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Abstract— Mining traffic-relevant information from social
media data has become an emerging topic due to the real-time
and ubiquitous features of social media. In this paper, we focus on
a specific problem in social media mining which is to extract traf-
fic relevant microblogs from Sina Weibo, a Chinese microblogging
platform. It is transformed into a machine learning problem of
short text classification. First, we apply the continuous bag-of-
word model to learn word embedding representations based on a
data set of three billion microblogs. Compared to the traditional
one-hot vector representation of words, word embedding can
capture semantic similarity between words and has been proved
effective in natural language processing tasks. Next, we propose
using convolutional neural networks (CNNs), long short-term
memory (LSTM) models and their combination LSTM-CNN to
extract traffic relevant microblogs with the learned word embed-
dings as inputs. We compare the proposed methods with compet-
itive approaches, including the support vector machine (SVM)
model based on a bag of n-gram features, the SVM model
based on word vector features, and the multi-layer perceptron
model based on word vector features. Experiments show the
effectiveness of the proposed deep learning approaches.

Index Terms— Deep learning, social transportation, traffic
information detection, social media, text mining.

I. INTRODUCTION

S
OCIAL media have evolved dramatically in the past

decade, and are now being widely used for posting and

sharing user-generated information, ideas, opinions, sentiment,

and other forms of expressions [1], [2]. For example, Twitter,

a popular microblogging service launched in the USA, has

313 million monthly active users in June 2016 [3]. It generated

more than 500 million short messages called “tweet” per day

in 2014. In China, Sina Weibo which is akin to Twitter, has
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over two hundred million registered users and one hundred

million active users by the third quarter of 2015. Sina Weibo

users post about one hundred million messages called “weibo”

or “microblog” per day. Such social media platforms have

become powerful and inexpensive information sources due to

the huge amount of real-time user-generated contents.

Mining social media data to extract information has gained

a lot of attention in a variety of topics. Social media data have

been effectively used for natural disaster detection, epidemics

monitoring, crisis response and management, and so on.

Sakaki et al. [4] analyzed the real-time nature of Twitter and

proposed an algorithm to monitor tweets and to detect earth-

quakes with high probability. Bollen et al. investigated the cor-

relations between collective mood states derived from Twitter

feeds and DJIA (Dow Jones Industrial Average). They found

the mood states are predictive of changes in DJIA closing

values, and including specific public mood dimension could

significantly improve the accuracy of DJIA predictions [5].

Aramaki et al. [6] used the support vector machine (SVM)

based classifier to extract tweets on actual influenza patients

and could detect influenza epidemics with high correlation .

Conventionally, traffic data is collected based on physical

sensors like floating cars, closed-circuit television cameras,

and loop detectors [7]. Since people and authoritative agen-

cies often post transportation information with the popularity

of such platforms, social media have been regarded as the

potential source to serve as social sensors to extract traffic

information [8], [9]. The term of social transportation was

firstly introduced in [10]. Traffic or transportation analytics

with social signals using techniques like data mining, parallel

intelligence, parallel learning, and natural language processing

has recently attracted widespread research interest [11]–[15].

Sasaki et al. analyzed the feasibility on detecting transportation

information with Twitter, and demonstrated the high poten-

tial of using Twitter to detect train status information [16].

Compared to traditional physical traffic sensors, social traffic

sensors like Twitter and Sina Weibo have obviously the

following advantages: easy access, ubiquitous coverage, free

building cost and maintenance cost [10], [17]. They can also

provide more insights on traffic information because messages

of Twitter and Sina Weibo are usually in the form of texts.

Analyzing these messages can help understand a traffic event

in terms of where, when, and why it happens.

In this paper, we report our work on extracting traffic

relevant short messages from Sina Weibo using convolutional

neural networks (CNN), long short-term memory (LSTM)
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model, and LSTM-CNN with pre-trained word vectors. Chi-

nese word vectors are learned based on the continuous bag-

of-word (CBOW) model using three billion microblogs col-

lected between 2009 and 2011 from Sina Weibo. On top

of pre-trained word vectors, we use the CNN and LSTM

models to classify microblogs into traffic relevant ones and

traffic irrelevant ones. Compared to traditional one-hot word

representations and typical feature based text classification

methods, the proposed methods can utilize the semantics in

microblogs and abstract deep features. Experiments show that

the proposed methods have superior performance on extracting

traffic relevant microblogs.

The main contributions of this paper are as follows:

(i) We introduce deep learning methods into extracting

traffic information from social media.

(ii) Different form existing methods that extract traffic rel-

evant microblogs with bag-of-words features, we apply

the CBOW model on a dataset of 3 billion microblogs to

get the word embedding which captures word semantics.

(iii) We demonstrate using the deep learning models can

help improving detecting traffic related information,

compared with the competing models.

The remainder of this paper is organized as follows.

In Section II, we review recent advances in social-media based

traffic information mining studies. In Section III, we present

our approaches mainly including data collection and pre-

processing, word vector models, and classification models.

In Section IV, we describe experimental validation of the

proposed methods. In Section V, we make conclusions and

give suggestions for future work.

II. RELATED WORKS

Social media are quickly becoming ubiquitous and have

become one of the main channels to share information.

Extracting and analyzing real-time information from social

media data is a hot research topic in many fields. In the field

of transportation, social media based traffic researches mainly

focus on traffic event detection, traffic prediction, and traffic

sentiment analysis [18].

Researchers used the features of traffic-related keywords in

tweets or microblogs to detect traffic events. D’Andrea et al.

developed a system based on text mining and machine learning

algorithms for real-time traffic event detection from Twitter

stream analysis. They firstly collected and manually labeled

1330 tweets consisting of 665 traffic related tweets and

665 non-traffic related tweets. They then built SVM, C4.5,

MLP, Naive Bayes and PART models based on bag-of-

words features to classify the tweets. Experiments showed the

SVM model achieved the best performance. This system was

installed and tested for several areas of the Italian road net-

work. It can detect traffic events almost in real time and often

before online traffic news web sites and local newspapers [19].

Gu et al. proposed a methodology to mine tweet texts to

extract incident information on both highways and arterials.

They applied an adaptive data acquisition mechanic to col-

lect tweets that were manually labeled with traffic incident

label and non-traffic incident label. They adopted a Semi-

Naive-Bayes model based on bag-of-words features to classify

the tweets. Then they employed a supervised Latent Dirichlet

Allocation model to further classify the traffic incident tweets

into five different categories, i.e. accidents, road work, hazards

& weather, events and obstacle vehicles. Their approach was

applied in the Pittsburgh and Philadelphia Metropolitan Areas

in September 2014 [20]. Cui et al. [21] developed a prototype

system that used Bayesian classifier to firstly filter out traffic

related microblogs and then classify these microblogs into

traffic flow, traffic accident and traffic control categories . They

also designed a question and answering mechanism to ask

the user to add necessary information. Gutierrez et al. [22]

used tweets from regional traffic agencies in UK to detect

traffic related events and geo locate the events on a map to

notify promptly users. They firstly filtered out traffic related

tweets based on the SVM approach and then classified these

tweets into 8 classes of traffic event. They also extracted

spatial and temporal information by named entity recognition

and Part-of-Speech techniques. Tejaswin et al. [23] extracted

location entities from tweets based on background knowledge

from structured data repositories, and then used this data for

incident clustering and prediction . Kurkcu et al. [24] captured

traffic incident information from web-based map providers and

Twitter data, and further incorporated incident information into

their proposed virtual sensor methodology for automated travel

time collection . Zhang et al. [25] combined latent Dirichlet

allocation and document clustering models to extract incident-

level information, and applied pattern analysis to investigate

the spatial pattern of incident-topic tweets.

The rich information embedded in online social media data

can help improve traffic prediction. He et al. [26] addressed

the correlation between traffic volume and tweets counts. They

proposed a linear regression model incorporating traffic data

and Twitter data to predict longer-term traffic flow where the

forecasting horizon is beyond 1 hour. Experiments showed that

the proposed model outperforms the existing auto-regression

based traffic flow prediction model. Ni et al. [27] used social

media data to develop a short-term traffic flow prediction

model under sport game events. They incorporated tweet rate

features and semantic features into four prediction models.

Experiments demonstrated that including tweet features can

improve traffic flow prediction performance. Grosenick [28]

extracted non-recurring traffic accidents from twitter data

and incorporated this information to predict traffic speed

on a single road segment with artificial neural networks.

Abidin et al. [29] developed a Kalman filter model to predict

bus arrival time and analyzed the problem of trust in social

media platform . Ni et al. addressed the moderate positive cor-

relation between passenger flow and the rates of posted tweets.

They extracted event information from tweets, and used both

historical transit data and real-time social media data to predict

subway passenger flow under event occurrences [30].

There have been some researches using social media

data for sentiment and semantic analytics for city traffic.

Zeng et al. [31] used topic clustering methods to find the

attention users giving to various topics concerning Golden

Week in China, which can obtain growth tendencies and

geographic distributions of travelers. Cao et al. proposed a

rule-based traffic sentiment analysis system based on web and



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: DETECTING TRAFFIC INFORMATION FROM SOCIAL MEDIA TEXTS WITH DEEP LEARNING APPROACHES 3

Fig. 1. System flow chart for traffic relevant microblogs detection. The
first step is to collect data from social media platform, after which data
preprocessing techniques, such as segmentation and stop word removal, are
applied. Then the preprocessed texts are transformed into representations that
can be handled by machines, and the last step is to train classifiers.

social media data. They demonstrated the efficiency of the

proposed methods with two cases in China, i.e. the “yellow

light rule” and the “fuel price” in China [32]. Semwal et al.

leveraged social media sources such as Facebook, Twitter

etc., for event detection, sentiment analysis and suggestion

classification [33]. Freddy Lécué et al. proposed a system

named STAR-CITY integrating structured and unstructured

data, static and stream data, which supports semantic analytics

and reasoning for city traffic. They applied semantic web

technologies to analyze, diagnose, explore and predict traffic

scenarios such as spatial-temporal analysis of traffic status and

prediction of road traffic conditions [34].

III. METHODOLOGY

The methodological framework of this approach mainly

includes A. data acquisition by crawling Sina Weibo,

B. word segmentation, C. word embedding, D. classification of

microblogs to extract traffic information. The whole procedure

is illustrated in Fig. 1.

A. Data Acquisition by Crawling Sina Weibo

There are two approaches, namely requesting APIs (Appli-

cation Programming Interfaces) and crawling websites,

to access the microblogs in Sina Weibo. Requesting APIs is

officially provided for developers, but it is usually not free and

has access rate limits. In this paper, we adopted the approach

of crawling the Sina Weibo website. This approach is tech-

nically free but more comprehensive compared to requesting

official APIs.

To fetch raw microblogs, we first set search criteria (e.g.,

geographic coordinates, time range, keywords). Then we send

HTTP requests to the server and obtain the response results

which are in the format of HTML source codes. By applying

regular expressions matching, we extract microblogs contain-

ing the microblog id, the user id, the timestamp, the geographic

coordinates and the text from the response results. Then the

structured data are stored in a database for future retrieval.

B. Word Segmentation

The space is a natural word delimiter for English and many

other languages. However, there is no such separator between

Fig. 2. Model architectures of CBOW and Skip-Gram. These two models
are mirror images of each other. The learning objective of the CBOW model
is to learn word vector to predict the centered word under a context, and
the Skip-Gram model tries to learn word vector to predict surrounding words
based on the centered word.

words in Chinese texts. Therefore word segmentation is the

very first task in Chinese language processing. The accuracy

of word segmentation is essential to Chinese language min-

ing and understanding. There have been some open source

tools on segmenting Chinese words [35], among which we

use ICTCLAS (Institute of Computing Technology, Chinese

Lexical Analysis System), a well-known and widely used

Chinese lexical analyzer, in this paper.

C. Word Embedding

Natural language processing systems traditionally represent

each word as a one-hot vector which is a vector filled with 0s,

except with 1 at the position associated with the word. The

one-hot representation is very high-dimensional and sparse.

Moreover, such representation cannot capture semantic sim-

ilarity between words. Representing words in a continuous

vector space has been proved effective in natural language

processing tasks by grouping similar words. Recently, using

neural networks to get the word representations is very attrac-

tive and interesting because the learned vectors explicitly

encode many linguistic regularities and patterns. The CBOW

model and the Skip-Gram model are two ways of learning

word embedding representations [36], [37]. These two models

are similar, except that the learning objective between CBOW

and Skip-Gram is different. As is illustrated in Fig. 2, the

learning objective of the CBOW model is to find word vector

representations that are useful for predicting the middle word

under a context, while the Skip-Gram model tries to learn

word vector representations by maximizing the probability of

predicting surrounding words based on the middle word.

As the CBOW model and the Skip-Gram model are mirror

images of each other, we herein just present the derivation

of the CBOW model. Due to high computational complexity

of the original CBOW model and the Skip-Gram model,

hierarchical softmax or (and) negative sampling are applied in

the training processes. Hierarchical softmax uses a Huffman
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Fig. 3. Output layer of CBOW replaced by a Huffman Tree. The leaf nodes
represent the vectors of words in the corpus and one path from the root to
node of word w is highlighted.

tree, a binary tree, to represent all the words in the vocabulary,

which are leaf units. In the CBOW model with hierarchical

softmax, the output layer is replace by a Huffman Tree as

shown in Fig. 3. And the hidden layer is designed to average

the input word vectors, so that the output of hidden layer is

h =
1

C

∑

u∈context (w)

v(u) (1)

where v(u) represents the vector of the word u, context (w)

is the set of contextual words of the word w, and C is

the cardinality of the set context (w). Given the context,

the conditional probability of the word w is defined as:

p(w|context (w)) =

L(w)−1
∏

j=1

[[hT
v

0
nw, j

]] (2)

where nw, j is the j th inner point from the root to word w in

the Huffman tree, v
0
n is the vector of inner point n, L(w) − 1

is the length of the path in Huffman tree for word w, and [[]]

is a function defined as:

[[x]] = σ(x)
dw

j+1

[

1 − σ(x)
(1−dw

j+1)
]

(3)

where dw
j+1 is the j th bit of Huffman code for word w. It is

straightforward to train the neural network by maximizing the

conditional probability in (2) for a target word w. Take the

logarithm of the conditional probability and define the loss

function:

L = log p(w|context (w)) (4)

Then we obtain the derivative of L with regard to vector of

inner point nw, j :

∂L

∂v
0
nw, j

=
∂L

∂hT
v

0
nw, j

∂hT
v

0
nw, j

∂v
0
nw, j

= hT [[1 − hT
v

0
nw, j

]] (5)

where j = 1, 2, . . . , L(w) − 1. And the derivative of L with

regard to vector of contextual words u is:

∂L

∂v(u)
=

L(w)−1
∑

j=1

[[1 − hT
v

0
nw, j

]]v0
nw, j

(6)

The word vectors are then learnt by maximizing the loss

function using the stochastic gradient descent method, which

is summarized in Algorithm 1.

Algorithm 1 CBOW Training Algorithm

Input: Huffman Tree T _H u f f man, learning rate η, training

epoch max_epoch, word embedding dimension D

Output: word embedding v

1: //initialize parameters

2: initialize vectors of words in corpus: v and vectors of inner

points of T _H u f f man: v
0

3: for nb_epoch = 1 to max_epcoh do

4: //update vectors of inner points

5: for j = 1 to L(w) − 1 do

6: g = [[1 − hT
v

0
nw, j

]]

7: e = e + gv
0
nw, j

8: v
0
nw, j

= v
0
nw, j

+ ηhT g

9: end for

10: //update vectors of contextual words

11: for u in Context (w) do

12: v(u) = v(u) + ηe

13: end for

14: end for

D. Classification Models

In this paper, we test three types of deep learn-

ing models, i.e., CNN, LSTM, and their combination

LSTM-CNN for microblog text classification. Besides, CNN,

LSTM, and LSTM-CNN models have been used for traffic

prediction [38]–[40].

1) CNN for Text Classification: CNN is a feedforward

neural network that consists of convolutional layers inter-

spersed with pooling layers as shown in Fig. 4 [41]–[43].

A convolutional layer aims to learn the region features. The

convolution operation can be summarized as moving a filter

over the sentence matrix (input map) and computing the dot

products as shown in Fig. 5. Convolution with one filter

outputs a feature vector. To learn more sophisticated features,

there are generally distinct filters to convolve the input map,

and all feature vectors are concatenated into a new matrix

called feature map that would be passed to a pooling layer.

For the next, we would explain the convolution operation

in detail. Given a sentence s = w1w2 · · ·wN consisting of

N words, among which word w can be represented by V

dimensional word vector, the sentence s can be transformed

into a N × V dimensional matrix S called the input map. The

filter is a M ×V dimensional matrix K . Considering one filter

p only, the i th element of the feature vector is:

a
p

i = f (conv(
[

v(wi ) · · · v(wi+M−1), K p
]

) + b p) (7)

where K p is filter matrix, b p is the bias and f is the activation

function. And the operation conv(·) is defined as:

conv
([

v(wi ) · · · v(wi+M−1), K p
])

=

M
∑

r=1

K
p

(r,:)v
T(wi+r−1)

(8)
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Fig. 4. CNN architecture for text classification. The network consists of
convolutional layers with interspersed pooling layers and output layer to give
class scores.

Fig. 5. Convolution for text data. Each convolution unit computes a non-
linear function of regional word vectors of input map, where filter parameters
matrix and bias are shared by all the units with the same filter.

Substituting 8 into 7, we obtain

a
p
i = f

(

M
∑

r=1

K
p

(r,:)v
T(wi+r−1) + bp

)

(9)

Applying (6) repeatedly from i equals 1 to (N − M + 1), then

we have the full feature vector Ap = (a
p
1 , a

p
2 , · · · , a

p
N−M+1)

T

of the convolution layer under the filter p. If there are F filters

in this case, the dimension of output map is (N − M +1)× F .

The pooling operation computes the average or maximum of

each region on the column of the feature map. This operation

reduces the dimension of feature map by merging neighboring

points, so that computation time is reduced and more abstract

information would be passed to the next layers. A pooling

layer downsamples the feature map and there will be one

output vector for one feature vector. More formally, the output

of pooling on feature vector Ap is

op = f (β pdown(Ap) + b p) (10)

where down(·) represents a downsampling function, β p is

the multiplicative bias, b p is the additive bias and f is the

activation function. The down(·) operation will produce an

average or maximum value over Ap.

Fig. 6. LSTM architecture for text classification. The network consists of
stacked LSTM layers and output layer to give class scores.

Fig. 7. Architecture of LSTM block. The forget gate, input gate and output
gate control the process of adding information to cell state or removing it
from cell state.

2) LSTM for Text Classification: The LSTM neural net-

work is well-suited to learn from historical experience to

predict time series and is widely applied in sequence learn-

ing, e.g. speech recognition and traffic prediction [44]–[46].

A LSTM neural network has a feedback loop compared to

the feedforward neural network [47], [48]. For the purpose

of microblog text categorization, we construct a stacked

LSTM neural network. As illustrated in Fig. 6, the LSTM

neural network can be unrolled into a series of LSTM

blocks, and each block passes state information to a suc-

cessor. In the stacked LSTM model, the topmost LSTM

layer passes the output of the last step to the output

layer, while other ones output the full sequence to the

next layer.

The LSTM block consists of cell, input gate, forget gate

and output gate, as shown in Fig. 7. The gate architecture

is for removing information from or adding information

to cell state and the cell state is only changed by linear

interactions. This design helps to tackle the vanishing gra-

dient problem in standard recurrent neural network as it

enables the cell to store and read long range contextual

information. To obtain cell state Ct and hidden state ht ,

we should successively compute the output of the forget

gate:

ft = φ(W f [ht−1, v(wt )] + b f ) (11)
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Fig. 8. LSTM-CNN architecture for text classification. The network consists
of stacked LSTM layers that return the full sequences, convolutional layers
with interspersed pooling layers and fully connected layer as output layer.

the output of the input gate:

it = φ(Wi [ht−1, v(wt )] + bi ) (12)

and output of the output gate

ot = φ(Wo[ht−1, v(wt )] + bo) (13)

where W f , Wi and Wo are weight matrices of the forget gate,

the input gate and the output gate respectively, and b f , bi and

bo are their bias vectors. φ is the gate activation function and

is usually the sigmoid function. Then compute the cell state:

Ct = ft ⊗ Ct−1 + it ⊗ µ(WC[ht−1, v(wt )] + bC) (14)

and the hidden output:

ht = ot ⊗ σ(Ct ) (15)

where µ and σ are activation functions, and they are usually

tanh, and ⊗ represents point-wise multiplication. The complete

sequence of cell states and hidden outputs can be computed

by applying (11), (12), (13), (14) and (15) recursively from

t = 1 to t = T .

3) LSTM-CNN for Text Classification: LSTM neural net-

works have potentials to learn the contextual dependency

of a microblog, and CNN can abstract deep features. Thus

combining LSTM and CNN would be a promising method

to classify microblog sentences. As illustrated in Fig. 8, the

input word vectors are fed into the first LSTM layer and the

following there may be more LSTM layers. One convolution

layer with a pooling layer comes next and also there can be

more convolutional layer and pooling layer pairs. Finally the

abstract features are feed into a fully connected neural network

layer.

IV. EXPERIMENTS

A. Learning Word Embedding Representations

from Unlabeled Microblogs

We use the CBOW model to obtain word embedding rep-

resentations for further extracting traffic relevant microblogs.

The text corpus consists of three billion microblogs covering

one million and seventy thousand user accounts. After learning

TABLE I

KEYWORDS TO SEARCH MICROBLOGS

word embedding, each word in the corpus is represented with

a word vector and the dimension of this vector is set to

200. The size of the context window is set to 5, namely

utilizing 5 words to the left and to the right of a target word.

To optimize computational efficiency, we applied hierarchical

softmax technique.

B. Extracting Traffic Relevant Microblogs

1) Dataset and Preprocessing: The dataset for classifying

traffic microblogs into traffic relevant and traffic irrelevant

ones was collected by searching Sina Weibo with key words

that are manually chosen. The key words adopted are given

in Table I.

Finally we collect nearly forty thousand candidate

microblogs by searching Sina Weibo with key words given

in Table I. Then the microblogs are manually labeled with

two possible categorizations, i.e. traffic relevant and traffic

irrelevant. Among the candidate microblogs, five thousand

ones are labeled with the traffic relevant class, and six thousand

ones are randomly chosen from the remaining microblogs set

which is made up of all candidate ones excluding the traffic

relevant ones. The final dataset to train classifiers is made up

of five thousand traffic relevant microblogs and six thousand

traffic irrelevant ones.

A vocabulary dictionary was built according to the occur-

rence of words in manually labeled dataset, and each word

is represented by its index in the dictionary. Each microblog

is transformed into a sequence of word indexes. To feed into

deep neural network efficiently, the word index sequence in

each microblog for training the classifier is padded into the

sequence with the same length. In our experiments, the maxi-

mum length of word sequences is 156. And zeroes are padded

after each sequence until its length reached 156. As the

dimension of word vector is 200, the features of a microblog

fill a 156 ×200 matrix, which would be fed into classification

models. All the models employed in this paper would utilize

this feature matrix as input if there is no additional declaration.

2) Performance Indexes: To evaluate the performance of

the proposed deep neural network models, we employ three

statistical metrics, which are precision, recall and F-measure.

These indexes are commonly used in evaluating the clas-

sifiers. Table II defines these three indexes. As all these

indexes are class specific, for a certain class with label l, true

positive (T P) represents the number of instances with label l

correctly assigned with label l, false positive (F P) repre-

sents the number of instances with any other labels except l
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TABLE II

PERFORMANCE INDEXES

incorrectly assigned with the label l, and false negative (F N)

represents the number of instances with label l incorrectly

assigned with any other labels exception l . Precision measures

the exactness of a classifier and recall represents its effective-

ness. To get a tradeoff between precision and recall, F-measure

is defined as the weighted harmonic mean of precision and

recall. When β equals to one, F-measure is also called F1

score, which is commonly used in evaluating classification

models. In what follows, all performance indexes are reported

by tenfold cross-validation.

3) Baseline Methods: For comparison, we test the SVM

model that is reported with good performance for text cate-

gorization. One SVM model, named as bow-SVM, takes bag

of unigram and bigram as input. And one SVM model named

vecseq-SVM, takes the word embedding as input. Both two

SVM models were trained using LIBLINEAR library [49]. In

bow-SVM based method, we performed feature engineering

by combining unigram and bigram features. To experiment

with shallow neural network, we also fine-tune multi-layer

perceptron method with one hidden layer.

4) Determination of the CNN Model: We fix the activation

function of convolutional layers to rectifier δ(x) = max(x, 0),

a commonly used activation function in CNN neural networks.

And the loss function is defined as binary cross-entropy

which is minimized by Adam optimizer [50]. To learn the

well-performed classification models, we have conducted a

series of experiments to explore the effect of architecture

components on model performance. In the experiments of

exploring the effect of filter number, the filter number is

selected from {10, 20, 50, 100, 150}. According to the results,

increasing the number of filters can yield better performance,

while it takes longer time to train the model. And the models

with 150 filters achieve nearly same performances with the

model with 100 filters, which suggests the largest number

of filters in grid search can be 150. In the experiments of

exploring the effect of filter length, filter length is selected

from {2, 3, 4, 5, 6, 10}. According to the results, changing the

filter length does not improve performances much for our

dataset.

To obtain the best performance model, we run grid search

over the filter number and filter length of convolutional layers,

and the pooling strategy. The filter number is chosen from

{20, 50, 100, 150} and the filter length is set from 2 to 6 with

a stride 1. The following pooling operation is chosen from

maximum pooling and average pooling. In addition, we have

also evaluated the performance of the model by adding a

vanilla hidden layer between the top pooling layer and the

TABLE III

PARAMETER SETTINGS OF THE BEST PERFORMED CNN MODEL

TABLE IV

PARAMETER SETTINGS OF THE BEST PERFORMED LSTM-CNN MODEL

TABLE V

PERFORMANCE COMPARISON OF SVM, MLP, CNN,
LSTM AND LSTM-CNN

top output layer. After running grid search, the model with

100 filters whose length is 4 achieves the best F1 score,

which is summarized in Table III. The best architecture has

a maximum pooling layer and a vanilla hidden layer with

50 output units. And the results are given in Table V.

5) Determination of the LSTM Model: For the LSTM

model, the loss function is also defined as binary cross-entropy.

We use RMSprop optimizer [51] to minimize the loss function.

To train the model efficiently, we have conducted a series

of experiments to explore the effect of the size of LSTM

hidden states and the learning rate on model performance.

In the experiments of exploring the effect of a learning rate

on model performance, the learning rate is selected from

0.01 to 0.05 with a stride 0.01. Experiments show that a

lower learning rate gives better performances especially for
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recall and F1 score as the training process going on. In the

experiments of investigating the effect of the size of LSTM

hidden states on model performance, the size of LSTM hidden

state is chosen from {5, 10, 20, 50}. We found that the models

with 5 and 10 LSTM hidden state units achieve nearly the

same performance after training epoch 30, which are better

than that of the models with 20 and 50 LSTM hidden

state units.

To get the LSTM model with best performance, a grid

search is applied. We choose the size of LSTM hidden states

from {5, 10, 20} and the learning rate from 0.01 to 0.03 with

a stride 0.01. In addition, we explore whether to stack two

LSTM layers would improve the performances. Experiments

show that the model with stacked two LSTM layers which

have 10 output units and 0.01 learning rate obtains the best

F1 score.

6) Determination of the LSTM-CNN Model: In LSTM-CNN

model, the first layer is a LSTM layer. And following is

a convolutional layer and a maximum pooling layer. The

size of LSTM hidden state is chosen from {5, 10, 20, 50}.

For convolutional layer, the filter number is chosen form

{10, 20, 50, 100} and the filter length is set from 2 to 6 with a

stride 1. And the learning rate is chosen from 0.01 to 0.03 with

a stride 0.01. After performing grid search, we obtain the best

model for F1 score and the parameter settings are summarized

in Table IV.

C. Results

The detection results of traffic relevant and irrelevant classes

with different classification approaches are given in Table V.

The F1 measures of the CNN model, the LSTM model and

the LSTM-CNN model are close for both traffic relevant class

and traffic irrelevant class, and the LSTM-CNN model achieve

the highest F1 score. All these three models proposed in this

paper improve the performance than that of the bow-SVM

model, the vecseq-SVM model and the MLP model. It is

worth to mention that the bow-SVM is simple yet has a good

performance. For traffic relevant class, the precision of the

bow-SVM model is the highest compared to that of other

methods, but this model has a lower recall which means it

would detect fewer traffic relevant microblogs and thus may

miss some traffic information such as traffic incidents. It also

needs to point that the LSTM model has the highest recall

value for traffic relevant class, yet a relatively low precision.

A lower precision value means that a model has less exactness

and has more false positive instances.

As the performances of bow-SVM, LSTM, CNN and

LSTM-CNN approaches are close, we further discuss their

benefits and limitations. The proposed deep neural network

approach extracts deep features automatically, which is end-to-

end learning without manually selecting features compared to

the bow-SVM approach. So the deep learning approach needs

less expert knowledge on language. Besides, the dimension

of feature space in the deep learning approach is much

lower than that in the bow-SVM method. In our experiments,

the dimension of feature space applied in the bow-SVM

method is 276 679 that is selected from 1 128 748 features

by dimensionality reduction, while the dimension of feature

space for other methods in this paper is 31 200. The limitations

of the deep learning approach are also obvious. The end-to-

end deep learning, as a black box, lacks model interpretability.

Meanwhile, due to high model complexity, the deep learning

approach needs much more training time than that of the

bow-SVM method.

V. CONCLUSION

In this paper, we discussed the emerging social transporta-

tion topic on extracting traffic information from social media.

We proposed deep learning methods to detect traffic related

microblogs from Sina Weibo. Different from the traditional

n-gram language models taking as input one-hot vector repre-

sentation of words, we applied word embedding representation

of words and used CNN, LSTM, LSTM-CNN to classify

short texts of Sina Weibo. We got the word embedding with

continuous vector representation of words via the CBOW

model using 3 billion microblogs collected between 2009 and

2011 from Sina Weibo. One-hot vector representation of words

does not have semantic similarities between words while

word embeddings have. The word embeddings were fed into

CNN, LSTM, and LSTM-CNN. We investigated the effect

of model architecture and hyperparameters on model perfor-

mance and ran grid search to determine the best architecture

of CNN, LSTM, and LSTM-CNN. Experiments showed that

the proposed deep learning methods with word embeddings

outperform the competing methods.

In future studies, the methodology can be further enhanced

and improved in several ways. First, we will collect more

microblogs to classify traffic relevant microblogs into detailed

categories like traffic accidents, traffic status, etc. Second,

the detailed entities, e.g. location and time of occurrence of

traffic events, will be extracted from raw microblogs. Further-

more, we will improve short and long term traffic prediction

by fusing online social media and traditional physical traffic

detector data.
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