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Detecting the Optic Disc Boundary in Digital Fundus
Images Using Morphological, Edge Detection, and

Feature Extraction Techniques
Arturo Aquino*, Manuel Emilio Gegúndez-Arias, and Diego Marín

Abstract—Optic disc (OD) detection is an important step in
developing systems for automated diagnosis of various serious
ophthalmic pathologies. This paper presents a new template-based
methodology for segmenting the OD from digital retinal images.
This methodology uses morphological and edge detection tech-
niques followed by the Circular Hough Transform to obtain a
circular OD boundary approximation. It requires a pixel located
within the OD as initial information. For this purpose, a location
methodology based on a voting-type algorithm is also proposed.
The algorithms were evaluated on the 1200 images of the pub-
licly available MESSIDOR database. The location procedure
succeeded in 99% of cases, taking an average computational
time of 1.67 s. with a standard deviation of 0.14 s. On the other
hand, the segmentation algorithm rendered an average common
area overlapping between automated segmentations and true OD
regions of 86%. The average computational time was 5.69 s with a
standard deviation of 0.54 s. Moreover, a discussion on advantages
and disadvantages of the models more generally used for OD
segmentation is also presented in this paper.

Index Terms—Diabetic retinopathy, glaucoma, optic disc (OD)
segmentation, retinal imaging, telemedicine.

I. INTRODUCTION

D
IABETIC retinopathy (DR) is a chronic disease which

nowadays constitutes the primary cause of blindness in

people of working age in the developed world [1]–[3]. The ben-

efits that a system for automaticly detect early signs of this dis-

ease would provide have been widely studied and assessed pos-

itively by experts [4], [5]. In this sense, the OD plays an im-

portant role in developing automated diagnosis expert systems

for DR as its segmentation is a key preprocessing component

in many algorithms designed to identify other fundus features.
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The relatively constant distance between the OD and the fovea,

can be used to help estimate the location of the latter [6]. On

the other hand, to segment the vascular tree, vessel tracking

methods need an initial seed vessel point. For this, pixels of ves-

sels within the OD or in its vicinity have been used [7], [8]. In

addition, OD segmentation can be useful in diagnosing automat-

ically some diseases caused by DR. Finding the OD can be used

to decrease false positives in the detection of regions of retinal

exudates [9]. These injuries are a diagnostic key to grading the

risk of macular edema.

OD segmentation is also relevant for automated diagnosis of

other ophthalmic pathologies. One of them and maybe the most

noteworthy is Glaucoma. It is the second most common cause

of blindness worldwide [10]. Glaucoma is identified by recog-

nizing the changes in shape, color, or depth that it produces in

the OD [11]. Thus, its segmentation and analysis can be used to

detect evidence of Glaucoma automatically.

The OD can be distinguished in eye fundus images as a

slightly elliptical shape. Its size may vary significantly and

different estimations have been made. Whereas Sinthanayothin

et al. [6] stated that it occupies about one-seventh of the entire

image, alternatively other authors have pointed out that OD size

varies from one person to another, occupying about one-tenth

to one-fifth of the image [7]. In color fundus images, the OD

usually appears as a bright yellowish region, although this

feature may also experience significant variations (Fig. 1).

OD segmentation is not an easy matter. Besides the varia-

tions in OD shape, size, and color pointed out previously, there

are some additional complications to take into account. Con-

trast all around the OD boundary is usually not constant or

high enough piecewise due to outgoing vessels that partially ob-

scures portions of the rim producing “shadows.” Another dis-

tractor is produced when peripapillary atrophy is present, as

this produces bright areas just outside the OD rim which dis-

tort its shape. On the other hand, eye movement at the moment

of retinography capture may also lead to slightly blurred im-

ages, making their automated analysis even more difficult. This

problem can be avoided by simply discarding these images and

retaking new ones. However, this method is not usually applied

as their quality is usually good enough for human visual inspec-

tion.

This paper presents a new template-based method for OD seg-

mentation. Firstly, an OD-containing sub-image is extracted: an

OD pixel and its surrounding region (a surrounding region wide

enough to include the whole OD) are selected. With this pur-

pose, an OD location methodology is also proposed here. Then,

0278-0062/$26.00 © 2010 IEEE
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Fig. 1. Examples of OD appearance. (a) Yellowish OD. (b) Brownish OD. (c)
Reddish OD. (d) Whitish OD.

the OD boundary is extracted in parallel from both the red and

green channels of this sub-image by means of morphological

and edge detection techniques. Both OD boundaries are approx-

imated by a circumference using the Circular Hough Transform.

The “better” of these results is finally selected. This paper also

includes a study on advantages and disadvantages involved by

the use of circular, elliptical and deformable models for OD seg-

mentation. The results of this study strengthen the hypothesis

of the suitability of circular models for this purpose and show

evidence that the circular approach offers good compromise be-

tween success rate, quality, and efficiency.

II. OVERVIEW OF STATE OF ART

The available works related to OD processing in eye fundus

color images can be grouped into two distinct categories:

location and segmentation methods. The former works focus

on finding an OD pixel (generally representative of its center).

On the other hand, the latter works estimate the OD boundary.

Within this category, a general distinction can be made between

template-based methods (methods for obtaining OD boundary

approximations) and methods based on deformable models or

snakes for extracting the OD boundary as exactly as possible.

With regard to location methods, Synthanayothin et al. pre-

sented a method [6], [12] where the images were preprocessed

by applying an adaptative local contrast enhancement to the

intensity channel of the HSI color space. The OD center loca-

tion was identified using the variance of intensity produced by

the blood vessels within the OD. Hoover and Goldbaum [13],

[14] located the center of the OD using the vasculature origin.

They determined where all the vessels converged by means

of a voting-type algorithm called fuzzy convergence. Another

method that uses the convergence of the vessels to detect the

OD center was proposed by Foracchia et al. [15]. The four main

vessels originating from the OD were geometrically modeled

using two parabolas, and the OD position was located as their

common vertex. Inspired by previous works, Youssif et al. [16]

presented an OD location method based on a vessels’ direction

matched filter. As a first step a binary mask was generated fol-

lowed by image brightness and contrast equalization. Finally,

the retinal vasculature was segmented, and the directions of the

vessels were matched to the proposed filter representing the

expected vessels’ directions in the vicinity of the OD.

With regard to segmentation methods and concretely to

works based on deformable models, Osareh et al. [17] located

the OD center by means of template matching and extracted

its boundary using a snake initialized on a morphologically

enhanced region of the OD. Lowell et al. [18] also localized

the OD by means of template matching as well as also selected

a deformable contour model for its segmentation. Specifically,

they used a global elliptical model and a local deformable

model with variable edge-strength dependent stiffness. Another

deformable model-based approach was presented in [19]. The

snake behavior against vessel occlusion was improved and

the model was extended in two aspects: knowledge-based

clustering and smoothing update. Thus, the snake deformed to

the location with minimum energy and then self-clustered into

two groups, which were finally updated by the combination of

both local and global information. Regarding template-based

methods, Wong et al. [20] proposed: 1) OD location by means

of histogram analysis and initial contour definition according

to the previously obtained location, and 2) a modified version

of the conventional level-set method was subsequently used for

OD boundary extraction from the red channel. This contour was

finally fitted by an ellipse. Another template-matching approach

for OD segmentation is the Hausdorff-based template matching

presented by Lalonde et al. [21]. Initially, they determined

a set of OD candidate regions by means of multiresolution

processing through pyramidal decomposition. For each OD

region candidate, they calculated a simple confidence value

representing the ratio between the mean intensity inside the

candidate region and inside its neighborhood. The Canny edge

detector and a Rayleigh-based threshold were then applied to

the green-band image regions corresponding to the candidate

regions, constructing a binary edge map. As final step, using the

Hausdorff distance between the edge map regions and circular

templates with different radii, they decided the OD among all

the candidates. On the other hand, although they do not belong

to the two reviewed categories, works [22]–[24] proposed other

relevant OD segmentation methods. Walter and Klein [22]

found the OD contour through the watershed transformation.

For OD detection, its center was previously approximated as

the centroid of the largest and brightest connected object in a

binary image obtained by thresholding the intensity channel.

Reza et al. [23] also used the watershed transformation for OD

segmentation. Firstly, the green channel was preprocessed for

image condition enhancement. Then, morphological opening,

extended maxima operator and minima imposition were finally

used to apply the watershed transformation for bright structure

segmentation. Finally, although applied to stereo images, it

is worth mentioning the novel OD segmentation approach

presented by Abràmoff et al. [24]. Pixel feature classification

by means of a -nearest neighbor classifier was used in this

case for OD segmentation in stereo color photographs.
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Fig. 2. ODP determination: (A), (B), and (C) Original images. (A-1), (B-1), and (C-1) OD pixels rendered by the maximum difference method. (A-2), (B-2), and
(C-2) OD pixels rendered by the maximum variance method. (A-3), (B-3), and (C-3) OD pixels rendered by the low-pass filter method. (A-4), (B-4), and (C-4) Final
ODP determination (black circumference): in (A-4), although the OD pixel of the maximum difference method is not properly selected, the ODP is successfully
located; in (B-4) the ODP selected is the centroid of the three OD pixels; in (C-4), since the three OD pixels are far from their centroid, the ODP selected is the
OD pixel from the maximum variance method.

III. METHODOLOGY

The aim of this work is to introduce a new methodology for

OD segmentation that obtains a circular boundary approxima-

tion. It needs as initial information the coordinates of a pixel

located within the OD. To this effect, in order to complement

the presented segmentation methodology, a simple but reliable

and very fast OD location methodology is also proposed to ob-

tain the required OD pixel. It must be stressed that any other

location method could be used for this purpose.

All values of parameters, constants and window sizes given

in this section refer to retinas of 1046 pixels in diameter. For

different image resolutions, all of these values would have to be

scaled.

A. Optic Disc Location

The location methodology obtains a pixel [called Optic Disc

Pixel (ODP)] that belongs to the OD. It comprises three inde-

pendent detection methods. Each method obtains its own OD

candidate pixel. The final ODP is selected by taking into ac-

count the three previous candidate pixels and their location with

respect to their average point (centroid). For this, a voting pro-

cedure comprising the following cases is applied.

• If the three OD candidate pixels are close to the centroid

(closer than one-fifth of the image, maximum OD diameter

estimation [7]): the selected ODP is the centroid.

• If only two candidates are close to the centroid: the selected

ODP is the average point in these two referred pixels.

• Otherwise, the selected ODP is the candidate pixel ob-

tained with the most reliable method (performed tests show

this is the maximum variance method described below).

The three developed methods work on the green channel of the

RGB color space as this is the one that provides the best contrast

[25]. This gray scale image will be denoted as . A description

of these methods, illustrated in Fig. 2 by three examples of their

application to different eye fundus images, is presented as fol-

lows.

• Maximum Difference Method: The OD usually appears as

a bright region in eye fundus images. Moreover, the vas-

cular tree formed by the ”dark” blood vessels emerges in

the disc. This is why the maximum variation of the gray

levels usually occurs within the OD. This maximum is used

by this method to select its OD pixel.

A median filter of 21 21 is applied beforehand to in

order to remove nonsignificant peaks in the image. If

denotes this filtered image, the OD pixel from this method

is decided according to the following equation:

(1)

where and are, respectively, the max-

imum and the minimum values of the pixels in within

a window of size 21 21 centered on a pixel (see

examples in Fig. 2, images A-1, B-1, and C-1).

• Maximum Variance Method: This method is based on the

same properties as the previous one. It calculates the statis-

tical variance for every pixel by using a 71 71 centered
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Fig. 3. Illustration of the process for the calculation of the circular OD boundary approximation: (C) Initial RBG sub-image containing an OD affected by peri-
papillary atrophy. On the right, the top row shows the process performed on the red channel, whereas the bottom corresponds to the process applied to the green
component. (R) and (G) Subimages extracted from the red and green channels of (C), respectively. (R-1) and (G-1) Vessel elimination. (R-2) and (G-2) Gradient
magnitude image. (R-3) and (G-3) Binary image. (R-4) and (G-4) Cleaner version of the binary image. (R-5) and (G-5) Circular OD boundary approximation. The
scores obtained in the Circular Hough Transform algorithm are, 264 for segmentation in (R-5) and 130 for segmentation in (G-5), so the segmentation selected
would be the one performed on the red channel.

window. On the other hand, a set of “bright” pixels is ob-

tained by automatic blue-channel thresholding according

to the Otsu method [26]. The OD pixel returned by this

method is the maximum variance pixel showing at least 10

“bright” pixels in its neighborhood (established by means

of a 101 101 pixel window) (see Fig. 2, images A-2, B-2,

and C-2). The window sizes selected to compute the vari-

ance and to establish the neighborhood criteria, were set

with the aim of obtaining the best location performance on

a set of 1200 fundus images (this database is described in

Section IV).

• Low-Pass Filter Method: The OD pixel of this method is

the maximum gray-level pixel in a low-pass filtered image.

Although the OD is usually the brightest area in a retinog-

raphy, the pixel with the highest gray level could not be

located within it. In many cases, this pixel may be inside

other small bright regions. In order to smooth out these dis-

tractors, the image is transformed to the frequency do-

main and filtered by the Gaussian low-pass filter defined

as follows:

(2)

where is the Euclidean distance between the point

and the origin of the frequency plane, and is

the cutoff frequency with a value of 25 Hz. The highest

gray-level pixel in the filtered image returned to the spatial

domain is the result of this method (Fig. 2, images A-3,

B-3, and C-3).

The result of the final ODP selection process is illustrated by

the three examples of application of the methodology shown in

Fig. 2. In the first example (Fig. 2, images A to A-4), it can

be confirmed that although the pixel returned by the maximum

difference method is outside the disc, it is discarded and the

ODP is successfully selected. In the second example (Fig. 2,

images B to B-4), pixels returned by the three methods are close,

so the location of the ODP is the location of their centroid. In the

last example (Fig. 2, images C to C-4), the three partial results

are far from their centroid, so the final ODP is the OD pixel

found by the maximum variance method.

B. Optic Disc Boundary Segmentation

The method proposed in this paper is performed on an RGB

sub-image of the original retinography. By this way, robust-

ness and efficiency in OD segmentation are increased as it re-

duces the search space and decreases the number of artifacts

and distractors present in the whole image. So, as a first step, a

400 400 RGB sub-image is extracted centered on an OD pixel

provided by the OD location methodology previously presented,

or by any other if desired.

Although the green component of an RGB retinography is

the one with highest contrast [25], the OD is often present in

the red field as a well-defined white shape, brighter than the

surrounding area. When contrast between the OD shape and its

environment in this color field is high enough, the OD can usu-

ally be segmented better than in the green field. At other times,

the OD is not discernable in the red component and has to be

segmented in the green one. To exploit this feature, the OD seg-

mentation is performed in parallel on the two components and

the “better” of the two segmentations is ultimately selected. The

proposed procedure firstly employs an special morphological

processing to eliminate blood vessels. Then, a binary mask of

the OD boundary candidates is obtained by applying edge detec-

tion and morphological techniques. Finally, the Circular Hough

Transform is used to calculate the circular approximation of the

OD.

1) Elimination of Blood Vessels: Consider the gray-level

image from the red or green field of the sub-image containing

the OD (Fig. 3, images R and G). As was discussed, blood ves-

sels within the OD act as strong distractors, so they should be

erased from the image beforehand. The vasculature is piecewise

linear and can be considered as a structure composed of many

such connected linear shapes with a minimum length and a

maximum width , where usually (see Heneghan et

al. [27]). These linear shapes are formed, as a general rule, by

a set of pixels with an almost constant gray-level value, with
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this value being somewhat lower than the gray-level values

of non-vessel pixels in their vicinity. Using a rotating linear

structuring element of width 1 and length , a linear

shape can be detected by calculating the statistical variance of

gray-level values of pixels along it. The rotation associated with

the minimum value will be that in which the vessel contains

and, conversely, the rotation with the highest value will refer to

the situation in which crosses the linear shape. Thus, vessels

can be removed from image by finding, for every pixel, the

rotation which produces the maximum gray level variance

value and taking the maximum gray-level in the neighborhood

defined by the structuring element at that rotation (see effects

at Fig. 3, images R-1 and G-1). Mathematically this can be

expressed as

(3)

where

(4)

represents structuring element at rotation determined by

(4). Twelve rotations of the structuring element each 15 apart

were used. The length of the structuring element should be

chosen so as to cross vessels in order to erase them by applying

(3). Taking into account the study proposed by Heneghan et al.

in [27], the value for this parameter was set to 27. This operation

produces an OD enlargement of pixels in all directions. This

will be considered at the end of the processing.

2) Obtaining Od Boundary Candidates: The OD boundary

represents the frontier between the OD and the background. It

is characterized by a sudden variation in gray levels, with these

values higher within the OD than in its surroundings. So, the

OD boundary can be detected by measuring the gradient magni-

tude of gray-level changes in small neighborhoods of the image.

Firstly, a mean filter is applied to eliminate pixel values unrepre-

sentative of their environment. Then, the Prewitt edge detector

[28] is used to obtain a gradient magnitude image (hereafter

). This operator estimates image edge and orientation by

convolving two 3 3 kernels which approximate derivatives for

horizontal and vertical changes. The gradient magnitude image

is finally obtained by taking the module of partial derivative

values for every pixel. Thus, is an image which contains

information on edges, specifically on the location and intensity

of local gray-level variations (Fig. 3, images R-2 and G-2). As

the blood vessels were previously erased, in general the most

significant edges in the gradient image correspond to the OD

boundary. Thus, a binary mask of OD boundary candidates can

be produced by thresholding the image .

As stated before, there is great variability in OD appearance,

and the contrast level between the OD and the background may

vary quite substantially. That is why it is not suitable to establish

a unique threshold for any image. The Otsu thresholding method

[26] automatically decides a threshold for a gray-level image

by assuming that it is composed of two sets, the background

and the foreground. Then, the method establishes the optimum

threshold by maximizing the between-class variance.

Using this threshold, a first binary mask of OD boundary can-

didates is given by a simple binarization operation (see Fig. 3,

images R-3 and G-3)

if

if .
(5)

This image can contain some noise caused by small rims present

in the original image and detected in . So, the definitive

binary mask of OD boundary candidates is obtained by cleaning

by means of morphological erosion (Fig. 3, images R-4 and

G-4),

(6)

where is a circular structuring element with a diameter of five

pixels. This operation reduces the OD radius in two pixels.

3) Final OD Boundary Segmentation: The Hough Transform

[29] is widely used in Computer Vision and Pattern Recognition

for detecting geometrical shapes that can be defined by para-

metric equations. Based on the primitive Hough Transform [29],

the Circular Hough Transform was outlined by Duda et al. [30]

and later improved and extended by Kimme et al. [31]. It aims

to find circular patterns within an image. It is used to transform

a set of feature points in the image space into a set of accumu-

lated votes in a parameter space. Then, for each feature point,

votes are accumulated in an accumulator array for all param-

eter combinations. The array elements that contain the highest

number of votes indicate the presence of the shape. A circum-

ference pattern is described by the parametric equation of the

circumference, defined as

(7)

where are the coordinates of the circle center and is the

radius. So, the circular shapes present in can be obtained

by performing the Circular Hough Transform on this image. It

can be defined as

(8)

where and are respectively the center position

and the radius that define the circular shape with the highest

punctuation in the Circular Hough Transform implemented by

CHT. The radius is restricted to be between and ,

values which are one-tenth and one-fifth of the image [7] di-

vided by two (as these measurements refer to OD diameter esti-

mation). The minimum radius restriction reduces the probability

of considering the OD cup, while the maximum radius restric-

tion eliminates candidates with too wide areas. The obtained

value must be corrected due to the effects of (3) and (6). The

vessel elimination performed in (3) enlarged the OD 27 pixels

and the erosion operation in (6) produced a two-pixel reduction,

so the value has to be reduced by 25.

As previously commented, this processing is applied in par-

allel to the green and red channels. Thus, two OD approxima-

tions are obtained. The one with the higher score in the Cir-

cular Hough Transform algorithm is then selected as the defin-

itive circular OD boundary approximation (Fig. 3, images R-5
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TABLE I
RESULTS OF THE CIRCULAR HOUGH IN TERMS OF PERCENTAGE OF IMAGES PER OVERLAPPING INTERVAL AND AVERAGE OVERLAPPING OF THE WHOLE SET

and G-5). This score quantifies the point by point matching de-

gree between the estimated circumference and the fitted shape

in . Therefore, higher scores generally involve better OD

border extraction and, hence, better segmentation quality. More-

over, the selection of the correct candidate is also favored by the

fact that the score of this algorithm is an absolute and not a rel-

ative measure. This implies that the selected maximum-score

criterion tends to select longer candidate circumferences. This

is especially useful when the OD cup is wide enough to be con-

sidered a candidate, as it leads to an increased probability of

selecting the correct candidate between the cup and the true OD

boundary.

IV. TESTING AND RESULTS

We used in this study the publicly available MESSIDOR

database [32], kindly provided by the Messidor program part-

ners. It contains 1200 eye fundus color images of the posterior

pole acquired by the Hôpital Lariboisière Paris, the Faculté de

Médecine St. Etienne and the LaTIM–CHU de Brest (France).

800 of these images were captured with pupil dilation (one

drop of Tropicamide at 10%) and 400 without dilation, using a

Topcon TRC NW6 non-mydriatic retinograph with a 45 FOV.

The images are 1440 960, 2240 1488, or 2304 1536

pixels in size and 8 bits per color plane and are provided in

TIFF format. 540 images are from patients not affected by

DR and 660 correspond to patients affected by the illness.

To prevent the inclusion of any kind of skew, although some

images are not suitable for processing (i.e., images too blurred

or with severe enough cataract), no exclusion criteria was

applied. To make evaluation of the algorithm performance on

this database possible, the OD rim was manually delimited by

experts producing by this way a gold standard set.

Although database images are provided in TIFF format, they

were JPEG compressed at a ratio of 1:35 for testing. It was

done for assessing algorithm performance under conditions es-

tablished in the protocols defined by the organism that funded

these investigations, the Andalusian Health Service, relating to

image file size. This restriction is imposed as, using this kind

of compressed format, storage requirements as well as latency

in exchanging images via the internet are drastically reduced.

Moreover, we performed tests on image resolution for the lo-

cation and the segmentation methodologies, scaling down the

images. These tests revealed that the results provided by both

methods are independent and stable in spite of decreasing image

resolution down to 300 300 for OD location and 640 640

for OD segmentation. Therefore, the methodologies presented

are actually applied to images of these sizes. Any image of any

resolution is reduced to 300 300 and 640 640 for OD lo-

cation and OD segmentation respectively and the processes are

performed scaling the window sizes and parameters to these res-

olutions. So, the results in this section were obtained applying

these reductions.

Algorithm performance was evaluated by measuring the

overlapping degree between the true OD regions in “gold

standard” images and the approximated regions obtained with

the described approach. The proposal by Lalonde et al. [21]

was used with this purpose: an overlapping score is defined

to measure the common area between a true OD region and

a detected region as

(9)

Since the proposed algorithm segments the OD by approx-

imating its shape by a circumference, for a better evaluation

of its behavior, it is also interesting to get to know how far its

results are from the maximum results reachable with this tem-

plate-based approach. With this purpose, a “circular gold stan-

dard” set was created by calculating the best circular approxi-

mations for all true OD contours in the “gold standard” set by

using (8). Then, the common area between the regions in the

“gold standard” and these best circular approximations in the

“circular gold standard” were calculated also according to (9).

Therefore, the average of these values may be considered the

upper limit of average common overlapping for an automatic

OD segmentation using a circular approximation. So, general-

izing, this experiment, apart from being interesting for better al-

gorithm evaluation, provides an interesting objective measure-

ment of the maximum OD area which can be covered by a circle.

Therefore, it is an appropriate measure to assess the general suit-

ability of OD segmentation using a circular approximation.

The algorithm presented in this paper (CircularHough) was

applied to calculate the overlapping defined in (9) for the 1200

images in the MESSIDOR database. This metric was also com-

puted using the “circular gold standard” set (CircularGoldStan-

dard). The results for both methods are summarized in Table I1.

This table shows the percentage of images for different inter-

vals of values, as well as average overlapping for the whole

set of images. These overlapping measures corresponding to the

CircularHough algorithm normalized by the results of the Cir-

cularGoldStandard are also shown in the last row. As shown

in this table, overlapping between the hand-labelled OD region

and CircularHough algorithm-segmented one is higher than or

equal to 0.75% for 90% of the images in the database. Average

1Results of the experiment for every image is available at [33], in the Optic
Disc Results subsection of the Results section



IE
E
E
 P

ro
o
f

W
e
b
 V

e
rs

io
n

6 IEEE TRANSACTIONS ON MEDICAL IMAGING

Fig. 4. Sample segmentations obtained with the presented methodology. (a) � � ����. (b) � � ����. (c) � � ����. (d) � � ����. (e) � � ����. (f) � � ����.
(g) � � ���	. White line: segmentations produced by the algorithm; black line: true OD areas labeled by specialists.

overlapping obtained for the whole set of images was 0.86. In

this respect, note that the maximum overlapping reachable with

a circular template-based approach is 0.92.

Fig. 4 shows segmentation examples obtained by the pro-

posed methodology for all the overlapping intervals defined in

Table I. It should be pointed out that, for segmentation algo-

rithm testing, the location methodology presented in this paper

was used to obtain the required initial OD location. This algo-

rithm correctly found the OD in 1186 out of the 1200 images

(99% success rate). OD location was manually determined in

the 14 images in which the OD location algorithm failed.

The third row in Table I shows the performance results pub-

lished by Lalonde et al. [21] for their circular template-based

methodology. These results were obtained on a different data-

base comprising 40 images taken from 27 patients attending

a diabetic retinal-screening programme. As in the case of the

MESSIDOR database, this set of images includes good, fair

and bad visual quality images (Lalonde et al. considered bad

quality images as those blurred and/or containing abnormally

dark or bright regions). Our algorithm could not be tested on this

database as we had no access to it. The algorithm proposed by

Lalonde et al. (Hausdorff-BasedTemplateMatching) is based on

minimizing the Hausdorff distance between previously obtained

candidate edge map regions and a set of circular templates. As it

can be observed, the CircularHough method exceeds the results

of this methodology for all considered overlapping intervals and

also enhances average overlapping.

Finally, tests concerning computational efficiency were

also done. The tests were performed on a current midrange

PC equipped with an Intel Core2Duo CPU at 2.13 GHz and

2 GB of RAM capacity. The algorithms were implemented in

Java programming language and tested running on the Java

Virtual Machine version 6. For a total of 1200 executions of

the algorithm for OD segmentation, the average computational

time obtained was 5.69 s. with a standard deviation of 0.54 s.

The average computational time obtained for OD location was

1.67 s. with a standard deviation of 0.14 s.

V. DISCUSSION ON OD SEGMENTATION MODELS

In this section, we discuss on the advantages and disad-

vantages of the most widely-used OD segmentation models:

circular as well as elliptical template-based methods and de-

formable model-based methods. The first discussion focuses on

the use of elliptical or circular models. For that, four different

elliptical approaches were implemented and tested to compare

them to the circular approximation presented here. In the

second subsection, the proposed circular approach is compared

TABLE II
COMPARISON OF SEGMENTATION POTENTIAL OF DIFFERENT

MODELS IN TERMS OF AVERAGE OVERLAPPING

to three deformable model-based algorithms and obtained

results are discussed.

A. The Presented Circular Template-Based Method Versus

The Elliptical Template-Based Approach

According to OD shape features, the use of an elliptical model

for OD segmentation, at least theoretically, should render higher

segmentation potential. For empirical evaluation of this issue,

the experiment used for circular model potential assessment was

now reproduced and applied to elliptical models. That is, an “el-

liptical gold standard” set was generated by applying an ellip-

tical model for fitting the true OD contours in the “gold stan-

dard” set of the database described in Section IV. So, the average

overlapping of both sets may be considered the maximum seg-

mentation potential of an elliptical model. Table II summarizes

the potential of all models discussed in this section. As it can

be observed, the use of an elliptical model renders a theoretical

overlapping increase of 5% relative to the potential rendered by

a circular model. Nevertheless, since the elliptical approach has

two degrees-of-freedom more than the circular model (rotation

angle and additional radius), its results may show a less robust

and stable behavior.

To assess elliptical model behaviour, four elliptical tem-

plate-based variants were implemented and applied to the

obtained from operation (6). Three of these approaches were

based on minimizing the algebraic distance [34], [35] and one

was based on minimizing the geometric distance [34]. Each

approach was tested on the database used in Section IV and

results were measured using the metric defined in (9). Thus, the

elliptical and circular approaches can be compared under the

same conditions. Table III summarizes the results obtained in

this test. Data are presented in columns as the percentage of im-

ages per interval of overlapping values, the penultimate column

is the total average overlapping and the last one indicates the

percentage of model-solved cases, as the tested methods do not

always converge to a solution. The first row shows the results

for the elliptical approach based on minimizing the geometric

distance, the following three rows show the results obtained
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TABLE III
COMPARISON BETWEEN THE PRESENTED CIRCULAR TEMPLATE-BASED METHOD AND FOUR ELLIPTICAL TEMPLATE-BASED APPROACHES.

DATA IN TERMS OF PERCENTAGE OF IMAGES PER OVERLAPPING INTERVAL AND AVERAGE OVERLAPPING OF THE WHOLE SET

with the three variants based on minimizing the algebraic dis-

tance, and the last row show the results of the circular approach

presented in this paper. Importantly, the average values for each

elliptical method were calculated considering only the cases

for which they had found a solution. Another important issue

with regard to results is that no automated criterion was used

for selecting for each image between the segmentations from

the red and green channels. For each image, both candidates

were measured and the one with the highest overlapping score

was selected for method total average calculation. Hence, the

results shown in Table III are the highest possible scores for

each elliptical approach.

The results from this study indicate that the segmentation per-

formance of all elliptical approaches is similar. The greater dif-

ference between them was observed at the percentage of solved

cases. Interestingly, their performance is significantly poorer

than that obtained with the circular model. This performance

degradation is the result of elliptical models’s higher sensitivity

to poor OD border contrast and, therefore, to poor border ex-

traction. These models require the extraction of a great amount

of OD representative borders to provide correct estimations of

the two radiuses and rotation angle. On the other hand, the cir-

cular model proposed in this paper only needs some portions of

the OD contour to obtain a fitting circumference. Although the

preprocessing designed in this work may not be the most ap-

propriate for elliptical models, their direct application for OD

segmentation is suggested here to offer less stable and homoge-

neous behavior.

B. The Presented Circular Template-Based Method Versus the

Deformable Model-Based Approach

The main advantage of using a deformable model instead of

a template-based model for OD segmentation is that, theoreti-

cally, 100% of overlapping areas between the automated seg-

mentation and the ground truth may be achieved. As shown in

Table II, it involves an 8% increase relative to a circular model.

This is why deformable models have much more degrees-of-

freedom than template-based models to fit the desired shape.

However, these additional freedom degrees-of-freedom make

these models more sensitive to irregular or low OD boundary

contrast.

As a basis for this discussion, the template-based method pro-

posed here was compared to the three OD segmentation ap-

proaches based on deformable models proposed by Lowell et al.

in [18]. For the sake of comparison rigorousness, we used the

same database, “gold standard” set and metric as those used in

this work. Thus, the algorithms can be compared under identical

TABLE IV
COMPARISON BETWEEN THE PRESENTED CIRCULAR TEMPLATE-BASED

METHOD AND THREE DEFORMABLE MODEL-BASED APPROACHES IN

TERMS OF PERCENTAGE OF IMAGES PER SUBJECTIVE CATEGORY

conditions. The database is composed of 90 images acquired at

a resolution of 640 480 and 8 bits per color plane. These im-

ages were taken from 50 patients, 19 of them being affected by

type 2 diabetes mellitus; the diabetes status was unavailable for

the remaining 31. To produce the “gold standard” segmentation

for this set of images, four clinicians manually delimited the rim

for each image, and the mean and radial standard deviations of

these contours were calculated. Then, Lowell et al. defined the

discrepancy as

(10)

where and summarize the clinicians choice of rim loca-

tion on spoke of image and is segmentation location on

spoke for image . Spokes are points belonging to the OD rim;

24 spokes were considered taken each 15 . Division by com-

pensates for uncertainty in rim position and is a small factor

to prevent division by zero where the clinicians are in exact

agreement. In addition to this measure, they defined four cat-

egories corresponding to their subjective perception of quality.

These four categories are Excellent, Good, Fair, and Poor, ref-

erencing images with disparity up to one, two, five, or more,

respectively. They assessed their algorithms performance con-

sidering the percentage of segmentations classified in the range

Excellent–Fair.

Table IV summarizes the performance on this subjective scale

for their three alternative algorithms and the one proposed in

this paper. Results are expressed in terms of the percentage of

images per subjective category. As it can be observed, with the

best deformable model approach, 2% more of excellent segmen-

tations were obtained than with the presented approach. Never-

theless, the template-based approach provided a significant en-

hancement in the percentage of obtained “valid” segmentations,

thus reaching the 79% versus 73% of segmentations within the

Excellent–Good range, and 97% versus 83% of segmentations

within the Excellent–Fair range.
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The results of this experiment, in spite of not being appli-

cable to all template-based and deformable models, are a good

example of comparable segmentation performance of both

approaches on a particular common case. Therefore, the main

conclusion of this experiment would be that, for OD segmen-

tation, under appropriate OD background-contrast conditions,

deformable models render more accurate OD segmentations.

On the contrary case, when contrast conditions are not so

favourable, the circular approach may turn out to be a more

robust and reliable solution.

VI. DISCUSSION AND CONCLUSION

This paper presents a new template-based approach for OD

segmentation by means of a circular OD-boundary approxima-

tion. In addition, an OD location methodology for obtaining the

OD position needed by the segmentation algorithm as initial in-

formation is also proposed.

The results presented in this paper show that the proposed

methodology offers a reliable and robust solution for OD seg-

mentation. According to the results in Table I, the overlapping

between the “true” OD region and the one segmented by our al-

gorithm is over 0.75 in 90% of the 1200 MESSIDOR images,

being the average overlapping 0.86 for the whole set of images.

This result is more valuable taking into account that maximum

overlapping with a circular template-based approach is 0.92.

Referentially, it can be pointed out that performance compar-

isons with the circular template-based approach by Lalonde et

al. [21] show that the overlapping obtained by our proposal was

clearly higher, in spite of the fact that our results were obtained

on a set of 1200 images while Lalonde et al. used only 40 (re-

sults are shown in Table I).

Moreover, discussion in Section V on different OD segmen-

tation, strengthens the hypothesis of the suitability of circular

models for this purpose. The tests summarized in Table II

indicate that the overlapping area between ground-truth OD

segmentations and those obtained by elliptical models is higher

than those obtained by circular models (97% and 92%, respec-

tively). However, when testing with numerous and different real

cases, the simplicity of the presented circular model generally

favours obtaining a more robust behaviour. Thus, performance

comparisons between the proposed circular template-based

method and four elliptical template-based approaches for

the MESSIDOR images (Table III) indicate that the circular

approach renders a clearly higher average overlapping. The

same conclusion was drawn for deformable models. Although

these models can theoretically obtain 100% overlapping, the

performance results presented in terms of discrepancy grades in

Table IV, indicate that our proposed circular model outperforms

the deformable model proposed by Lowell et al. in [18].

On the other hand, it must be mentioned that, to facilitate

performance comparison between OD segmentation methods,

the generated hand segmentations of the OD rim for the 1200

images in the MESSIDOR database are currently available for

researchers at [33], in the Sample Databases subsection within

the Results section by selecting the MESSIDOR database. The

original database is available at [32]. To the best of our knowl-

edge, such a set of “gold standard” images from a clinically la-

belled database is not available for the research community at

the present time.

The main conclusions of this work can be summarized as fol-

lows.

1) The performance results obtained by the proposed method-

ology on a huge digital retinal database indicate that simple

methods, based on basic image processing techniques,

seem to suffice for OD location and segmentation.

2) A circular modelling for the OD boundary, compared to

elliptical and deformable models, was shown to offer good

compromise between success rate, quality and efficiency,

as shown by comparing its segmented area to experts’ free-

drawn areas.

Despite all of this, the existence of some specific cases in

which, due to their exceptional ellipsity degree, the circular

approach does not reach the performance results of the ellip-

tical approach has been reported [see, for instance, the case in

Fig. 4(f)]. With the aim of enhancing the overlapping rates ob-

tained in this work for these isolated cases, the authors’ current

research is focused on the development of a methodology for

performing a controlled elliptical deformation of the obtained

circumference. Within the framework of this study, whether

any preprocessing modification is necessary or even whether

postprocessing would be appropriate for assuring deformation

process stability is currently under study.
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Detecting the Optic Disc Boundary in Digital Fundus
Images Using Morphological, Edge Detection, and

Feature Extraction Techniques
Arturo Aquino*, Manuel Emilio Gegúndez-Arias, and Diego Marín

Abstract—Optic disc (OD) detection is an important step in
developing systems for automated diagnosis of various serious
ophthalmic pathologies. This paper presents a new template-based
methodology for segmenting the OD from digital retinal images.
This methodology uses morphological and edge detection tech-
niques followed by the Circular Hough Transform to obtain a
circular OD boundary approximation. It requires a pixel located
within the OD as initial information. For this purpose, a location
methodology based on a voting-type algorithm is also proposed.
The algorithms were evaluated on the 1200 images of the pub-
licly available MESSIDOR database. The location procedure
succeeded in 99% of cases, taking an average computational
time of 1.67 s. with a standard deviation of 0.14 s. On the other
hand, the segmentation algorithm rendered an average common
area overlapping between automated segmentations and true OD
regions of 86%. The average computational time was 5.69 s with a
standard deviation of 0.54 s. Moreover, a discussion on advantages
and disadvantages of the models more generally used for OD
segmentation is also presented in this paper.

Index Terms—Diabetic retinopathy, glaucoma, optic disc (OD)
segmentation, retinal imaging, telemedicine.

I. INTRODUCTION

D
IABETIC retinopathy (DR) is a chronic disease which

nowadays constitutes the primary cause of blindness in

people of working age in the developed world [1]–[3]. The ben-

efits that a system for automaticly detect early signs of this dis-

ease would provide have been widely studied and assessed pos-

itively by experts [4], [5]. In this sense, the OD plays an im-

portant role in developing automated diagnosis expert systems

for DR as its segmentation is a key preprocessing component

in many algorithms designed to identify other fundus features.
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The relatively constant distance between the OD and the fovea,

can be used to help estimate the location of the latter [6]. On

the other hand, to segment the vascular tree, vessel tracking

methods need an initial seed vessel point. For this, pixels of ves-

sels within the OD or in its vicinity have been used [7], [8]. In

addition, OD segmentation can be useful in diagnosing automat-

ically some diseases caused by DR. Finding the OD can be used

to decrease false positives in the detection of regions of retinal

exudates [9]. These injuries are a diagnostic key to grading the

risk of macular edema.

OD segmentation is also relevant for automated diagnosis of

other ophthalmic pathologies. One of them and maybe the most

noteworthy is Glaucoma. It is the second most common cause

of blindness worldwide [10]. Glaucoma is identified by recog-

nizing the changes in shape, color, or depth that it produces in

the OD [11]. Thus, its segmentation and analysis can be used to

detect evidence of Glaucoma automatically.

The OD can be distinguished in eye fundus images as a

slightly elliptical shape. Its size may vary significantly and

different estimations have been made. Whereas Sinthanayothin

et al. [6] stated that it occupies about one-seventh of the entire

image, alternatively other authors have pointed out that OD size

varies from one person to another, occupying about one-tenth

to one-fifth of the image [7]. In color fundus images, the OD

usually appears as a bright yellowish region, although this

feature may also experience significant variations (Fig. 1).

OD segmentation is not an easy matter. Besides the varia-

tions in OD shape, size, and color pointed out previously, there

are some additional complications to take into account. Con-

trast all around the OD boundary is usually not constant or

high enough piecewise due to outgoing vessels that partially ob-

scures portions of the rim producing “shadows.” Another dis-

tractor is produced when peripapillary atrophy is present, as

this produces bright areas just outside the OD rim which dis-

tort its shape. On the other hand, eye movement at the moment

of retinography capture may also lead to slightly blurred im-

ages, making their automated analysis even more difficult. This

problem can be avoided by simply discarding these images and

retaking new ones. However, this method is not usually applied

as their quality is usually good enough for human visual inspec-

tion.

This paper presents a new template-based method for OD seg-

mentation. Firstly, an OD-containing sub-image is extracted: an

OD pixel and its surrounding region (a surrounding region wide

enough to include the whole OD) are selected. With this pur-

pose, an OD location methodology is also proposed here. Then,

0278-0062/$26.00 © 2010 IEEE
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Fig. 1. Examples of OD appearance. (a) Yellowish OD. (b) Brownish OD. (c)
Reddish OD. (d) Whitish OD.

the OD boundary is extracted in parallel from both the red and

green channels of this sub-image by means of morphological

and edge detection techniques. Both OD boundaries are approx-

imated by a circumference using the Circular Hough Transform.

The “better” of these results is finally selected. This paper also

includes a study on advantages and disadvantages involved by

the use of circular, elliptical and deformable models for OD seg-

mentation. The results of this study strengthen the hypothesis

of the suitability of circular models for this purpose and show

evidence that the circular approach offers good compromise be-

tween success rate, quality, and efficiency.

II. OVERVIEW OF STATE OF ART

The available works related to OD processing in eye fundus

color images can be grouped into two distinct categories:

location and segmentation methods. The former works focus

on finding an OD pixel (generally representative of its center).

On the other hand, the latter works estimate the OD boundary.

Within this category, a general distinction can be made between

template-based methods (methods for obtaining OD boundary

approximations) and methods based on deformable models or

snakes for extracting the OD boundary as exactly as possible.

With regard to location methods, Synthanayothin et al. pre-

sented a method [6], [12] where the images were preprocessed

by applying an adaptative local contrast enhancement to the

intensity channel of the HSI color space. The OD center loca-

tion was identified using the variance of intensity produced by

the blood vessels within the OD. Hoover and Goldbaum [13],

[14] located the center of the OD using the vasculature origin.

They determined where all the vessels converged by means

of a voting-type algorithm called fuzzy convergence. Another

method that uses the convergence of the vessels to detect the

OD center was proposed by Foracchia et al. [15]. The four main

vessels originating from the OD were geometrically modeled

using two parabolas, and the OD position was located as their

common vertex. Inspired by previous works, Youssif et al. [16]

presented an OD location method based on a vessels’ direction

matched filter. As a first step a binary mask was generated fol-

lowed by image brightness and contrast equalization. Finally,

the retinal vasculature was segmented, and the directions of the

vessels were matched to the proposed filter representing the

expected vessels’ directions in the vicinity of the OD.

With regard to segmentation methods and concretely to

works based on deformable models, Osareh et al. [17] located

the OD center by means of template matching and extracted

its boundary using a snake initialized on a morphologically

enhanced region of the OD. Lowell et al. [18] also localized

the OD by means of template matching as well as also selected

a deformable contour model for its segmentation. Specifically,

they used a global elliptical model and a local deformable

model with variable edge-strength dependent stiffness. Another

deformable model-based approach was presented in [19]. The

snake behavior against vessel occlusion was improved and

the model was extended in two aspects: knowledge-based

clustering and smoothing update. Thus, the snake deformed to

the location with minimum energy and then self-clustered into

two groups, which were finally updated by the combination of

both local and global information. Regarding template-based

methods, Wong et al. [20] proposed: 1) OD location by means

of histogram analysis and initial contour definition according

to the previously obtained location, and 2) a modified version

of the conventional level-set method was subsequently used for

OD boundary extraction from the red channel. This contour was

finally fitted by an ellipse. Another template-matching approach

for OD segmentation is the Hausdorff-based template matching

presented by Lalonde et al. [21]. Initially, they determined

a set of OD candidate regions by means of multiresolution

processing through pyramidal decomposition. For each OD

region candidate, they calculated a simple confidence value

representing the ratio between the mean intensity inside the

candidate region and inside its neighborhood. The Canny edge

detector and a Rayleigh-based threshold were then applied to

the green-band image regions corresponding to the candidate

regions, constructing a binary edge map. As final step, using the

Hausdorff distance between the edge map regions and circular

templates with different radii, they decided the OD among all

the candidates. On the other hand, although they do not belong

to the two reviewed categories, works [22]–[24] proposed other

relevant OD segmentation methods. Walter and Klein [22]

found the OD contour through the watershed transformation.

For OD detection, its center was previously approximated as

the centroid of the largest and brightest connected object in a

binary image obtained by thresholding the intensity channel.

Reza et al. [23] also used the watershed transformation for OD

segmentation. Firstly, the green channel was preprocessed for

image condition enhancement. Then, morphological opening,

extended maxima operator and minima imposition were finally

used to apply the watershed transformation for bright structure

segmentation. Finally, although applied to stereo images, it

is worth mentioning the novel OD segmentation approach

presented by Abràmoff et al. [24]. Pixel feature classification

by means of a -nearest neighbor classifier was used in this

case for OD segmentation in stereo color photographs.
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Fig. 2. ODP determination: (A), (B), and (C) Original images. (A-1), (B-1), and (C-1) OD pixels rendered by the maximum difference method. (A-2), (B-2), and
(C-2) OD pixels rendered by the maximum variance method. (A-3), (B-3), and (C-3) OD pixels rendered by the low-pass filter method. (A-4), (B-4), and (C-4) Final
ODP determination (black circumference): in (A-4), although the OD pixel of the maximum difference method is not properly selected, the ODP is successfully
located; in (B-4) the ODP selected is the centroid of the three OD pixels; in (C-4), since the three OD pixels are far from their centroid, the ODP selected is the
OD pixel from the maximum variance method.

III. METHODOLOGY

The aim of this work is to introduce a new methodology for

OD segmentation that obtains a circular boundary approxima-

tion. It needs as initial information the coordinates of a pixel

located within the OD. To this effect, in order to complement

the presented segmentation methodology, a simple but reliable

and very fast OD location methodology is also proposed to ob-

tain the required OD pixel. It must be stressed that any other

location method could be used for this purpose.

All values of parameters, constants and window sizes given

in this section refer to retinas of 1046 pixels in diameter. For

different image resolutions, all of these values would have to be

scaled.

A. Optic Disc Location

The location methodology obtains a pixel [called Optic Disc

Pixel (ODP)] that belongs to the OD. It comprises three inde-

pendent detection methods. Each method obtains its own OD

candidate pixel. The final ODP is selected by taking into ac-

count the three previous candidate pixels and their location with

respect to their average point (centroid). For this, a voting pro-

cedure comprising the following cases is applied.

• If the three OD candidate pixels are close to the centroid

(closer than one-fifth of the image, maximum OD diameter

estimation [7]): the selected ODP is the centroid.

• If only two candidates are close to the centroid: the selected

ODP is the average point in these two referred pixels.

• Otherwise, the selected ODP is the candidate pixel ob-

tained with the most reliable method (performed tests show

this is the maximum variance method described below).

The three developed methods work on the green channel of the

RGB color space as this is the one that provides the best contrast

[25]. This gray scale image will be denoted as . A description

of these methods, illustrated in Fig. 2 by three examples of their

application to different eye fundus images, is presented as fol-

lows.

• Maximum Difference Method: The OD usually appears as

a bright region in eye fundus images. Moreover, the vas-

cular tree formed by the ”dark” blood vessels emerges in

the disc. This is why the maximum variation of the gray

levels usually occurs within the OD. This maximum is used

by this method to select its OD pixel.

A median filter of 21 21 is applied beforehand to in

order to remove nonsignificant peaks in the image. If

denotes this filtered image, the OD pixel from this method

is decided according to the following equation:

(1)

where and are, respectively, the max-

imum and the minimum values of the pixels in within

a window of size 21 21 centered on a pixel (see

examples in Fig. 2, images A-1, B-1, and C-1).

• Maximum Variance Method: This method is based on the

same properties as the previous one. It calculates the statis-

tical variance for every pixel by using a 71 71 centered
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Fig. 3. Illustration of the process for the calculation of the circular OD boundary approximation: (C) Initial RBG sub-image containing an OD affected by peri-
papillary atrophy. On the right, the top row shows the process performed on the red channel, whereas the bottom corresponds to the process applied to the green
component. (R) and (G) Subimages extracted from the red and green channels of (C), respectively. (R-1) and (G-1) Vessel elimination. (R-2) and (G-2) Gradient
magnitude image. (R-3) and (G-3) Binary image. (R-4) and (G-4) Cleaner version of the binary image. (R-5) and (G-5) Circular OD boundary approximation. The
scores obtained in the Circular Hough Transform algorithm are, 264 for segmentation in (R-5) and 130 for segmentation in (G-5), so the segmentation selected
would be the one performed on the red channel.

window. On the other hand, a set of “bright” pixels is ob-

tained by automatic blue-channel thresholding according

to the Otsu method [26]. The OD pixel returned by this

method is the maximum variance pixel showing at least 10

“bright” pixels in its neighborhood (established by means

of a 101 101 pixel window) (see Fig. 2, images A-2, B-2,

and C-2). The window sizes selected to compute the vari-

ance and to establish the neighborhood criteria, were set

with the aim of obtaining the best location performance on

a set of 1200 fundus images (this database is described in

Section IV).

• Low-Pass Filter Method: The OD pixel of this method is

the maximum gray-level pixel in a low-pass filtered image.

Although the OD is usually the brightest area in a retinog-

raphy, the pixel with the highest gray level could not be

located within it. In many cases, this pixel may be inside

other small bright regions. In order to smooth out these dis-

tractors, the image is transformed to the frequency do-

main and filtered by the Gaussian low-pass filter defined

as follows:

(2)

where is the Euclidean distance between the point

and the origin of the frequency plane, and is

the cutoff frequency with a value of 25 Hz. The highest

gray-level pixel in the filtered image returned to the spatial

domain is the result of this method (Fig. 2, images A-3,

B-3, and C-3).

The result of the final ODP selection process is illustrated by

the three examples of application of the methodology shown in

Fig. 2. In the first example (Fig. 2, images A to A-4), it can

be confirmed that although the pixel returned by the maximum

difference method is outside the disc, it is discarded and the

ODP is successfully selected. In the second example (Fig. 2,

images B to B-4), pixels returned by the three methods are close,

so the location of the ODP is the location of their centroid. In the

last example (Fig. 2, images C to C-4), the three partial results

are far from their centroid, so the final ODP is the OD pixel

found by the maximum variance method.

B. Optic Disc Boundary Segmentation

The method proposed in this paper is performed on an RGB

sub-image of the original retinography. By this way, robust-

ness and efficiency in OD segmentation are increased as it re-

duces the search space and decreases the number of artifacts

and distractors present in the whole image. So, as a first step, a

400 400 RGB sub-image is extracted centered on an OD pixel

provided by the OD location methodology previously presented,

or by any other if desired.

Although the green component of an RGB retinography is

the one with highest contrast [25], the OD is often present in

the red field as a well-defined white shape, brighter than the

surrounding area. When contrast between the OD shape and its

environment in this color field is high enough, the OD can usu-

ally be segmented better than in the green field. At other times,

the OD is not discernable in the red component and has to be

segmented in the green one. To exploit this feature, the OD seg-

mentation is performed in parallel on the two components and

the “better” of the two segmentations is ultimately selected. The

proposed procedure firstly employs an special morphological

processing to eliminate blood vessels. Then, a binary mask of

the OD boundary candidates is obtained by applying edge detec-

tion and morphological techniques. Finally, the Circular Hough

Transform is used to calculate the circular approximation of the

OD.

1) Elimination of Blood Vessels: Consider the gray-level

image from the red or green field of the sub-image containing

the OD (Fig. 3, images R and G). As was discussed, blood ves-

sels within the OD act as strong distractors, so they should be

erased from the image beforehand. The vasculature is piecewise

linear and can be considered as a structure composed of many

such connected linear shapes with a minimum length and a

maximum width , where usually (see Heneghan et

al. [27]). These linear shapes are formed, as a general rule, by

a set of pixels with an almost constant gray-level value, with
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this value being somewhat lower than the gray-level values

of non-vessel pixels in their vicinity. Using a rotating linear

structuring element of width 1 and length , a linear

shape can be detected by calculating the statistical variance of

gray-level values of pixels along it. The rotation associated with

the minimum value will be that in which the vessel contains

and, conversely, the rotation with the highest value will refer to

the situation in which crosses the linear shape. Thus, vessels

can be removed from image by finding, for every pixel, the

rotation which produces the maximum gray level variance

value and taking the maximum gray-level in the neighborhood

defined by the structuring element at that rotation (see effects

at Fig. 3, images R-1 and G-1). Mathematically this can be

expressed as

(3)

where

(4)

represents structuring element at rotation determined by

(4). Twelve rotations of the structuring element each 15 apart

were used. The length of the structuring element should be

chosen so as to cross vessels in order to erase them by applying

(3). Taking into account the study proposed by Heneghan et al.

in [27], the value for this parameter was set to 27. This operation

produces an OD enlargement of pixels in all directions. This

will be considered at the end of the processing.

2) Obtaining Od Boundary Candidates: The OD boundary

represents the frontier between the OD and the background. It

is characterized by a sudden variation in gray levels, with these

values higher within the OD than in its surroundings. So, the

OD boundary can be detected by measuring the gradient magni-

tude of gray-level changes in small neighborhoods of the image.

Firstly, a mean filter is applied to eliminate pixel values unrepre-

sentative of their environment. Then, the Prewitt edge detector

[28] is used to obtain a gradient magnitude image (hereafter

). This operator estimates image edge and orientation by

convolving two 3 3 kernels which approximate derivatives for

horizontal and vertical changes. The gradient magnitude image

is finally obtained by taking the module of partial derivative

values for every pixel. Thus, is an image which contains

information on edges, specifically on the location and intensity

of local gray-level variations (Fig. 3, images R-2 and G-2). As

the blood vessels were previously erased, in general the most

significant edges in the gradient image correspond to the OD

boundary. Thus, a binary mask of OD boundary candidates can

be produced by thresholding the image .

As stated before, there is great variability in OD appearance,

and the contrast level between the OD and the background may

vary quite substantially. That is why it is not suitable to establish

a unique threshold for any image. The Otsu thresholding method

[26] automatically decides a threshold for a gray-level image

by assuming that it is composed of two sets, the background

and the foreground. Then, the method establishes the optimum

threshold by maximizing the between-class variance.

Using this threshold, a first binary mask of OD boundary can-

didates is given by a simple binarization operation (see Fig. 3,

images R-3 and G-3)

if

if .
(5)

This image can contain some noise caused by small rims present

in the original image and detected in . So, the definitive

binary mask of OD boundary candidates is obtained by cleaning

by means of morphological erosion (Fig. 3, images R-4 and

G-4),

(6)

where is a circular structuring element with a diameter of five

pixels. This operation reduces the OD radius in two pixels.

3) Final OD Boundary Segmentation: The Hough Transform

[29] is widely used in Computer Vision and Pattern Recognition

for detecting geometrical shapes that can be defined by para-

metric equations. Based on the primitive Hough Transform [29],

the Circular Hough Transform was outlined by Duda et al. [30]

and later improved and extended by Kimme et al. [31]. It aims

to find circular patterns within an image. It is used to transform

a set of feature points in the image space into a set of accumu-

lated votes in a parameter space. Then, for each feature point,

votes are accumulated in an accumulator array for all param-

eter combinations. The array elements that contain the highest

number of votes indicate the presence of the shape. A circum-

ference pattern is described by the parametric equation of the

circumference, defined as

(7)

where are the coordinates of the circle center and is the

radius. So, the circular shapes present in can be obtained

by performing the Circular Hough Transform on this image. It

can be defined as

(8)

where and are respectively the center position

and the radius that define the circular shape with the highest

punctuation in the Circular Hough Transform implemented by

CHT. The radius is restricted to be between and ,

values which are one-tenth and one-fifth of the image [7] di-

vided by two (as these measurements refer to OD diameter esti-

mation). The minimum radius restriction reduces the probability

of considering the OD cup, while the maximum radius restric-

tion eliminates candidates with too wide areas. The obtained

value must be corrected due to the effects of (3) and (6). The

vessel elimination performed in (3) enlarged the OD 27 pixels

and the erosion operation in (6) produced a two-pixel reduction,

so the value has to be reduced by 25.

As previously commented, this processing is applied in par-

allel to the green and red channels. Thus, two OD approxima-

tions are obtained. The one with the higher score in the Cir-

cular Hough Transform algorithm is then selected as the defin-

itive circular OD boundary approximation (Fig. 3, images R-5
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TABLE I
RESULTS OF THE CIRCULAR HOUGH IN TERMS OF PERCENTAGE OF IMAGES PER OVERLAPPING INTERVAL AND AVERAGE OVERLAPPING OF THE WHOLE SET

and G-5). This score quantifies the point by point matching de-

gree between the estimated circumference and the fitted shape

in . Therefore, higher scores generally involve better OD

border extraction and, hence, better segmentation quality. More-

over, the selection of the correct candidate is also favored by the

fact that the score of this algorithm is an absolute and not a rel-

ative measure. This implies that the selected maximum-score

criterion tends to select longer candidate circumferences. This

is especially useful when the OD cup is wide enough to be con-

sidered a candidate, as it leads to an increased probability of

selecting the correct candidate between the cup and the true OD

boundary.

IV. TESTING AND RESULTS

We used in this study the publicly available MESSIDOR

database [32], kindly provided by the Messidor program part-

ners. It contains 1200 eye fundus color images of the posterior

pole acquired by the Hôpital Lariboisière Paris, the Faculté de

Médecine St. Etienne and the LaTIM–CHU de Brest (France).

800 of these images were captured with pupil dilation (one

drop of Tropicamide at 10%) and 400 without dilation, using a

Topcon TRC NW6 non-mydriatic retinograph with a 45 FOV.

The images are 1440 960, 2240 1488, or 2304 1536

pixels in size and 8 bits per color plane and are provided in

TIFF format. 540 images are from patients not affected by

DR and 660 correspond to patients affected by the illness.

To prevent the inclusion of any kind of skew, although some

images are not suitable for processing (i.e., images too blurred

or with severe enough cataract), no exclusion criteria was

applied. To make evaluation of the algorithm performance on

this database possible, the OD rim was manually delimited by

experts producing by this way a gold standard set.

Although database images are provided in TIFF format, they

were JPEG compressed at a ratio of 1:35 for testing. It was

done for assessing algorithm performance under conditions es-

tablished in the protocols defined by the organism that funded

these investigations, the Andalusian Health Service, relating to

image file size. This restriction is imposed as, using this kind

of compressed format, storage requirements as well as latency

in exchanging images via the internet are drastically reduced.

Moreover, we performed tests on image resolution for the lo-

cation and the segmentation methodologies, scaling down the

images. These tests revealed that the results provided by both

methods are independent and stable in spite of decreasing image

resolution down to 300 300 for OD location and 640 640

for OD segmentation. Therefore, the methodologies presented

are actually applied to images of these sizes. Any image of any

resolution is reduced to 300 300 and 640 640 for OD lo-

cation and OD segmentation respectively and the processes are

performed scaling the window sizes and parameters to these res-

olutions. So, the results in this section were obtained applying

these reductions.

Algorithm performance was evaluated by measuring the

overlapping degree between the true OD regions in “gold

standard” images and the approximated regions obtained with

the described approach. The proposal by Lalonde et al. [21]

was used with this purpose: an overlapping score is defined

to measure the common area between a true OD region and

a detected region as

(9)

Since the proposed algorithm segments the OD by approx-

imating its shape by a circumference, for a better evaluation

of its behavior, it is also interesting to get to know how far its

results are from the maximum results reachable with this tem-

plate-based approach. With this purpose, a “circular gold stan-

dard” set was created by calculating the best circular approxi-

mations for all true OD contours in the “gold standard” set by

using (8). Then, the common area between the regions in the

“gold standard” and these best circular approximations in the

“circular gold standard” were calculated also according to (9).

Therefore, the average of these values may be considered the

upper limit of average common overlapping for an automatic

OD segmentation using a circular approximation. So, general-

izing, this experiment, apart from being interesting for better al-

gorithm evaluation, provides an interesting objective measure-

ment of the maximum OD area which can be covered by a circle.

Therefore, it is an appropriate measure to assess the general suit-

ability of OD segmentation using a circular approximation.

The algorithm presented in this paper (CircularHough) was

applied to calculate the overlapping defined in (9) for the 1200

images in the MESSIDOR database. This metric was also com-

puted using the “circular gold standard” set (CircularGoldStan-

dard). The results for both methods are summarized in Table I1.

This table shows the percentage of images for different inter-

vals of values, as well as average overlapping for the whole

set of images. These overlapping measures corresponding to the

CircularHough algorithm normalized by the results of the Cir-

cularGoldStandard are also shown in the last row. As shown

in this table, overlapping between the hand-labelled OD region

and CircularHough algorithm-segmented one is higher than or

equal to 0.75% for 90% of the images in the database. Average

1Results of the experiment for every image is available at [33], in the Optic
Disc Results subsection of the Results section
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Fig. 4. Sample segmentations obtained with the presented methodology. (a) � � ����. (b) � � ����. (c) � � ����. (d) � � ����. (e) � � ����. (f) � � ����.
(g) � � ���	. White line: segmentations produced by the algorithm; black line: true OD areas labeled by specialists.

overlapping obtained for the whole set of images was 0.86. In

this respect, note that the maximum overlapping reachable with

a circular template-based approach is 0.92.

Fig. 4 shows segmentation examples obtained by the pro-

posed methodology for all the overlapping intervals defined in

Table I. It should be pointed out that, for segmentation algo-

rithm testing, the location methodology presented in this paper

was used to obtain the required initial OD location. This algo-

rithm correctly found the OD in 1186 out of the 1200 images

(99% success rate). OD location was manually determined in

the 14 images in which the OD location algorithm failed.

The third row in Table I shows the performance results pub-

lished by Lalonde et al. [21] for their circular template-based

methodology. These results were obtained on a different data-

base comprising 40 images taken from 27 patients attending

a diabetic retinal-screening programme. As in the case of the

MESSIDOR database, this set of images includes good, fair

and bad visual quality images (Lalonde et al. considered bad

quality images as those blurred and/or containing abnormally

dark or bright regions). Our algorithm could not be tested on this

database as we had no access to it. The algorithm proposed by

Lalonde et al. (Hausdorff-BasedTemplateMatching) is based on

minimizing the Hausdorff distance between previously obtained

candidate edge map regions and a set of circular templates. As it

can be observed, the CircularHough method exceeds the results

of this methodology for all considered overlapping intervals and

also enhances average overlapping.

Finally, tests concerning computational efficiency were

also done. The tests were performed on a current midrange

PC equipped with an Intel Core2Duo CPU at 2.13 GHz and

2 GB of RAM capacity. The algorithms were implemented in

Java programming language and tested running on the Java

Virtual Machine version 6. For a total of 1200 executions of

the algorithm for OD segmentation, the average computational

time obtained was 5.69 s. with a standard deviation of 0.54 s.

The average computational time obtained for OD location was

1.67 s. with a standard deviation of 0.14 s.

V. DISCUSSION ON OD SEGMENTATION MODELS

In this section, we discuss on the advantages and disad-

vantages of the most widely-used OD segmentation models:

circular as well as elliptical template-based methods and de-

formable model-based methods. The first discussion focuses on

the use of elliptical or circular models. For that, four different

elliptical approaches were implemented and tested to compare

them to the circular approximation presented here. In the

second subsection, the proposed circular approach is compared

TABLE II
COMPARISON OF SEGMENTATION POTENTIAL OF DIFFERENT

MODELS IN TERMS OF AVERAGE OVERLAPPING

to three deformable model-based algorithms and obtained

results are discussed.

A. The Presented Circular Template-Based Method Versus

The Elliptical Template-Based Approach

According to OD shape features, the use of an elliptical model

for OD segmentation, at least theoretically, should render higher

segmentation potential. For empirical evaluation of this issue,

the experiment used for circular model potential assessment was

now reproduced and applied to elliptical models. That is, an “el-

liptical gold standard” set was generated by applying an ellip-

tical model for fitting the true OD contours in the “gold stan-

dard” set of the database described in Section IV. So, the average

overlapping of both sets may be considered the maximum seg-

mentation potential of an elliptical model. Table II summarizes

the potential of all models discussed in this section. As it can

be observed, the use of an elliptical model renders a theoretical

overlapping increase of 5% relative to the potential rendered by

a circular model. Nevertheless, since the elliptical approach has

two degrees-of-freedom more than the circular model (rotation

angle and additional radius), its results may show a less robust

and stable behavior.

To assess elliptical model behaviour, four elliptical tem-

plate-based variants were implemented and applied to the

obtained from operation (6). Three of these approaches were

based on minimizing the algebraic distance [34], [35] and one

was based on minimizing the geometric distance [34]. Each

approach was tested on the database used in Section IV and

results were measured using the metric defined in (9). Thus, the

elliptical and circular approaches can be compared under the

same conditions. Table III summarizes the results obtained in

this test. Data are presented in columns as the percentage of im-

ages per interval of overlapping values, the penultimate column

is the total average overlapping and the last one indicates the

percentage of model-solved cases, as the tested methods do not

always converge to a solution. The first row shows the results

for the elliptical approach based on minimizing the geometric

distance, the following three rows show the results obtained
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TABLE III
COMPARISON BETWEEN THE PRESENTED CIRCULAR TEMPLATE-BASED METHOD AND FOUR ELLIPTICAL TEMPLATE-BASED APPROACHES.

DATA IN TERMS OF PERCENTAGE OF IMAGES PER OVERLAPPING INTERVAL AND AVERAGE OVERLAPPING OF THE WHOLE SET

with the three variants based on minimizing the algebraic dis-

tance, and the last row show the results of the circular approach

presented in this paper. Importantly, the average values for each

elliptical method were calculated considering only the cases

for which they had found a solution. Another important issue

with regard to results is that no automated criterion was used

for selecting for each image between the segmentations from

the red and green channels. For each image, both candidates

were measured and the one with the highest overlapping score

was selected for method total average calculation. Hence, the

results shown in Table III are the highest possible scores for

each elliptical approach.

The results from this study indicate that the segmentation per-

formance of all elliptical approaches is similar. The greater dif-

ference between them was observed at the percentage of solved

cases. Interestingly, their performance is significantly poorer

than that obtained with the circular model. This performance

degradation is the result of elliptical models’s higher sensitivity

to poor OD border contrast and, therefore, to poor border ex-

traction. These models require the extraction of a great amount

of OD representative borders to provide correct estimations of

the two radiuses and rotation angle. On the other hand, the cir-

cular model proposed in this paper only needs some portions of

the OD contour to obtain a fitting circumference. Although the

preprocessing designed in this work may not be the most ap-

propriate for elliptical models, their direct application for OD

segmentation is suggested here to offer less stable and homoge-

neous behavior.

B. The Presented Circular Template-Based Method Versus the

Deformable Model-Based Approach

The main advantage of using a deformable model instead of

a template-based model for OD segmentation is that, theoreti-

cally, 100% of overlapping areas between the automated seg-

mentation and the ground truth may be achieved. As shown in

Table II, it involves an 8% increase relative to a circular model.

This is why deformable models have much more degrees-of-

freedom than template-based models to fit the desired shape.

However, these additional freedom degrees-of-freedom make

these models more sensitive to irregular or low OD boundary

contrast.

As a basis for this discussion, the template-based method pro-

posed here was compared to the three OD segmentation ap-

proaches based on deformable models proposed by Lowell et al.

in [18]. For the sake of comparison rigorousness, we used the

same database, “gold standard” set and metric as those used in

this work. Thus, the algorithms can be compared under identical

TABLE IV
COMPARISON BETWEEN THE PRESENTED CIRCULAR TEMPLATE-BASED

METHOD AND THREE DEFORMABLE MODEL-BASED APPROACHES IN

TERMS OF PERCENTAGE OF IMAGES PER SUBJECTIVE CATEGORY

conditions. The database is composed of 90 images acquired at

a resolution of 640 480 and 8 bits per color plane. These im-

ages were taken from 50 patients, 19 of them being affected by

type 2 diabetes mellitus; the diabetes status was unavailable for

the remaining 31. To produce the “gold standard” segmentation

for this set of images, four clinicians manually delimited the rim

for each image, and the mean and radial standard deviations of

these contours were calculated. Then, Lowell et al. defined the

discrepancy as

(10)

where and summarize the clinicians choice of rim loca-

tion on spoke of image and is segmentation location on

spoke for image . Spokes are points belonging to the OD rim;

24 spokes were considered taken each 15 . Division by com-

pensates for uncertainty in rim position and is a small factor

to prevent division by zero where the clinicians are in exact

agreement. In addition to this measure, they defined four cat-

egories corresponding to their subjective perception of quality.

These four categories are Excellent, Good, Fair, and Poor, ref-

erencing images with disparity up to one, two, five, or more,

respectively. They assessed their algorithms performance con-

sidering the percentage of segmentations classified in the range

Excellent–Fair.

Table IV summarizes the performance on this subjective scale

for their three alternative algorithms and the one proposed in

this paper. Results are expressed in terms of the percentage of

images per subjective category. As it can be observed, with the

best deformable model approach, 2% more of excellent segmen-

tations were obtained than with the presented approach. Never-

theless, the template-based approach provided a significant en-

hancement in the percentage of obtained “valid” segmentations,

thus reaching the 79% versus 73% of segmentations within the

Excellent–Good range, and 97% versus 83% of segmentations

within the Excellent–Fair range.
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The results of this experiment, in spite of not being appli-

cable to all template-based and deformable models, are a good

example of comparable segmentation performance of both

approaches on a particular common case. Therefore, the main

conclusion of this experiment would be that, for OD segmen-

tation, under appropriate OD background-contrast conditions,

deformable models render more accurate OD segmentations.

On the contrary case, when contrast conditions are not so

favourable, the circular approach may turn out to be a more

robust and reliable solution.

VI. DISCUSSION AND CONCLUSION

This paper presents a new template-based approach for OD

segmentation by means of a circular OD-boundary approxima-

tion. In addition, an OD location methodology for obtaining the

OD position needed by the segmentation algorithm as initial in-

formation is also proposed.

The results presented in this paper show that the proposed

methodology offers a reliable and robust solution for OD seg-

mentation. According to the results in Table I, the overlapping

between the “true” OD region and the one segmented by our al-

gorithm is over 0.75 in 90% of the 1200 MESSIDOR images,

being the average overlapping 0.86 for the whole set of images.

This result is more valuable taking into account that maximum

overlapping with a circular template-based approach is 0.92.

Referentially, it can be pointed out that performance compar-

isons with the circular template-based approach by Lalonde et

al. [21] show that the overlapping obtained by our proposal was

clearly higher, in spite of the fact that our results were obtained

on a set of 1200 images while Lalonde et al. used only 40 (re-

sults are shown in Table I).

Moreover, discussion in Section V on different OD segmen-

tation, strengthens the hypothesis of the suitability of circular

models for this purpose. The tests summarized in Table II

indicate that the overlapping area between ground-truth OD

segmentations and those obtained by elliptical models is higher

than those obtained by circular models (97% and 92%, respec-

tively). However, when testing with numerous and different real

cases, the simplicity of the presented circular model generally

favours obtaining a more robust behaviour. Thus, performance

comparisons between the proposed circular template-based

method and four elliptical template-based approaches for

the MESSIDOR images (Table III) indicate that the circular

approach renders a clearly higher average overlapping. The

same conclusion was drawn for deformable models. Although

these models can theoretically obtain 100% overlapping, the

performance results presented in terms of discrepancy grades in

Table IV, indicate that our proposed circular model outperforms

the deformable model proposed by Lowell et al. in [18].

On the other hand, it must be mentioned that, to facilitate

performance comparison between OD segmentation methods,

the generated hand segmentations of the OD rim for the 1200

images in the MESSIDOR database are currently available for

researchers at [33], in the Sample Databases subsection within

the Results section by selecting the MESSIDOR database. The

original database is available at [32]. To the best of our knowl-

edge, such a set of “gold standard” images from a clinically la-

belled database is not available for the research community at

the present time.

The main conclusions of this work can be summarized as fol-

lows.

1) The performance results obtained by the proposed method-

ology on a huge digital retinal database indicate that simple

methods, based on basic image processing techniques,

seem to suffice for OD location and segmentation.

2) A circular modelling for the OD boundary, compared to

elliptical and deformable models, was shown to offer good

compromise between success rate, quality and efficiency,

as shown by comparing its segmented area to experts’ free-

drawn areas.

Despite all of this, the existence of some specific cases in

which, due to their exceptional ellipsity degree, the circular

approach does not reach the performance results of the ellip-

tical approach has been reported [see, for instance, the case in

Fig. 4(f)]. With the aim of enhancing the overlapping rates ob-

tained in this work for these isolated cases, the authors’ current

research is focused on the development of a methodology for

performing a controlled elliptical deformation of the obtained

circumference. Within the framework of this study, whether

any preprocessing modification is necessary or even whether

postprocessing would be appropriate for assuring deformation

process stability is currently under study.
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