IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 6 April 2023, accepted 26 April 2023, date of publication 1 May 2023, date of current version 16 May 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3272034

== RESEARCH ARTICLE

Detecting Unknown Hardware Trojans in Register
Transfer Level Leveraging Verilog Conditional
Branching Features

SARWONO SUTIKNO“'!, (Member, IEEE), SEPTAFIANSYAH DWI PUTRA2,
FAJAR WUITRISNANTO'-3, AND MUHAMAD ERZA AMINANTO*, (Member, IEEE)

ISchool of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, West Java 40132, Indonesia
2Lampung State Polytechnic, Bandar Lampung, Lampung 35142, Indonesia

3National Cyber and Crypto Agency, Depok, West Java 16518, Indonesia

4Cyber Security Program, Monash University Indonesia, Bumi Serpong Damai 12150, Indonesia

Corresponding author: Sarwono Sutikno (ssarwono@stei.itb.ac.id)

This work was supported by the Research, Community Service, and Innovation Program, Bandung Institute of Technology (P3MI-ITB).

ABSTRACT Hardware Trojans have concealed modifications to integrated circuits (ICs) that can alter their
functions, performance, or security properties. Existing Trojan detection methods are designed primarily to
detect Trojans at the gate-level IC abstraction and lower levels, and only a few studies have investigated
Trojan detection at the register transfer level (RTL). This study presents a novel machine learning-based
approach for RTL-level Trojan detection, which leverages conditional statements from Verilog/VHDL code
as ML features. Our proposed method has several significant novelties. Firstly, it can detect unknown Trojan
instances since we incorporate general features for all Verilog circuits. Second, our approach can detect
nontrigger-based Trojans, which are a type of Trojan that is particularly challenging to detect and has not
been addressed by many existing techniques. Third, we incorporate feature engineering techniques, including
Mutual Information and Person-Coefficient Correlation, to select the best features. We also implement
feature scaling with standardization before balancing the data set. Our experimental results demonstrate
that our approach achieves an average accuracy of 95.65% in the detection of Trojans, which is higher
than previous detection techniques. The method is tested in the Trust-Hub Trojan benchmark RTL design,
which demonstrates its effectiveness in detecting a wider range of Trojans at the RTL level. In summary, our
novel approach shows great promise for enhancing hardware security by detecting a wider range of Trojans,
including previously unseen Trojans, and improving detectionA accuracy.

INDEX TERMS Hardware trojan, RTL, machine learning, detection, Verilog, VHDL.

I. INTRODUCTION

It is a common practice in the semiconductor industry to use
third-party intellectual property (3PIP) to meet the specifi-
cation requirements in IC design. This practice is due to the
high production demands and design complexity that must be
met in a limited time. The integration of various intellectual
properties (IP) makes various parties involved in most of the
processes, both during design, fabrication, and assembly [1].
They have the opportunity to make additions or changes to the

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Liu.

design logic for malicious purposes, which are also known
as hardware trojans. The resulting impact varies from denial
of service (DoS), decreased performance, and changes in
function, to leakage of confidential information [2].

The numerous uses of IC in various fields such as the
automated transportation industry, communication, health,
and military make the threat of hardware trojans important
to overcome [3]. As an example in the military sector, the
attack by hardware trojans on weapon systems can escalate
from small to systemic impacts. Trojans can cause a failure
to a single subsystem of a weapon system or a systemic failure
to a whole system, especially in Network Centric Operations

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 11, 2023

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 46073

https://orcid.org/0000-0002-7755-7240
https://orcid.org/0000-0001-8669-1217

IEEE Access

S. Sutikno et al.: Detecting Unknown Hardware Trojans in RTL Leveraging Verilog Conditional Branching Features

(NCO) [4]. Several strategies were eventually developed to
overcome trojans in the form of hardware trojan detection,
design for security (DfS), bus security, and secure architec-
ture [5]. Trojan detection is a widely developed technique in
research [6], [7]. This trojan detection technique is included
in the trojan mitigation at the pre-silicon stage.

Hardware trojan detection techniques are further devel-
oped by involving ML in the process [8]. The main rea-
son for this participation is none other than the increase
in computing capabilities to support the application of ML
in various fields [9]. The beginning of ML integration into
the trojan detection technique was carried out in 2015 [10].
Detection strategies using ML include reverse engineering,
circuit feature analysis, and side-channel features [5]. Circuit
feature analysis is a superior solution, as reverse engineering
and side channel require golden IC for comparison [11].

The implementation of circuit feature analysis techniques
to design the ML detector trojan model is carried out in
various ways. ML can be used as a trojan classifier based
on data from switching activities and netlist features [12].
Less-toggled signal (LTS) measurement data in gate-level
abstraction can also be used as a basis for ML design [13].
Several studies have adopted ML for detection by exploiting
gate-level abstraction functional and structural features [14],
[15]. Some studies can even use circuit testability numbers
to produce high-performance models for gate-level detec-
tion [16]. Although many implementations of ML have been
carried out, the implementation for detection still revolves
around gate-level abstractions and other low-level abstrac-
tions. Meanwhile, the RTL abstraction, commonly used in the
design stage, has the same vulnerability to hardware trojans.

Although many hardware trojan detection techniques have
been proposed in RTL, most methods do not involve ML in
the research mechanism. For example, registration detection
based on the no-data corruption feature was developed with-
out ML [17]. Another technique based on control flow sub-
graph matching has been carried out successfully, although
it relies on a library containing trojan variation [18]. The
technique was also developed using a probabilistic neural net-
work, even with the disadvantage of using high computational
resources [19]. Another proposal that uses the abstract syntax
tree (AST) has been successfully developed with good perfor-
mance, but for now it is applied in a small core coverage area
and is limited to the XGBoost single ML model [20]. There
is also a framework (nonmodel) that has been developed to
determine the location of the RTL logic that has the potential
to have a Trojan function [21]. Of these many studies, only
Choo et al’s [22] research integrated detection techniques
with ML, which has a reasonably broad IP core coverage.
Choo et al.’s study [22] uses a variety of ML models that
use the features of the RTL code for the execution probability
of conditional statements. Although it has achieved an excel-
lent average accuracy of 91.91%, this technique has several
shortcomings that can be improved, such as overlap of fea-
ture characteristics, difficulty in extracting features, accuracy,

46074

detection coverage, and limitations of the ML algorithms
involved.

Taking into account the shortcomings related to ML inte-
gration in hardware trojan detection in RTL, it is necessary
to overcome the deficiencies found in previous studies. This
manuscript proposes an improvement over Choo et al.’s [22]
which is ability to detect non-trigger bases trojans for obtain-
ing a trojan detection model with high average accuracy per-
formance, wide IP core coverage, and a detection mechanism
with efficient and practical features. In addition, the involve-
ment of various ML models that require efficient comput-
ing resources is also considered in the model’s design. This
study also addresses a significant limitation of the previous
study [23], namely the inability to detect zero-day trojans.
In other words, the proposed method can detect unknown
trojans that do not exist in the training data set. In general,
the manuscript contributions are threefold as follows.

o The capability to detect new (unknown) trojans that
are not available in the training dataset. We incorporate
parameter features that are general for all Verilog circuit
codes, not only particular codes.

o The proposed model could detect a non-trigger-based
trojan, which cannot be detected by Choo et al. [22].
Therefore, this study covers broader sets of tro-
jans, including the trigger-based and non-trigger-based
trojans.

« A novel extracted feature in which we exploit condi-
tional parameters in bit units of code branches. Choo
et al. [22] used the execution probability of code
branches instead. We also leverage features engineering
using Mutual Information and Person Coefficient Corre-
lation to define the best features. This technique leads to
higher accuracy in the detection capability of the trained
model that reaches 95.65%.

The remainder of this paper begins with an explanation of
definitions and the relevant works in Section II. Section III
discusses the research methodology for designing ML models
based on Trust-Hub benchmark data. The main discussion is
described in Section IV, which elaborates performance eval-
uation and comparison with previous research. The article
is concluded with Section V, consisting of conclusions and
future research opportunities.

Il. DEFINITIONS AND RELATED WORKS

Research related to hardware trojans began in 2007. Various
suggestions have been made, starting with creating a trojan
design based on multiple triggers and payloads. On the other
hand, design for trust (DfT), split manufacturing, and trojan
detection are formulated as trojan handling methods [7]. The
research trend then continues by studying the analysis of tro-
jan attacks and new mitigation techniques, such as the vulner-
ability analysis of trojan injection in the circuit [21], [24]. The
trojan benchmark became a hot topic as an objective com-
parison solution of all existing mitigation techniques [25].

VOLUME 11, 2023

S. Sutikno et al.: Detecting Unknown Hardware Trojans in RTL Leveraging Verilog Conditional Branching Features

IEEE Access

Furthermore, integrating ML into trojan detection techniques
has become the subject of much research [5].

A. HARDWARE TROJAN DETECTION

The design, fabrication and distribution complexity of elec-
tronic devices has forced the collaboration of IC design and
the manufacturing industry to create the desired core chip.
As aresult, more and more untrusted 3PIPs are involved in the
supply chain. Increases the risk of hardware trojan injection.

These hardware Trojans can be added at various levels
of IC design abstraction, both at RTL abstraction, firm IP
(gate-level), and complex IP (physical). The chances for pre-
silicon (before hard IP) attacks appear to be fairly balanced
between the various abstractions. Therefore, the disparity of
trojan detection solutions between fewer RTL abstractions
and mature gate levels must be overcome by developing new
solutions for RTL trojan detection [1].

A trojan benchmark is used as the source of the dataset to
build an RTL trojan detection model. The benchmark used is
Trust-Hub, which is designed according to hardware trojan
taxonomy to make it easier for researchers to focus on their
individual research needs [25]. The taxonomy shows the dif-
ferent benchmarks available on the Trust-Hub platform [1].
In this paper, the focus of the dataset is taken from the
benchmark based on the RTL abstraction taxonomy.

Research on RTL trojan detection is started later than
work on the gate level. Therefore, some studies have not yet
integrated cross-scientific techniques such as ML in detec-
tion. This practice is common in gate-level netlists. However,
some of these studies have used the Trust-Hub benchmark
based on the RTL taxonomy as the primary research data.
Several studies that have not yet implemented ML but use
the Trust-Hub benchmark are the no-data corruption feature-
based technique by Rajendran et al. [17], the control flow
subgraph matching technique by Piccolboni et al. [18], and
the RTL vulnerability framework by Islam et al. [21].

The method of Rajendran et al. [17] intends to comple-
ment the previous detection technique. Modifications to the
Trust-Hub design were made to have specific registers as con-
ditions for the attack. Furthermore, a method is designed that
successfully detects trojans in the registered design made on
the AES core, except for AES-T1200. Although successful,
this technique is inefficient because it is based on automatic
test pattern generation (ATPG) and bounded model checking
(BMC), which are NP-complete problems. Moreover, the
injection and the benchmark methods have been modified,
and thus they cannot be objectively compared with other
Trust-Hub benchmark users.

The method of Piccolboni et al. [18] provides automated
verification techniques to detect trojans in RTL designs. The
characteristics of the trojan are taken from the control flow.
The control flow uses a graph on the trigger and payload
of the trojan. Then, these characteristics are collected in the
library as a basis for detection reference. The study used
the Trust-Hub benchmark, which claims that the technique
could detect most trojans. However, this method’s high false

VOLUME 11, 2023

positive (FP) value and dependence on library updates are
significant drawbacks.

Islam et al. [21] empirically and analytically analyze the
transition activity in crypto-based cores, digital signal pro-
cessing (DSP) and macro-blocks (adders and multipliers).
The dual-bit-type (DBT) model is used to measure the sparse
activity of the signal based on the input. This technique is
claimed to determine the statistical relationship between the
input and the circuit’s sparse conditions and to provide
the position of the sparse conditions. The rare condition in
the form of a trojan trigger could be detected in a short time
without requiring simulation. Therefore, it is concluded that
trojans with no-trigger characteristics are excluded from the
context of this study.

B. MACHINE LEARNING FOR TROJAN DETECTION

An ML-based technique for hardware trojan detection in RTL
abstraction was developed to determine the limitations of the
previous technique. Some proposed techniques are developed
from scratch, while others are developed by adding ML
to an existing approach. Both supervised and unsupervised
ML algorithms have been involved in supporting hardware
trojan detection techniques. Supervised learning uses label-
ing in the training data set to conduct training in the built
model. Meanwhile, unsupervised learning tries to find the
relationship between data by looking at the characteristics of
each data without requiring a label from the training dataset.
Some supervised ML algorithms include the support vector
machine (SVM), Naive Bayes, Logistic Regression, Decision
Tree (DT) and K-Nearest Neighbors (K-NN). Meanwhile,
the unsupervised algorithms are K-means Clustering and
Density-Based Spatial Clustering (DBSCAN).

Most ML-based RTL-level trojan detection research uses
supervised learning algorithms in its approach. In 2017
Demorozi et al. [19] improved the Piccolboni et al. detec-
tion technique, previously involving the probabilistic neu-
ral network (PNN) model of ML. Modifications were also
made regarding the detection model approach through graph
isomorphism-based verification of the RTL trojan charac-
teristics. The detection results show the ability to recognize
trojans on several Trust-Hub benchmarks such as AES-
T400, AES-T600, AES-T700, RS232-T200, RS232-T600,
RS232-T901 and all Basic RSA trojans. The coverage of
the benchmark detection is less than the reference technique
of Piccolboni et al. [18]. However, the characteristics of the
neural network that are easily adapted to new datasets with
high computational resource costs make this model superior.

Han et al. [20] in 2019, also designed a hardware trojan
detection model in RTL abstraction. This detection model uti-
lizes features extracted from the abstract syntax tree (AST).
The evaluation results show that the model can simultane-
ously detect AES core RTL trojans as many as 21 bench-
marks. The training uses a Gradient Boosting algorithm with
the XGBoost library. Conceptually, this feature-based AST
model can be further developed for the characteristics of the
related training data set to allow the detection of a larger

46075

IEEE Access

S. Sutikno et al.: Detecting Unknown Hardware Trojans in RTL Leveraging Verilog Conditional Branching Features

data set. However, this model has limitations on one type of
gradient-boosting algorithm for ML and has not explored the
possibility of other types of ML algorithms.

Choo et al. [22] in 2020 developed a trojan detection
model for RTL abstraction based on the features of the Ver-
ilog/VHDL code. These features are obtained from condi-
tional statements such as if, elsif, and case, which are then
defined as branching features of the code. Various features
are proposed, namely Branching Probability P, Outer level
Branching Probability P, Effective Branching Probabil-
ity P, and Relative Branching Probability RP. The extraction
of each feature is done by calculating the probability that
a conditional statement will be executed or not when the
implementation or synthesis of the RTL code is implemented.
After utilizing several algorithms for the learning process,
namely Logistic Regression, Decision Tree, k-nearest neigh-
bor, and SVM, satisfactory results were obtained for the
detection capabilities of the Trust-Hub core AES and wb-
conmax benchmarks. The evaluation metric shows a valid
positive rate (TPR) of 93% and an accuracy of 91.91%.
However, several model components have the potential to
be improved to obtain better evaluation metrics, such as the
explanation in the Introduction.

ill. METHODOLOGY

In this study, we proposed a trojan detection that contains
four modules as shown in Figure 1. We prepare the data and
extract the features in preprocessing module that discussed in
sub-section A and B. While the rest of modules are explained
in the sub-section C and D. We use the RTL trojan hardware
sample from the Trust-Hub benchmark. Trust-Hub bench-
mark sourced from https://www.trust-hub.org/ taxonomy was
chosen because researchers trusted it to train trojan classifica-
tion models. RTL trojan samples used include core AES, wb-
conmax, RS232, and BasicRSA. Intellectual property (IP) in
the form of these cores was chosen so that the built solution
can detect various characteristics of trojans from different sets
of cores whose scope is broader than the reference model
proposed by Choo et al. [22].

A. DATA PREPARATION

The data preparation stage includes four things, namely
data integration, data cleaning, data transformation, and data
reduction. Data integration includes feature design, feature
extraction per sample, and merging samples from these vari-
ous core IP benchmarks into a single dataset. Data cleaning is
intended to check the existence of data with empty values or
outliers. The data set then undergoes a transformation process
to change the scale of features with an overvalued range of
values. The next stage is the reduction or modification carried
out in the form of balancing the population of the training data
class. The new feature design phase (feature engineering)
is discussed in detail in the Discussion section. Meanwhile,
the feature extraction process from the RTL description was
carried out with a procedure similar to Choo et al.’s P, Pgyer,
P, RP, and Cg), feature extraction. For example, the process

46076

of extracting one of the features, namely P or Branching
Opportunity, is shown in Figure 2.

The fork probability P is defined as the probability of exe-
cuting a Verilog/VHDL code branch. According to Figure 2,
there is one block of code (lines 63 to 69) marked with each
always (or assign) statement that contains two branches of
code in the form of an if-else conditional statement. In branch
number 1, line 65, the if statement is known to require a signal
condition of rst = 1. Meanwhile, on the 67th line, number 2,
there is an else if statement which requires the condition of
register Tjry;, = 1. The first branch can be executed when the
1-bit rst signal is active. Then the probability of branching
number 1 is P; | = % While branch number 2, apart from
having a 1-bit 7j7,;, signal condition, is also affected by the
1-bit rst condition in the first branch. So, the probability
of executing branch number 2 follows the signal conditions
rst = 0 and Tjp; = 1, resulting in P15 = % X % = le
Although there are only two code branches explicitly, there is
one conditional statement that has not been involved, namely
with signal conditions rst = 0 & Tjzie = 0 which results in
Pi3 = 4—1‘. Thus, the total probability of branching in the block
in Figure 2is Py = P11+ Plo+Pi3 =5+ 3+ 3 = L
The branching probability is therefore calculated according
to Equation 1, with |COND| being the number of possible
values that can activate the if-else statement and N,,,4 being
the number of bits required in the conditional statement.

_ [COND|
B 2N cond

ey

In this paper, the proposed ML models for trojan detection
are Logistic Regression, Decision Tree, SVM, KNN, Naive
Bayes, Random Forest, and Gradient Boosting. The use of
supervised learning algorithms for RTL trojan detection cho-
sen in this paper results in the need to label each feature set
for each sample. Labels are assigned to each obtained sample
based on the position of the if, else, elif, or assign conditional
statements in the Verilog/VHDL code. The function of the
conditional statement is called the code branch. Thus, each
code branch has two possible labels: trojan and non-trojan.

Labeling of the samples is done as follows. When an if,
else, elif, or assign statement is found, it is identified whether
the statement activates the wire/variable Tjz;, = 1 or not.
When an if, else, elsif, or assign statement is found and the
branching of the trojan code. If true, then the branching code
is labeled trojan. This branch of the code is also classified as
a trojan.

Each feature and label obtained from the static code anal-
ysis are then fed into the ML model. The feature in question
is the result of feature engineering, whose mechanism is
explained further in the Modeling Chapter. The entire sample
then underwent a data set diversification process, which was
calculated based on the total number of data sets before
being used in the ML process. The diversification process in
question is that the entire sample is divided into three data
sets with the amount of allocation according to best practice,
namely training, validation, and test sets.

VOLUME 11, 2023

S. Sutikno et al.: Detecting Unknown Hardware Trojans in RTL Leveraging Verilog Conditional Branching Features

IEEE Access

START
Feature Creation from Benchmark
AES, WB-CONMAX, RS-232

P

Feature Engineering

LEGENDS

C) Start/End
C) Process () inpurOutput

ML Process

Decision

Sub-Process

) Loop Process —p Connector

| Feature Analysis | | Feature Scaling |

Validation Data |__>| Label Validation Data |

Independent
Statistic: Plot: Scaled Scaled Testing Data
mean, std. diagram, Training Validation BasicRSA
deviation graphic 815 total 204 total Tunmn
g and Validation
\ Model Trai nmg 1. Grid Search Param. }
\J 1 2Lol\gl RE‘%’ ession 2. Cross Validation 10 Fold A
: alve Bayes 3. Eval. Acc, AUC, TNR, TPR i
| Feature Selection I I Imbalanced Data | 3.5vm | Final
= 4. KNN Model
earson 5. Decision Tree
Mutual o i
Information Correlation SMOTE Wellghl Normal 6. Random Forest x
Coeficient —CEES 7. Gradient Boost Trained Model =
z
\J ‘J 7 models ':;
. Q
| Split Dataset | W h
Balanced Scaled Training Data EV
Training Validation Training Training
815 total 204 total 1332 total 815 total Branch Trojan
I Status/Label
END
PREPROCESSING LEARNING EVALUATION CLASSIFY

FIGURE 1. The proposed method overview with four modules: preprocessing, learning, evaluation and classify.

module TSC(
input clk,
input rst

)i

reg [127:0] DynamicPower:
61 reg ’:‘j_’[‘rit_z,'
always 8(rst, clk}
begin
if (rst == 1)
Dynam_l Power <= 128'haaaaasaa_asasaaaz_aaasaaaa_aaaaaaaa;
else if (Tj_Trig == 1)

DynamicPower <= {DynamicPower [0],DynamicPower[127:1]};

FIGURE 2. Sample benchmark AES-T500.

The core AES, wb-conmax, and RS232 benchmark
datasets were used in this study for training and validation
sets. The training set is used to train the model built by
entering a sample in the form of branching code. The three
IP cores are then divided proportionally for the training set of
80% of the code branching population and the remaining 20%
for the validation set. The validation set is used to validate
the model hypotheses used in the training set to see the
performance of the new data and the basis for improving the
model’s performance. In total, 1019 code branching samples
were extracted from the AES, wb-conmax, and RS232 bench-
mark cores for the training and validation sets. The sample,
if grouped according to the number of core benchmarks
involved, reached 33 benchmarks with details of 21 AES

VOLUME 11, 2023

benchmarks, two wb-conmax benchmarks, and 10 RS232
benchmarks. In addition to the training and validation sets,
the BasicRSA benchmark dataset is also used as a test set.
The test set is used to objectively test the performance of
the detection model using an independent dataset that is not
involved in the training or validation set. In this basic RSA
data set, there are four benchmarks that, when extracted, yield
184 code branching samples.

B. FEATURE ENGINEERING

The P, Poyser, Pe, RP, and Cy,, features proposed by Choo
et al. do not represent the relationship between code ramifi-
cations or between different code blocks [21]. Therefore, this
study engineered new features to overcome these problems
while maintaining the representation of code branch execu-
tion opportunities in the previous feature. In addition, the new
features are designed to have an easy extraction process as
a substitute for the relatively complicated feature extraction
of Choo et al. Some new features can be built using the
characteristics of both code branching and code blocks. The
methodology explains that a code block can have multiple
code branches. The new features are thus structured, consid-
ering the size of the conditional bit and the type of conditional
statement. Figure 3 is used to describe the feature engineering
process. In Branch Codes 1 and 2, for example, the condi-
tional bit size of each signal rst and Tjzi is 1. Meanwhile,
each branch has if and other if statements when viewed from
a different perspective. Several new code branching features

46077

IEEE Access

S. Sutikno et al.: Detecting Unknown Hardware Trojans in RTL Leveraging Verilog Conditional Branching Features

TABLE 1. New code branching proposed features.

Value at Branching

Features Code 1

Representation

The size of the condi-
tional bits for each code
branch

Branchbit Irst] =1

Total conditional bits
for all code branches in
a block

Blockbit [rst| + | Tirrigl = 2

The largest conditional
bit size among all code
branches in a block

MaxBranchbit |rst| = |Tjrrigl = 1

The smallest
conditional bit size
among all code
branches in a block

MinBranchbit |rst] = |Tjrrigl =1

Number of code 2

Blockbranch branches in a block

Blockbranch Conditional statement if

module TSC (
input clk, input rst);

reg [127:0] DynamicPower;
reg Tj Trig;

ys @(rst, clk)

if (rst == 1) | Code Branch 1
DynamicPower<=128'haaaaaaaa_aaaaaaa

a_aaaaaaaa_aaaaaaaa;

else if (Tj_Trig == 1)
DynanicPower<={DynamicPower [0] ,|
DynamicPower [127:1]};

end
endmodule
FIGURE 3. Verilog code block example.

Code Branch 2

can be formulated using these two characters, as shown in
Table 1.

The relationship between code blocks based on code
branching in Table 1 is realized by the Blockbit, MaxBranch-
bit, and MinBranchbit features. All three compare the con-
ditional bit size of each branch in one block with other code
block conditions. Branchbit, on the other hand, describes the
unique character of each code branch so that it can be used to
compare code branches. The blockbranch describes the rela-
tionship of the number of branching codes owned by a block.
Meanwhile, the statements explain the relationship between
code branches by representing their respective conditional
statements. The six proposed new features were then verified
for their association with the trojan label using Mutual Infor-
mation (MI) and Pearson’s correlation. The goal is to find out
how much information can be obtained from each feature to

46078

Mutual Information Scores

Maxbranchbit
Blockbit
Branchbit
Blockbranch
Minbranchbit

Stat

I T T T T T T
0.00 0.05 010 0.15 0.20 0.25 030

FIGURE 4. Mutual information score on proposed features.

determine the trojan label. Features that contribute little to
determining the trojan label will be removed from the list of
proposed features.

I(X; X)=HX) - HX]|Y) @

The MI value was chosen because it represents the level
of dependency between two random variables (features and
labels). The MI between two random variables X and Y is
expressed according to Equation 2 where /(X; Y) is Mutual
Information for X and Y. Meanwhile, H(X) is the entropy
value for X and H(X|Y) is the conditional entropy for X
if known Y. Entropy itself is a description of how much
information there is in a random variable. This is related
to the probability of the occurrence of the corresponding
variable. A low probability of occurrence results in the related
variable having more information than the variable with a
high probability of occurrence. For example, a variable X
that has a probability of occurrence p(X) with an information
entropy of H(X) = —log(p(X)) will have a final entropy of
—XpX)log(p(X)).

Calculating the MI value for each proposed feature pro-
duces various values with MI MaxBranchbit 0.292096,
Blockbit with MI 0.289252, Branchbit with MI 0.132256,
Blockbranch with MI 0.058178, MinBranchbit with MI
0.015447, and Statement with MI 0.007219. Figure 4 shows a
histogram of comparisons of MI scores for each characteris-
tic. Low scores are known to be owned by MinBranchbit and
Statement features.

After knowing the MI value, the next step is to calculate the
correlation between features using Pearson’s correlation. The
Pearson correlation coefficient calculates the significance of
the connection or linear relationship between two variables.
The Pearson correlation coefficient between two variables x
and y in the i-th sample of a data set is formulated according
to Equation 3. The values of x and y are the average val-
ues of each variable (feature) in all data sets involved. The
correlation coefficient has a range of values from -1 to 1.
Each describes a perfect correlation relationship negatively
and positively. The closer the zero is, the more unrelated the
two variables will be.

o X6 - D0i= D)
i = T2 X — 7P

In Figure 5, the results of the correlation calculation
between the features of the new proposal are shown to deter-
mine the relationship of each feature with each other. It can
be seen that the Blockbranch and Statement features each

3

VOLUME 11, 2023

S. Sutikno et al.: Detecting Unknown Hardware Trojans in RTL Leveraging Verilog Conditional Branching Features

IEEE Access

-10
Blockbit - 1 098
-08
Branchbit < 1 074
- 0.6
Maxbranchbit - 098 074 a b
0.4
Minbranchbit - 0.13
- 0.2
Blockbranch 0077 013
0.0

Stat

Blockbit
Branchbit
Blockbranch -

Stat -

g
4=
o
=
[¥]
c
m
E
F=
[
=

Maxbranchbit

FIGURE 5. Pearson’s correlation score on proposed features.

have a relatively low correlation when associated with other
features. Based on the MI and the correlation coefficient
results, features with a fairly low MI value and correlation,
namely Statements, are excluded from the new feature can-
didates, so that only five new code branching features are
used. The Statement feature is excluded from the feature list
because it has an MI value below the 0.01 threshold with the
highest correlation coefficient, which is below the 0.4 thresh-
old. Blockbranch, even though it has a similar correlation
value, has a fairly large MI value of 0.058178. Statement
deletion was also decided because the categorical Statement
feature has different characteristics from other features that
are continuous. Five selected features, Blockbit, MaxBranch-
bit, MinBranchbit, Branchbit, and Blockbranch, are then used
in the model design stage.

C. MODELING

When viewed in detail, this study’s type of ML algorithm is
a superset of the algorithm used by Choo et al.’s reference
paper. The addition of the Naive Bayes algorithm, which has
not been carried out by Choo et al. opens the opportunity
to obtain a choice of models with better performance. All
of these models require various stages of repeated trials to
achieve maximum performance. The model built in this paper
applies several stages of iterative modification and improve-
ment analysis, as shown in Figure 1. The early-stage model
of this modeling technique was published earlier and also
influenced this research [23].

Feature selection is performed using various feature engi-
neering operations. In the preprocessing stage, the relevant
features are engineered and extracted from the code branch-
ing sample to be used as a class-distinguishing parameter in
the classification case. This is done to obtain features well
related to the dataset label status. The data set is further
divided into training data sets and validation data sets. Data
modification processes such as standardization and oversam-
pling are carried out at this stage to ensure that the data set has
balanced characteristics for the entire sample. The learning
algorithms are selected and trained to generate models from

VOLUME 11, 2023

TABLE 2. Feature extraction results of code branching samples.

Benchmark Blb | Brb | Mxb | Mnb | Bbr | Trojan
20 20 20 20 1 0
4 4 4 4 1 1
AES-T100)) 1 1) 0
1 1 1 1 2 0
32 32 32 32 2 1
32 32 32 32 2 1
2 2 2 2 2 0
WB-T200 5 5 5 5 5 0
RN 0
8 8 8 8 2 1
8 8 8 8 2 1
RS232-T901 9 1 1 1 5 0
2 1 1 1 2 0

the training data set in the learning stage. The resulting model
is expected to be consistent with the character of the training
data. After that, various processes such as cross-validation
and evaluation of the results were carried out to determine
the final model. The final model is utilized in the classifi-
cation stage to evaluate the model with entirely new data.
At the evaluation stage, the final model produced is then
tested using a test dataset to evaluate its performance using
evaluation metrics. The entire design of the ML model used
in this research was built with Jupyter Notebook 6.4.8 on
the Anconda3 platform. Several libraries are sklearn, py-
xgboost, pandas, numpy, matplotlib, and seaborn. Further-
more, the Verilog/VHDL code feature engineering process
is performed using Vivado Xilinx 2020.2, RapidMiner, and
ModelSim PE Starter Edition for both code feature analysis
and simulation. All tools run on a local PC with § GB RAM
and AMD Ryzen 5 Processor.

D. MODEL TRAINING
Feature extraction was performed on Trust-Hub AES, wb-
conmax, and RS232 benchmark data sets as a data preparation
for model training. The three benchmarks yielded at least
1019 total samples. The feature extraction process for each
sample is carried out by analyzing static code in each Ver-
ilog file from the benchmark. The calculation results of the
Blockbit (Blb), MaxBranchbit (Mxb), MinBranchbit (Mnb),
Branchbit (Brb) and Blockbranch (Bbr) features for each
code branch sample of all benchmark modules are shown in
Table 2. Each row in Table 2 represents a sample branch of
code indicated by a specific conditional statement. Up to 80%
of the 1019 samples were randomly assigned to the training
data set. In comparison, the remaining 20% are used for the
validation of the data set. The datasets thus have a number
close to 815 and 204 code branching samples. It is known that
the 1019 samples involved do not include the results of the
Basic RSA sample extraction. This is because the branching
sample of the Basic RSA code will be used after the training
process as a test data set.

The collected feature data set goes through a transfor-
mation process, namely feature scaling. Feature scaling is

46079

IEEE Access

S. Sutikno et al.: Detecting Unknown Hardware Trojans in RTL Leveraging Verilog Conditional Branching Features

TABLE 3. Training set sample standardization results.

Sample | Blb Brb Mxb Mnb Bbr
1 -0.31 -0.22 -0.29 -0.18 2.12
2 3.43 4.82 3.58 9.86 -0.72
3 -0.25 -0.26 -0.23 -0.18 0.22
813 -0.25 -0.14 -0.23 -0.18 0.22
814 3.55 4.86 3.61 -0.18 1.16
815 3.55 -0.26 3.61 -0.18 1.16

done using the standardization technique. Standardization is
a procedure for changing the scale of features to have a value
distribution close to the normal distribution. This function-
ality makes standardization a good solution for dealing with
outliers. This standardization process is carried out using the
StandardScaler module of the Sklearn model selection library
for both training and validation datasets. An example of the
results of the standardization of the training set is shown in
Table 3. It can be seen that the value of each feature is in a
much smaller range than the initial value of the feature.

After the standardization is completed, the next step is to
overcome the problem of unbalanced training set samples.
From 815 training set samples, 149 trojan samples were
obtained compared to 666 non-trojan samples. An oversam-
pling approach is used to handle this imbalanced dataset,
with techniques such as SMOTE (Synthetic Minority Over-
sampling) and random oversampling. Each ML algorithm
involved in the training process will experience a different
approach related to the method used. This is done to optimize
the model to obtain satisfactory AUC and accuracy.

The SMOTE technique is a method for synthesizing minor-
ity classes (trojan classes) from available samples so that
class population balance can be achieved. In simple terms,
SMOTE utilizes the KNN model to determine a new sample
with neighbors taken as the sample with the highest frequency
relative to the position of the new sample.

The next training stage is carried out after all datasets
have been prepared. The construction of the trojan detection
model for each algorithm is carried out using a k-fold cross-
validation approach with k = 10. This is done so that the
performance of the training model can be validly evaluated
by minimizing the chance that the evaluation results are due
to chance. The purpose of tuning is to find the best training
parameters that produce a model with good accuracy against
the validation data set. Using the k-fold cross-validation
method, hyperparameter tuning is also applied to each model
according to the characteristics of each model. This tuning is
applied after the training process on the training dataset is car-
ried out. This hyperparameter tuning process is implemented
with the Jupyter Notebook tools utilizing the GridSearchCV
module of the Sklearn model. This process produces a model
with detailed parameters, as shown in Table 4.

E. EVALUATION
The performance evaluation of the ML model is carried out
using the hardware trojan classification accuracy metrics,

46080

TABLE 4. Model parameters of a 10-Fold cross-validation training
process.

Model

Logistic Regres-
sion

Naive Bayes

Parameter

C=0.55; solver=newton-cg

algor=MultinomialNB; alpha=0.1

C=0.55; algor=balltree; nneighbors=8;
KNN dist=Manhattan
SVM C=0.15; kernel=rbf

maxdepth=10; impurity(criterion)=gini; cc-

Decision Tree palpha=0.00175; splitter=best

criterion=gini; maxdepth=5; maxfea-
Random Forest g . P

tures=auto; nestimators=30
Gradient criterion=gini; maxdepth=3; nestima-
Boosting tor=100; learningrate=0.1

AUC (Area Under the ROC Curve), TPR/Recall, TNR, and
Precision. All evaluation metrics refer to the concept of a
confusion matrix.

The confusion matrix describes the relationship between
the predictions of the model and the condition or status of the
predicted object labels. The true positive (TP) is output when
the model correctly predicts a positive class (trojan). True
negative (TN) applies equally to the case of class negative
(non-trojan). False positive (FP), on the other hand, is a con-
dition in which the model incorrectly predicts a positive class.
Meanwhile, false negatives apply the same in the context
of negative classes. Based on this definition, the accuracy
value can be formulated according to Equation 4, which is the
ratio of the number of correctly classified samples compared
to the total number of all samples. In addition to precision,
there are also TPR (Recall/Sensitivity) and TNR (Specificity)
according to Equation 5 and Equation 6. There is also a
precision metric formulated with TP /(TP + FP) to determine
how accurately a model predicts the status of trojans.

TP + TN
ACC = 4
TP + TN + FP + FN
TP
TPR= ——)
TP + FN
TN
TNR = —— (©6)
TN + FP

IV. PERFORMANCE EVALUATION, ANALYSIS, AND
COMPARATION
A. MODEL EVALUATION
Based on the modeling results of the seven algorithms, several
performance evaluation metrics are calculated, which are
then used to determine the best model. The results of the
calculation of the evaluation metric for the validation data set
are shown in Table 5. The best model was selected. Then its
performance was tested using the same evaluation metric as
the test dataset, namely Basic RSA. This step was taken to
verify that the best ML model is not only limited to being
applied to training and validation datasets with branching
features of the AES, wb-conmax, and RS232 code.

The best model is selected based on the best accuracy,
TPR / recall, precision, and AUC performance against the

VOLUME 11, 2023

S. Sutikno et al.: Detecting Unknown Hardware Trojans in RTL Leveraging Verilog Conditional Branching Features

IEEE Access

TABLE 5. Model evaluation performance on the validation dataset.

.. Recall
Model Accuracy | AUC Precision (TPR)
Logistic Regres-
sion 93.63% 95.85% 85.71% 72.73%
Naive Bayes 91.18% 83.68% 74.20% 69.70%

78.79%

KNN 96.57% |[HEEX 100.0%
S

Decision Tree)
96.08% 97.09% 0% 75.76%

96.57% ‘ 96.91% 100.0% 78.79%

Random Forest

Gradient
Boosting

True label

0 1
Predicted label
FIGURE 6. Confusion matrix RSA basic trojan classification.

validation of the data set. The model’s performance with
light-colored columns indicates the evaluation metric with
the lowest score, while the dark color indicates the eval-
uation metric with the highest score. It can be seen that,
in general, the Naive Bayes model has the lowest perfor-
mance, and conversely, the highest performance is owned by
the Decision Tree algorithm followed by Gradient Boosting
(Ensemble). Although Gradient Boosting has almost the same
high performance, Decision Tree is more prioritized because
ensemble learning computing resources tend to be higher than
algorithms with a single tree structure such as Decision Tree.
Decision Tree was thus chosen as the best ML model for tro-
jan detection. To prove that the model can be applied to other
unrecognized code branching datasets, the model is evaluated
using the RSA Basic Benchmark sample. Although the sam-
ple RSA code branching has a different module name, it has
the same code branching characteristics as the three previous
benchmark datasets AES, wb-conmax, and RS232. The RSA-
T100 to T400 Basic datasets go through a standardization
process, as during the last training and validation datasets.
The tests were then carried out on the Decision Tree with a
maximum tree depth parameter of 10, an impurity calculation
based on Gini, and a pruning complexity of 0.00175. The
results of the metric evaluation show an accuracy value of
95.65%, Precision 100.0%, and TPR/Recall 81.81% as shown
in the confusion matrix Figure 6.

Fig. 6, in the form of a confusion matrix, shows that the
Decision Tree model can classify all Basic RSA trojans rela-
tively well. It should be emphasized that the RSA Basic test
data set is not involved in the training or validation process.

VOLUME 11, 2023

T T
Maxbranchbit Blockbit Blockbranch Branchbit Minbranchbit

FIGURE 7. Feature importance model decision tree.

This approach is different from the research of Choo et al.
where the training and validation data sets were obtained
from the ADASYN synthesis of the test datasets, namely
AES and the wb-conmax benchmark. As a result, there is the
possibility of information leakage between the training data
set and the test data set in the reference study. Therefore, it can
be concluded that with the successful detection of trojans
using the RSA Basic dataset, regardless of the training and
validation set, the Decision Tree model in the paper has better
validation.

B. MODEL ANALYSIS & COMPARISON

Decision Tree as the best model performs classifying tro-
jan and non-trojan classes on dataset validation and testing
using a particular tree structure. The structure has branch
settings and feature value thresholds based on the Gini cost
or impurity. The application of Gini impurity shows that the
Decision Tree in the paper applies the CART (Classification
and Regression Trees) algorithm. We believe that Decision
Tree creates an ensemble of trees that have sparseness and dif-
ferent properties of the tree structure to isolate anomalies [26]
instead of profiling common behaviors.

Each code branching feature thus has its level of impor-
tance, also known as feature importance. Feature importance
is the assigning a score to each feature based on how sig-
nificantly each feature predicts the target variable (trojan).
This value is essential to measure in the Decision Tree model
analysis to determine which features contribute the largest
and the smallest in the classification process. In this paper
model, the highest to lowest value of importance of character-
istics is obtained sequentially by MaxBranchbit (0.747), Min-
Branchbit (0.078), Blockbit (0.074), Blockbranch (0.056) and
Branchbit (0.044). The value is displayed in the histogram
Fig. 7.

Therefore, the training, evaluation, and analysis results
described prove that the Decision Tree model can perform
well on training, validation, and testing data. The superiority
of this model is one of several contributions made in this
paper. Another contribution is that the characteristics of the
paper model’s training data set are broader than the reference
model. The point of this statement is that the proposed model
involves more types of trojans than the reference research
model, which is characterized by the addition of AES, wb-
conmax, and RS232 datasets, which are more heterogeneous
than the reference model. Using the training dataset, the
detection capacity of the Decision Tree is also proven to be
wider than that of the reference model with the participation
of Basic RSA. Table 6 comprehensively describes the com-

46081

IEEE Access

S. Sutikno et al.: Detecting Unknown Hardware Trojans in RTL Leveraging Verilog Conditional Branching Features

TABLE 6. Comparison of model detection coverage with other research.

| Paper | [21] [[27) [116] | 191 [(18] [[25] |
AES T100 v X X X X
AES T200

AES T300

AES T400

AES T500

AES T600

AES T700

AES T800

AES T900

AES T1000
AES T1100
AES T1200
AES T1300
AES T1400
AES T1500
AES T1600
AES T1700
AES T1800
AES T1900
AES T2000
AES T2100
wb-con T200
wb-con T300
RS232 T100
RS232 T200
RS232 T300
RS232 T400
RS232 T500
RS232 T600
RS232 T700
RS232 T800
RS232 T900
RS232 T901
BscRSA T100
BscRSA T200
BscRSA T300
BscRSA T400
B19 T300

B19 T400

B19 T500
memctrl T100
PIC16F84 T100
PIC16F84 T200
PIC16F84 T300
PIC16F84 T400
MC8051 T200
MC8051 T300
MC8051 T400
MC8051 T500
MC8051 T600
MC8051 T700
MC8051 T800

Benchmark

R R R R R R R R Ry R R R R R R R N R R N R R R R R R R R N R AN EN AN EN AN EN AN EN ENENENENENENENENENENENENEN

X
X
X
X
X
X
v
v
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
v
X
v
v
X
X
v
X
X
v
v

SN AN EN ENENENENEN EN A ENEN ENENENEN AN ENENENENENENEN EN ENENENEN ENENENEN ENENENEN ENENENENENENENENEN ENENENEN
IR IR IR IR IR IR IR IR IR IR IR AR IR SR AR IR IR IR IR IR AR AR SR R AR I R TR N R
IR IR IR AR AR IR IR IR IR AR IR IR AR AR AR IR IR IR AR IR JIENEIRNE IR IR IR IR IR IR S RNENENE IR IR IR IR IR IR IR NN R IR SR IR R AR R
IR IR IR AR AR IR AR IR SRR AR SR AR NN NN NN R N ENE IR IR IRNE IR IR IR IR AR AN AR IR SR AN R SR SN R R N N RS N R S 3
S N N N I I R R S R R S S I A S RN AN AN AN AN AN RN N AN AN AN N N A R EN EN EN AN EN EN EN ENENEN ENENENENEN ENENEN RS S

parison of detection coverage between the model paper and
related studies.

It can be concluded that this paper model has the bet-
ter ability to detect IP hardware Trojans, regardless of the

46082

trigger conditions of the trojan, the functionalities and the
types of IP cores that the trojan is targeting. However, there
are limitations to the model that only claims to be able to
handle RTL trojan detection based on Trust-Hub benchmark
conditions. Furthermore, the characteristics of the AES, wb-
conmax, RS232, and Basic RSA trojans have not been able to
represent all possible triggers and functional trojans that are
spread throughout the IC development supply chain. How-
ever, it should be emphasized that choosing an independent
sample as a test data set and a detection coverage test data
set is more objective than using a data set with characteristics
similar to the training data set, as Choo et al. [22] did with
AES and wb-conmax.

V. CONCLUSION

This research produced an ML-based RTL-level hardware
trojan detection model using the Verilog/VHDL code branch-
ing features Blockbit, MaxBranchbit, MinBranchbit, Branch-
bit, and Blockbranch. The features are selected based on the
effort to represent the relationship between branches and code
blocks that prioritize the ease of feature extraction and the
results of better accuracy and detection coverage. Further-
more, the selection of the ML model with a higher number
of algorithms than the candidate model of Choo et al. also
involved adding the Naive Bayes algorithm, the Random
Forest, and the Gradient Boosting. These treatments aimed
to improve the Choo et al. ML model. The results showed
that Decision Tree was chosen as the best model with a
precision of 96.57% and AUC 97.51% against the validation
set, which was the benchmark sample of AES, RS232, and
wb-conmax. The Decision Tree model can achieve 95.65%
accuracy, 100.0% precision, and 81.81% TPR/Recall in clas-
sifying independent data on the Basic RSA benchmark. This
accuracy value is better than Choo et al.’s 91.91% as a com-
parison model that tested the AES and wb-conmax datasets.
It is also proven that the proposed model can predict new data
for a wide range of cores. Although satisfactory results have
been achieved, there are some limitations to this study. It is
necessary to improve the model to maximize the TPR/Recall
value, which is generally lower than accuracy and precision.
This modification should be done without reducing accuracy
or TPR. In addition, it is possible to involve a neural network
model so that it is assumed to obtain better evaluation metric
results, of course at the cost of high computational resources.

REFERENCES

[1] S.Bhunia and M. Tehranipoor, Hardware Security: A Hands-On Learning
Approach. San Mateo, CA, USA: Morgan Kaufmann, 2018.

[2] M. Tehranipoor, ‘“New directions in hardware security,” in Proc. 29th Int.
Conf. VLSI Design 15th Int. Conf. Embedded Syst. (VLSID), Jan. 2016,
pp. 50-52.

[3] Y.-Q. Lv, Q. Zhou, Y.-C. Cai, and G. Qu, “Trusted integrated circuits:
The problem and challenges,” J. Comput. Sci. Technol., vol. 29, no. 5,
pp- 918-928, Sep. 2014.

[4] A. Sumari and S. Sutikno, “Cyber-physical systems threats, risks,
and vulnerabilities: A challenge to Indonesia defense sector,”
in Proc. 3rd Indonesia Int. Defense Sci. Seminar (IIDSS), 2019,
pp. 347-364.

VOLUME 11, 2023

S. Sutikno et al.: Detecting Unknown Hardware Trojans in RTL Leveraging Verilog Conditional Branching Features

IEEE Access

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Z.Huang, Q. Wang, Y. Chen, and X. Jiang, ‘A survey on machine learning
against hardware Trojan attacks: Recent advances and challenges,” IEEE
Access, vol. 8, pp. 10796-10826, 2020.

X. Wang, M. Tehranipoor, and J. Plusquellic, ““Detecting malicious inclu-
sions in secure hardware: Challenges and solutions,” in Proc. IEEE Int.
Workshop Hardw.-Oriented Secur. Trust, Jun. 2008, pp. 15-19.

K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and M. Tehranipoor, ‘“‘Hard-
ware Trojans: Lessons learned after one decade of research,” ACM Trans.
Design Autom. Electron. Syst., vol. 22, no. 1, pp. 1-23, Dec. 2016.

Y. Jin, D. Maliuk, and Y. Makris, “Post-deployment trust evaluation in
wireless cryptographic ICs,” in Proc. Design, Autom. Test Eur. Conf. Exhib.
(DATE), Mar. 2012, pp. 965-970.

R. Elnaggar and K. Chakrabarty, “Machine learning for hardware security:
Opportunities and risks,” J. Electron. Test., vol. 34, no. 2, pp. 183-201,
Apr. 2018.

K. G. Liakos, G. K. Georgakilas, S. Moustakidis, N. Sklavos, and
F. C. Plessas, “Conventional and machine learning approaches as counter-
measures against hardware Trojan attacks,” Microprocessors Microsyst.,
vol. 79, Nov. 2020, Art. no. 103295.

S. Bhunia, M. S. Hsiao, M. Banga, and S. Narasimhan, ‘“Hardware Trojan
attacks: Threat analysis and countermeasures,” Proc. IEEE, vol. 102, no. 8,
pp. 1229-1247, Aug. 2014.

Y. Xin, L. Kong, Z. Liu, Y. Chen, Y. Li, H. Zhu, M. Gao, H. Hou, and
C. Wang, “Machine learning and deep learning methods for cybersecu-
rity,” IEEE Access, vol. 6, pp. 35365-35381, 2018.

E.-R. Zhou, S.-Q. Li, J.-H. Chen, L. Ni, Z.-X. Zhao, and J. Li, “A novel
detection method for hardware Trojan in third party IP cores,” in Proc. Int.
Conf. Inf. Syst. Artif. Intell. (ISAI), Jun. 2016, pp. 528-532.

K. Hasegawa, M. Yanagisawa, and N. Togawa, “Trojan-feature extraction
at gate-level netlists and its application to hardware-Trojan detection using
random forest classifier,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
May 2017, pp. 1-4.

T. Hoque, J. Cruz, P. Chakraborty, and S. Bhunia, “Hardware IP trust
validation: Learn (the untrustworthy), and verify,” in Proc. IEEE Int. Test
Conf. (ITC), Oct. 2018, pp. 1-10.

H. Salmani, “COTD: Reference-free hardware Trojan detection and recov-
ery based on controllability and observability in gate-level netlist,” JEEE
Trans. Inf. Forensics Security, vol. 12, no. 2, pp. 338-350, Feb. 2017.

J. Rajendran, V. Vedula, and R. Karri, “Detecting malicious modifications
of data in third-party intellectual property cores,” in Proc. 52nd Annu.
Design Autom. Conf., Jun. 2015, pp. 1-6.

L. Piccolboni, A. Menon, and G. Pravadelli, “Efficient control-flow sub-
graph matching for detecting hardware Trojans in RTL models,” ACM
Trans. Embedded Comput. Syst., vol. 16, no. Ss, pp. 1-19, Oct. 2017.

F. Demrozi, R. Zucchelli, and G. Pravadelli, “Exploiting sub-graph iso-
morphism and probabilistic neural networks for the detection of hardware
Trojans at RTL,” in Proc. IEEE Int. High Level Design Validation Test
Workshop (HLDVT), Oct. 2017, pp. 67-73.

T. Han, Y. Wang, and P. Liu, “‘Hardware Trojans detection at register trans-
fer level based on machine learning,” in Proc. IEEE Int. Symp. Circuits
Syst. (ISCAS), May 2019, pp. 1-5.

S. A.Islam, L. K. Sah, and S. Katkoori, “A framework for hardware Trojan
vulnerability estimation and localization in RTL designs,” J. Hardw. Syst.
Secur., vol. 4, no. 3, pp. 246-262, Sep. 2020.

H. S. Choo, C. Y. Ooi, M. Inoue, N. Ismail, M. Moghbel, and C. H. Kok,
“Register-transfer-level features for machine-learning-based hardware tro-
jan detection,” IEICE Trans. Fundam. Electron., Commun. Comput. Sci.,
vol. E103.A, no. 2, pp. 502-509, 2020.

F. Wijitrisnanto, S. Sutikno, and S. D. Putra, “Efficient machine learn-
ing model for hardware Trojan detection on register transfer level,” in
Proc. 4th Int. Conf. Signal Process. Inf. Secur. (ICSPIS), Nov. 2021,
pp. 37-40.

H. Salmani and M. Tehranipoor, “Analyzing circuit vulnerability to
hardware Trojan insertion at the behavioral level,” in Proc. IEEE Int.
Symp. Defect Fault Tolerance VLSI Nanotechnol. Syst. (DFTS), Oct. 2013,
pp. 190-195.

B. Shakya, T. He, H. Salmani, D. Forte, S. Bhunia, and M. Tehranipoor,
“Benchmarking of hardware Trojans and maliciously affected circuits,”
J. Hardw. Syst. Secur., vol. 1, no. 1, pp. 85-102, Mar. 2017.

M. E. Aminanto, T. Ban, R. Isawa, T. Takahashi, and D. Inoue, ‘“Threat
alert prioritization using isolation forest and stacked auto encoder with
day-forward-chaining analysis,” IEEE Access, vol. 8, pp. 217977-217986,
2020.

VOLUME 11, 2023

SARWONO SUTIKNO (Member, IEEE) received
the bachelor’s degree in electronics from the
Bandung Institute of Technology, Bandung,
Indonesia, in 1984, and the M.E. and Dr.Eng.
degrees in integrated systems from the Tokyo
Institute of Technology, Tokyo, Japan, in 1990 and
1994, respectively. His security engineering focus
includes information security management sys-

M
‘ i tems. He holds several professional certifications,
including Indonesia Internal Auditor Professional

(ITAP) from IIA, Certified in Cybersecurity (CC) from (ISC)Z, ISMS
Provisional Auditor Certificate, CISA, CISSP, CISM, and CSX-F. He is also
appointed as an ISACA Academic Advocate. His research interests include
implementing cryptographic algorithms in integrated circuits and hardware
security, including embedded system security.

==
ﬁ

;q
S

.ﬁy@n

Ao~ :
<
g
PN

SEPTAFIANSYAH DWI PUTRA received the
bachelor’s (S.T.) degree in electrical engineering
from Lampung University and the master’s degree
(cum laude) in computer engineering and the
Ph.D. degree (cum laude) in electrical engineering
and informatics from Institut Teknologi Bandung
(ITB). He is currently a Lecturer and a Researcher
with the Cybersecurity Research Group, Inter-
net Engineering Technology Program, Lampung
State Polytechnic, Lampung, Indonesia. He also

holds several professional certificates in cybersecurity and computer system
security. His research interests include cognitive artificial intelligence and
cybersecurity.

FAJAR WUITRISNANTO received the B.S. degree
(cum laude) in cryptographic engineering from
National Cyber and Crypto Polytechnic, Bogor,
Indonesia, in 2018, and the M.S. degree (cum
laude) in electrical engineering from Institut
Teknologi Bandung (ITB), Bandung, Indonesia,
in 2022. From 2018 to 2019, he was a Pen-
etration Tester working as the first deputy of
the National Cyber and Crypto Agency (BSSN).
From 2019 to 2020, he was a member of the Red
Team in the Security Operation Center (SOC), BSSN. He is currently
with BSSN, a nation-grade IT Security Consulting Institute founded by
the Indonesian Government, in 2017. His work is centered on network and
application security, machine learning, and hardware security.

MUHAMAD ERZA AMINANTO (Member,
IEEE) received the bachelor’s and master’s
degrees in electrical engineering from the
Bandung Institute of Technology (ITB), Indonesia,
in 2013 and 2014, respectively, and the Ph.D.
degree from the School of Computing, Korea
Advanced Institute of Science and Technology
" //’/ (KAIST), South Korea, in 2018. He was a

% Researcher in Al x Security with the National

//é Al Institute of Information and Communications
Technology (NICT), Tokyo, Japan, and a Lecturer in cybercrime with
the University of Indonesia (UI). He is currently an Assistant Professor
with the Cyber Security Program, Monash University Indonesia. He is
also a Senior Research (Data) Scientist with Jakarta Smart City and an
advisory board member of several government and private organizations. His
current research interests include information security, artificial intelligence,
anomaly detection, intrusion detection, cybersecurity, digital transformation,
and smart city.

46083

