1.93%, lowest

APCER of 4.02%, and lowest BPCER of 0.20%. With re-

spect to the total error metric, it outperforms existing PAD

algorithms by at least 5.94%. A similar trend is observed for

APCER and BPCER, where DensePAD surpasses existing

algorithms by at least 8.15% and 0.99% respectively. These

results highlight the efficacy of the proposed DensePAD al-

gorithm on the newly collected WVU UnMIPA database

containing iris images acquired in the unconstrained envi-

ronment.

Table 5. Iris PAD performance (%) of the proposed DensePAD

algorithm on the proposed WVU UnMIPA database.

Algorithm Total Error APCER BPCER

LBP [7] 8.21 14.29 1.19

W-LBP [25] 21.43 19.90 22.83

DESIST [11] 7.87 12.17 3.28

Proposed

DensePAD
1.93 4.02 0.20



Figure 4. Sample iris images with textured contact lens from different manufacturers in the WVU UnMIPA database.

5. Evaluation of DensePAD for Open-Set Iris

Presentation Attack Detection

The performance of the proposed DensePAD algorithm

is also evaluated on open-set attack scenarios. Open-set pre-

sentation attacks refer to the real-world scenarios where at-

tacks consist of instances that are not present in the training

set. This implies that the trained model has not seen any

sample of that specific presentation attack.

5.1. Unseen Textured Contact Lens Manufacturer

In this experiment, the performance of DensePAD algo-

rithm is analyzed on textured contact lens presentation at-

tack with unseen lens manufacturer. For this, WVU Un-

MIPA database is utilized. WVU UnMIPA database com-

prises unconstrained textured contact lens images from 4

manufacturers (as shown in Figure 4): Freshlook Dailies,

Freshlook Colorblends, Celebration, and Bausch & Lomb

along with real iris images. Therefore, the goal is to evalu-

ate the performance of the proposed algorithm when a sam-

ple iris image with textured contact lens from an unknown

manufacturer is presented to the algorithm.

5.1.1 Experimental Evaluation

For the experimental evaluation, 4 folds of the WVU Un-

MIPA database are created. In each fold, images from a

specific contact lens manufacturer, X, are not included in

the training phase of the proposed DensePAD algorithm.

Table 6. No. of training and testing samples for each textured con-

tact lens manufacturer in the WVU UnMIPA database. In every

fold, a specific manufacturer is chosen for unseen attack and its

samples are not included in the training set.

Textured Lens

Manufacturer

No. of Training

Samples

No. of Testing

Samples

Freshlook

Dailies
3,617 661

Freshlook

Colorblends
1,855 396

Bausch & Lomb 972 344

Celebration 1,285 257

Table 7. Iris PAD performance (%) by DensePAD for unseen tex-

tured contact lens manufacturer based open-set attack.

Unseen Man-

ufacturer

Total

Error

APCER

(Unseen

Manufacturer)

BPCER

Freshlook

Dailies
3.97 5.75 2.58

Freshlook

Colorblends
2.86 14.39 0.00

Bausch &

Lomb
2.95 4.07 0.06

Celebration 3.04 0.00 0.12

The complete database is divided into two categories: train-

ing (contains real iris images and textured contact lens iris

images from different manufacturers except for X) and test-

ing (contains real iris images and textured contact lens iris

images from all 4 manufacturers). Thus, 4 folds of the

database are created by not including samples from a spe-

cific manufacturer in the training of the DenseNet architec-

ture. It is also ensured that there is no overlap between the

subjects in the respective training and testing partitions. Ta-

ble 6 shows the number of training and testing samples of

the textured contact lens from different manufacturers in the

WVU UnMIPA database. In each fold, there are 7,651 real

iris images in the training set and 1,668 real iris images in

the test set. The testing set contains real as well as textured

contact lens iris images from the 4 different manufacturers.

DensePAD is retrained four times by following the above-

mentioned protocol.

5.1.2 Results and Analysis

Table 7 shows the fold-wise open-set attack performance

metrics: Total Error, APCER with Unseen Manufacturer

(error rate of misclassified attack iris images of the specific

textured contact lens manufacturer whose samples are not

included in the training), and BPCER.

As seen in Table 6, the number of samples of Freshlook

Dailies textured contact lens is the highest as compared to

the others. From Table 7, it is observed that when Freshlook



Figure 5. Sample iris images with textured contact lens of different

colors in WVU UnMIPA database.

Dailies textured contact lens images are not included in the

training of the DenseNet architecture, the highest total error

of 3.97% is observed as compared to the other folds.

When the training set does not include the textured con-

tact lens samples from Freshlook Colorblends, highest un-

seen manufacturer APCER of 14.39% is observed. This in-

dicates that these types of lenses are hardest to detect in

the case of unseen textured contact lens manufacturer based

open-set attack.

The fold where textured contact lens samples from Cel-

ebration manufacturer are not included in the training, low-

est unseen manufacturer APCER of 0% is observed. This

result shows that textured contact lenses from Celebration

are easiest to detect even when their samples are included

in training the model.

As shown in Table 5, the total error of the proposed

DensePAD on WVU UnMIPA database is 1.93%. This total

error is lower than the total error achieved in all the 4 folds

shown in the open-set attack experiment. This highlights

the challenging nature of open-set iris presentation attacks.

5.2. Unseen Textured Contact Lens Color

The performance of DensePAD is also evaluated with re-

spect to detecting textured contact lens of unseen color. As

shown in Figure 5, the textured contact lenses utilized in the

WVU UnMIPA database for presentation attacks has four

colors: (1) Blue, (2) Brown, (3) Gray, and (4) Green.

5.2.1 Experimental Evaluation

Similar to the unseen textured contact lens manufacturer ex-

periment, in this experiment, 4 folds of the WVU UnMIPA

Table 8. No. of training and testing samples for each textured con-

tact lens color in the WVU UnMIPA database. In every fold, a

specific color is chosen for unseen attack and its samples are not

included in the training set.

Textured Lens

Color

No. of Training

Samples

No. of Testing

Samples

Blue 2,152 510

Brown 1,882 250

Gray 1,662 395

Green 2,073 503

Table 9. Iris PAD performance (%) by DensePAD for unseen tex-

tured contact lens color based open-set attack.

Unseen

Color

Total

Error

APCER

(Unseen Color)
BPCER

Blue 3.16 5.10 0.06

Brown 3.34 0.80 0.12

Gray 3.19 10.63 0.00

Green 2.77 8.35 0.00

database are created. In each fold, images of a specific con-

tact lens color, X, are not included in the training phase of

the proposed DensePAD algorithm. Table 8 shows the num-

ber of training and testing samples of textured contact lens

of different colors in the WVU UnMIPA database. In each

fold of training, samples of a specific contact lens color are

not included while the testing set contained real as well as

textured contact lens iris images of the 4 different colors.

5.2.2 Results and Analysis

Table 9 shows the fold-wise open-set attack performance

metrics: Total Error, APCER with Unseen Color (error rate

of misclassified attack iris images of the specific textured

contact lens color whose samples are not included in the

training), and BPCER.

When the training set does not include the textured con-

tact lens iris images of Gray color, highest unseen color

APCER of 10.63% is observed. This result highlights that

lenses of this color are hardest to detect by DensePAD in the

scenario of unseen color based textured contact lens attack.

The fold where textured contact lens samples of Brown

color are not included in the training for DensePAD, the

minimum unseen color APCER of 0.80% is observed. This

indicates that the Brown color textured contact lenses are

easiest to detect even in the case when their samples are not

included in training the model for DensePAD.

6. Conclusion

Textured contact lenses have been established as a co-

variate for iris recognition and can be intentionally or unin-

tentionally utilized to obfuscate/impersonate one’s identity.



Therefore, it is critical to effectively detect such iris pre-

sentation attack images. The contributions of this paper are

two-fold. Firstly, WVU UnMIPA database is created which

is the largest textured contact lens database acquired in an

uncontrolled environment. This database consists of iris im-

ages of 162 eye classes acquired indoors and outdoors us-

ing multiple iris sensors. The second contribution of this

paper is proposing a DenseNet based framework for iris

presentation attack detection and demonstrating its efficacy

on the proposed database as well as two existing databases.

This paper also showcases the performance of the proposed

DensePAD algorithm in the challenging scenario of open-

set iris presentation attack experiments. In the future, we

will evaluate the performance of other deep learning archi-

tectures on the proposed WVU UnMIPA database.
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