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Abstract

For clinical studies with continuous outcomes, when the data are potentially
skewed, researchers may choose to report the whole or part of the five-number
summary (the sample median, the first and third quartiles, and the minimum and
maximum values) rather than the sample mean and standard deviation. In the
recent literature, it is often suggested to transform the five-number summary back
to the sample mean and standard deviation, which can be subsequently used in
a meta-analysis. However, if a study contains skewed data, this transformation
and hence the conclusions from the meta-analysis are unreliable. Therefore, we
introduce a novel method for detecting the skewness of data using only the five-
number summary and the sample size, and meanwhile propose a new flow chart to
handle the skewed studies in a different manner. We further show by simulations
that our skewness tests are able to control the type I error rates and provide good
statistical power, followed by a simulated meta-analysis and a real data example
that illustrate the usefulness of our new method in meta-analysis and evidence-
based medicine.
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1 Introduction

Meta-analysis is an important tool to synthesize the research findings frommultiple studies

for decision making. To conduct a meta-analysis, the summary statistics are routinely

collected from each individual study, and in particular for continuous outcomes, they

consist of the sample mean and standard deviation (SD). In many other studies, if the

data are skewed, researchers may instead report the whole or part of the five-number

summary {a, q1, m, q3, b}, where a is the minimum value, q1 is the first quartile, m is the

sample median, q3 is the third quartile, and b is the maximum value. More specifically, by

letting n be the size of the data, the three common scenarios for reporting the five-number

summary include

S1 = {a,m, b;n},

S2 = {q1, m, q3;n},

S3 = {a, q1, m, q3, b;n}.

In practice, however, few existing methods in meta-analysis are able to pool together the

studies with the sample mean and SD and the studies with the five-number summary.

To overcome this problem, there are two common approaches in the literature. The

first approach is to exclude the studies with the five-number summary from meta-analysis

by labeling them as “studies with insufficient data”. This approach was, in fact, quite

popular in the early years. Nevertheless, by doing so, valuable information may be ex-

cluded so that the final meta-analytical result can be less reliable or even misleading,

especially when a large proportion of studies are reported with the five-number summary.

In contrast, the second approach is to apply the recently developed methods [1, 2, 3, 4]

that convert the five-number summary back to the sample mean and SD, and then in-

clude them in the subsequent meta-analysis. It is noteworthy that these transformation

methods have been attracting increasing attention in meta-analysis and evidence-based

practice. More recently, our transformation methods in Wan et al.[2], Luo et al.[3] and

Shi et al.[4], have also been adopted as the default methods for handling the five-number

summary in R packages meta [5, 6] and metafor [7, 8], and the three papers have received
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4853, 1212 and 154 citations, respectively, in Google Scholar as of 03 March 2023.

Despite the popularity of the second approach, it is also noteworthy that the afore-

mentioned transformation methods are all built on the basis of the normality assumption

for the underlying data. When the data are skewed, however, these normal-based meth-

ods may no longer be able to provide reliable estimates for the true sample mean and

SD. For more details, see the motivating examples in Section 2. As a consequence, if we

do not handle such skewed studies in a proper way, it may result in misleading or even

completely wrong conclusions in the subsequent meta-analysis [9, 10].

This motivates us to perform the normality test for the data first, whose result will

guide the subsequent steps as presented in the flow chart of Figure 1.

For the normality test, there is a large body of literature on mainly two different

types of tests, (1) the graphical methods [11], and (2) the quantitative normality test

[12, 13, 14, 15, 16]. Nevertheless, we note that most existing normality tests require the

complete data set so that they are not applicable when the data include only the whole

or part of the five-number summary. For this issue, Altman and Bland[17] also discussed

in their short note as follows: “When authors present data in the form of a histogram or

scatter diagram then readers can see at a glance whether the distributional assumption

is met. If, however, only summary statistics are presented—as is often the case—this is

much more difficult.”.

To summarize, when only the five-number summary is available, there is currently no

method available for testing whether the underlying data follow a normal distribution. In

this paper, we propose a skewness test based on the five-number summary together with

the sample size. Further by the symmetry of the normal distribution, if the skewness test

shows that the data are significantly skewed, then equivalently we can also conclude that

the data are not normally distributed. For these skewed studies, we provide practitioners

with three options in Figure 1. On the contrary, if the skewness test is not rejected, then

we follow the common practice that assumes the reported data to be normal. Following

the above procedure, we will have the capacity to rule out the very skewed studies so

that the final meta-analysis can be conducted more reliably than the existing methods

in the literature. Finally, due to the limited information available from the five-number

summary, we believe that our proposed flow chart in Figure 1 also provides a reasonable
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solution for conducting meta-analysis that handles both normal and skewed studies, and

we also expect that it may have potential to be widely adopted in meta-analysis and

evidence-based practice.

For a study reported with the five-number summary from system-
atic review, conduct the skewness test under scenario S1, S2 or S3

Not skewed Skewed

Scenarios S1 and S2:
Estimate the sample mean
and SD by Luo et al.[3] and
Wan et al.[2], respectively

Scenario S3:
Estimate the sample mean
and SD by Luo et al.[3] and
Shi et al.[4], respectively

1) Exclude the skewed study
from the meta-analysis for
normal data, or 2) apply the
non-normal data transfor-
mation methods for skewed
studies, or 3) perform a sub-
group analysis that separates
the normal and skewed stud-
ies

Treat the estimated mean and SD as the true sample values
and include the study in the subsequent meta-analysis

Figure 1: A flow chart for conducting meta-analysis when some studies from systematic
review are reported with the whole or part of the five-number summary.

2 Motivating examples

To start with, we first present a simulation study to evaluate the performance of the

existing transformation methods [2, 3, 4] when the underlying distribution is skewed away

from normality. Specifically, we consider four normal-related distributions [18] as follows:
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(i) the skew-normal distribution with parameters δ = 0, ω = 1 and α = −10, (ii) the half-

normal distribution with parameters µ = 0 and σ2 = 1, (iii) the log-normal distribution

with parameters µ = 0 and σ2 = 1, and (iv) the mixture-normal distribution that takes

the values from N(−2, 1) with probability 0.3 and from N(2, 1) with probability 0.7. To

visualize the skewness of the distributions, the probability density functions of the four

distributions are also plotted in Figure 2. It is evident that they are all skewed away,

more or less, from the normal distribution.

Table 1: The true and estimated averages (standard errors) of the sample mean and SD
under scenario S1 for the four normal-related distributions.

Distribution
Sample mean Sample SD

True value Estimated value [3] True value Estimated value [2]
Skew-normal -0.79 (0.04) -0.73 (0.05) 0.61 (0.04) 0.57 (0.07)
Half-normal 0.80 (0.04) 0.73 (0.05) 0.60 (0.04) 0.54 (0.07)
Log-normal 1.65 (0.16) 1.53 (0.32) 2.09 (0.56) 3.10 (1.57)

Mixture-normal 0.80 (0.15) 1.34 (0.14) 2.09 (0.08) 1.63 (0.11)

Next, for each distribution, a sample of size 200 is randomly generated. With the

complete sample, we can readily compute the sample mean and SD, and also collect the

sample median, the minimum and maximum values. Now to evaluate the normal-based

methods for transformation, we further apply Luo et al.[3] to estimate the sample mean

and Wan et al.[2] to estimate the sample SD under scenario S1. With 100,000 simulations,

we report the averages (standard errors) of the estimated sample mean and SD, together

with the averages (standard errors) of the true sample mean and SD, in Table 1. From

the simulated results, it is evident that the converted sample mean and SD using the

normal-based methods are less accurate for all four skewed distributions. In particular,

we note that the sample SD is significantly overestimated for Log-normal(0, 1), and the

sample mean is significantly overestimated for the mixture-normal distribution.

Our second example is a real study that investigates the impact of COVID-19 on

liver dysfunction by a meta-analysis [19]. The serum alanine aminotransferase (ALT), as

an important index to measure the dysfunction of the liver, was a primary outcome of

interest. By setting the nonsurvivors and survivors as the case and control groups, the

liver dysfunction can be compared by the ALT level difference between the two groups.

Four clinical studies that paid attention to the ALT level were included in the meta-
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Figure 2: Probability density functions of the four normal-related distributions including
Skew-normal(0, 1,-10), Half-normal(0, 1), Log-normal(0, 1), and 0.3*N(-2, 1)+0.7*N(2,
1).

analysis with the sample median and the interquartile range (IQR) being reported in

Table 2. The potential skewness of the underlying data can be observed by comparing

the distances between the sample median and the first quartile or the third quartile.

Taking the nonsurvivors group in Wang et al.[22] as an example, the distance between

the sample median to the third quartile (49 − 24 = 25) is five times as that between the

sample median to the first quartile (24 − 19 = 5), indicating a large degree of skewness.

For more details, see Section 5 where the skewed groups with statistical significance are

all identified. Such skewed data, if not properly handled, may lead to unreliable or even

misleading conclusions for decision making in evidence-based practice.
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Table 2: The summary statistics, sample median (IQR) [sample size], of the four studies
in the meta-analysis from Wu and Yang.[19]

Study Nonsurvivors Survivors
Chen et al.[20] 28 (18-47) [113] 20 (14.8-32) [161]
Du et al.[21] 27 (20-37) [21] 22 (14-40.5) [158]

Wang et al.[22] 24 (19-49) [65] 28 (17-43) [274]
Zhou et al.[23] 40 (24-51) [54] 27 (15-40) [135]

3 Detecting the skewness from the five-number sum-

mary

As sketched in Figure 1, to handle the clinical studies reported with the whole or part

of the five-number summary, the first and foremost thing is to detect whether or not the

data follow a normal distribution. When the normality assumption does not hold, the

reported data from the clinical study were often skewed, which is, in fact, one main reason

why researchers had preferred to report the five-number summary. In this section, we will

formulate the null and alternative hypotheses for detecting the skewness of data under the

three common scenarios, and then construct their test statistics, as well as derive their

null distributions and the critical regions.

Let X1, X2, . . . , Xn be a random sample of size n from the normal distribution with

mean µ and variance σ2, and X(1) ≤ X(2) ≤ · · · ≤ X(n) be the corresponding order statis-

tics. Then, for simplicity, by letting Q be a positive integer, the five-number summary

can be represented as a = X(1), q1 = X(Q+1), m = X(2Q+1), q3 = X(3Q+1) and b = X(n).

Let also Xi = µ+ σZi for i = 1, . . . , n, or equivalently,

X(i) = µ+ σZ(i), (1)

where Z1, Z2, . . . , Zn are independent random variables from the standard normal distri-

bution, and Z(1) ≤ Z(2) ≤ · · · ≤ Z(n) are the order statistics. Lastly, when Q is not an

integer, we suggest to apply the interpolation method to calculate the critical values with

details in Appendix B.
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3.1 Detecting the skewness under scenario S1 = {a,m, b;n}

We first consider scenario S1 where the minimum, median, and maximum values are

available together with the sample size. When the data are normally distributed, we

expect that the distance between a and m should be not far away from the distance

between m and b. More specifically, by Lemma 1 in Appendix A and the facts that

E(m− a) = σE(Z(2Q+1)−Z(1)) and E(b−m) = σE(Z(n)−Z(2Q+1)), we have E(m− a) =

E(b−m). In view of this, we define θ1 = E(b−m)− E(m− a) = E(a + b− 2m) as the

level of skewness for the underlying distribution of the data. Then to detect the skewness

of data, we propose to consider the following hypotheses:

H0 : θ1 = 0 versus H1 : θ1 6= 0.

If the null hypothesis is rejected, we then conclude that the data are significantly skewed,

and moreover by the flow chart in Figure 1, we recommend practitioners to take the

proper choice from the three options for skewed studies.

Now to test whether θ1 = 0 under scenario S1, by the Wald test [24], we consider the

test statistic as

W1 =
a + b− 2m

SE(a+ b− 2m)
,

where SE(a+ b−2m) denotes the standard error of a+ b−2m under the null hypothesis.

By formula (1), we can rewrite SE(a+ b−2m) = σδ1(n), where σ is the SD of the normal

distribution and δ1(n) = SE(Z(1)+Z(n)−2Z(2Q+1)). Next, for the unknown σ, we consider

to estimate it by the method in Wan et al.[2] Specifically, we have σ̂1 = (b−a)/ξ(n), where

ξ(n) = 2Φ−1[(n−0.375)/(n+0.25)] and Φ−1 is the quantile function of the standard normal

distribution. Finally, by noting that δ1(n) and ξ(n) are fixed values for any given n, we

remove them from the Wald statistic and that yields our final test statistic as

T1 =
a+ b− 2m

b− a
. (2)

In the special case when a = b, all the observations are tied so that a test for skewness may

not be possible. To further derive the null distribution of the test statistic T1, we consider
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two different approaches where the first one is to derive the asymptotic null distribution

when n tends to infinity, and the second one is to derive the exact null distribution for

any fixed n.

For the first approach, noting that T1 involves the extreme order statistics, the asymp-

totic null distribution will not follow a normal distribution as that for a classical Wald

statistic [25]. To further clarify it, when n is large, the extreme order statistics will tend

to be less stable than the intermediate order statistics and hence provide a slower conver-

gence rate toward the asymptotic distribution for the given test statistic. Specifically by

Theorem 1 in Appendix A, under the null hypothesis, we show that

√

2 ln(n)ξ(n)T1
D−→ Logistic(0, 1), as n → ∞, (3)

where
D−→ denotes the convergence in distribution, and Logistic(0, 1) represents the lo-

gistic distribution with location parameter µ = 0 and scale parameter s = 1. Noting also

that the asymptotic null distribution is symmetric about zero, we can specify the critical

region of size α as {t1,obs : |t1,obs| > lα/2/(
√

2 ln(n)ξ(n))}, where t1,obs is the observed value

of T1 and lα/2 is the upper α/2 quantile of Logistic(0, 1). Despite of the elegant analytical

results, the asymptotic test by (3) will have a serious limitation that the convergence rate

is relatively slow at the order of
√

2 ln(n)ξ(n). Moreover, the simulation results in Section

4 will show that the asymptotic null distribution fails to control the type I error rates for

some small sample sizes.

To improve the detection accuracy, our second approach is to derive the exact null

distribution of T1 for any fixed n. By (1) and (2), we can represent the test statistic as

T1 =
Z(1) + Z(n) − 2Z(2Q+1)

Z(n) − Z(1)

. (4)

Since the right-hand side of (4) is purely a function of the order statistics of the standard

normal distribution, the null distribution of T1 will be free of the parameters µ and σ2.

Moreover, we have derived the sampling distribution of T1 under the null hypothesis in

Theorem 2 of Appendix A. Further by the symmetry of the null distribution, the critical
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region of size α can be specified as

{t1,obs : |t1,obs| > c1,α/2(n)},

where c1,α/2(n) is the upper α/2 quantile of the null distribution of T1 for the sample size

n. If the test is rejected based on the reported summary statistics, we then conclude that

the data from the study are significantly skewed.

From the practical point of view, however, the null distribution of T1 has a complicated

form so that the true values of c1,α/2(n) may not be readily known. To help practitioners

and also promote the new test, by the R software we have provided the numerical val-

ues of c1,α/2(n) for n up to 401 with α = 0.05 in Table 5 of Appendix B. Moreover, an

approximate formula c1,0.025(n) ≈ 1/ ln(n + 9) + 2.5/(n + 1) is also given for easy imple-

mentation of the critical values for any given sample size. It is evident, as shown in Figure

8 of Appendix B, that the approximation is quite accurate so that it can serve well as

a “rule of thumb” for practical use. Specifically by the rule of thumb, the skewness test

can be performed by first computing the absolute value of the observed test statistic, and

then examining whether it is larger or smaller than the approximated threshold value at

1/ ln(n+ 9) + 2.5/(n+ 1).

3.2 Detecting the skewness under scenario S2 = {q1, m, q3;n}

Under scenario S2, the reported summary data include the first quartile, the median and

the third quartile together with the sample size. When the data are normally distributed,

we expect that the distance between q1 and m should be close to the distance between

m and q3. Specifically, by Lemma 1 in Appendix A and the facts that E(m − q1) =

σE(Z(2Q+1) − Z(Q+1)) and E(q3 − m) = σE(Z(3Q+1) − Z(2Q+1)), we have E(m − q1) =

E(q3 −m). We then define θ2 = E(q3−m)−E(m− q1) = E(q1+ q3 − 2m) as the level of

skewness for the underlying distribution of the data. Finally for detecting the skewness

of data, we consider the following hypotheses:

H0 : θ2 = 0 versus H1 : θ2 6= 0.
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If the null hypothesis is rejected, we conclude that the underlying distribution of the data

is significantly skewed.

Following the same spirit as under scenario S1, for the above hypotheses we consider

the test statistic

T2 =
q1 + q3 − 2m

q3 − q1
, (5)

where q3 > q1. Note that T2 has also been adopted by Groeneveld and Meeden[26] as

a measure of skewness. Moreover, unlike the test statistic T1 that involves the extreme

order statistics, the asymptotic normality of T2 can be readily established. Specifically in

Theorem 3 of Appendix A, we have shown that

0.74
√
nT2

D−→ N(0, 1), as n → ∞. (6)

Further by (6), the critical region of size α can be approximately as {t2,obs : |t2,obs| >
zα/2/(0.74

√
n)}, where t2,obs is the observed value of T2 and zα/2 is the upper α/2 quantile

of the standard normal distribution.

Nevertheless, given that the asymptotic critical values can be quite large especially

for small sample sizes, the above asymptotic test may not provide an adequate power for

detecting the skewness. To further improve the detection accuracy, we have also derived

the exact null distribution of T2 in Theorem 4 of Appendix A for any fixed n. Noting also

that the null distribution of T2 is symmetric about zero, we can specify the exact critical

region of size α as follows:

{t2,obs : |t2,obs| > c2,α/2(n)},

where c2,α/2(n) is the upper α/2 quantile of the null distribution of T2 for the sample size

n. If the observed value of T2 falls in the critical region, it is concluded that the data are

significantly skewed away from normality.

Finally, as that for scenario S1, we note that obtaining the critical values by Theorem 4

in Appendix A is rather complicated and not readily accessible. Thus to help practitioners,

we have computed the numerical values of c2,α/2(n) for α = 0.05 with n up to 401 in Table 6

of Appendix B. For ease of implementation, an approximate formula for the critical values

is also provided as c2,0.025 ≈ 2.65/
√
n−6/n2, with its approximation accuracy reported in
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Figure 8 of Appendix B. Consequently, it also provides a convenient way for practitioners

to detect the skewness of data by hand.

3.3 Detecting the skewness under scenario S3 = {a, q1, m, q3, b;n}

In this section, we consider the detection of skewness under scenario S3 when the five-

number summary is fully available together with the sample size. For normal data, we have

E(m−a) = E(b−m) and E(m−q1) = E(q3−m), or equivalently, θ1 = E(a+b−2m) = 0

and θ2 = E(q1 + q3 − 2m) = 0. Noting also that the summary data under scenario S3 is

the union of those under scenarios S1 and S2, we consider the following joint hypothesis

for detecting the skewness of data:

H0 : θ1 = 0 and θ2 = 0 versus H1 : θ1 6= 0 or θ2 6= 0.

If the joint null hypothesis is rejected, then the data will be claimed as significantly skewed,

either in the intermediate region or in the tail region of the underlying distribution.

Following the similar arguments as under scenarios S1 and S2, θ̂1 = a+ b− 2m is the

sample estimate of the skewness θ1, and θ̂2 = q1 + q2 − 2m is the sample estimate of the

skewness θ2. Thus to test the joint null that θ1 = 0 and θ2 = 0, we follow the analysis of

variance (ANOVA) and take the maximum of their absolute sample estimates as the test

statistic [24]. Specifically, if the maximum value is larger than a given threshold, then the

test will be rejected so that either θ1 or θ2 will be concluded as nonzero. Meanwhile, to

make the two test components comparable, we also standardize them and yield the test

statistic as W3 = max{|W1|, |W2|}, where W1 = (a + b− 2m)/SE(a+ b− 2m) as already

defined and W2 = (q1 + q3 − 2m)/SE(q1 + q3 − 2m). Further by Theorem 5 in Appendix

A, we replace SE(a + b − 2m) and SE(q1 + q3 − 2m) by their respective estimates, and

formulate the final test statistic as

T3 = max

{

2.65 ln(0.6n)√
n

∣

∣

∣

∣

a+ b− 2m

b− a

∣

∣

∣

∣

,

∣

∣

∣

∣

q1 + q3 − 2m

q3 − q1

∣

∣

∣

∣

}

, (7)

where b ≥ q3 > q1 ≥ a. In addition, by (2), (5) and the fact that the weight to the first
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component is purely a function of n, it follows that T3 will be independent of µ and σ2

under the joint null hypothesis. Then accordingly, we can propose the critical region of

size α as

{t3,obs : t3,obs > c3,α(n)},

where t3,obs is the observed value of T3, and c3,α(n) is the upper α quantile of its null

distribution for the sample size n.

The same as before, we also apply the sampling method to numerically compute the

critical values of c3,α(n) for α = 0.05 with n up to 401, and present them in Table

7 of Appendix B. Moreover, we provide an approximate formula for the critical values

as c3,0.05(n) ≈ 3/
√
n − 40/n3 and its approximation accuracy is shown in Figure 8 of

Appendix B. Consequently, it readily provides an alternative way to detect the skewness

of the reported data.

Figure 3: An example for implementing the online calculator under scenario S2, with the
sample data from the nonsurvivors group in Zhou et al.[23]

Last but not least, we have also launched an online calculator for practitioners to

implement the flow chart including the skewness test and the data transformation at

http://www.math.hkbu.edu.hk/~tongt/papers/median2mean.html. Our online calcu-

lator is very user-friendly, and for illustration, we consider scenario S2 with the reported

data {q1, m, q3;n} = {24, 40, 51; 54} from the nonsurvivors group in Zhou et al.[23] As

13
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shown in Figure 3, with the summary data in the corresponding entries, one can click

on the Detect the skewness button to examine whether the data are skewed away from

normality. A popup window will then appear showing the test result, and specifically for

the given data, there is no significant evidence to show that the data are skewed. In view

of this, we further click on the Calculate button to perform data transformation by the

normal-based methods, which yields the sample mean estimate as 38.2319 by Luo et al.[3]

and the sample SD estimate as 20.5645 by Wan et al.[2]

4 Simulation studies

In this section, we conduct simulation studies to evaluate the performance of the three

skewness tests. We first assess the type I error rates of the new tests with the asymptotic,

exact, and approximated critical values at the significance level of 0.05, and then compute

and compare their statistical power under four skewed alternative distributions. Moreover,

we also conduct a simulated meta-analysis to demonstrate the usefulness of the skewness

tests in practice.

4.1 Type I error rates

To examine whether the type I error rates are well controlled, we first generate a sample of

size n from the null distribution, and without loss of generality, we consider the standard

normal distribution. Then for the proposed test under scenario S1, we record the summary

statistics {a,m, b} from the simulated sample, and compute the observed value of the

test statistic t1,obs by (2). Further by comparing t1,obs with the asymptotic, exact, and

approximated critical values respectively, we can make a decision whether to reject the

null hypothesis, or equivalently, whether a type I error will be made. Finally, we repeat

the above procedure for 1,000,000 times with n ranging from 5 to 401, compute the type

I error rates for the three different tests as reported in Figure 4.

It is evident from the simulated results that, under scenario S1, the proposed tests

with the exact and approximated critical values perform nearly the same, and they both

control the type I error rates at the significance level of 0.05 regardless of the sample size.
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Figure 4: The type I error rates for the proposed test statistics under the three scenarios
for n up to 401. The solid orange triangles represent the tests with the asymptotic critical
values, the empty green points represent the tests with the exact critical values, and the
solid red points represent the tests with the approximated critical values.
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This, from another perspective, demonstrates that our approximate formula of the critical

values is rather accurate and can be recommended for practical use. In contrast, for the

asymptotic test with the null distribution specified in (3), the type I error rates are less

well controlled, either inflated or too conservative. For example, the type I error rate is

as high as 0.057 when n = 17, and it is always less than 0.05 when n is large, even though

the simulated type I error rate does converge to the significance level as n goes to infinity

which coincides with the theoretical result of Theorem 1 in Appendix A.
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Figure 5: The statistical power of the proposed tests under the three scenarios for n up to
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To assess the type I error rates under the last two scenarios, we record instead the

summary statistics {q1, m, q3} or {a, q1, m, q3, b} from the simulated sample, compute the

observed value of the test statistic by (5) or (7), and then compare it with the different

critical values to determine whether the null hypothesis will be rejected. Under scenario

S2, the tests with the exact and approximated critical values both perform well and control

the type I error rates. While for the asymptotic test with the normal approximation in

(6), it does not provide a good performance when n is small. In particular when n = 5,

the type I error rate will be nearly zero so that the test will be extremely conservative.

Under scenario S3, given that the asymptotic test is not available, we thus report the type

I error rates for the tests with the exact and approximated critical values only. Both tests

control the type I error rates and they perform equally well for any fixed sample size.

4.2 Statistical power

In this section, we assess the ability of the three tests for detecting the skewness when the

alternative distribution is skewed. For this purpose, we reconsider the four normal-related

distributions in Section 2, Skew-normal(0, 1,−10), Half-normal(0, 1), Log-normal(0, 1)

and 0.3*N(−2, 1)+0.7*N(2, 1), as the alternative distributions for all the tests under

different scenarios. Then to numerically compute the statistical power, we follow the

same procedure as in Section 4.1 except that the sample data are now generated from

the alternative distributions rather than the standard normal distribution. In addition,

since the asymptotic test is suboptimal and the other two tests perform nearly the same,

we report the simulated power only for the tests with the approximated critical values in

Figure 5 based on 1,000,000 simulations.

For the test under scenario S1, we note that it is always very powerful, in particular

for the three unimodal alternative distributions. This is mainly because the extreme

order statistics, including the minimum and maximum values, are very sensitive to the

tail behavior of the underlying distribution. In contrast, the intermediate order statistics,

including the first and third quartiles, behave more stably and are less affected by the

tail distributions [27]. As a consequence, the test under scenario S2 is often less powerful

in detecting the skewness of data, as those reflected in the power curves for the three
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unimodal alternative distributions. But there are also exceptional cases. Specifically,

for the mixture-normal distribution, since the two tails are both normally shaped, the

minimum and maximum values behave similarly so that the mid-range, (a+ b)/2, is quite

stable along with the sample size, and consequently, it diminishes the ability of detecting

the skewness. On the other side, we note that the median is closer to the third quartile

rather than to the first quartile, and so the test under scenario S2 turns out to be more

powerful than the test under scenario S1 in the mixture-normal case. Finally for the test

under scenario S3, since it takes into account both the extreme and intermediate order

statistics, it is not surprising that it always performs better than, or at least as well as,

the other two tests in most settings.

To sum up, by virtue of the well-controlled type I error rates and the reasonable

statistical power, we believe that our easy-to-implement tests with the approximated

critical values will have potential to be widely adopted for detecting the skewness away

from normality based on the five-number summary with application to meta-analysis.

4.3 Simulated meta-analysis

To further demonstrate the usefulness of the proposed skewness tests, we also conduct a

simulated meta-analysis consisting of 10 studies with normal data and 5 studies with non-

normal data. Following the random-effects model [28], we first generate the individual

means µi, i = 1, 2, . . . , 15, from the between-study distribution N(µ, τ 2). Then for each

study, we generate a sample of size ni from N(µi, σ
2
i ) for i = 1, . . . , 10, and from Skew-

normal(δi, ωi, αi) for i = 11, . . . , 15, where δi = µi − ωi

√

2α2
i /[π(1 + α2

i )] ensuring that

the mean of the skew-normal distribution is also µi. Moreover, for the first 10 studies, we

follow a similar setting as in Brockwell and Gordon[29] and consider µ = 0.5, τ 2 = 0.04,

σ2
i = 1 for i = 1, . . . , 10, and ni = n for all the studies. While for the last 5 studies, we let

ωi = 5 for i = 11, . . . , 15, and α11 = −0.1 and αi = −10 for i = 12, . . . , 15 to represent the

different levels of skewness. Lastly, it is noteworthy that we have also considered more

general settings including unequal within-study variances and unequal sample sizes, and

the comparison results remain similar.
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Figure 6: The bias of µ̂, the coverage probability and the average length for the 95% CI
for µ under scenario S1 with n up to 401, where option i) represents that all the 15 studies
are included, option ii) represents that only the first 5 studies reporting the sample mean
and SD are included, option iii) represents that the first 5 studies plus all other studies
passing the skewness test are included, and the ideal case represents that the 10 normal
studies are included with their true sample means and SDs.
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After the dataset is generated, we report the sample mean and SD as the summary

statistics for the first 5 studies, but instead report the minimum, median, and maximum

values, i.e., under scenario S1, for the other 10 studies. We further consider three options

to carry out the meta-analysis using i) all the 15 studies, ii) only the first 5 studies

reporting the sample mean and SD, and iii) the first 5 studies plus all other studies

passing the skewness test. Moreover, as an ideal case for comparison, we also conduct the

meta-analysis based on the true sample means and SDs of the generated data from the

10 normal studies. Finally, by considering the mean value as the effect size, we apply the

DerSimonian and Laird method [30] for meta-analysis and report the bias of the effect

size estimate µ̂, the coverage probability and the average length of the 95% confidence

interval (CI) for µ, in Figure 6 for the sample size up to 401 based on a total of 500,000

simulations.

From the top panel of Figure 6, it is evident that the effect size estimate µ̂ under option

i) with all 15 studies being included tends to be significantly biased. In contrast, options

ii) and iii) are both able to control the estimation bias of µ̂, nearly as well as the ideal

case for benchmarking. From the middle and bottom panels of Figure 6, we also observe

that option ii) not only suffers from a lower coverage probability, but also has a wider CI

compared to option iii) and the ideal case. This is mainly because option ii) loses valuable

information by excluding the normal studies reported with the five-number summary, and

consequently yields less efficient estimation of the effect size. Taken together, our new

option iii) with the flow chart in Figure 1 can effectively detect and exclude some very

skewed studies away from the subsequent meta-analysis, and as seen from the simulation

results, it performs equally well as the ideal case except that the average length of the CI

is slightly longer.

Finally, to save space, we present the simulation results under scenarios S2 and S3 in

Appendix B; for more details, see Figures 9 and 10. It is evident that the comparison

results under scenario S3 are similar to those under scenario S1. While for scenario S2,

by noting that the test statistic T2 is less powerful in detecting the skewness of data as

clarified in Section 4.2 through Figure 5, option iii) may not be able to exclude some

very skewed studies from the meta-analysis. As a consequence, it may also yield a biased

effect size estimate, even though it is apparently better than option i). On the other
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hand, thanks to the flow chart in Figure 1 that allows more studies to be included in the

meta-analysis, option iii) is able to provide a narrower or much narrower CI compared to

option ii). To summarize, although option iii) does not perform equally well as the ideal

case under scenario S2, it is still comparable to, or better than, the other two options

based on our simulation results.

5 Real data analysis

To illustrate the usefulness of the skewness tests as well as the flow chart, we now revisit

the motivating example in Section 2, where Wu and Yang[19] investigated the impact of

COVID-19 on the liver dysfunction. Specifically, we first present their meta-analytical

results and then apply our new flow chart to reanalyze the example, followed by a com-

parison made between their results and our new results.

5.1 Original results in Wu and Yang[19]

To deal with the studies reported with the first quartile, the median and the third quartile

together with the sample size, Wu and Yang[19] applied the data transformation in Hozo

et al.[1] to obtain the sample mean and SD estimates, and then performed the meta-

analysis with the forest plot in panel (a) of Figure 7. The random-effects model was used

to pool the studies, which yielded the overall standardized mean difference (SMD) 1.34

with the 95% CI being [−0.47, 3.16]. Given that the 95% CI of the overall effect size

covers zero, Wu and Yang[19] concluded that the impact of COVID-19 on the ALT level

is not statistically significant. However, noting that an extremely large heterogeneity with

p < 0.01 and I2 = 99% is observed, the random-effects model may not be sufficient to

well synthesize the included studies, and thus the final conclusion can be problematic.
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Figure 7: The forest plots of the meta-analyses from Wu and Yang[19] and by our new
flow chart are presented in panels (a) and (b), respectively.

5.2 New results by our flow chart

To reanalyze the impact of COVID-19 on the liver dysfunction, we follow the flow chart

in Figure 1 as a practical guideline for meta-analysis, where the first and foremost step

is to identify whether some studies are significantly skewed. Since the summary statistics

for the four studies are all reported under scenario S2, we thus apply the test statistic T2

to conduct the skewness test. Specifically, by Section 3.2, we compute the absolute value

of the observed T2 for each data, compare it with the approximated critical value at the

significance level of 0.05, and then report the test result in panel (a) of Table 3. It is

surprising to see that only the last study passes the skewness test for both nonsurvivors

and survivors groups, and consequently, Luo et al.[3] and Wan et al.[2] can be applied to

this study for obtaining the sample mean and SD estimates.
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Moreover, recall that the skewed data all display a positively skewed pattern as ob-

served, and in the medical literature, the log transformation is frequently used to normalize

such data [31, 32, 33]. Following this, we also apply a log transformation to the data from

the three skewed studies, and then redo the skewness test using the log scale data. From

the test results in panel (b) of Table 3, it is unfortunate that the nonsurvivors group in

Wang et al.[22], once again, fails to pass the skewness test, indicating an unacceptably

large degree of skewness on the original data.

Table 3: The absolute values of the observed T2, the critical values at the significance level
of 0.05, and the test results for the original and log scale data from the corresponding
studies are reported in panels (a) and (b), respectively.

(a) Test results for the original data

Study
Nonsurvivors Survivors

|T2| Critical value Decision |T2| Critical value Decision

Chen et al.[20] 0.310 0.249 Reject 0.395 0.209 Reject
Du et al.[21] 0.176 0.565 Not reject 0.396 0.211 Reject

Wang et al.[22] 0.667 0.327 Reject 0.154 0.160 Not reject
Zhou et al.[23] 0.185 0.359 Not reject 0.04 0.228 Not reject

(b) Test results for the log scale data

Study
Nonsurvivors Survivors

|T2| Critical value Decision |T2| Critical value Decision

Chen et al.[20] 0.083 0.249 Not reject 0.205 0.209 Not reject
Du et al.[21] 0.016 0.565 Not reject 0.151 0.211 Not reject

Wang et al.[22] 0.495 0.327 Reject 0.075 0.160 Not reject

For the skewed studies, as per the proposed flow chart in Figure 1, one may exclude

the skewed studies from meta-analysis for normal data, or apply the non-normal data

transformation methods for skewed studies, or perform the subgroup analysis that sepa-

rates the normal and skewed studies. For this case, note that there are only four studies

included and further separating them into subgroups will make certain subgroup(s) in-

clude only one or two studies, which may not yield reliable results. Therefore, we propose

to take advantages of the first two options. Specifically, we exclude Wang et al.[22] from

the subsequent meta-analysis given that its nonsurvivors group is extremely skewed and

to the best of our knowledge, there is little work on directly meta-analyzing the skewed

data with unknown distributions. For both studies that pass the skewness test under the

log scale (Chen et al.[20] and Du et al.[21]), we treat their original data as log-normally
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distributed and estimate the sample means and SDs by Shi et al.[33]

Then by following the setting in Wu and Yang[19], we conduct the meta-analysis

with the SMD as the effect size and the forest plot is presented in panel (b) of Figure

7. Noting that a moderate heterogeneity is observed with I2 = 65% and p = 0.06, we

refer to the random-effects model for the decision making [28]. Specifically, the random-

effects model yields the SMD 0.40 with the 95% CI being [0.07, 0.72], which indicates that

the nonsurvivors group has a significantly higher ALT level than the survivors group.

Meanwhile, it is also worth mentioning that if we exclude all skewed studies but only

include Zhou et al.[23] in the meta-analysis according to our first option, with the SMD

being 0.56 and its 95% CI being [0.24, 0.88], the conclusion remains the same as above.

Consequently, we conclude that the nonsurvivors group has a significantly higher ALT

level than the survivors group.

Of interest, the conclusion is converted when we compare our new results with those in

Wu and Yang.[19] With the conflicting conclusions, it calls for more studies to confirm the

final conclusion so as to give a proper guideline in practice. Meanwhile, more attention

and methodologies are warranted to deal with the skewed studies in meta-analysis.

6 Conclusion

For clinical studies with continuous outcomes, the sample mean and standard deviation

(SD) are routinely reported as the summary statistics when the data are normally dis-

tributed. While in some studies, however, researchers may report the whole or part of the

five-number summary, mainly because the data from the specific studies are potentially

skewed away from normality. For the studies with skewed data, if we include them in the

classical meta-analysis for normal data, it may yield unreliable or even misleading conclu-

sions. In this paper, we develop three new tests for detecting the skewness of data for the

flow chart of the meta-analysis based on the sample size and the five-number summary. If

the skewness test is not rejected, we then apply the normal-based transformation meth-

ods to recover the sample mean and SD from the five-number summary. Otherwise, we

provide practitioners with three options for different cases. Simulation studies are carried

out to demonstrate that the skewness tests yield satisfying statistical power with the type
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I error controlled. The usefulness of the flow chart including the skewness tests has also

been demonstrated by the simulated meta-analysis as well as a real data example. An

online calculator is provided for performing the skewness test and the data transformation

in the flow chart. We also summarize the three skewness tests together with the critical

regions of size 0.05 in Table 4.

Table 4: The summary table of the skewness tests under the three scenarios.

Scenario Test statistic Critical region of size 0.05

S1 T1 =
a+ b− 2m

b− a
|T1| >

1

ln(n + 9)
+

2.5

n+ 1

S2 T2 =
q1 + q3 − 2m

q3 − q1
|T2| >

2.65√
n

− 6

n2

S3 T3 = max

{

2.65 ln(0.6n)√
n

|T1|, |T2|
}

T3 >
3√
n
− 40

n3

To further clarify, if a study passes the skewness test, it does not necessarily mean

that the data are normally distributed, but rather there is no significant evidence to

claim that the data are significantly skewed. And without further evidence (for or

against) whether the studies passing the skewness test are truly normally distributed,

our flow chart in Figure 1 suggests to still include them into the subsequent meta-

analysis. As otherwise, we will face another dilemma that valuable information may

be excluded from meta-analysis so that the final conclusion is less reliable or even mis-

leading, especially when a large proportion of studies are reported with the five-number

summary. Future research, either theoretically or numerically, are warranted to fur-

ther assess the studies passing the skewness test. Lastly, thanks to the good perfor-

mance of the skewness tests as well as the flow chart, together with the online calculator

at http://www.math.hkbu.edu.hk/~tongt/papers/median2mean.html, we expect they

may have potential to be widely adopted in meta-analysis and evidence-based practice.
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[5] Balduzzi S, Rücker G and Schwarzer G. How to perform a meta-analysis with R: a

practical tutorial. Evid Based Ment Health. 2019; 22: 153–160.

[6] Schwarzer G. meta: general package for meta-analysis. R package version 5.5-0; 2022.

https://cran.r-project.org/web/packages/meta/meta.pdf.

[7] Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat

Softw. 2010; 36: 1-48.

[8] Viechtbauer W. Covert five-number summary values to means

and standard deviations. metafor, R package version 3.9-16; 2022.

https://wviechtb.github.io/metafor/reference/conv.fivenum.html#references-1.
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Appendix A: Theoretical results

Lemma 1. Let Z1, Z2, . . . , Zn be a random sample from the standard normal distribution,

and Z(1) ≤ Z(2) ≤ · · · ≤ Z(n) be the corresponding order statistics. We have

(Z(1), Z(2), . . . , Z(n))
d
= (−Z(n),−Z(n−1), . . . ,−Z(1)),
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where
d
= represents that two random vectors follow the same distribution. Thus it is

evident that

E(Z(i)) = −E(Z(n−i+1)), 1 ≤ i ≤ n.

Specifically, by letting n = 4Q + 1 with Q being a positive integer, it directly follows

that E(Z(2Q+1)) = 0, E(Z(Q+1)) = −E(Z(3Q+1)) and E(Z(1)) = −E(Z(n)). For a random

sample X1, X2, . . . , Xn from the normal distribution with mean µ and variance σ2, where

X(1) ≤ X(2) ≤ · · · ≤ X(n) represents its order statistics, we have

E(X(i)) = µ+ σE(Z(i)), 1 ≤ i ≤ n.

Theorem 1. Under scenario S1 = {a,m, b;n}, as n → ∞ under the null hypothesis of

normality, we have

√

2 ln(n)ξ(n)

(

a + b− 2m

b− a

)

D−→ Logistic(0, 1),

where ξ(n) = 2Φ−1[(n− 0.375)/(n+ 0.25)].

Proof. Under the null hypothesis of normality, it is evident that

a+ b− 2m

2σ
=

Z(1) + Z(n)

2
− Z(2Q+1).

According to Ferguson[25], as n → ∞, we have

√

2 ln(n)

(

Z(1) + Z(n)

2

)

D−→ Logistic(0, 0.5)

and
√
nZ(2Q+1)

D−→ N
(

0,
π

2

)

,

where
D−→ denotes the convergence in distribution. Thus under the null hypothesis, it is
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evident that
√

2 ln(n)

(

a + b− 2m

2σ

)

= I1 − I2,

where

I1 =
√

2 ln(n)

(

Z(1) + Z(n)

2

)

,

I2 =
√

2 ln(n)Z(2Q+1).

As n → ∞, I1
D−→ Logistic(0, 0.5) and I2

P−→ 0, where
P−→ denotes the convergence in

probability. Then by Slutsky’s Theorem, as n → ∞, we conclude that

√

2 ln(n)

(

a+ b− 2m

σ

)

D−→ Logistic(0, 1).

According to Wan et al.[2], it is evident that σ̂1 = (b−a)/ξ(n) is a consistent estimator

of the standard deviation σ for a normal distribution. With σ estimated by σ̂1 and noting

that ξ(n) is the fixed value for any given n, the final test statistic is derived as

T1 =
a + b− 2m

b− a

and again by Slutsky’s Theorem as n → ∞,
√

2 ln(n)ξ(n)T1
D−→ Logistic(0, 1).

Theorem 2. Under scenario S1 = {a,m, b;n}, the null distribution of the test statistic

T1 = (a+ b− 2m)/(b− a) is

f1(t1) =

∫∫

D

n!

[(2Q− 1)!]2
· v − u

2
· φ(u)φ(v)φ

(

u+ v

2
− t1(v − u)

2

)

·
[

Φ

(

u+ v

2
− t1(v − u)

2

)

− Φ(u)

]2Q−1

·
[

Φ(v)− Φ

(

u+ v

2
− t1(v − u)

2

)]2Q−1

dudv, (8)

where D is the integral area that satisfies u ≤ v. Furthermore, the null distribution of T1
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is symmetric about zero.

Proof. Denote z1 = Z(1), zm = Z(2Q+1) and zn = Z(n). Recall that for (z1, zm, zn), we

have the joint distribution as

g1(z1, zm, zn) =
n!

[(2Q− 1)!]2
φ(z1)φ(zm)φ(zn)[Φ(zm)− Φ(z1)]

2Q−1[Φ(zn)− Φ(zm)]
2Q−1.

It is evident that (z1, zm, zn) → (u, t1, v) is a one-to-one mapping, where u = z1, t1 =

(z1+ zn−2zm)/(zn− z1) and v = zn, or equivalently, z1 = u, zm = (u+ v)/2− t1(v−u)/2

and zn = v. Thus we have the determinant of the Jacobian matrix as

∣

∣

∣

∣

∣

∣

∣

1 0 0
1 + t1
2

u− v

2

1− t1
2

0 0 1

∣

∣

∣

∣

∣

∣

∣

=
v − u

2
.

With the Jacobian transformation, we derive the joint distribution of (u, t1, v) as

g∗1(u, t1, v) =
n!

[(2Q− 1)!]2
· v − u

2
· φ(u)φ(v)φ

(

u+ v

2
− t1(v − u)

2

)

·
[

Φ

(

u+ v

2
− t1(v − u)

2

)

− Φ(u)

]2Q−1

·
[

Φ(v)− Φ

(

u+ v

2
− t1(v − u)

2

)]2Q−1

.

Further by taking the integrals with respect to u and v, we achieve the sampling distri-

bution of T1 in (8) under the null hypothesis.

In addition, by Lemma 1, we have

(Z(1), Z(2Q+1), Z(n))
d
= (−Z(n),−Z(2Q+1),−Z(1)).

Thus under the null hypothesis, it is evident that

T1 =
Z(1) + Z(n) − 2Z(2Q+1)

Z(n) − Z(1)

and − T1 =
(−Z(n)) + (−Z(1))− 2(−Z(2Q+1))

(−Z(1))− (−Z(n))
,
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and therefore the null distribution of T1 is symmetric about zero.

Theorem 3. Under scenario S2 = {q1, m, q3;n}, as n → ∞ under the null hypothesis of

normality, we have

0.74
√
n

(

q1 + q3 − 2m

q3 − q1

)

D−→ N(0, 1).

Proof. Under the null hypothesis of normality, it is evident that

q1 + q3 − 2m

σ
= Z(Q+1) + Z(3Q+1) − 2Z(2Q+1).

According to Ferguson[25], as n → ∞, we have that (Z(Q+1), Z(2Q+1), Z(3Q+1)) follows

asymptotically a tri-variate normal distribution with mean vector (Φ−1(0.25), 0,Φ−1(0.75))

and covariance matrix Σ, where

Σ =
1

n





1.86 0.99 0.62
0.99 π/2 0.99
0.62 0.99 1.86



 .

Then by the Delta method, as n → ∞, we have

Z(Q+1) + Z(3Q+1) − 2Z(2Q+1) = (1,−2, 1)





Z(Q+1)

Z(2Q+1)

Z(3Q+1)





D−→ N(0, 3.32/n).

Therefore, we achieve the asymptotic normality under the null hypothesis that

0.55
√
n

(

q1 + q3 − 2m

σ

)

D−→ N(0, 1).

According to Wan et al.[2], it is evident that σ̂2 = (q3 − q1)/η(n) is a consistent esti-

mator of the standard deviation σ for a normal distribution, where η(n) = 2Φ−1[(0.75n−
0.125)/(n+0.25)]. Further by Theorem 1 in Shi et al.[4], as n → ∞, η(n) = 2Φ−1(0.75) =

1.35. With σ estimated by σ̂2 and noting η(n) is a constant, we propose the test statistic
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as

T2 =
q1 + q3 − 2m

q3 − q1

and by Slutsky’s Theorem as n → ∞, 0.74
√
nT2

D−→ N(0, 1).

Theorem 4. Under scenario S2 = {q1, m, q3;n}, the null distribution of the test statistic

T2 = (q1 + q3 − 2m)/(q3 − q1) is

f2(t2) =

∫∫

D

n!

[Q!(Q− 1)!]2
φ(x)φ

(

x+ y

2
− t2(y − x)

2

)

φ(y)[Φ(x)]Q[1− Φ(y)]Q

·
[

Φ

(

x+ y

2
− t2(y − x)

2

)

− Φ(x)

]Q−1

·
[

Φ(y)− Φ

(

x+ y

2
− t2(y − x)

2

)]Q−1

dxdy, (9)

where D is the integral area that satisfies x ≤ y. Furthermore, the null distribution of T2

is symmetric about zero.

Proof. Denote zq1 = Z(Q+1), zm = Z(2Q+1) and zq3 = Z(3Q+1). Recall that for (zq1 , zm, zq3),

we have the joint distribution as

g2(zq1 , zm, zq3) =
n!

Q!(Q− 1)!(Q− 1)!Q!
φ(zq1)φ(zm)φ(zq3)[Φ(zq1)]

Q[Φ(zm)− Φ(zq1)]
Q−1

[Φ(zq3)− Φ(zm)]
Q−1[1− Φ(zq3)]

Q.

It is evident that (zq1 , zm, zq3) → (x, t2, y) is a one-to-one mapping, where x = zq1, t2 =

(zq1+zq3−2zm)/(zq3−zq1) and y = zq3, or equivalently, zq1 = x, zm = (x+y)/2−t2(y−x)/2

and zq3 = y. Thus we have the determinant of the Jacobian matrix as

∣

∣

∣

∣

∣

∣

∣

1 0 0
1 + t2
2

x− y

2

1− t2
2

0 0 1

∣

∣

∣

∣

∣

∣

∣

=
y − x

2
.
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With the Jacobian transformation, we derive the joint distribution of (x, t2, y) as

g∗2(x, t2, y) =
n!

[Q!(Q− 1)!]2
φ(x)φ

(

x+ y

2
− t2(y − x)

2

)

φ(y)[Φ(x)]Q[1− Φ(y)]Q

·
[

Φ

(

x+ y

2
− t2(y − x)

2

)

− Φ(x)

]Q−1

·
[

Φ(y)− Φ

(

x+ y

2
− t2(y − x)

2

)]Q−1

.

Further by taking the integrals with respect to x and y, we achieve the sampling distri-

bution of T2 in (9) under the null hypothesis. Similar to the proof in Theorem 2, we can

prove that the null distribution of T2 is symmetric about zero.

Theorem 5. Under scenario S3 = {a, q1, m, q3, b;n}, the test statistic is derived as

T3 = max

{

2.65 ln(0.6n)√
n

∣

∣

∣

∣

a + b− 2m

b− a

∣

∣

∣

∣

,

∣

∣

∣

∣

q1 + q3 − 2m

q3 − q1

∣

∣

∣

∣

}

.

Proof. Under scenario S3, by taking advantages of both extreme and intermediate order

statistics, we consider to detect the skewness of data with

W3 = max

{∣

∣

∣

∣

a+ b− 2m

SE(a+ b− 2m)

∣

∣

∣

∣

,

∣

∣

∣

∣

q1 + q3 − 2m

SE(q1 + q3 − 2m)

∣

∣

∣

∣

}

.

Recall that in Section 3.1 of the main text, we have derived SE(a + b − 2m) = σδ1(n),

where δ1(n) = SE(Z(1) +Z(n) − 2Z(2Q+1)) and σ is estimated with (b− a)/ξ(n). Similarly,

we have SE(q1 + q3 − 2m) = σδ2(n), where δ2(n) = SE(Z(Q+1) + Z(3Q+1) − 2Z(2Q+1)), and

σ is estimated with (q3 − q1)/η(n). Then, the test statistic is specified as

max

{

ξ(n)

δ1(n)
|T1|,

η(n)

δ2(n)
|T2|

}

,

where T1 = (a+ b− 2m)/(b− a) and T2 = (q1 + q3 − 2m)/(q3 − q1) are the test statistics

under scenarios S1 and S2.

To simplify the presentation, we combine η(n)/δ2(n) with ξ(n)/δ1(n) in the first term
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so that only one coefficient k(n) = [ξ(n)/δ1(n)]/[η(n)/δ2(n)] is needed, and meanwhile

k(n)|T1| and |T2| are still comparable in scale. Further noting that k(n) is difficult to

compute since δ1(n) and δ2(n) involved do not have the explicit forms, the test statistic

may not be readily accessible to practitioners. By following the asymptotic form of k(n),

we have provided the approximate formula as k(n) ≈ 2.65 ln(0.6n)/
√
n for practical use.

Finally, test statistic is yielded as

T3 = max

{

2.65 ln(0.6n)√
n

∣

∣

∣

∣

a+ b− 2m

b− a

∣

∣

∣

∣

,

∣

∣

∣

∣

q1 + q3 − 2m

q3 − q1

∣

∣

∣

∣

}

.
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Appendix B: Supplementary tables and figures

This appendix presents some supplementary tables and figures. Specifically, Tables 5-7

report the numerical critical values of the test statistics in Section 3 under the three

scenarios at the significance level of 0.05, Figure 8 presents the approximate functions of

the critical values under the three scenarios, and Figures 9 and 10 present the simulated

meta-analysis results under scenarios S2 and S3, respectively.

For non-integer Q, the numerical critical values can be computed using the inter-

polation method through the following formula: (1 + [Q] − Q)ci,0.025(4[Q] + 1) + (Q −
[Q])ci,0.025(4[Q + 1] + 1) for i = 1, 2, 3 respectively, where [Q] represents the integer part

of Q. As an example, we now consider scenario S1 with n = 6 and thus Q = 1.25. By

Table 5, the critical values for the two adjacent integers Q = 1 and Q = 2 are 0.7792 and

0.5706, respectively. Further by the interpolation formula, the critical value for Q = 1.25

can be computed as 0.72705 (= 0.75 ∗ 0.7792 + 0.25 ∗ 0.5706). In addition, we can also

apply the approximate formula 1/ ln(n + 9) + 2.5/(n + 1) in Section 3.1 to compute the

critical value for n = 6, yielding a value of 0.72641 which is very close to the interpolated

value at 0.72705.

Table 5: The numerical values of c1,0.025(n) for 1 ≤ Q ≤ 100, where n = 4Q+ 1.

Q c1,0.025(n) Q c1,0.025(n) Q c1,0.025(n) Q c1,0.025(n) Q c1,0.025(n)
1 0.7792 21 0.2505 41 0.2094 61 0.1920 81 0.1805
2 0.5706 22 0.2464 42 0.2087 62 0.1905 82 0.1803
3 0.4964 23 0.2433 43 0.2072 63 0.1903 83 0.1802
4 0.4413 24 0.2402 44 0.2067 64 0.1898 84 0.1794
5 0.4032 25 0.2375 45 0.2051 65 0.1892 85 0.1792
6 0.3763 26 0.2352 46 0.2042 66 0.1886 86 0.1786
7 0.3554 27 0.2332 47 0.2031 67 0.1878 87 0.1780
8 0.3395 28 0.2315 48 0.2024 68 0.1877 88 0.1778
9 0.3253 29 0.2286 49 0.2013 69 0.1867 89 0.1777
10 0.3132 30 0.2277 50 0.2000 70 0.1864 90 0.1765
11 0.3045 31 0.2243 51 0.1990 71 0.1858 91 0.1763
12 0.2956 32 0.2238 52 0.1989 72 0.1850 92 0.1762
13 0.2884 33 0.2219 53 0.1979 73 0.1848 93 0.1758
14 0.2812 34 0.2203 54 0.1974 74 0.1840 94 0.1757
15 0.2755 35 0.2183 55 0.1964 75 0.1837 95 0.1751
16 0.2708 36 0.2172 56 0.1949 76 0.1836 96 0.1747
17 0.2660 37 0.2151 57 0.1946 77 0.1823 97 0.1741
18 0.2613 38 0.2135 58 0.1938 78 0.1819 98 0.1740
19 0.2564 39 0.2128 59 0.1928 79 0.1818 99 0.1739
20 0.2535 40 0.2111 60 0.1922 80 0.1811 100 0.1735
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Table 6: The numerical values of c2,0.025(n) for 1 ≤ Q ≤ 100, where n = 4Q+ 1.

Q c2,0.025(n) Q c2,0.025(n) Q c2,0.025(n) Q c2,0.025(n) Q c2,0.025(n)
1 0.9463 21 0.2861 41 0.2067 61 0.1692 81 0.1471
2 0.8000 22 0.2809 42 0.2034 62 0.1681 82 0.1461
3 0.6913 23 0.2748 43 0.2019 63 0.1667 83 0.1452
4 0.6163 24 0.2685 44 0.1993 64 0.1653 84 0.1443
5 0.5594 25 0.2633 45 0.1975 65 0.1641 85 0.1437
6 0.5177 26 0.2588 46 0.1954 66 0.1627 86 0.1428
7 0.4819 27 0.2538 47 0.1936 67 0.1614 87 0.1419
8 0.4534 28 0.2494 48 0.1914 68 0.1602 88 0.1409
9 0.4297 29 0.2447 49 0.1897 69 0.1593 89 0.1405
10 0.4084 30 0.2403 50 0.1879 70 0.1583 90 0.1395
11 0.3903 31 0.2361 51 0.1854 71 0.1570 91 0.1391
12 0.3744 32 0.2339 52 0.1831 72 0.1561 92 0.1381
13 0.3608 33 0.2298 53 0.1823 73 0.1551 93 0.1376
14 0.3486 34 0.2267 54 0.1804 74 0.1538 94 0.1364
15 0.3372 35 0.2233 55 0.1785 75 0.1527 95 0.1357
16 0.3266 36 0.2204 56 0.1776 76 0.1518 96 0.1355
17 0.3179 37 0.2176 57 0.1757 77 0.1506 97 0.1345
18 0.3085 38 0.2148 58 0.1749 78 0.1496 98 0.1339
19 0.2999 39 0.2112 59 0.1721 79 0.1486 99 0.1332
20 0.2931 40 0.2080 60 0.1718 80 0.1479 100 0.1326

Table 7: The numerical values of c3,0.05(n) for 1 ≤ Q ≤ 100, where n = 4Q+ 1.

Q c3,0.05(n) Q c3,0.05(n) Q c3,0.05(n) Q c3,0.05(n) Q c3,0.05(n)
1 1.0129 21 0.3214 41 0.2305 61 0.1885 81 0.1635
2 0.9062 22 0.3139 42 0.2271 62 0.1871 82 0.1626
3 0.7929 23 0.3067 43 0.2247 63 0.1856 83 0.1617
4 0.7060 24 0.3004 44 0.2223 64 0.1840 84 0.1607
5 0.6416 25 0.2948 45 0.2193 65 0.1827 85 0.1600
6 0.5898 26 0.2885 46 0.2173 66 0.1813 86 0.1587
7 0.5490 27 0.2831 47 0.2149 67 0.1802 87 0.1579
8 0.5151 28 0.2781 48 0.2129 68 0.1786 88 0.1570
9 0.4870 29 0.2738 49 0.2104 69 0.1775 89 0.1561
10 0.4630 30 0.2687 50 0.2082 70 0.1762 90 0.1556
11 0.4419 31 0.2645 51 0.2065 71 0.1747 91 0.1546
12 0.4229 32 0.2604 52 0.2043 72 0.1734 92 0.1537
13 0.4071 33 0.2564 53 0.2024 73 0.1724 93 0.1528
14 0.3929 34 0.2523 54 0.2004 74 0.1713 94 0.1522
15 0.3797 35 0.2489 55 0.1986 75 0.1700 95 0.1512
16 0.3675 36 0.2456 56 0.1971 76 0.1689 96 0.1505
17 0.3569 37 0.2419 57 0.1953 77 0.1679 97 0.1497
18 0.3473 38 0.2393 58 0.1933 78 0.1669 98 0.1489
19 0.3380 39 0.2359 59 0.1920 79 0.1657 99 0.1479
20 0.3290 40 0.2330 60 0.1902 80 0.1646 100 0.1472
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Figure 8: The green points represent the exact critical values under scenarios S1, S2 and
S3, and the red lines represent the approximate functions of the critical values for n up
to 401.
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Figure 9: The bias of µ̂, the coverage probability and the average length of the 95% CI for
µ under scenario S2 with n up to 401, where option i) represents that all the 15 studies
are included, option ii) represents that only the first 5 studies reporting the sample mean
and SD are included, option iii) represents that the first 5 studies plus all other studies
passing the skewness test are included, and the ideal case represents that the 10 normal
studies are included with their true sample means and SDs.
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Figure 10: The bias of µ̂, the coverage probability and the average length of the 95% CI
for µ under scenario S3 with n up to 401, where option i) represents that all the 15 studies
are included, option ii) represents that only the first 5 studies reporting the sample mean
and SD are included, option iii) represents that the first 5 studies plus all other studies
passing the skewness test are included, and the ideal case represents that the 10 normal
studies are included with their true sample means and SDs.
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