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Abstract— In this work we consider one of the challenges facing
unauthorized receivers and cognitive radios since the appearance
of MIMO system, which is detecting the number of transmit
antennas. To achieves this goal, we present a detector based
on objective information theoretic criteria (the celebrated AIC
and MDL estimators). Numerical results derived for an ideal
BLAST-like transmission demonstrate good performance already
for mild SNR conditions and majority decision based on rather
few independent measurements.

I. INTRODUCTION

The great potential provided by the use of multiple input
multiple output (MIMO) arrays [1][2], encouraged intensive
research efforts in the fields of information theory and com-
munications in recent years. This effort led to the design and
implementation of new commercial communication systems
which include MIMO arrays, such as BLAST, WiFi (802.11n),
WiMax (802.16), and 4G cellular systems. In addition, many
proprietary MIMO based systems which do not follow any
commercial standard are also being used for military commu-
nication. This new scenario introduces many new challenges
for both cognitive radios and surveillance systems.

In this work we focus on one of these challenges, which
is detecting the number of transmit antennas of a targeted
transmission. Towards this end, we utilize objective informa-
tion theoretic criteria (AIC and MDL) which were successfully
applied to estimate the number of (possibly correlated) single
antenna emitters [3]. We present numerical results of these
estimators for fully synchronized BLAST like transmissions
and Rayleigh fading channels. Numerical results presented
for this idealized setup show that the AIC/MDL estimators
provides a robust detector for detecting the number of transmit
antennas, based on the eigenvalues of the sample covariance
matrix. The coherence time of the channel (interpreted as the
measurement length) is a critical system parameter where for
large measurement lengths, the detection probability in general
increases with the receive array size. It is also verified that
for a given set of parameters, there is a crucial value of
SNR, above which “hard” combining of multiple independent
measurements quickly brings the final detection probability
to 1. Finally we point out several possible extensions to
the considered basic ideal setup which are currently under
investigation; namely, the impact of: coding, channel charac-
terization, and imperfect reception, on the system performance.
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Fig. 1. System setup

II. PROBLEM STATEMENT

We consider an isolated setup (see Figure 1), in which a
single multi-antenna terminal is communicating with an au-
thorized multi-antenna terminal. A multi-antenna unauthorized
(or cognitive) terminal is intercepting the transmission whose
goal is to detect the number of transmit antennas.

Underlying assumptions:

• Transmitter:

– Uncorrelated M transmit antennas.
– The i.i.d. zero-mean complex Gaussian input vector

is independent of the channel.

• Unauthorized/Cognitive terminal:

– Uncorrelated N receive antennas (N > M ).
– Perfect synchronization (timing, carrier frequency,

and carrier phase)
– No channel state information (CSI).

• Channel:

– I.i.d block flat fading channel.
– Continuous fading distribution.
– Coherence time Tc > T (in symbols).
– The i.i.d. zero-mean complex Gaussian additive

noise vector, is independent of the channel transfer
matrix and the transmitted signals.

Accounting for the underling assumptions, a baseband repre-
sentation of the received N × 1 vector in the i’th time index



for an arbitrary fading block is given by

yi = H xi + ni ; i = 0, 1, . . . , T − 1 , (1)

where xi is the complex Gaussian transmitted vector xi ∼
CN (0, P

M IM ), ni is the complex Gaussian additive noise
N × 1 vector ni ∼ CN (0, σ2IN ), and H is the channel
transfer N × M matrix between the transmitter and the
interceptor. Since continuous fading distributions are assumed,
H is almost surely full ranked.

III. DETECTING THE NUMBER OF TRANSMIT ANTENNAS

A. Intuition

Since the noise vector is zero mean and independent of the
transmitted signals and the channel, the conditioned covariance
matrix of the received signal vector is given by

R = E{yy†|H} = Ψ + σ2IN , (2)

where
Ψ = HH† . (3)

Since H is full ranked, it follows that the rank of Ψ is
min(M,N) = M , which is the number of transmit antennas.
Hence, the smallest (N −M) ordered eigenvalues of R equal
σ2, i.e. λM+1 = λM+2 = · · · = λN = σ2. It is concluded
that given the covariance matrix R the number of transmit
antennas can be determined from the cardinality of the smallest
eigenvalues of R. Since R is unknown to the interceptor and
it is estimated from a finite set of noisy samples vectors,
the resulting smallest (N − M) eigenvalues are different in
probability one, making it difficult to determined the number
of transmit antenna merely by “observing” the eigenvalues.

B. Subjective Criteria

A more sophisticated approach to the problem developed
by Bartlett [4] and Lawley [5], is based on a a sequence
of hypothesis tests. For each hypothesis, the likelihood ratio
statistics is computed and compared to a threshold. The
hypothesis accepted is the first one for which the threshold
is crossed. The problem associated with this approach is the
subjective judgement needed in the selection of the threshold
levels for the different tests.

C. Information Theoretic Criteria

Expression (1) can be rewritten as

yi =
M∑

m=1

[H]m[xi]m + ni , (4)

where [H]m is the m’th column of H , and [xi]m is the
m’th entry of the symbols vector xi. Examining (4) and
accounting for the underling assumptions, it is concluded that
the problem of determining the number of transmit antennas
in its simplest form, is equivalent to determining the number
of single antenna sources considered by Wax and Kailath
in [3]. The latter paper takes a different approach than the
approach of [4][5], and the detection problem is interpreted as
a model selection problem. Next, information theoretic criteria

for model selection, introduced by Akaike [6][7], and by
Schwartz [8] and Rissanen [9], are applied, and the number of
transmit antennas is determined as the value for which the AIC
or minimum descriptor length (MDL) criteria is minimized.

Following [3], the form of AIC for this problem is given by

AIC(m) = −2(N − m)T log

(∏N
i=m+1 l

1/(N−m)
i

1
N−m

∑N
i=m+1 li

)

+ 2m(2N − m) , (5)

while the MDL criterion is given by

MDL(m) = −(N − m)T log

(∏N
i=m+1 l

1/(N−m)
i

1
N−m

∑N
i=m+1 li

)

+
1
2
m(2N − m) log T , (6)

where l1 > l2 · · · > lN are the ordered eigenvalues of the
sample covariance matrix R̂ defined by

R̂ � 1
T

T−1∑
i=0

yiy
†
i , (7)

and T is the the number of samples vectors available for the
empirical second order statistics calculations. It is noted that
the AIC and the MDL criteria are related according to the
following

AIC(m) = 2MDL(m) + m(2N − m)(2 − log T ) . (8)

The estimated number of transmit antennas M̂ is determined
as the value of m = {0, 1, · · · , N − 1} for which either the
AIC or MDL is minimized. i.e. for the MDL we have

M̂ = argmin
m=0, 1,..., N−1

MDL(m) . (9)

It is shown in [3] that the MDL yields a consistent estimate1,
while the AIC yields an inconsistent estimate that tends,
asymptotically with the number of samples, to overestimate
the number of transmit antennas.

IV. MULTIPLE INDEPENDENT MEASUREMENTS

Since the Frobenius norm of the sample matrix R̂ converge
almost surely to the covariance matrix R with T , it is evident
that the performance of the MDL/AIC estimators improve
for increasing number of samples vectors. However, in real
scenarios the channel coherence time Tc is finite, and its value
depends on the system parameters and the dynamics of the
environment. On the other hand, it is reasonable to assume
that the communication session between the transmitter and
the receiver may typically last much longer than Tc, and
the interceptor may conduct many independent measurements,
each of T samples. Then the L interim measurements may
be combined in a “hard” or “soft” manner to produce the
final estimation. It is noted that since the channel is assumed
block independent and that the measurement periods are

1A consistent estimator is an estimator that converges in probability to the
quantity being estimated as the sample size grows.



synchronized with the channel blocks transitions, the detector
interim outputs are i.i.d.

A “hard” combiner detector makes its final estimation M̂
based on a majority decision. In case the majority decision is
not unique, the detector randomly picks its decision among
the multiple choices. To assess the performance of a “hard”
combiner detector, let us define

PM
N (n) � Pr(n = min

m
MDL(m) | M,N)

n = 0, 1, . . . , N − 1 ,
(10)

to be the probability function of the detector interim output
(single measurement) given that M transmit antennas and N
receive antennas are used. A similar definition for the AIC
detector is achieved by replacing MDL with AIC in (10). It is
easily verified that the overall average detection probability is
given by

PM
d (L) = L!

∑
r0≥0,r1≥0,... rN−1≥0

s.t r0+r1···+rN−1=L

(
N−1∏
n=0

(
PM

N (n)
)rn

rn!

)
×

1{rM=maxn rn}∑N−1
n=0 1{rM=rn}

, (11)

where 1{} is an indicator function. The probability mass is
collected over all the events that the majority decision is
correct. In case the majority decision is not unique but still
includes the correct answer, the probability mass is divided
by the cardinality of the set (reflecting the random selection
within this set). Unfortunately, calculating the conditioned
probability function {PM

N (n)} seems mathematically unfea-
sible. Therefore, {PM

N (n)} are estimated by Monte-Carlo
simulations and then substitute into (11) in order to assess
the overall probability of detection.

“Soft” combining of measurements is beyond the scope of
this paper, and may be considered for further study. A naive
combining scheme, which is expected to improve on perfor-
mance under certain conditions, may be to summarize the
AIC/MDL output vector resulting from the L measurements,
and then to take the minimum value. i.e. for the MDL we have

M̂ = argmin
m=0, 1,..., N−1

1
L

L∑
l=1

MDLl(m) . (12)

V. NUMERICAL RESULTS

In this section Monte-Carlo simulation results (104 exper-
iments for each point), demonstrating the impact of various
system parameters on the detector performance, are presented.
It is noted that all the curves presented in this section are
derived for Rayleigh block i.i.d. channels.

The impact of the signal sample size T is demonstrated in
Figures 2 and 3 for M = 2 and M = 3 respectively. As ex-
pected, PM

d (1) increases for a given SNR per-receive antenna
(SNR = P/(Mσ2)), with the sample size T . In addition, the
inconsistently of the AIC detector is also observed.

Figures 4 and 5 demonstrate the impact of increasing
number of receive antennas N on PM

d (1) as a function of
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Fig. 2. Detection probability of a single measurement of T =
50, 100, 200, 400, 1000 sample vectors, vs. the SNR per receive antenna
for Gaussian input, M = 2, and N = 5
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Fig. 3. Detection probability of a single measurement of T =
50, 100, 200, 400, 1000 sample vectors, vs. the SNR per receive antenna
for Gaussian input, M = 3, and N = 5

the SNR for M = 2 and M = 3 respectively. The curves
show in general that PM

d (1) increases with the number of
receive antenna. As an exception to this rule-of-thumb is the
AIC curve for N = M + 1. This phenomenon is explained
by the fact that the AIC estimator is inconsistent and it tends
to overestimate M [3]. It is evident that when N = M + 1
the AIC cannot overestimate the number of transmit antennas
since it maximal output is M by definition. Therefore, in these
cases the AIC estimator is consistent and the probability of
detection for a given T , increases.

The advantage of having several independent measurements
L is demonstrated in Figures 6 and 7 for M = 2, N = 6
and M = 3, N = 6 respectively. As mentioned earlier these
curves are derived by substituting the empirical probability
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Fig. 4. Detection probability of a single measurement of T = 50 sample
vectors, vs. the SNR per receive antenna for Gaussian input and M = 2
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Fig. 5. Detection probability of a single measurement of T = 50 sample
vectors, vs. the SNR per receive antenna for Gaussian input and M = 3

function {PM
N (n)} which was estimated by Monte-Carlo

simulation, into (11). It easily verified that in case

PM
N (M) > max

n=0, 1,...(N−1); n�=M
PM

N (n) , (13)

i.e. the “correct” answer has the largest probability, the overall
probability of detection quickly goes to 1 with L. On the other
hand, if the condition is not satisfied, then particularly for
certain SNR range having multiple number of measurements
combined in a “hard” manner, reduces the overall probability
of detection (see the MDL results presented in Figure 7).
It is noted that the condition defines a critical SNRt value,
for a given system parameter set (M , N , and T ), which
determines whether having multiple number of measurements
is beneficial.
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Fig. 6. Detection probability of L = 1, 3, 5, 10 independent measurements
of T = 50 sample vectors, vs. the SNR per receive antenna for Gaussian
input, M = 2, and N = 6
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Fig. 7. Detection probability of L = 1, 3, 5, 10 independent measurements
of T = 50 sample vectors, vs. the SNR per receive antenna for Gaussian
input, M = 3, and N = 6

VI. DISCUSSION AND FURTHER RESEARCH

In this section we consider several possible extensions
to the basic ideal setup presented in Section II. Roughly,
the possible directions are divided into three categories: (a)
the impact coding, (b) the impact channel characterization,
and (c) the impact imperfect interception. It is noted that
these directions are currently under investigation. However,
some initial thoughts and preliminary results are added in the
following.

Finite input alphabet: In Section II the transmitted sym-
bols are assumed to be complex Gaussian random variables.
Although Gaussian distribution is the capacity achieving input
distribution in cases where the channel is known to the re-
ceiver, practical systems use finite alphabet symbols for trans-
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Fig. 8. Detection probability of a single measurement of T = 50 sample
vectors, vs. the SNR per receive antenna for multiplexed Gaussian and QAM
input, M = 3, and N = 5

mission (e.g. QAM, PSK, etc.). It is noted that developing the
optimal AIC/MDL criteria for this case seems mathematically
infeasible. A reasonable suboptimal solution may be to use the
AIC/MDL criteria developed for the Gaussian input, also for
the finite alphabet input. Obviously the criteria are unmatched
to the input signal. Nevertheless, preliminary simulations for
4- and 16-QAM rectangular constellations (Figure 8), show
that the performance is similar to the performance achieved
for Gaussian input (with same average power) over a wide
range of the SNR. This result is easily explained by the fact
that the AIC/MDL detector is based on the eigenvalues of the
sample covariance matrix. Hence, both detectors are based on
second order statistics of the input signal. This fact implies
that the performance has a weak dependency on the actual
input alphabet.

Space-time correlation by coding: In Section II we have
assumed that the input symbols feeding each transmitting
antenna, are uncorrelated in time and space. Advanced MIMO
coding techniques such as beamforming, space-time coding
(STC), and dirty-paper coding (DPC) may result in space-time
correlation between the input symbols. Using the AIC/MDL
estimators is evidently unmatched to these cases and reduced
performance is expected since some of the resulting N − M
eigenvalues values may be reduced by the induced correlation.

Channel characterization: In Section II we have assumed
i.i.d block fading channels. Relaxing this assumption to in-
clude Ergodic block fading channels is not expected to change
the performance. Another direction is to consider frequency
selective fading channels and OFDM systems. It is noted that
an extension to frequency selective fading channels is already
considered in [3]. Antenna correlation both in the transmit
and receive side introduces space correlation and is expected
to reduce the performance. Other fading statistics, in addition
to the Rayleigh fading channels used in Section V, may be

considered as well.
Imperfect interception: In Section II a perfect synchro-

nization is assumed. In practical, phase and frequency error, as
well as timing error, are expected to introduce time and space
correlation which expected in turn to reduce the performance.

VII. CONCLUDING REMARKS

This paper provides an initial overlook into the problem
of detecting the number of transmit antennas by unauthorized
or cognitive terminal. It is shown that under ideal conditions
this problem is equivalent to the problem of detecting the
number of single antenna transmitters which was treated in [3],
where information theoretic criteria are applied to the problem
and the MDL/AIC estimators are derived. Numerical results
presented for this idealized setup show that the AIC/MDL
estimators provides a robust detector for estimating the number
of transmit antennas, based on the eigenvalues of the sample
covariance matrix R̂. Observing the results it is concluded
that the MDL is a consistent estimator, while the AIC is a
consistent estimator only for N = M +1. Since the AIC/MDL
use second order statistics, their performance are “insensitive”
to the input alphabet as long average power constraints are
preserved. The coherence time of the channel (interpreted
as the measurement length T ) is a crucial system parameter
where for T � N , the detection probability increases in
general with the interceptor reception array size N . It is also
verified that for a given set of parameters, there is a crucial
value of SNRt, above which “hard” combining of multiple
independent measurements quickly brings the final detection
probability to 1. Finally it it is observed that AIC performs
better than MDL in the low SNR regime and visa versa. Hence,
a combined SNR depended detector is preferable.

As mentioned earlier, several possible extensions to the
basic setup may be considered. These extensions render this
problem interesting from the theoretical and practical point of
views, since detecting the number of transmit antennas is an
essential stage in the reception process of both unauthorized
and cognitive terminals.

REFERENCES

[1] E. Telatar, “Capacity of multi-antenna Gaussian channels,” European
Transactions on Telecommunications, vol. 10, pp. 585–598, Nov. 1999.

[2] G. J. Foschini, “Layered space-time architecture for wireless communi-
cation in fading environments when using multi-element antennas,” Bell
Labs Tech. J., pp. 41–59, 1996.

[3] M. Wax and T. Kailath, “Detection of signals by information theoretic
criteria,” IEEE transactions on acoustic, speech, and signal processing
(ASSP), vol. 33, pp. 387–392, Apr. 1985.

[4] M. S. Bartlett, “A note on the multiplying factors for various χ2

approximations,” J. Roy. Stat. SOC., ser. E, vol. 16, pp. 296–298, 1954.
[5] D. N. Lawley, “Tests of significance of the latent roots of the covariance

and correlation matrices,” Biometrica, vol. 43, pp. 128–136, 1956.
[6] H. Akaike, “Information theory and an extension of the maximum

likelihood principle,” in Proc. 2nd Int. Symp. Inform. Theory, Suppl.
Problems of control and Inform. Theory, pp. 267–281, 1973.

[7] H. Akaike, “A new look at the statistical model identification,” IEEE
Trans. Automat. Contr., vol. 19, pp. 716–723, 1974.

[8] G. Schwartz, “Estimation the order of a model,” Ann. Stat., vol. 6,
pp. 461–464, 1974.

[9] J. Rissanen, “Modeling by shortest data description,” Automatica, vol. 14,
pp. 465–471, 1978.


