
Detecting Transient Bottlenecks in n-Tier

Applications through Fine-Grained Analysis

Qingyang Wang 1, Yasuhiko Kanemasa 2, Jack Li 1, Deepal Jayasinghe 1

Toshihiro Shimizu 2, Masazumi Matsubara 2, Motoyuki Kawaba 2, Calton Pu 1

1College of Computing, Georgia Institute of Technology
2Cloud Computing Research Center, FUJITSU LABORATORIES LTD.

Abstract—Identifying the location of performance bottlenecks
is a non-trivial challenge when scaling n-tier applications in
computing clouds. Specifically, we observed that an n-tier applica-
tion may experience significant performance loss when there are
transient bottlenecks in component servers. Such transient bottle-
necks arise frequently at high resource utilization and often result
from transient events (e.g., JVM garbage collection) in an n-tier
system and bursty workloads. Because of their short lifespan (e.g.,
milliseconds), these transient bottlenecks are difficult to detect
using current system monitoring tools with sampling at intervals
of seconds or minutes. We describe a novel transient bottleneck
detection method that correlates throughput (i.e., request service
rate) and load (i.e., number of concurrent requests) of each server
in an n-tier system at fine time granularity. Both throughput
and load can be measured through passive network tracing at
millisecond-level time granularity. Using correlation analysis, we
can identify the transient bottlenecks at time granularities as
short as 50ms. We validate our method experimentally through
two case studies on transient bottlenecks caused by factors at
the system software layer (e.g., JVM garbage collection) and
architecture layer (e.g., Intel SpeedStep).

I. INTRODUCTION

Achieving both good performance and high resource utiliza-

tion is an important goal for enterprise cloud environments.

High utilization is essential for high return on investment

for cloud providers and low sharing cost for cloud users.

Good performance is essential for mission-critical applica-

tions (e.g., web-facing e-commerce applications) with Service

Level Agreement (SLA) guarantees such as bounded response

time. Unfortunately, achieving both objectives for mission-

critical applications has remained an elusive goal. Concretely,

both practitioners and researchers have experienced wide-

range response time variations in clouds during periods of

high utilization. A practical consequence is that enterprise

cloud environments have adopted conservative (low) average

utilization (e.g., 18% in [19]).

In this paper, we describe clear experimental evidence that

shows transient bottlenecks being an important contributing

factor to the wide response time variations. Using extensive

measurements of an n-tier benchmark (RUBBoS [1]), we

demonstrate the presence of transient bottlenecks with a short

lifespan on the order of tens of milliseconds. Transient bottle-

necks can arise from several factors at different system layers

such as Java Virtual machine garbage collection (JVM GC)

at the software layer and Intel SpeedStep at the architecture

layer. These factors interact with normal bursty workloads [14]

from clients, often leading to transient bottlenecks that cause

overall performance degradation. The discovery of these tran-

sient bottlenecks is important as they will cause wide-range

response time variations and limit the overall system perfor-

mance while all the system resources are less than 100%

utilized. Specifically, we have found that frequent transient

bottlenecks can cause a long-tail response time distribution

that spans a spectrum of 2 to 3 orders of magnitude, which can

lead to severe violations of strict Service Level Agreements

(SLAs) required by web-facing e-commerce applications (see

Section II-B).

The study of transient bottlenecks has been hampered due to

many transient bottlenecks being short-lived (on the order of

tens of milliseconds). From Sampling Theory, these transient

bottlenecks would not be detectable by normal monitoring

tools that sample at time intervals measured in seconds or

minutes. These monitoring tools incur very high overhead

at sub-second sampling intervals (about 6% CPU utilization

overhead at 100ms interval and 12% at 20ms interval). By

combining fine-grained monitoring tools and a sophisticated

analytical method to generate and analyze monitoring data,

we are able to find and study transient bottlenecks.

The first contribution of this paper is a novel transient

bottleneck detection method, which is sensitive enough to

detect transient bottlenecks at millisecond level. Our method

uses passive network packet tracing, which monitors the

arrival and departure time of each request of each server

at microsecond granularity with negligible impact on the

servers. This data supports the counting of concurrent requests

and completed requests at fine time granularity (e.g., 50ms).

For sufficiently short time intervals, we can use the server

request completion rate as throughput, and concurrent requests

as server load, to identify transient performance bottlenecks

(Utilization Law [9]) at time granularity as short as 50ms (See

Section III).

The second contribution of the paper is a detailed study

of various system factors that cause the transient bottlenecks

in the system. In this paper we focus on two representative

factors: one at the system software layer and the other at the

architecture layer. At the system software layer, JVM garbage

2013 IEEE 33rd International Conference on Distributed Computing Systems

1063-6927/13 $26.00 © 2013 IEEE

DOI 10.1109/ICDCS.2013.17

105

2013 IEEE 33rd International Conference on Distributed Computing Systems

1063-6927/13 $26.00 © 2013 IEEE

DOI 10.1109/ICDCS.2013.17

31

2013 IEEE 33rd International Conference on Distributed Computing Systems

1063-6927/13 $26.00 © 2013 IEEE

DOI 10.1109/ICDCS.2013.17

31

Web Server

Application Server

Cluster middleware

Software Stack

Apache 2.0.54

Apache Tomcat 5.5.17

C-JDBC 2.0.2

System monitor esxtop 5.0, Sysstat 10.0.0

Database server MySQL 5.0.51a

Operating system RHEL 6.2 (kernel 2.6.32)

Sun JDK jdk1.5.0_07, jdk1.6.0_14

Hypervisor VMware ESXi v5.0

(a) Software setup (b) ESXi host and VM setup

CPU0

CPU0

Web

Server

App.

Servers

Cluster-
middle-
ware

DB

Servers

L L

S

ESXi

Host 1

ESXi

Host 2

ESXi

Host 3

ESXi

Host 4

VM

HTTP

Requests

CPU0

CPU1

CPU1

CPU0

S

CPU1

S S
CPU1

(c) 1L/2S/1L/2S sample topology

Fig. 1: Details of the experimental setup.

collections in a Java-based server happen frequently especially

when the server is at high resource utilization and cause

frequent transient bottlenecks for the server (see Section IV-A).

At the architecture layer, the Intel SpeedStep technology

unintentionally creates frequent transient bottlenecks due to

the mismatch between the current CPU clock speed and the

bursty real-time workload on the server (See Section IV-C).

The rest of the paper is organized as follows. Section II

shows the wide-range response time variations using a con-

crete example. Section III introduce our transient bottleneck

detection method. Section IV shows two case studies of apply-

ing our method to transient bottlenecks. Section V summarizes

the related work and Section VI concludes the paper.

II. BACKGROUND AND MOTIVATION

A. Experimental Setup

We adopt the RUBBoS standard n-tier benchmark, based

on bulletin board applications such as Slashdot [1]. RUBBoS

can be configured as a three-tier (web server, application

server, and database server) or four-tier (addition of clustering

middleware such as C-JDBC [11]) system. The workload

consists of 24 different interactions. The benchmark includes

two kinds of workload modes: browse-only and read/write

mixes. We use browse-only workload in this paper.

We run the RUBBoS benchmark on our virtualized testbed.

Figure 1 outlines the software components, ESXi host and

virtual machine (VM) configuration, and a sample topol-

ogy used in the experiments. We use a four-digit notation

#W/#A/#C/#D to denote the number of web servers, ap-

plication servers, clustering middleware servers, and database

servers. Each server runs on top of one VM. We have two types

of VMs: “L” and “S”, each of which represents a different size

of processing power. Figure 1(c) shows a sample 1L/2S/1L/2S

topology. The VMs from the same tier of the application run

in the same ESXi host. Each VM from the same tier is pinned

to separate CPU cores to minimize the interference between

VMs. Hardware resource utilization measurements (e.g., CPU)

are taken during the runtime period using Sysstat at one second

granularity and VMware esxtop at two second granularity.

B. Why Are Transient Bottlenecks a Problem?

We use an example where the response time of an n-tier

system presents wide-range variations while the system is far

from saturation. The example was derived from a three-minute

experiment of RUBBoS running on a four-tier configuration

(1L/2S/1L/2S, see Figure 1(c)).

Figure 2(a) shows the system throughput increases linearly

from a workload of 1,000 concurrent users to 11,000, but after

11,000, the throughput becomes flat and the average response

time increases dramatically. The interesting observation is that

before the throughput reaches the maximum, for example,

from WL 6,000 to 11,000, the average response time already

starts increasing. In particular, Figure 2(b) shows that the

percentage of requests with response time over 2s starts

increasing after WL 6,000, which means that the system per-

formance starts deteriorating far before the system reaches the

maximum throughput. Figure 2(c) further shows the response

time distribution of the system at WL 8,000, which presents

a clear long-tail and bi-modal distribution. In real business

situations, there are often cases when web-facing applications

have strict service level agreements (SLAs) in terms of end-to-

end response time; for example, experiments at Amazon show

that every 100ms increase in the page load decreases sales by

1% [12]. In such cases, wide-range variations in response time

can lead to severe SLA violations.

In order to diagnose the causes for the wide-range re-

sponse time variations, we measured the utilization of various

resources in each component server of the system. Since

the browse-only workload of RUBBoS is CPU intensive, we

show the timeline graphs (with one second granularity) of

CPU utilization in Figure 3. During the execution of the WL

8,000, both Tomcat and MySQL show less than full CPU

utilization, with an average of 79.9% (Tomcat) and 78.1%

(MySQL). We also summarize the average usage of other main

hardware resources of each server in Table I. This table shows

that except for Tomcat and MySQL CPU, the other system

resources are far from saturation.

This example shows that monitoring hardware resource uti-

lization at one second granularity is insufficient at identifying

the cause of wide-range response time variations, since there

is no single saturated resource. Later in Section IV-C we

explain that the problem is due to the frequent transient bot-

tlenecks unintentionally caused by Intel SpeedStep technology

in MySQL. SpeedStep is designed to adjust CPU clock speed

to meet instantaneous performance needs while minimizing

1063232

(a) Average end-to-end response time and through-
put at each workload

(b) Percentage of requests with response time over
two seconds at each workload

0.1 0.5 1 1.5 2.0 2.5 3.0 3.5 > 4
10

0

10
2

10
4

10
6

Response time [s]

#
 o

f
c
o

m
p

le
te

 r
e

q
u

e
s
ts

(c) Long-tail and bi-modal end-to-end response
time distribution at WL 8,000

Fig. 2: A case where the system response time shows wide-range variation far before the system reaches the maximum throughput. Figure 2(c)
shows the long-tail and bi-modal end-to-end response time distribution at WL 8,000, which indicates the unstable system performance.

Server/Resource
CPU util. Disk I/O Network receive/send

(%) (%) (MB/s)

Apache 34.6 0.1 14.3/24.1

Tomcat 79.9 0.0 3.8/6.5

CJDBC 26.7 0.1 6.3/7.9

MySQL 78.1 0.1 0.5/2.8

TABLE I: Average resource utilization in each tier at WL 8,000.
Except Tomcat and MySQL CPU, the other system resources are far
from saturation.

the power consumption of CPUs; however, the Dell’s BIOS-

level SpeedStep control algorithm is unable to adjust the CPU

clock speed quickly enough to match the bursty real-time

workload; the mismatch between CPU clock speed and real-

time workload causes frequent transient bottlenecks in MySQL

and leads to wide-range variations of system response time 1.

C. Trace Monitoring Tool

The previous example shows the necessity of detecting

transient bottlenecks in the system. Our approach is based on

passive network tracing, which can mitigate the monitoring

overhead while achieve high precision of detecting transient

bottlenecks in the system. In this section, we introduce our

monitoring tool, which we use in our transient bottleneck

detection method presented in the next section.

We use Fujitsu SysViz [2] to monitor the trace of transaction

executions in our experiments. Figure 4 shows an example

of such a trace (numbered arrows) of a client transaction

execution in a three-tier system. A client transaction services

an entire web page requested by a client and may consist of

multiple interactions between different tiers. SysViz is able

to reconstruct the entire trace of each transaction executed in

the system based on the interaction messages (odd-numbered

arrows) collected through network taps or network switches

which support passive network tracing. Since the timestamp of

each interaction message is recorded on one dedicated SysViz

1Transient bottlenecks cause instantaneous high concurrency in an n-tier
system; once the concurrency exceeds the thread limit in the web tier of the
system, new incoming requests will encounter TCP retransmissions, which
cause over 3s response times [22].

0 30 60 90 120 150 180
0

20

40

60

80

100

Timeline [s]

T
o
m

c
a
t
C

P
U

 u
ti
l
[%

]

App server CPU

0 30 60 90 120 150 180
0

20

40

60

80

100

Timeline [s]

M
y
S

Q
L

 C
P

U
 u

ti
l
[%

]

DB server cpu

Fig. 3: Tomcat and MySQL CPU utilization at WL 8,000; the average
is 79.9% and 78.1% respectively.

machine and independent of clock errors caused by limited

accuracy of NTP, the intra-node delay (small boxes with even-

numbered arrows) of every request in any server in the system

can be precisely recorded.

In fact the end-to-end transaction tracing has been studied

for many years and there are mainly two classes of imple-

mentations: annotation-based and black box. Most annotation-

based implementations [7] [8] [10] [18] rely on applications

or middleware to explicitly associate each interaction message

with a global identifier that stitches the messages within

a transaction together. Black-box solutions [3] [6] assume

there is no additional information other than the interaction

messages, and use statistical regression analysis to reconstruct

each transaction execution trace. SysViz belongs to the black-

box class. Experiments in our environment shows that SysViz

is able to achieve more than 99% accuracy of transaction

trace reconstruction for a 4-tier application even when the

application is under a high concurrent workload.

End-to-end transaction tracing in distributed systems has

passed the research stage. Reasearch continues on how to

best use the information provided by such tracing to diagnose

performance issues in the system.

1073333

(a) MySQL load measured at every 50ms time
interval in a 12-second time period. Frequent high
peaks suggest that MySQL presents short-term con-
gestions from time to time.

(b) MySQL throughput measured at every 50ms
time interval in the same 12-second time period as
in Figure 5(a).

(c) MySQL load vs. MySQL throughput in the
same 12-second time period as in Figure 5(a)
and 5(b); MySQL is temporarily congested once the
load exceeds N⋆.

Fig. 5: Performance analysis of MySQL using fine-grained load and throughput at WL 7,000. Figure 5(a) and 5(b) show the MySQL load
and throughput measured at the every 50ms time interval. Figure 5(c) is derived from 5(a) and 5(b); each point in Figure 5(c) represents the
MySQL load and throughput measured at the same 50ms time interval in the 12-second experimental time period.

Tomcat MySQLApache

1. HTTP
call

15. HTTP
return

...

...
...
...

...

...

ti
m
e

3. call

5. call

7. return

9. call

11. return

13. return

2

4

6

8

10

12

14

Fig. 4: Illustration of a transaction execution trace captured by SysViz

III. FINE-GRAINED LOAD/THROUGHPUT ANALYSIS

In this section, we first briefly show how our method

detects transient bottlenecks in an n-tier system using a simple

example. The details of each part of our method are in the

following subsections.

Since a bottleneck in an n-tier system is the place where

requests start to congest in the system, a key point of detecting

transient bottlenecks is to find component servers that fre-

quently present short-term congestions. To achieve this goal,

the first step of our method is to measure a server’s load

and throughput in continuous fine-grained time intervals. The

throughput of a server can be calculated by counting the

number of completed requests in the server in a fixed time

interval, which can be 50ms, 100ms, or 1s. Load is the average

number of concurrent requests over the same time interval 2.

Figure 5(a) and 5(b) shows the MySQL load and throughput

measured using a 50ms time interval over a 12-second time

2Given the precise arrival and departure timestamps of each request for a
server monitored through passive network tracing, the load and throughput of
the server can be calculated at any given time interval, more details are in
Section III-A and III-B

period for the 1L/2S/1L/2S configuration case at WL 7,000

(See the case in Figure 2). These two figures show that

both the MySQL load and throughput fluctuate significantly,

which indicates that MySQL frequently presents short-term

congestions.

To diagnose in which time intervals a server presents short-

term congestion, we need to correlate the server’s load and

throughput as shown in Figure 5(c). This figure is derived from

Figure 5(a) and Figure 5(b); each point in Figure 5(c) repre-

sents the MySQL load and throughput measured at the same

50ms time interval during the 12-second experimental time

period (i.e., in total 240 points). This figure shows a clear trend

of load/throughput correlation (main sequence curve), which is

consistent with Denning et al.’s [9] operational analysis result

for the relationship between a server’s load and throughput.

Specifically, a server’s throughput increases as the load on

the server increases until it reaches the maximum throughput

TPmax, which is determined by the average demand for the

bottleneck resource per job according to the Utilization Law.

The congestion point N⋆ is the minimum load beyond which

the server starts to congest.

Once N⋆ is determined, we can judge in which time

intervals the MySQL tier is congested based on the measured

load. For example, Figure 5(c) highlights three points labeled

1, 2, and 3, each of which represents the load/throughput in a

time interval that can match back to Figure 5(a) and 5(b). Point

2 shows that the MySQL tier is congested in the corresponding

time interval because the load far exceeds N⋆. Point 3 shows

that MySQL is not congested due to the zero load. Point 1
also shows that the MySQL tier is not congested because the

corresponding load is less than N⋆ though it generates high

throughput.

After we apply the above analysis to each component

server of an n-tier system, we can detect which servers have

encountered frequent transient bottlenecks and cause the wide-

range response time variations of the system.

1083434

Timeline [ms]

n(t)

t
0 200

1
2
3

Lo
a
d
[#
]

100

T T

request arrival
timestamp

request departure
timestamp

...

time

...

Fig. 6: Load calculation for a server based on the arrival/departure
timestamps of requests for the server

A. Load Calculation

For each server, our direct observables are the arriving (in-

put) requests and departing (output) responses with timestamps

generated at microsecond ticks. At each tick, we know how

many requests have arrived, but not yet departed. This is the

number of concurrent requests being processed by the server.

We define the server load as the average number of concurrent

requests over a time interval.

Figure 6 shows an example of load calculation for a server

in two consecutive 100ms time intervals. The upper part of this

figure shows the arrival/departure timestamps of the requests

received by the server, which are collected through passive

network tracing. Due to the multi-threaded architecture, re-

quests received by a server can be processed concurrently

as shown by the interleaved arrival/departure timestamps of

different requests. The bottom part of this figure shows the

number of concurrent requests being processed by the server

at each moment; thus the average in each time interval can be

calculated and used as the server load over the time interval.

B. Throughput Calculation

A straightforward approach to calculate throughput of a

server in each time interval is to count the number of fin-

ished requests during each time interval. This approach is

reasonable if a server processes only one class of requests

because the same class of requests can be assumed to have a

similar amount of demand for the bottleneck resource of the

server. Thus, the throughput calculated in each time interval

is comparable.

In typical applications including RUBBoS, the workload

on a server is mixed with multiple classes of requests each

having a different demand for the bottleneck resource of the

server. As the time interval length decreases (e.g. 50ms), the

request-mix distribution among time intervals becomes signif-

icantly different. Thus throughput values calculated (using the

straightforward way) in different time intervals are not directly

comparable because the requests that comprise the throughput

may have different demands for the bottleneck resource.

To calculate the throughput of a server under a mix-class

workload, we apply a throughput normalization technique

which transforms different classes of completed requests into

100ms 100ms

TW0 TW1

100ms

TW2

0.6 0.4 0.4Load

Req1: 30 ms

Req2: 10 ms

6 4 4Normalized throughput

Work unit: 10ms

request arrival
timestamp

request departure
timestamp

... ...

2 2 4Straightforward throughput

Fig. 7: Load/throughput calculation with mix-class workload

a certain number of comparable work units. 3. We define a

work unit as the greatest common divisor among the service

times from different classes of requests. Requests with a longer

service time can transform into a greater number of work units

while those with shorter service times only transform into a

smaller number. Since the normalized throughput in each time

interval only takes into account the transformed work units,

throughputs from different time intervals become compara-

ble. This throughput normalization technique is motivated by

the request canonicalization and clustering as introduced in

Barham et al.’s Magpie [7].

Figure 7 shows an example of the load and throughput

calculation under a mix with two classes of requests: Req1
and Req2 with service time 30ms and 10ms respectively. The

time interval length is 100ms. We set the work unit size as

10ms, so then Req1 transforms into 3 work units and Req2
transforms into 1 work unit. Thus, the server processes 6 work

units in TW0 and 4 in both TW1 and TW2. We can see that

in these three time intervals the normalized throughput has

a strong positive correlation with the load, which means the

server is not saturated based on Utilization Law. On the other

hand, the number of completed requests (the straightforward

throughput) has no correlation with the load in this case.

Service time approximation: The service time approxi-

mation for each class of requests is obtained using passive

network tracing. Figure 4 shows the intra-node delay (small

boxes in the figure) of each individual request in each server,

which can be treated as the service time if there is no queueing

effect. Thus, service time approximation for each class of

requests can be conducted online when the production system

is under low workload in order to mask out the queuing

effects inside a server [20]. Since the service time of each

class of requests may drift over time (e.g., due to changes

in the data selectivity) in real applications, such service time

approximations have to be recomputed accordingly.

C. Congestion Point N⋆ Determination

In our method N⋆ is used to classify a server’s performance

state in each time interval; however, the N⋆ of a server is not

known a priori because the value depends on many factors

3For mix-class workload, we assume the demand for the bottleneck resource
of a server is proportional to the service time of a request. This assumption
is reasonable if a mix-class workload is one specific resource intensive in a
server (e.g., CPU). Then the service time can be approximated as CPU time.

1093535

(a) Monitoring time interval length 20ms

0 20 40 60 80
0

2000

4000

6000

8000

MySQL load [#]

M
y
S

Q
L
 t
h
ro

u
g
h
p
u
t
[r

e
q
/s

]

(b) Monitoring time interval length 50ms

(c) Monitoring time interval length 1s

Fig. 8: The impact of time interval length on load/throughput correlation analysis for MySQL at WL 14,000. Subfigure (a) (b), and (c) are
derived from the same 3-minute experimental data; thus there are 9,000 points with 20ms time interval, 3,600 points with 50ms time interval,
and 180 points with 1s time interval.

such as the server’s hardware/software configuration and also

the workload characteristics [23].

In practice we use a simple statistical intervention anal-

ysis [13] to approximate N⋆, where the main idea of this

analysis is to find the minimum load (N⋆) beyond which

the increments of throughput becomes negligible with further

increment of load. Suppose the load in a server varies between

[Nmin, Nmax]; then we divide [Nmin, Nmax] into k even

intervals (e.g., k = 100) and calculate the average throughput

in each load interval based on the load/throughput samples we

collected during the experimental period. Each load interval

and the corresponding average throughput is recorded as

{〈ld1, tp1〉, 〈ld2, tp2〉, ..., 〈ldk, tpk〉}, where ld1 < ld2 < ... <
ldk. Then the slope δi between every two consecutive load

intervals can be calculated as Equation 1:

δi =

tp1/ ld1 : i = 1

tpi − tpi−1

ldi − ldi−1

: 1 < i ≤ k
(1)

tol ≤ δ − t(0.95,n0−1) ∗ s.d.{δ} (2)

δi should be nearly constant (e.g., δ0) when the server is

not saturated and starts to lose stability once the load exceeds

N⋆. The right side of Equation 2 shows a simple heuristic

approximation for the lower bound of a ninety percent con-

fidence interval of the sequence {δ1, δ2, ..., δn0
} 4, where

1 < n0 ≤ k. We approximate N⋆ as ldn0
when the lower

bound of the variation of the sequence {δ1, δ2, ..., δn0
} is

below the pre-defined threshold tol (e.g., 0.2δ0).

D. Impact of Monitoring Time Interval Length

Both too short and too long a time interval length have side-

effects in detecting transient bottlenecks of a server. Though

a short time interval length can better capture the transient

4t(0.95,n0−1) is the coefficient for a 90 percent confidence interval when

a variable follows a t-distribution; δ = 1
n0

∑n0

i=1 δi and s.d.{δ} =
√

∑n0

i=1(δi − δ)2, which are the mean and the standard deviation of the

sequence {δ1, δ2, ..., δn0
}, respectively.

variation of the load of a server, it decreases the precision

of the throughput calculation due to factors such as requests

with a lifespan crossing consecutive time intervals or the

errors caused by throughput normalization. For example, the

service time even for the same class of requests varies in

real applications (e.g., data selectivity changes). The average

service time for the same class of requests may not be

representative during throughput normalization due to too few

requests completed in a small time interval. On the other hand,

though a longer time interval length can average out the service

time variation for the same class of requests, it may lose the

ability to capture the short-term congestions of a server.

Figure 8(a), 8(b), and 8(c) show the load/throughput corre-

lation results of MySQL at workload 14,000 with 20ms, 50ms,

and 1s time interval length, respectively. Comparing these

three figures we can see that too long a time interval length

cannot capture the load/throughput variations, thus losing the

ability to detect transient bottlenecks (Figure 8(c)); too short

a time interval length blurs the shape of the expected main

sequence curve due to the increased errors of normalized

throughput (Figure 8(a)).

Note a proper time interval length for a server is workload

dependent (e.g., depends on the service time variation of each

class of requests for the server). In general a proper length

should be small enough to capture the short-term congestions

of a server. In the evaluation section we choose the time

interval length to be 50ms. An automatic way to choose a

proper time interval length is part of our future research.

IV. EVALUATION

In this section we show two case studies of applying our

method to detect transient bottlenecks caused by factors at

different levels (e.g., JVM GC at software level and Intel

SpeedStep at architecture level). For each case we also show

a solution to resolve the transient bottlenecks in the system.

A. Transient bottlenecks caused by JVM GC

The first case is the transient bottlenecks caused by frequent

JVM GCs in Tomcat. In the experiments of this subsection,

1103636

(a) Tomcat tier at WL 7,000

(b) Tomcat tier at WL 14,000

(c) Tomcat tier at WL 14,000

Fig. 9: Fine-grained load/throughput(50ms) analysis for Tomcat as workload increases. Subfigure 9(b) is derived from Subfigure 9(c), but
with 3-minute experimental data. Subfigure 9(b) shows that Tomcat frequently presents short-term congestion at WL 14,000.

(a) Tomcat load vs. Tomcat GC running ratio at WL 14,000; high GC
running ratio causes requests to congest in Tomcat.

(b) Tomcat load and system response time in the same time period
as in (a); long queue in Tomcat leads to high peak in response time.

Fig. 10: Fine-grained analysis for the large response time fluctuations of the system at WL 14,000. Figure 10(a) shows that frequent JVM
GCs cause transient bottlenecks (long queue) in Tomcat, which lead to large response time fluctuations as shown in Figure 10(b).

we use JDK 1.5 in Tomcat which has a synchronous garbage

collector; the inefficiency of this garbage collector frequently

causes transient bottlenecks in Tomcat and results in signifi-

cant fluctuations of system response time as we will show in

Figure 11(c).

Figure 9 shows the fine-grained load/throughput (50ms)

analysis for Tomcat at WL 7,000 and 14,000 with the hardware

configuration 1L/2S/1L/2S. Figure 9(a) shows that Tomcat

is not bottlenecked in most of the time intervals at WL

7,000 since only a few points are right after N⋆ derived

from Figure 9(b). The interesting figure is Figure 9(b), which

shows that at WL 14,000 Tomcat frequently presents transient

bottlenecks. In particular, this figure shows there are many

points when Tomcat has a high load but low or even zero

throughput (POI inside the rectangular area), which contradicts

our expectation of the main sequence curve followed by a

server’s load and throughput.

To illustrate when these POIs happen, Figure 9(c) shows the

fine-grained timeline analysis of Tomcat load and throughput

in a 10s experimental period at WL 14,000. This figure clearly

shows in some time intervals the Tomcat load is high (e.g.,

the point labeled 4) but the corresponding throughput is zero,

which means that many requests are congested in Tomcat

but there are no output responses (throughput). In such time

intervals, the load/throughput pairs fall into the POI area as

shown in Figure 9(b).

Our further analysis shows that the POIs are caused by JVM

GCs that frequently stop Tomcat. In this set of experiments,

the JVM in Tomcat (JDK 1.5) uses a synchronous garbage

collector; it waits during the GC period and only starts

processing requests after the GC is finished. To confirm that

JVM GCs cause the frequent transient bottlenecks in Tomcat,

Figure 10(a) shows the timeline graph which correlates the

Java GC running ratio 5 with the Tomcat load. This figure

shows that the occurrence of Tomcat JVM GCs have a strong

positive correlation with the high peaks of load.

Figure 10(b) shows the correlation between the Tomcat load

and the system response time over the same 12-second time

period as in Figure 10(a). This figure shows that these two

metrics positively correlate with each other, which suggests

that the short-term congestions (high load) in Tomcat cause the

high peaks of system response time. Figure 10(a) and 10(b)

together show that frequent JVM GCs in Tomcat causes

frequent short-term congestions in Tomcat, which in turn cause

the significant variations on system response time.

5Java GC running ratio means the percentage of time spent on Java GC
in each monitoring time interval. JVM provides a logging function which
records the starting and ending timestamp of every GC activity.

1113737

(a) Tomcat tier at WL 14,000 (JDK 1.6 in Tocmat)

0 30 60 90 120 150 180
0

1

2

3

4

5

6

7

Timeline [s]

R
e

s
p

o
n

s
e

 T
im

e
 [

s
]

(b) System response time averaged in every 50ms
(JDK 1.6 in Tocmat)

0 30 60 90 120 150 180
0

1

2

3

4

5

6

7

Timeline [s]

R
e

s
p

o
n

s
e

 T
im

e
 [

s
]

(c) System response time averaged in every 50ms
(JDK 1.5 in Tocmat)

Fig. 11: Resolving transient bottlenecks by upgrading Tomcat JDK version from 1.5 to 1.6. Figure 11(a) shows that the frequent transient
bottlenecks in Tomcat as shown in Figure 9(b) are resolved. Thus, comparing Figure 11(b) and 11(c), the system response time presents
much less fluctuations.

B. Solution: upgrade JDK version in Tomcat

Once we detect the frequent transient bottlenecks in Tomcat,

we can resolve such bottlenecks by simply scaling-out/up the

Tomcat tier since low utilization of Tomcat can reduce the

negative impact of JVM GC [22]. Here we illustrate a more

economical way to solve the problem by just upgrading the

Tomcat JDK version from 1.5 to 1.6, which has more efficient

garbage collectors6. The experimental configurations are kept

the same as before except the Tomcat JDK version.

Figure 11(a) shows the fine-grained load/throughput corre-

lation analysis of Tomcat at workload 14,000 after upgrading

the Tomcat JDK version. This figure shows that Tomcat no

longer presents frequent transient bottlenecks compared to

Figure 9(b). Specifically, the POIs in Figure 9(b) do not appear

in Figure 11(a), which means the Tomcat JVM does not have

long “freezing” periods after we upgrade the Tomcat JDK.

Figure 11(b) and 11(c) show the average system response

time measured at every 50ms time intervals in the 3-minute

experimental period before and after we upgrade Tomcat JDK

version. These two figures show that the large response time

fluctuations disappear after the JDK version upgrade, which

shows that the system performance becomes more stable after

we resolve the frequent transient bottlenecks in Tomcat.

C. Transient bottlenecks caused by Intel SpeedStep

The second case is the use of Intel SpeedStep technology

which unintentionally causes transient bottlenecks, leading to

the wide-range response time variations as we showed in

Section II-B. Intel SpeedStep allows the clock speed of a

CPU to be dynamically adjusted (to different P-states) based

on the real-time computing demands on a server in order

to achieve a good balance between power usage and server

performance; however, we found that the Dell’s BIOS-level

SpeedStep control algorithm cannot adjust the CPU clock

speed quickly enough to match the real-time workload once

6JDK 1.6 uses garbage collection algorithms which support both parallel
and concurrent garbage collection while JDK 1.5 by default uses a serial,
stop-the-world collector.

P-state P0 P1 P4 P5 P8

CPU clock [MHz] 2261 2128 1729 1596 1197

TABLE II: Partial P-states supported by the Xeon CPU of our
machines

the workload becomes bursty; the mismatch between CPU

clock speed and real-time workload causes frequent transient

bottlenecks that lead to the long-tail response time distribution

as shown in Figure 2(c).

We enable the Intel SpeedStep support for MySQL in the

BIOS settings to illustrate the mismatch problem. Table II

shows a part of the P-states supported by our experimental

machine CPU. This table shows that the CPU clock speed

of the lowest P-state (P8) is nearly half of the highest P-

state (P0). The experiments described here still keep the same

1L/2S/1L/2S configuration as in the previous sections with

the only difference being the change in BIOS settings. We

note that in all of the previous experiments, we disable the

SpeedStep support in the BIOS settings of all our machines

to simplify our analyses.

Figure 12 shows the fine-grained load/throughput analy-

sis for MySQL at WL 8,000 and 10,000. As illustrated in

Figure 2(c), the system already presents wide-range response

time variations at WL 8,000. Such variations are caused

by the frequent transient bottlenecks in MySQL as shown

in Figure 12(a). The interesting observation in Figure 12(a)

is that though MySQL presents one main throughput trend

(about 3700 req/s) when the load exceeds N⋆, there are many

points above the main throughput trend, which contradicts our

expectation of the shape of the main sequence curve. The

comparison between Figure 12(a) and 12(b) reveals the cause.

Since workload 8000 is relatively low, MySQL prefers to stay

in P8-state in order to save power; however, MySQL is not

responsive enough to scale-up to higher P-states to handle peak

request rates from the upstream tiers in the system and thus

presents short-term congestions as shown in Figure 12(a). As

workload increases to 10,000, Figure 12(b) shows that MySQL

throughput presents three clear trends (about 3700 req/s, 5000

1123838

(a) MySQL tier at WL 8,000

(b) MySQL tier at WL 10,000

(c) MySQL tier at WL 10,000

Fig. 12: Fine-grained load/throughput(50ms) analysis for MySQL when CPU SpeedStep is enabled in MySQL. Figure 12(b) is derived from
Figure 12(c), with 3-minute experimental data. Figure 12(a) shows one throughput trend when MySQL is temporarily bottlenecked, which
indicates that MySQL chooses the lowest CPU clock speed when the workload is low. Figure 12(b) shows three throughput trends, which
indicates that MySQL alternates among three CPU frequencies supported by Intel CPU SpeedStep as workload increases to 10,000.

(a) MySQL at WL 8,000

(b) MySQL at WL 10,000

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

M
y
S

Q
L
 l
o
a
d
 [

#
]

Timeline [s]

0 1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

M
y
S

Q
L
 t

h
ro

u
g
h
p
u
t

[r
e
q
/s

]

MySQL load MySQL throughput

(c) MySQL at WL 10,000

Fig. 13: Fine-grained load/throughput(50ms) analysis for MySQL when CPU SpeedStep is disabled in MySQL. Since MySQL always chooses
to stay in the maximum CPU clock speed, the frequency of transient bottlenecks is significantly reduced by comparing Figure 13(a) and 13(b)
with Figure 12(a) and 12(b).

req/s, and 7000 req/s) when the corresponding load exceeds

N⋆, which indicates that MySQL CPU alternates among three

different P-states. For instance, the points labeled 5, 6, 7 show

three time intervals when MySQL is temporarily congested but

produces different throughputs. Point 5 indicates that MySQL

stays in the lowest P8-state, point 6 indicates that MySQL

stays in either P4- or P5-state, and point 7 indicates that

MySQL stays in P0-state.

To illustrate when the mismatch of CPU clock speed and

the real-time load on MySQL happens, Figure 12(c) shows the

fine-grained MySQL load and throughput in a 10s experimen-

tal period at WL 10,000. The points labeled 5, 6, 7 correspond

to the highlighted points in Figure 12(b), and show that in

these three time intervals MySQL is temporarily congested

but generates different throughputs. This figure illustrates the

time lag of MySQL scaling-up to higher P-states, which causes

frequent transient bottlenecks in MySQL.

D. Solution: Disable Intel SpeedStep in BIOS

Once detecting the frequent transient bottlenecks caused by

the mismatch between CPU clock speed and bursty workload,

we can resolve such bottlenecks by disabling the SpeedStep

support in MySQL and let MySQL always stay in P0-state.

Figure 13 shows the fine-grained load/throughput analysis

for MySQL at WL 8,000 and 10,000 after we disable the

SpeedStep support in MySQL. Figure 13(a), 13(b) and 13(c)

match back to Figure 12(a), 12(b) and 12(c), respectively.

Since MySQL CPU always stays in P0-state, both Figure 13(a)

and 13(b) show that MySQL only presents one throughput

trend when load exceeds N⋆. More importantly, Figure 13(a)

and 13(b) show that MySQL presents much less transient

bottlenecks compared to the case shown in Figure 12(a)

and 12(b) at WL 8,000 and 10,000. Figure 13(c) also shows

that MySQL load is below N⋆ most of the time at WL

10,000, which suggests more stable performance of the system

compared to Figure 12(c).

Further reduction of the transient bottlenecks in MySQL

needs to either scale-out the MySQL tier (add more nodes

to the MySQL tier) or scale-up MySQL (switch to a more

powerful CPU).

V. RELATED WORK

Techniques based on end-to-end request-flow tracing have

been proposed in previous research for performance anomaly

diagnosis. Magpie [7] and Pinpoint [8] focus on identifying

anomalous requests that either have long response times or

1133939

mutations of request-flow path by finding rare paths that differ

greatly from others. Pip [16] identifies anomalous requests by

comparing request-flows from actual behaviors and developer-

expected behaviors. Spectroscope [17] proposes a similar mon-

itoring infrastructure as Pip, but instead of comparing request-

flows between actual behaviors and developer-expected behav-

iors, it compares request-flows between “problem” periods and

“non-problem” periods. Though detecting anomalous requests

gives very useful hints to diagnose performance problem, they

may fail to diagnose the root cause of anomalous requests in

an n-tier system. A “anomalous” request may be slow not

because of its own behavior, but because other requests were

queued ahead of it [18], [22].

Analytical models have been proposed for bottleneck de-

tection and performance prediction of n-tier systems. Ur-

gaonkar [21] present a flexible queueing model for an n-

tier application that determines how much resources to al-

locate to each tier of the application for the target system

response time; however, this model is based on Mean Value

Analysis (MVA), which has difficulties dealing with wide-

range response time variations caused by bursty workloads

and transient bottlenecks in the system. Mi et al. [14] propose

a more sophisticated analytical model that predicts system

performance based on bursty workloads. One challenge of

this work is to precisely map the bursty characteristics of a

workload to the queueing model with multiple service rates

for each queue in the system. As shown in this paper, without

fine-grained monitoring (sub-second level) granularity, the

bursty characteristics of a workload and the potential transient

bottlenecks as a result can be largely masked.

Software mis-configuration and failure detection of dis-

tributed system have been studied in [4], [5], [15]. Attariyan

et al. [4], [5] present a tool that locates the root cause of

configuration errors by applying dynamic information flow

analysis within a process (mainly) during runtime. Oliveira et

al. [15] propose a mistake-aware management framework for

protecting n-tier systems against operator mistakes by using

the previous correct operations. All these works differ from

our work in that they focus on faulty/anomalous behavior of

system components rather than the performance problem.

VI. CONCLUSION

We observed that the performance of an n-tier system may

degrade significantly due to transient bottlenecks in component

servers in the system. We proposed a novel bottleneck detec-

tion method to detect these transient bottlenecks (Section III),

where the effectiveness of our approach is validated through

the two case studies in Section IV. We found that transient

bottlenecks can be caused by various factors at different levels

of an n-tier application; for instance, JVM GC at the software

level (Section IV-A) and Intel SpeedStep at the architec-

ture level (Section IV-C). Solving these transient bottlenecks

leads to significant performance improvements (Section IV-B

and IV-D). More generally, our work is an important contribu-

tion towards scaling complex n-tier applications under elastic

workloads in cloud environments.

VII. ACKNOWLEDGEMENT

This research has been partially funded by National Sci-

ence Foundation by IUCRC/FRP (1127904) , CISE/CNS

(1138666), RAPID (1138666), CISE/CRI (0855180), NetSE

(0905493) programs, and gifts, grants, or contracts from

DARPA/I2O, Singapore Government, Fujitsu Labs, Wipro

Applied Research, and Georgia Tech Foundation through the

John P. Imlay, Jr. Chair endowment. Any opinions, findings,

and conclusions or recommendations expressed in this material

are those of the author(s) and do not necessarily reflect the

views of the National Science Foundation or other funding

agencies and companies mentioned above.

REFERENCES

[1] RUBBoS: Bulletin board benchmark. ”http://jmob.ow2.org/rubbos.html”,
2004.

[2] Fujitsu SysViz: Visualization in the Design and Operation of Efficient
Data Centers. ”http://globalsp.ts.fujitsu.com/dmsp/Publications/
public/E4 Schnelling Visualization%20in%20the%20Design%20and%
20Operation%20of%20Efficient%20Data%20Centers.pdf”, 2010.

[3] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and A. Muthi-
tacharoen. Performance debugging for distributed systems of black
boxes. In SOSP ’03.

[4] M. Attariyan, M. Chow, and J. Flinn. X-ray: Automating root-cause
diagnosis of performance anomalies in production software. In OSDI’12.

[5] M. Attariyan and J. Flinn. Automating configuration troubleshooting
with dynamic information flow analysis. In OSDI’10.

[6] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz, and
M. Zhang. Towards highly reliable enterprise network services via
inference of multi-level dependencies. In SIGCOMM’07.

[7] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using magpie for
request extraction and workload modelling. In OSDI’04.

[8] M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer. Pinpoint:
problem determination in large, dynamic internet services. In DSN’02.

[9] P. J. Denning and J. P. Buzen. The operational analysis of queueing
network models. ACM Comput. Surv., 1978.

[10] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica. X-trace: a
pervasive network tracing framework. In NSDI’07.

[11] E. C. Julie, J. Marguerite, and W. Zwaenepoel. C-JDBC: Flexible

Database Clustering Middleware. 2004.
[12] R. Kohavi and R. Longbotham. Online experiments: Lessons learned.

IEEE Computer’07.
[13] S. Malkowski, M. Hedwig, J. Parekh, and C. Pu. Bottleneck detection

using statistical intervention analysis. In DSOM’07.
[14] N. Mi, G. Casale, L. Cherkasova, and E. Smirni. Burstiness in multi-tier

applications: symptoms, causes, and new models. In Middleware ’08.
[15] F. Oliveira, A. Tjang, R. Bianchini, R. P. Martin, and T. D. Nguyen.

Barricade: defending systems against operator mistakes. EuroSys ’10.
[16] P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul, M. A. Shah, and

A. Vahdat. Pip: Detecting the unexpected in distributed systems. In
NSDI’06.

[17] R. Sambasivan, A. Zheng, M. De Rosa, E. Krevat, S. Whitman,
M. Stroucken, W. Wang, L. Xu, and G. Ganger. Diagnosing performance
changes by comparing request flows. In NSDI’10.

[18] B. Sigelman, L. Barroso, M. Burrows, P. Stephenson, M. Plakal,
D. Beaver, S. Jaspan, and C. Shanbhag. Dapper, a large-scale distributed
systems tracing infrastructure. In Google Technical report’10.

[19] B. Snyder. Server virtualization has stalled, despite the hype. InfoWorld,
2010.

[20] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi. An
analytical model for multi-tier internet services and its applications. In
SIGMETRICS’05.

[21] B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal. Dynamic provi-
sioning of multi-tier internet applications. In ICAC’05.

[22] Q. Wang, Y. Kanemasa, M. Kawaba, and C. Pu. When average is not
average: Large response time fluctuations in n-tier systems. In ICAC’12.

[23] Q. Wang, S. Malkowski, Y. Kanemasa, D. Jayasinghe, P. Xiong,
M. Kawaba, L. Harada, and C. Pu. The impact of soft resource allocation
on n-tier application scalability. In IPDPS’11.

1144040

