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Abstract—Mining traffic-relevant information from social
media data has become an emerging topic due to the real-time
and ubiquitous features of social media. In this paper, we focus on
a specific problem in social media mining which is to extract traf-
fic relevant microblogs from Sina Weibo, a Chinese microblogging
platform. It is transformed into a machine learning problem of
short text classification. First, we apply the continuous bag-of-
word model to learn word embedding representations based on a
data set of three billion microblogs. Compared to the traditional
one-hot vector representation of words, word embedding can
capture semantic similarity between words and has been proved
effective in natural language processing tasks. Next, we propose
using convolutional neural networks (CNNs), long short-term
memory (LSTM) models and their combination LSTM-CNN to
extract traffic relevant microblogs with the learned word embed-
dings as inputs. We compare the proposed methods with compet-
itive approaches, including the support vector machine (SVM)
model based on a bag of n-gram features, the SVM model
based on word vector features, and the multi-layer perceptron
model based on word vector features. Experiments show the
effectiveness of the proposed deep learning approaches.

Index Terms—Deep learning, social transportation, traffic
information detection, social media, text mining.

I. INTRODUCTION

OCIAL media have evolved dramatically in the past

decade, and are now being widely used for posting and
sharing user-generated information, ideas, opinions, sentiment,
and other forms of expressions [1], [2]. For example, Twitter,
a popular microblogging service launched in the USA, has
313 million monthly active users in June 2016 [3]. It generated
more than 500 million short messages called “tweet” per day
in 2014. In China, Sina Weibo which is akin to Twitter, has
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over two hundred million registered users and one hundred
million active users by the third quarter of 2015. Sina Weibo
users post about one hundred million messages called “weibo”
or “microblog” per day. Such social media platforms have
become powerful and inexpensive information sources due to
the huge amount of real-time user-generated contents.

Mining social media data to extract information has gained
a lot of attention in a variety of topics. Social media data have
been effectively used for natural disaster detection, epidemics
monitoring, crisis response and management, and so on.
Sakaki et al. [4] analyzed the real-time nature of Twitter and
proposed an algorithm to monitor tweets and to detect earth-
quakes with high probability. Bollen ez al. investigated the cor-
relations between collective mood states derived from Twitter
feeds and DJIA (Dow Jones Industrial Average). They found
the mood states are predictive of changes in DJIA closing
values, and including specific public mood dimension could
significantly improve the accuracy of DJIA predictions [5].
Aramaki et al. [6] used the support vector machine (SVM)
based classifier to extract tweets on actual influenza patients
and could detect influenza epidemics with high correlation .

Conventionally, traffic data is collected based on physical
sensors like floating cars, closed-circuit television cameras,
and loop detectors [7]. Since people and authoritative agen-
cies often post transportation information with the popularity
of such platforms, social media have been regarded as the
potential source to serve as social sensors to extract traffic
information [8], [9]. The term of social transportation was
firstly introduced in [10]. Traffic or transportation analytics
with social signals using techniques like data mining, parallel
intelligence, parallel learning, and natural language processing
has recently attracted widespread research interest [11]-[15].
Sasaki et al. analyzed the feasibility on detecting transportation
information with Twitter, and demonstrated the high poten-
tial of using Twitter to detect train status information [16].
Compared to traditional physical traffic sensors, social traffic
sensors like Twitter and Sina Weibo have obviously the
following advantages: easy access, ubiquitous coverage, free
building cost and maintenance cost [10], [17]. They can also
provide more insights on traffic information because messages
of Twitter and Sina Weibo are usually in the form of texts.
Analyzing these messages can help understand a traffic event
in terms of where, when, and why it happens.

In this paper, we report our work on extracting traffic
relevant short messages from Sina Weibo using convolutional
neural networks (CNN), long short-term memory (LSTM)
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model, and LSTM-CNN with pre-trained word vectors. Chi-
nese word vectors are learned based on the continuous bag-
of-word (CBOW) model using three billion microblogs col-
lected between 2009 and 2011 from Sina Weibo. On top
of pre-trained word vectors, we use the CNN and LSTM
models to classify microblogs into traffic relevant ones and
traffic irrelevant ones. Compared to traditional one-hot word
representations and typical feature based text classification
methods, the proposed methods can utilize the semantics in
microblogs and abstract deep features. Experiments show that
the proposed methods have superior performance on extracting
traffic relevant microblogs.

The main contributions of this paper are as follows:

(i) We introduce deep learning methods into extracting

traffic information from social media.

(i) Different form existing methods that extract traffic rel-
evant microblogs with bag-of-words features, we apply
the CBOW model on a dataset of 3 billion microblogs to
get the word embedding which captures word semantics.

(iii)) We demonstrate using the deep learning models can
help improving detecting traffic related information,
compared with the competing models.

The remainder of this paper is organized as follows.
In Section II, we review recent advances in social-media based
traffic information mining studies. In Section III, we present
our approaches mainly including data collection and pre-
processing, word vector models, and classification models.
In Section IV, we describe experimental validation of the
proposed methods. In Section V, we make conclusions and
give suggestions for future work.

II. RELATED WORKS

Social media are quickly becoming ubiquitous and have
become one of the main channels to share information.
Extracting and analyzing real-time information from social
media data is a hot research topic in many fields. In the field
of transportation, social media based traffic researches mainly
focus on traffic event detection, traffic prediction, and traffic
sentiment analysis [18].

Researchers used the features of traffic-related keywords in
tweets or microblogs to detect traffic events. D’ Andrea et al.
developed a system based on text mining and machine learning
algorithms for real-time traffic event detection from Twitter
stream analysis. They firstly collected and manually labeled
1330 tweets consisting of 665 traffic related tweets and
665 non-traffic related tweets. They then built SVM, C4.5,
MLP, Naive Bayes and PART models based on bag-of-
words features to classify the tweets. Experiments showed the
SVM model achieved the best performance. This system was
installed and tested for several areas of the Italian road net-
work. It can detect traffic events almost in real time and often
before online traffic news web sites and local newspapers [19].
Gu et al. proposed a methodology to mine tweet texts to
extract incident information on both highways and arterials.
They applied an adaptive data acquisition mechanic to col-
lect tweets that were manually labeled with traffic incident
label and non-traffic incident label. They adopted a Semi-
Naive-Bayes model based on bag-of-words features to classify
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the tweets. Then they employed a supervised Latent Dirichlet
Allocation model to further classify the traffic incident tweets
into five different categories, i.e. accidents, road work, hazards
& weather, events and obstacle vehicles. Their approach was
applied in the Pittsburgh and Philadelphia Metropolitan Areas
in September 2014 [20]. Cui et al. [21] developed a prototype
system that used Bayesian classifier to firstly filter out traffic
related microblogs and then classify these microblogs into
traffic flow, traffic accident and traffic control categories . They
also designed a question and answering mechanism to ask
the user to add necessary information. Gutierrez et al. [22]
used tweets from regional traffic agencies in UK to detect
traffic related events and geo locate the events on a map to
notify promptly users. They firstly filtered out traffic related
tweets based on the SVM approach and then classified these
tweets into 8 classes of traffic event. They also extracted
spatial and temporal information by named entity recognition
and Part-of-Speech techniques. Tejaswin et al. [23] extracted
location entities from tweets based on background knowledge
from structured data repositories, and then used this data for
incident clustering and prediction . Kurkcu et al. [24] captured
traffic incident information from web-based map providers and
Twitter data, and further incorporated incident information into
their proposed virtual sensor methodology for automated travel
time collection . Zhang et al. [25] combined latent Dirichlet
allocation and document clustering models to extract incident-
level information, and applied pattern analysis to investigate
the spatial pattern of incident-topic tweets.

The rich information embedded in online social media data
can help improve traffic prediction. He et al. [26] addressed
the correlation between traffic volume and tweets counts. They
proposed a linear regression model incorporating traffic data
and Twitter data to predict longer-term traffic flow where the
forecasting horizon is beyond 1 hour. Experiments showed that
the proposed model outperforms the existing auto-regression
based traffic flow prediction model. Ni ef al. [27] used social
media data to develop a short-term traffic flow prediction
model under sport game events. They incorporated tweet rate
features and semantic features into four prediction models.
Experiments demonstrated that including tweet features can
improve traffic flow prediction performance. Grosenick [28]
extracted non-recurring traffic accidents from twitter data
and incorporated this information to predict traffic speed
on a single road segment with artificial neural networks.
Abidin et al. [29] developed a Kalman filter model to predict
bus arrival time and analyzed the problem of trust in social
media platform . Ni ef al. addressed the moderate positive cor-
relation between passenger flow and the rates of posted tweets.
They extracted event information from tweets, and used both
historical transit data and real-time social media data to predict
subway passenger flow under event occurrences [30].

There have been some researches using social media
data for sentiment and semantic analytics for city traffic.
Zeng et al. [31] used topic clustering methods to find the
attention users giving to various topics concerning Golden
Week in China, which can obtain growth tendencies and
geographic distributions of travelers. Cao et al. proposed a
rule-based traffic sentiment analysis system based on web and
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Fig. 1. System flow chart for traffic relevant microblogs detection. The
first step is to collect data from social media platform, after which data
preprocessing techniques, such as segmentation and stop word removal, are
applied. Then the preprocessed texts are transformed into representations that
can be handled by machines, and the last step is to train classifiers.

social media data. They demonstrated the efficiency of the
proposed methods with two cases in China, i.e. the “yellow
light rule” and the “fuel price” in China [32]. Semwal et al.
leveraged social media sources such as Facebook, Twitter
etc., for event detection, sentiment analysis and suggestion
classification [33]. Freddy Lécué et al. proposed a system
named STAR-CITY integrating structured and unstructured
data, static and stream data, which supports semantic analytics
and reasoning for city traffic. They applied semantic web
technologies to analyze, diagnose, explore and predict traffic
scenarios such as spatial-temporal analysis of traffic status and
prediction of road traffic conditions [34].

III. METHODOLOGY

The methodological framework of this approach mainly
includes A. data acquisition by crawling Sina Weibo,
B. word segmentation, C. word embedding, D. classification of
microblogs to extract traffic information. The whole procedure
is illustrated in Fig. 1.

A. Data Acquisition by Crawling Sina Weibo

There are two approaches, namely requesting APIs (Appli-
cation Programming Interfaces) and crawling websites,
to access the microblogs in Sina Weibo. Requesting APIs is
officially provided for developers, but it is usually not free and
has access rate limits. In this paper, we adopted the approach
of crawling the Sina Weibo website. This approach is tech-
nically free but more comprehensive compared to requesting
official APIs.

To fetch raw microblogs, we first set search criteria (e.g.,
geographic coordinates, time range, keywords). Then we send
HTTP requests to the server and obtain the response results
which are in the format of HTML source codes. By applying
regular expressions matching, we extract microblogs contain-
ing the microblog id, the user id, the timestamp, the geographic
coordinates and the text from the response results. Then the
structured data are stored in a database for future retrieval.

B. Word Segmentation

The space is a natural word delimiter for English and many
other languages. However, there is no such separator between
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Fig. 2. Model architectures of CBOW and Skip-Gram. These two models
are mirror images of each other. The learning objective of the CBOW model
is to learn word vector to predict the centered word under a context, and
the Skip-Gram model tries to learn word vector to predict surrounding words
based on the centered word.

words in Chinese texts. Therefore word segmentation is the
very first task in Chinese language processing. The accuracy
of word segmentation is essential to Chinese language min-
ing and understanding. There have been some open source
tools on segmenting Chinese words [35], among which we
use ICTCLAS (Institute of Computing Technology, Chinese
Lexical Analysis System), a well-known and widely used
Chinese lexical analyzer, in this paper.

C. Word Embedding

Natural language processing systems traditionally represent
each word as a one-hot vector which is a vector filled with Os,
except with 1 at the position associated with the word. The
one-hot representation is very high-dimensional and sparse.
Moreover, such representation cannot capture semantic sim-
ilarity between words. Representing words in a continuous
vector space has been proved effective in natural language
processing tasks by grouping similar words. Recently, using
neural networks to get the word representations is very attrac-
tive and interesting because the learned vectors explicitly
encode many linguistic regularities and patterns. The CBOW
model and the Skip-Gram model are two ways of learning
word embedding representations [36], [37]. These two models
are similar, except that the learning objective between CBOW
and Skip-Gram is different. As is illustrated in Fig. 2, the
learning objective of the CBOW model is to find word vector
representations that are useful for predicting the middle word
under a context, while the Skip-Gram model tries to learn
word vector representations by maximizing the probability of
predicting surrounding words based on the middle word.

As the CBOW model and the Skip-Gram model are mirror
images of each other, we herein just present the derivation
of the CBOW model. Due to high computational complexity
of the original CBOW model and the Skip-Gram model,
hierarchical softmax or (and) negative sampling are applied in
the training processes. Hierarchical softmax uses a Huffman
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Fig. 3. Output layer of CBOW replaced by a Huffman Tree. The leaf nodes
represent the vectors of words in the corpus and one path from the root to
node of word w is highlighted.

tree, a binary tree, to represent all the words in the vocabulary,
which are leaf units. In the CBOW model with hierarchical
softmax, the output layer is replace by a Huffman Tree as
shown in Fig. 3. And the hidden layer is designed to average
the input word vectors, so that the output of hidden layer is

1
h=2 >

uecontext(w)

v(u) ey

where v(u) represents the vector of the word u, context(w)
is the set of contextual words of the word w, and C is
the cardinality of the set context(w). Given the context,
the conditional probability of the word w is defined as:

L(w)—1
p(w|context(w)) = H (k"o ;w/]] 2)
j=1

where n,, ; is the 7' inner point from the root to word w in
the Huffman tree, v;l is the vector of inner point n, L(w) — 1
is the length of the path in Huffman tree for word w, and [[]]
is a function defined as:

] = o @) [1 =0 (040 3

where d}”H is the j'" bit of Huffman code for word w. It is
straightforward to train the neural network by maximizing the
conditional probability in (2) for a target word w. Take the
logarithm of the conditional probability and define the loss
function:

= log p(w|context(w)) (4)

Then we obtain the derivative of L with regard to vector of
inner point n,,_;:

T v
oL oL Ooh'w, o T
“L=h'[1-h'Y, 1 ()
ovy,, ath;,w, ov, s

where j = 1,2,..., L(w) — 1. And the derivative of L with

regard to vector of contextual words u is:

L(w)—1
oL Ty ,

o) Z L= o B, ©
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The word vectors are then learnt by maximizing the loss
function using the stochastic gradient descent method, which
is summarized in Algorithm 1.

Algorithm 1 CBOW Training Algorithm

Input: Huffman Tree T_Huf fman, learning rate #, training
epoch max_epoch, word embedding dimension D

Output: word embedding v

1: //initialize parameters

2: initialize vectors of words in corpus: v and vectors of inner
points of T_Huf fman: v’

3: for nb_epoch = 1 to max_epcoh do

4:  /lupdate vectors of inner points

5. for j =1to L(w)—1 do

6 g=1l1-h"v, 1

7

8

9

e=e+gv
Uy, =
. end for
10:  //update vectors of contextual words
11:  for u in Context(w) do
12: v(u) = v(u) + ne
13:  end for
14: end for

Ny, j

+yh'g

Ny, j

D. Classification Models

In this paper, we test three types of deep learn-
ing models, i.e., CNN, LSTM, and their combination
LSTM-CNN for microblog text classification. Besides, CNN,
LSTM, and LSTM-CNN models have been used for traffic
prediction [38]-[40].

1) CNN for Text Classification: CNN is a feedforward
neural network that consists of convolutional layers inter-
spersed with pooling layers as shown in Fig. 4 [41]-[43].
A convolutional layer aims to learn the region features. The
convolution operation can be summarized as moving a filter
over the sentence matrix (input map) and computing the dot
products as shown in Fig. 5. Convolution with one filter
outputs a feature vector. To learn more sophisticated features,
there are generally distinct filters to convolve the input map,
and all feature vectors are concatenated into a new matrix
called feature map that would be passed to a pooling layer.

For the next, we would explain the convolution operation
in detail. Given a sentence s = wjw>---wy consisting of
N words, among which word w can be represented by V
dimensional word vector, the sentence s can be transformed
into a N x V dimensional matrix S called the input map. The
filter is a M x V dimensional matrix K. Considering one filter
p only, the i 'h element of the feature vector is:

al’ = f(convo([v(wi) -+ v(wirp—1), KP]) +b7) (1)

where K7 is filter matrix, b? is the bias and f is the activation
function. And the operation conv(-) is defined as:

M
v(witm—1), KP]) =D K{,
r=1

conv ([v(w;) - -~ ,;)UT(wi+r71)

@)
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Fig. 4. CNN architecture for text classification. The network consists of
convolutional layers with interspersed pooling layers and output layer to give
class scores.
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Fig. 5. Convolution for text data. Each convolution unit computes a non-
linear function of regional word vectors of input map, where filter parameters
matrix and bias are shared by all the units with the same filter.

Substituting 8 into 7, we obtain

M
af = £ 2Ky Witr-1) +bp ©)
r=1

Applying (6) repeatedly from i equals 1 to (N — M + 1), then
we have the full feature vector A? = (al,ay, - ,al_,, )T
of the convolution layer under the filter p. If there are F filters
in this case, the dimension of output map is (N —M +1) x F.
The pooling operation computes the average or maximum of
each region on the column of the feature map. This operation
reduces the dimension of feature map by merging neighboring
points, so that computation time is reduced and more abstract
information would be passed to the next layers. A pooling
layer downsamples the feature map and there will be one
output vector for one feature vector. More formally, the output

of pooling on feature vector A” is
of = f(BPdown(AP) + bP) (10)
where down(-) represents a downsampling function, S7 is
the multiplicative bias, b?” is the additive bias and f is the
activation function. The down(-) operation will produce an

average or maximum value over A”.

Traftic Relevant T Traffic Irrelevant
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Fig. 6. LSTM architecture for text classification. The network consists of

stacked LSTM layers and output layer to give class scores.
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Fig. 7. Architecture of LSTM block. The forget gate, input gate and output
gate control the process of adding information to cell state or removing it
from cell state.

2) LSTM for Text Classification: The LSTM neural net-
work is well-suited to learn from historical experience to
predict time series and is widely applied in sequence learn-
ing, e.g. speech recognition and traffic prediction [44]-[46].
A LSTM neural network has a feedback loop compared to
the feedforward neural network [47], [48]. For the purpose
of microblog text categorization, we construct a stacked
LSTM neural network. As illustrated in Fig. 6, the LSTM
neural network can be unrolled into a series of LSTM
blocks, and each block passes state information to a suc-
cessor. In the stacked LSTM model, the topmost LSTM
layer passes the output of the last step to the output
layer, while other ones output the full sequence to the
next layer.

The LSTM block consists of cell, input gate, forget gate
and output gate, as shown in Fig. 7. The gate architecture
is for removing information from or adding information
to cell state and the cell state is only changed by linear
interactions. This design helps to tackle the vanishing gra-
dient problem in standard recurrent neural network as it
enables the cell to store and read long range contextual
information. To obtain cell state C; and hidden state h;,
we should successively compute the output of the forget
gate:

Si=oWylhi—1,v(w)]+by) (11)
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Fig. 8. LSTM-CNN architecture for text classification. The network consists
of stacked LSTM layers that return the full sequences, convolutional layers
with interspersed pooling layers and fully connected layer as output layer.

the output of the input gate:

ir = ¢(Wilh;—1, v(wr)] + bi)
and output of the output gate

0; = ¢(Wolh;—1, v(w)] + bo)

where Wy, W; and W, are weight matrices of the forget gate,
the input gate and the output gate respectively, and b s, b; and
b, are their bias vectors. ¢ is the gate activation function and
is usually the sigmoid function. Then compute the cell state:

Ci=fi®Ci—1+ir @ u(Welhi—1, v(w)] +be) (14)
and the hidden output:
hi=0,®0(C)

(12)

13)

5)

where u and o are activation functions, and they are usually
tanh, and ® represents point-wise multiplication. The complete
sequence of cell states and hidden outputs can be computed
by applying (11), (12), (13), (14) and (15) recursively from
t=1tor=T.

3) LSTM-CNN for Text Classification: LSTM neural net-
works have potentials to learn the contextual dependency
of a microblog, and CNN can abstract deep features. Thus
combining LSTM and CNN would be a promising method
to classify microblog sentences. As illustrated in Fig. 8, the
input word vectors are fed into the first LSTM layer and the
following there may be more LSTM layers. One convolution
layer with a pooling layer comes next and also there can be
more convolutional layer and pooling layer pairs. Finally the
abstract features are feed into a fully connected neural network
layer.

IV. EXPERIMENTS

A. Learning Word Embedding Representations
from Unlabeled Microblogs

We use the CBOW model to obtain word embedding rep-
resentations for further extracting traffic relevant microblogs.
The text corpus consists of three billion microblogs covering
one million and seventy thousand user accounts. After learning

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

TABLE I
KEYWORDS TO SEARCH MICROBLOGS

Chinese Word | English Translation
, P Congestion

£ Traffic accident
I Sideswipe
EHA Accident
ST Detour

1B, Car Crash
R Jam
[Z3 Real time traffic

word embedding, each word in the corpus is represented with
a word vector and the dimension of this vector is set to
200. The size of the context window is set to 5, namely
utilizing 5 words to the left and to the right of a target word.
To optimize computational efficiency, we applied hierarchical
softmax technique.

B. Extracting Traffic Relevant Microblogs

1) Dataset and Preprocessing: The dataset for classifying
traffic microblogs into traffic relevant and traffic irrelevant
ones was collected by searching Sina Weibo with key words
that are manually chosen. The key words adopted are given
in Table I.

Finally we collect nearly forty thousand candidate
microblogs by searching Sina Weibo with key words given
in Table I. Then the microblogs are manually labeled with
two possible categorizations, i.e. traffic relevant and traffic
irrelevant. Among the candidate microblogs, five thousand
ones are labeled with the traffic relevant class, and six thousand
ones are randomly chosen from the remaining microblogs set
which is made up of all candidate ones excluding the traffic
relevant ones. The final dataset to train classifiers is made up
of five thousand traffic relevant microblogs and six thousand
traffic irrelevant ones.

A vocabulary dictionary was built according to the occur-
rence of words in manually labeled dataset, and each word
is represented by its index in the dictionary. Each microblog
is transformed into a sequence of word indexes. To feed into
deep neural network efficiently, the word index sequence in
each microblog for training the classifier is padded into the
sequence with the same length. In our experiments, the maxi-
mum length of word sequences is 156. And zeroes are padded
after each sequence until its length reached 156. As the
dimension of word vector is 200, the features of a microblog
fill a 156 x 200 matrix, which would be fed into classification
models. All the models employed in this paper would utilize
this feature matrix as input if there is no additional declaration.

2) Performance Indexes: To evaluate the performance of
the proposed deep neural network models, we employ three
statistical metrics, which are precision, recall and F-measure.
These indexes are commonly used in evaluating the clas-
sifiers. Table II defines these three indexes. As all these
indexes are class specific, for a certain class with label [, true
positive (T P) represents the number of instances with label /
correctly assigned with label [, false positive (FP) repre-
sents the number of instances with any other labels except /
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TABLE 11
PERFORMANCE INDEXES

Index Definition
Precision pre = TPT_’_%
Recall rec = ij;_%
F measure | Fg = (1+52)%

incorrectly assigned with the label /, and false negative (FN)
represents the number of instances with label / incorrectly
assigned with any other labels exception [ . Precision measures
the exactness of a classifier and recall represents its effective-
ness. To get a tradeoff between precision and recall, F-measure
is defined as the weighted harmonic mean of precision and
recall. When £ equals to one, F-measure is also called Fj
score, which is commonly used in evaluating classification
models. In what follows, all performance indexes are reported
by tenfold cross-validation.

3) Baseline Methods: For comparison, we test the SVM
model that is reported with good performance for text cate-
gorization. One SVM model, named as bow-SVM, takes bag
of unigram and bigram as input. And one SVM model named
vecseq-SVM, takes the word embedding as input. Both two
SVM models were trained using LIBLINEAR library [49]. In
bow-SVM based method, we performed feature engineering
by combining unigram and bigram features. To experiment
with shallow neural network, we also fine-tune multi-layer
perceptron method with one hidden layer.

4) Determination of the CNN Model: We fix the activation
function of convolutional layers to rectifier d(x) = max(x, 0),
a commonly used activation function in CNN neural networks.
And the loss function is defined as binary cross-entropy
which is minimized by Adam optimizer [50]. To learn the
well-performed classification models, we have conducted a
series of experiments to explore the effect of architecture
components on model performance. In the experiments of
exploring the effect of filter number, the filter number is
selected from {10, 20, 50, 100, 150}. According to the results,
increasing the number of filters can yield better performance,
while it takes longer time to train the model. And the models
with 150 filters achieve nearly same performances with the
model with 100 filters, which suggests the largest number
of filters in grid search can be 150. In the experiments of
exploring the effect of filter length, filter length is selected
from {2,3,4,5, 6, 10}. According to the results, changing the
filter length does not improve performances much for our
dataset.

To obtain the best performance model, we run grid search
over the filter number and filter length of convolutional layers,
and the pooling strategy. The filter number is chosen from
{20, 50, 100, 150} and the filter length is set from 2 to 6 with
a stride 1. The following pooling operation is chosen from
maximum pooling and average pooling. In addition, we have
also evaluated the performance of the model by adding a
vanilla hidden layer between the top pooling layer and the

TABLE III
PARAMETER SETTINGS OF THE BEST PERFORMED CNN MODEL

Layer Type Filter Stride | Output Size
0 Input — — (156, 200)
1 Convolution (4,200, 100)! 1 (153, 100)
2 Max-pooling (1,153)? 1 (1, 100)
3 Flatten — — (100)
4 Fully Connected — — (50)
5 Fully Connected — — (1)

! The filter length is 4, the filter width is 200 (same as the dimension
of word embedding), and the filter number is 100.
2 The horizontal size of pool window is 1 and the vertical size is 153.

TABLE IV
PARAMETER SETTINGS OF THE BEST PERFORMED LSTM-CNN MODEL

Layer Type Filter Stride | Output Size
0 Input — — (156, 200)
1 LSTM — — (10)
2 Convolution (5,200, 10)! 1 (152, 10)
3 Max-pooling (1,152)? 1 (1,10)
4 Flatten — — (10)
5 Fully Connected — — (1)

! The filter length is 5, filter width is 200 (same as the dimension of
word embedding), and filter number is 10.
2 The horizontal size of pool window is 1 and the vertical size is 152.

TABLE V

PERFORMANCE COMPARISON OF SVM, MLP, CNN,
LSTM AND LSTM-CNN

Tusk Traffic Relevant Traffic Irrelevant
pre rec Fy pre rec Fy

bow-SVM 0.9095 | 0.8727 | 0.8908 | 0.8975 | 0.9277 | 0.9123
vecseq-SVM | 0.8368 | 0.7992 | 0.8176 | 0.8387 | 0.8702 | 0.8542
MLP 0.8752 | 0.8719 | 0.8737 | 0.8997 | 0.9026 | 0.9011
CNN 0.8961 | 0.9006 | 0.8983 | 0.9168 | 0.9130 | 0.9149
LSTM 0.8873 | 0.9182 | 0.9025 | 0.9298 | 0.9028 | 0.9161
LSTM-CNN | 0.8928 | 0.9160 | 0.9042 | 0.9285 | 0.9083 | 0.9183

top output layer. After running grid search, the model with
100 filters whose length is 4 achieves the best Fj score,
which is summarized in Table III. The best architecture has
a maximum pooling layer and a vanilla hidden layer with
50 output units. And the results are given in Table V.

5) Determination of the LSTM Model: For the LSTM
model, the loss function is also defined as binary cross-entropy.
We use RMSprop optimizer [51] to minimize the loss function.
To train the model efficiently, we have conducted a series
of experiments to explore the effect of the size of LSTM
hidden states and the learning rate on model performance.
In the experiments of exploring the effect of a learning rate
on model performance, the learning rate is selected from
0.01 to 0.05 with a stride 0.01. Experiments show that a
lower learning rate gives better performances especially for
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recall and Fj score as the training process going on. In the
experiments of investigating the effect of the size of LSTM
hidden states on model performance, the size of LSTM hidden
state is chosen from {5, 10, 20, 50}. We found that the models
with 5 and 10 LSTM hidden state units achieve nearly the
same performance after training epoch 30, which are better
than that of the models with 20 and 50 LSTM hidden
state units.

To get the LSTM model with best performance, a grid
search is applied. We choose the size of LSTM hidden states
from {5, 10, 20} and the learning rate from 0.01 to 0.03 with
a stride 0.01. In addition, we explore whether to stack two
LSTM layers would improve the performances. Experiments
show that the model with stacked two LSTM layers which
have 10 output units and 0.01 learning rate obtains the best
F1 score.

6) Determination of the LSTM-CNN Model: In LSTM-CNN
model, the first layer is a LSTM layer. And following is
a convolutional layer and a maximum pooling layer. The
size of LSTM hidden state is chosen from {5, 10,20, 50}.
For convolutional layer, the filter number is chosen form
{10, 20, 50, 100} and the filter length is set from 2 to 6 with a
stride 1. And the learning rate is chosen from 0.01 to 0.03 with
a stride 0.01. After performing grid search, we obtain the best
model for F; score and the parameter settings are summarized
in Table IV.

C. Results

The detection results of traffic relevant and irrelevant classes
with different classification approaches are given in Table V.
The F; measures of the CNN model, the LSTM model and
the LSTM-CNN model are close for both traffic relevant class
and traffic irrelevant class, and the LSTM-CNN model achieve
the highest F7 score. All these three models proposed in this
paper improve the performance than that of the bow-SVM
model, the vecseq-SVM model and the MLP model. It is
worth to mention that the bow-SVM is simple yet has a good
performance. For traffic relevant class, the precision of the
bow-SVM model is the highest compared to that of other
methods, but this model has a lower recall which means it
would detect fewer traffic relevant microblogs and thus may
miss some traffic information such as traffic incidents. It also
needs to point that the LSTM model has the highest recall
value for traffic relevant class, yet a relatively low precision.
A lower precision value means that a model has less exactness
and has more false positive instances.

As the performances of bow-SVM, LSTM, CNN and
LSTM-CNN approaches are close, we further discuss their
benefits and limitations. The proposed deep neural network
approach extracts deep features automatically, which is end-to-
end learning without manually selecting features compared to
the bow-SVM approach. So the deep learning approach needs
less expert knowledge on language. Besides, the dimension
of feature space in the deep learning approach is much
lower than that in the bow-SVM method. In our experiments,
the dimension of feature space applied in the bow-SVM
method is 276679 that is selected from 1128748 features
by dimensionality reduction, while the dimension of feature
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space for other methods in this paper is 31200. The limitations
of the deep learning approach are also obvious. The end-to-
end deep learning, as a black box, lacks model interpretability.
Meanwhile, due to high model complexity, the deep learning
approach needs much more training time than that of the
bow-SVM method.

V. CONCLUSION

In this paper, we discussed the emerging social transporta-
tion topic on extracting traffic information from social media.
We proposed deep learning methods to detect traffic related
microblogs from Sina Weibo. Different from the traditional
n-gram language models taking as input one-hot vector repre-
sentation of words, we applied word embedding representation
of words and used CNN, LSTM, LSTM-CNN to classify
short texts of Sina Weibo. We got the word embedding with
continuous vector representation of words via the CBOW
model using 3 billion microblogs collected between 2009 and
2011 from Sina Weibo. One-hot vector representation of words
does not have semantic similarities between words while
word embeddings have. The word embeddings were fed into
CNN, LSTM, and LSTM-CNN. We investigated the effect
of model architecture and hyperparameters on model perfor-
mance and ran grid search to determine the best architecture
of CNN, LSTM, and LSTM-CNN. Experiments showed that
the proposed deep learning methods with word embeddings
outperform the competing methods.

In future studies, the methodology can be further enhanced
and improved in several ways. First, we will collect more
microblogs to classify traffic relevant microblogs into detailed
categories like traffic accidents, traffic status, etc. Second,
the detailed entities, e.g. location and time of occurrence of
traffic events, will be extracted from raw microblogs. Further-
more, we will improve short and long term traffic prediction
by fusing online social media and traditional physical traffic
detector data.
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