
Detecting Unrealizable Specifications

of Distributed Systems�

Bernd Finkbeiner and Leander Tentrup

Saarland University, Germany

Abstract. Writing formal specifications for distributed systems is dif-
ficult. Even simple consistency requirements often turn out to be unre-
alizable because of the complicated information flow in the distributed
system: not every information is available in every component, and infor-
mation transmitted from other components may arrive with a delay or
not at all, especially in the presence of faults. The problem of checking
the distributed realizability of a temporal specification is, in general, un-
decidable. Semi-algorithms for synthesis, such as bounded synthesis, are
only useful in the positive case, where they construct an implementation
for a realizable specification, but not in the negative case: if the specifica-
tion is unrealizable, the search for the implementation never terminates.
In this paper, we introduce counterexamples to distributed realizability
and present a method for the detection of such counterexamples for spec-
ifications given in linear-time temporal logic (LTL). A counterexample
consists of a set of paths, each representing a different sequence of inputs
from the environment, such that, no matter how the components are im-
plemented, the specification is violated on at least one of these paths.
We present a method for finding such counterexamples both for the clas-
sic distributed realizability problem and for the distributed realizability
problem with faulty nodes. Our method considers, incrementally, larger
and larger sets of paths until a counterexample is found. While coun-
terexamples for full LTL may consist of infinitely many paths, we give a
semantic characterization such that the required number of paths can be
bounded. For this fragment, we thus obtain a decision procedure. Exper-
imental results, obtained with a QBF-based prototype implementation,
show that our method finds simple errors very quickly, and even prob-
lems with high combinatorial complexity, like the Byzantine Generals’
Problem, are tractable.

1 Introduction

The goal of program synthesis, and systems engineering in general, is to build sys-
tems that satisfy a given specification. Sometimes, however, this goal is unattain-
able, because the conditions of the specification are impossible to satisfy in an

� This work was partially supported by the German Research Foundation (DFG) as
part of SFB/TR 14 AVACS and by the Saarbrücken Graduate School of Computer
Science, which receives funding from the DFG as part of the Excellence Initiative of
the German Federal and State Governments.

E. Ábrahám and K. Havelund (Eds.): TACAS 2014, LNCS 8413, pp. 78–92, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Detecting Unrealizable Specifications of Distributed Systems 79

implementation. A textbook example for such a case is the Byzantine Generals’
Problem, introduced in the early 1980s by Lamport et al. [1]. Three generals
of the Byzantine army, consisting of one commander and two lieutenants, need
to agree on whether they should “attack” or “retreat.” For this purpose, the
commander sends an order to the lieutenants, and all generals then exchange
messages with each other, reporting, for example, to one general which messages
they have received from the other general. The problem is that one of the gener-
als is a traitor and can therefore not be assumed to tell the truth: the tale of the
Byzantine generals is, after all, just an illustration for the problem of achieving
fault tolerance in distributed operating systems, where we would like to achieve
consensus even if a certain subset of the nodes is faulty. Of course, we cannot
expect the traitor to agree with the loyal generals, but we might still expect a
loyal lieutenant to agree with the order issued by a loyal commander, and two
loyal lieutenants to reach a consensus in case the commander is the traitor. This
specification is, however, unrealizable in the setting of the three generals (and,
more generally, in all settings where at least a third of the nodes are faulty).

Detecting unrealizable specifications is of great value because it avoids spend-
ing implementation effort on specifications that are impossible to satisfy. If the
system consists of a single process, then unrealizable specifications can be de-
tected with synthesis algorithms, which detect unrealizability as a byproduct of
attempting to construct an implementation. For distributed systems, the prob-
lem is more complicated: in order to show that there is no way for the three
generals to achieve consensus, we need to argue about the knowledge of each
general. The key observation in the Byzantine Generals’ Problem is that the
loyal generals have no way of knowing who, among the other two generals, is
the traitor and who is the second loyal general. For example, the situation where
the commander is the traitor and orders one lieutenant to “attack” and the other
to “retreat” is indistinguishable, from the point of view of the loyal lieutenant
who is ordered to attack, from the situation where the commander is loyal and
orders both lieutenants to attack, while the traitor claims to have received a
“retreat” order. Since the specification requires the lieutenant to act differently
(agree with the other lieutenant vs. agree with the commander) in the two in-
distinguishable situations, we reach a contradiction.

Since realizability for distributed systems is in general an undecidable prob-
lem [2], the only available decision procedures are limited to special cases, such as
pipeline and ring architectures [3, 4]. There are semi-algorithms for distributed
synthesis, such as bounded synthesis [5], but the focus is on the search for imple-
mentations rather than on the search for inconsistencies: if an implementation
exists, the semi-algorithm terminates with such an implementation, otherwise it
runs forever. In this paper, we take the opposite approach and study counterex-
amples to realizability. Intuitively, a counterexample collects a sufficient number
of scenarios such that, no matter what the implementation does, an error will
occur in at least one of the chosen scenarios. As specifications, we consider for-
mulas of linear-time temporal logic (LTL). It is straightforward to encode the
Byzantine Generals’ Problem in LTL. Another interesting example is the famous

80 B. Finkbeiner and L. Tentrup

CAP Theorem, a fundamental result in the theory of distributed computation
conjectured by Brewer [6]. The CAP Theorem states that it is impossible to
design a distributed system that provides Consistency, Availability, and Parti-
tion tolerance (CAP) simultaneously. We assume there is a fixed number n of
nodes, that every node implements the same service, and that there are direct
communication links between all nodes. We use the variables reqi and outi to
denote input and output of node i, respectively. The consistency and availability
requirements can then be encoded as the LTL formulas

∧
1≤i<n(outi ↔ outi+1)

and (
∨

1≤i≤n reqi) ↔ (� ∨
1≤i≤n outi). The partition tolerance is modeled in

a way that there is always at most one node partitioned from the rest of the
system.

In both examples, a finite set of input sequences suffices to force the system
into violating the specification on at least one of the input sequences. In this
paper, we present an efficient method for finding such counterexamples. It turns
out that searching for counterexamples is much easier than the classic synthesis
approach of establishing unrealizability by the non-existence of strategy trees [2,
3, 4]. The difficulty in synthesis is to enforce the consistency condition that
the strategy of a process must act the same way in all situations the process
cannot distinguish. On the strategy trees, this consistency condition is not an
ω-regular (or even decidable) property. When analyzing a counterexample, on
the other hand, we only check consistency on a specific set of sequences, not on a
full tree. This restricted consistency condition is an ω-regular property and can,
in fact, simply be expressed in LTL as part of the temporal specification. Our
QBF-based prototype implementation finds counterexamples for the Byzantine
Generals’ Problem and the CAP Theorem within just a few seconds.

Related Work. To the best of the authors’ knowledge, there has been no at-
tempt in the literature to characterize unrealizable specifications for distributed
systems beyond the restricted class of architectures with decidable synthesis
problems, such as pipelines and rings [3, 4]. By contrast, there is a rich litera-
ture concerning unrealizability for open systems, that is, single-process systems
interacting with the environment [7, 8, 9]. In robotics, there have been recent at-
tempts to analyze unrealizable specifications [10]. The results are also focused on
the reason for unsatisfiability, while our approach tries to determine if a specifi-
cation is unrealizable. Moreover, they only consider the simpler non-distributed
synthesis of GR(1) specifications, which is a subset of LTL. There are other
approaches concerning unrealizable specifications in the non-distributed setting
that also use counterexamples [11, 12]. There, the system specifications are as-
sumed to be correct and the information from the counterexamples are used
to modify environment assumptions in order to make the specifications realiz-
able. The Byzantine Generals’ Problem is often used as an illustration for the
knowledge-based reasoning in epistemic logics, see [13] for an early formaliza-
tion. Concerning the synthesis of fault-tolerant distributed systems, there is an
approach to synthesize fault-tolerant systems in the special case of strongly con-
nected system architectures [14].

Detecting Unrealizable Specifications of Distributed Systems 81

x y

a b

(a)

x ya b

(b)

z

x

y

b

c

a

a

(c)

Fig. 1. Distributed architectures

2 Distributed Realizability

A specification is realizable if there exists an implementation that satisfies the
specification. For distributed systems, the realizability problem is typically stated
with respect to a specific system architecture. Figure 1 shows some typical exam-
ple architectures: an architecture consisting of independent processes, a pipeline
architecture, and a join architecture. The architecture describes the communi-
cation topology of the distributed system. For example, an edge from x to y
labeled with b indicates that b is a shared variable between processes x and y,
where x writes to b and y reads b. The classic distributed realizability problem is
to decide whether there exists an implementation (or strategy) for each process
in the architecture, such that the joint behavior satisfies the specification. In
this paper, we are furthermore interested in the synthesis of fault-tolerant dis-
tributed systems, where the processes and the communication between processes
may become faulty.

In order to have a uniform and precise definition for the various realizabil-
ity problems of interest, we use a logical representation. Extended coordination
logic (ECL) [15] is a game-based extension of linear-time temporal logic (LTL).
ECL uses the strategy quantifier ∃C �s to express the existence of an implemen-
tation for a process output s based on input variables C.

ECL Syntax. ECL formulas contain two types of variables: the set C of input
(or coordination) variables, and the set S of output (or strategy) variables. In
addition to the usual LTL operators Next �, Until U , and Release R, ECL has
the strategy quantifier ∃C�s, which introduces an output variable s whose values
must be chosen based on the inputs in C. The syntax is given by the grammar

ϕ ::= x | ¬x | ϕ ∨ ϕ | ϕ ∧ ϕ | �ϕ | ϕ U ϕ | ϕ R ϕ | ∃C � s. ϕ | ∀C � s. ϕ ,

where x ∈ C ∪̇ S, C ⊆ C, and s ∈ S. Beside the standard abbreviations true ≡
x∨¬x, false = x∧¬x, �ϕ ≡ true U ϕ, and �ϕ ≡ false R ϕ, we use �n ϕ as an
abbreviation of n consecutive Next operators.

We denote by Q the (possibly empty) quantification prefix of a formula and
call the remainder the body. For Q ∈ {∃, ∀}, we use QQ if the prefix contains only
Q-quantifiers. For the purposes of this paper, it suffices to consider the fragment
ECL∃ that only contains existential quantifiers. We furthermore assume that the
body is quantifier-free, i.e., that the formulas are in prenex normal form (PNF).

82 B. Finkbeiner and L. Tentrup

Examples. We demonstrate how to express distributed realizability problems
in ECL∃ with the example architectures from Fig. 1. The realizability of an LTL
formula ψ1 in the architecture from Fig. 1(a) is expressed by the ECL∃ formula

∃{a} � x. ∃{b} � y. ψ1 . (1)

Interprocess communication via a shared variable b, as in the pipeline architec-
ture from Fig. 1(b), is expressed by separating the information read from b from
the output written to b. In the following ECL∃ formula we use output variable
x to denote the output written to b:

∃{b} � y. ∃{a, b} � x.� (b = x) → ψ2 (2)

The LTL specification ψ2 is qualified by the input-output relation � (b = x),
which expresses that ψ2 is required to hold under the assumption that the infor-
mation written to b by process x is also the information read from b by process y.
This separation between sent and received information is useful to model faults
that disturb the transmission. Failing processes can be specified by omitting the
input-output relations that refer to the failing processes. As an example, consider
the architecture in Fig. 1(c). The ECL∃ formula

∃{a} � x, y. ∃{b, c} � z.
(
� (c = y) → ψ3

)
∧
(
� (b = x) → ψ3

)
(3)

specifies that there exists an implementation such that ψ3 is guaranteed to hold
even if process x or y (but not both) fails.

For a formula Φ, we differentiate two types of coordination variables, external
and internal. A coordination variable c ∈ C is external iff it is a true input
from the environment, i.e., not contained in any input-output relation of Φ. For
example, the input a in (3) is external while b and c are internal.

ECL Semantics. We give a quick definition of the ECL∃ semantics for for-
mulas in PNF and refer the reader to [15] for details and for the semantics
of full ECL. The semantics is based on trees as a representation for strate-
gies and computations. Given a finite set of directions Υ and a finite set of
labels Σ, a (full) Σ-labeled Υ -tree T is a pair 〈Υ ∗, l〉, where l : Υ ∗ → Σ as-
signs each node υ ∈ Υ a label l(υ). For two trees T and T ′, we define the
joint valuation T ⊕ T ′ to be the widened tree with the union of both la-
bels. We refer to [15] for a formal definition. A path σ in a Σ-labeled Υ -tree
T is an ω-word σ0σ1σ2 . . . ∈ Υω and the corresponding labeled path σT is
(l(ε), σ0)(l(σ0), σ1)(l(σ0σ1), σ2)(l(σ0σ1σ2), σ3) . . . ∈ (Υ ×Σ)ω.

For a strategy variable s that is bound by some quantifier QC�s. ϕ, we refer to
C as the scope of s, denoted by Scope(s). The meaning of a strategy variable s is
a strategy or implementation fs : (2

Scope(s))∗ → 2{s}, i.e., a function that maps a
history of valuations of input variables to a valuation of the output variable s. We
represent the computation of a strategy fs as the tree 〈(2Scope(s))∗, fs〉 where fs
serves as the labeling function (cf. Fig. 2(a)–(b)). ECL∃ formulas are interpreted
over computation trees, that are the joint valuations of the computations for

Detecting Unrealizable Specifications of Distributed Systems 83

{y}

∅

{y}

∅
...

(a) Strategy for y

∅

{x}

{x}

{x} ∅

∅

{x} ∅

a

∅

{x}

{x} ∅

∅

{x} ∅

¬a

...

(b) Strategy for x

{y}

{x}

{y, x}

{x} ∅

{y}

{x} ∅

a

∅

{y, x}

{x} ∅

{y}

{x} ∅

¬a

...

(c) Computation tree

Fig. 2. In (a) and (b) we sketch example strategies for y and x satisfying the ECL∃
formula ∃∅ � y.∃{a} � x.� (� x ↔ a) ∧� (y ↔ �¬y). In (c) we visualize the resulting
computation tree on which the body (LTL) formula is evaluated.

strategies belonging to the strategy variables in S, i.e.,
⊕

s∈S〈(2Scope(s))∗, fs〉
(cf. Fig. 2(c)). Given an ECL∃ formulaQ∃. ϕ in prenex normal form over strategy
variables S and coordination variables C, the formula is satisfied if there exists
a computation tree T (over S), such that all paths in T satisfy the LTL formula
ϕ, i.e., ∀σ ∈ (2C)ω . σT , 0 � ϕ where the satisfaction of an LTL formula on a
labeled path σT on position i ≥ 0 is defined as usual.

3 Counterexamples to Distributed Realizability

We now introduce counterexamples to realizability, which correspond to coun-
terexamples to satisfiability for the ECL∃ formula that represents the realizabil-
ity problem. The satisfiability problem for an ECL∃ formula in prenex form asks
for an implementation for all strategy variables in the quantification prefix of
the formula such that the temporal specification in the body is satisfied.

Let Φ = Q∃. ϕ be an ECL∃ formula in prenex form over coordination variables
C and strategy variables S, where the body of the formula is the LTL formula ϕ.
A counterexample to satisfiability for Φ is a (possibly infinite) set of paths P ⊆
(2C)ω, such that, no matter what strategies are chosen for the strategy variables
in S, there exists a path σ ∈ P that violates the body ϕ. Formally, P ⊆ (2C)ω is
a counterexample to satisfiability iff, for all strategies fs : (2

Scope(s))∗ → 2{s} for
each s ∈ S, it holds that there exists a path σ ∈ P such that σT , 0 � ¬ϕ where
T =

⊕
s∈S〈(2Scope(s))∗, fs〉.

Proposition 1. An ECL∃ formula Φ over coordination variables C and strat-
egy variables S is unsatisfiable if and only if there exists a counterexample to
satisfiability P ⊆ (2C)ω.

Proof. By the semantics of ECL∃ and P = (2C)ω. ��

In the remainder of the paper, we focus on counterexamples to realizability prob-
lems. The distributed realizability problem without faults correspond to ECL∃
formulas of the form Φ = Q∃. ϕpath → ϕ, where the ϕpath defines the system
architecture AΦ: there is an edge from one strategy variable to another if the

84 B. Finkbeiner and L. Tentrup

input-output relation occurs in ϕpath. A finite counterexample to satisfiability
of Φ is a finite set of paths P ⊆ (2Cext)ω corresponding to external coordination
variables, such that for any implementation T there exists a path σ ∈ P such
that an extension σ′ ∈ (2C)ω of σ violates ϕ. Note that the extension of σ by
the valuation of the internal coordination variables is uniquely specified by the
input path σ and the system implementation T .

Corollary 2. If there exists a finite counterexample to satisfiability P ⊆ (2Cext)ω

for an ECL∃ formula Φ = Q∃. ϕpath → ϕ over coordination variables C and
strategy variables S, then Φ is unsatisfiable.

As an example consider again the ECL∃ formula (1) ∃{a} � x. ∃{b} � y. ψ1,
corresponding to the architecture from Fig. 1(a) in the previous section. Let
ψ1 := � (� y ↔ a), i.e., y must output the input a with an one-step delay. A
simple counterexample for this formula consists of two paths P1 := { ∅ω, {a}ω}
that differ in the values of a, but not in the values of b. Since process x cannot
distinguish the two paths, but must produce different outputs, we arrive at a
contradiction. Consider the same formula for the pipeline architecture specified
by (2) ∃{b} � y. ∃{a, b} � x.� (b = x) → ψ2. Due to the delay when forwarding
the input a over shared variable b, the formula becomes unsatisfiable. P1 is a
finite counterexample in this case, too: Given an implementation of x and y, we
extend both paths such that the input-output specification � (b = x) is satisfied.

The distributed realizability problem with faults correspond to ECL∃ formu-
las of the form Φ = Q∃.

∧
1≤i≤n

(
ϕpathi

→ ϕi

)
. If ϕi = ϕ for all i, the formula

states that there exists an implementation such that the specification ϕ should
hold in all architectures induced by the path specifications ϕpathi

. Omitted chan-
nel specifications in one of these formulas represent an arbitrary error at this
channel. In this case, a counterexample identifies for each implementation one
of these architectures where a contradiction occurs. A finite counterexample to
satisfiability of Φ are n finite sets of paths Pi ⊆ (2C

i
ext)ω each corresponding to

external coordination variables Ci
ext in the respective architecture i, such that

for any implementation T there exists an architecture j and a path σ ∈ Pj such
that an extension σ′ ∈ (2C)ω of σ violates ϕj .

Corollary 3. An ECL∃ formula Φ = Q∃.
∧

1≤i≤n

(
ϕpathi

→ ϕi

)
over coordina-

tion variables C and strategy variables S is unsatisfiable if there exists a finite
counterexample to satisfiability of Φ.

A counterexample for the ECL specification (3) introduces paths for inputs as
well as for every faulty node by introducing paths that model the exact channel
specification and additional paths that model the arbitrary node failures. The
target node that reads from a shared variable can, in contrast to incomplete infor-
mation, react differently on the given paths, but the reaction must be consistent
regarding its observations on all paths. Consider for example the specification
ψ3 := (�2 z ↔ a) for the ECL formula in (3), that is, process z should output
the input a of nodes x and y. In both architectures we introduce additional
paths for the coordination variable that is omitted in the channel specification,
i.e., b and c for the first and second conjunct, respectively. Process z cannot tell

Detecting Unrealizable Specifications of Distributed Systems 85

which of its inputs come from a faulty node. Since z must produce the same
output on two paths it cannot distinguish, the implementation of z contradicts
the specification in either architecture.

4 From ECL∃ to QPTL

We encode the existence of finite counterexample to realizability as a formula of
quantified propositional temporal logic (QPTL). QPTL extends LTL with a path
quantifier ∃p, where a path σ ∈ 2AP satisfies ∃p. ϕ at position i ≥ 0, denoted by
σ, i � ∃p. ϕ, if there exists a path σ′ ∈ 2AP∪{p} which coincides with σ except for
the newly introduced atomic proposition p, such that σ′, i � ϕ. In the encoding,
we use the path quantifier to explicitly name the paths in the counterexample.

Realizability without Faults. We consider first the distributed realizability
problems without faults, represented by ECL∃ formula Φ = Q∃. ϕpath → ϕ. We
assume, without loss of generality, that the architectureAΦ is acyclic. Finkbeiner
and Schewe [4] gave a realizability-preserving transformation to acyclic architec-
tures that removes feedback edges.

Lemma 4 ([4]). Any ECL∃ formula Φ = Q∃. ϕpath → ϕ can be transformed into
an equisatisfiable formula Φ′ = Q′

∃. ϕ
′
path → ϕ′ such that the system architecture

AΦ′ is acyclic.

We search for a finite counterexample of Φ by bounding the number of paths
regarding the external coordination variables. The bound on the number of paths
is given as a function K : C → IN that maps each coordination variable to the
number of branchings that should be considered for this variable. For example,
for coordination variables a and b, and K(a) = K(b) = 1, we encode 4 different
paths, one per possible combination for the two paths for each variable. We fix
an arbitrary strict order ≺⊆ C × C between the coordination variables. For a
set C ⊆ C, we identify K(C) by the vector IN|C| where the position of the value
K(c) for a coordination variable c ∈ C is determined by ≺. For our encoding in
QPTL, we use the following helper functions:

– deps(v) returns the set of coordination variables that influence variable v. A
coordination variable c influences variable v if c belongs to a directed path
that leads to v in AΦ. For example in the architecture of Fig. 1(c), b and
x are influenced by a while z is influenced by a, b, and c. A coordination
variable is influenced by itself.

– branches(C,K) returns the set of branches belonging to coordination vari-

ables C. A branch is referenced by a tuple IN|C| and the set of branches is
{(nc1 , . . . , nck) | {c1 ≺ · · · ≺ ck} = C and 1 ≤ nc ≤ 2K(c) for all c ∈ C}

– paths(C,K) and strategies(S,K) create the (path) variables in the QPTL
formula that belong to the variables of the ECL∃ formula. For a variable
v ∈ C ∪S it introduces for each branch π ∈ branches(deps(v),K) a separate
variable pvπ that represents the variable v belonging to this branch π.

86 B. Finkbeiner and L. Tentrup

– header(S,K) creates the alternating introductions of strategies and paths
according to the acyclic architecture AΦ. For every strategy variable s ∈ S
we introduce all paths belonging to coordination variables c ∈ Scope(s) prior
to s and avoid duplicate path introductions:

∃ paths(Scope(s1),K) ∀ strategies({s1},K)

∃ paths(Scope(s2) \ Scope(s1),K) ∀ strategies({s2},K)
. . .

∃ paths(Scope(sn) \
(⋃

i=1,...,n−1

Scope(si)
)
,K) ∀ strategies({sn},K) ,

where s1, . . . , sn are sorted in ascending order according to their informed-
ness, i.e., the subset relation on their scopes.

– consistent(S,K) specifies the consistency condition for the variables be-
longing to the strategy variables on the different branches. The variables
psπ1

, . . . , psπk
belonging to a strategy variable s ∈ S must be equal as long as

the coordination variables in the scope of s on the branches π1, . . . , πk are
equal. This can be specified in LTL as there are only finitely many branches.

The QPTL encoding for ECL∃ formula Φ and function K : C → IN is

unsatdist(Φ,K) := header(S,K). consistent(S,K) →
(∧

π∈branches(C,K)

ϕpath(π)
)
∧
(∨

π∈branches(C,K)

¬ϕ(π)
)

, (4)

where ϕ(π) is the initialization of LTL formula ϕ on the branch π, that is we
exchange v by pvπ′ for v ∈ C ∪ S where π′ is the subvector of π that contains the
values for coordination variables in deps(v).

Theorem 5 (Correctness). Given an ECL∃ formula Φ = Q∃. ϕpath → ϕ over
coordination variables C and strategy variables S with an acyclic system archi-
tecture AΦ. Φ is unsatisfiable if there exists a function K : C → IN such that the
QPTL formula unsatdist(Φ,K) is satisfiable.

Realizability with Node Failures. In the case of possible failures, the ECL∃
formulas Φ has the more general form Q∃.

∧
1≤i≤n

(
ϕpathi

→ ϕi

)
. In this spe-

cific setting we cannot assume acyclic architectures in general. The architecture
belonging to Φ is acyclic if the architecture belonging to the conjunction of all
paths specifications

∧
1≤i≤n ϕpathi

is acyclic. An edge is a common feedback edge
if and only if it is a feedback edge in all architectures. As before, we can elim-
inate common feedback edges but this does not give us acyclic architectures in
general as depicted in Fig. 3. In the following, we assume acyclic architectures
after removing common feedback edges.

The QPTL encoding of ECL∃ formula Φ and functions K1 . . .Kn : C → IN is

unsatfault(Φ,K1, . . . ,Kn) := header(S,K). consistent(S,K) →
∨

1≤i≤n

(∧

π∈branches(C,Ki)

ϕpathi
(π)

)
∧
(∨

π∈branches(C,Ki)

¬ϕi(π)
)

, (5)

where K : C → IN is defined as K(c) := max1≤i≤n Ki(c) for every c ∈ C.

Detecting Unrealizable Specifications of Distributed Systems 87

x y
a b

c d

(a)

x y
a

b

c
d

(b)

Fig. 3. Example illustrating common feedback edges: Edge c is a feedback edge in
architecture (a), but not in architecture (b), thus it is also not a common feedback
edge when considering both architectures

Theorem 6 (Correctness). Given an ECL∃ formula Φ = Q∃.
∧

1≤i≤n

(
ϕpathi

→ ϕi

)
over coordination variables C and strategy variables S with an acyclic

system architecture AΦ after removing common feedback edges. Φ is unsatisfi-
able if there exist functions K1 . . .Kn : C → IN such that the QPTL formula
unsatfault(Φ,K1, . . . ,Kn) is satisfiable.

Example. We consider again the Byzantine Generals’ Problem with three nodes
g1, g2, and g3. The first general is the commander who forwards the input v that
states whether to attack the enemy or not. The encoding as ECL∃ formula is

Φbgp := ∃{v} � g12, g13.∃{c12} � g23.∃{c13} � g32.∃{c12, c32} � g2.∃{c13, c23} � g3.
(operational2,3 → consensus2,3) ∧

∧

i∈{2,3}
(operational1,i → correctvali) ,

where the quantification prefix introduces the strategies for the generals g2 and
g3, as well as the communication between the three generals as depicted in the
architecture in Fig. 4(a). Note that we omit the vote of the commander g1 as it is
not used in the specification. In the temporal part, we specify which failures can
occur. The first conjunct, corresponding to Fig. 4(b), states that the commander
is faulty (operational2,3) which implies that the other two generals have to reach a
consensus whether to attack or not (consensus2,3). The other two cases, depicted
in Fig. 4(c)–(d), are symmetric and state that whenever one general is faulty the
other one should agree on the decision made by the commander. The QPTL
encoding unsatfault(Φbgp,K1,K2,K3) is given as

∃ paths({v}, K). ∀ strategies({g12, g13},K). ∃ paths({c12, c13},K).

∀ strategies({g23, g32},K). ∃paths({c23, c32},K). ∀ strategies({g2, g3},K).

consistent({g12, g13, g23, g32, g2, g3},K) →
((∧

π∈branches(C,K1)

operational2,3(π) ∧
∨

π∈branches(C,K1)

¬consensus2,3(π)
)
∨

(∧

π∈branches(C,K2)

operational1,3(π) ∧
∨

π∈branches(C,K2)

¬correctval3(π)
)
∨

(∧

π∈branches(C,K3)

operational1,2(π) ∧
∨

π∈branches(C,K3)

¬correctval2(π)
))

.

88 B. Finkbeiner and L. Tentrup

g1

g2 g3

c12 c13

c23

c32

v

(a)

g1

g2 g3

c12 c13

c23

c32

v

(b)

g1

g2 g3

c12 c13

c23

c32

v

(c)

g1

g2 g3

c12 c13

c23

c32

v

(d)

Fig. 4. The Byzantine Generals’ architecture. Figure (a) shows the architecture in
cases all generals are loyal. Figures (b)–(d) show the possible failures, indicated by the
dashed communication links.

5 From QPTL to QBF

Presently available QPTL solver were unable to handle even small instances
of our problem. We therefore simplify the problem using the following steps.
Instead of checking the QPTL formula directly, we encode the formula as an
equivalent monadic second order logic of one successor (S1S) formula using a
straightforward translation. We then interpret the S1S formula with a WS1S
formula, which can be checked using the WS1S solver Mona [16]. Some of our
smaller instances were solved by Mona, but the Byzantine Generals’ Problem
failed due to memory constraints in the BDD library.

Taking the simplifications even further, we not only bound the number of
paths but also the length of the paths by translating the problem to the satisfia-
bility problem of quantified Boolean formulas (QBF). The encoding translates a
QPTL variable x to Boolean variables x0, . . . , xk−1, each representing one step
in the system where k is the length of the paths. We build the QBF formula
by unrolling the QPTL formula for k-steps: Each variable in the quantification
prefix of the QPTL formula is transformed into k Boolean variables in the QBF
prefix, e.g., the 3-unrolling of ∃x. ∀y. ϕ is ∃x0, x1, x2. ∀y0, y1, y2. ϕunroll . The un-
rolling of the remaining LTL formula is given by the expansion law for Until,
ϕ U ψ ≡ ψ∨ (ϕ∧�ϕ U ψ). After the unrolling, the QBF formula is transformed
into Conjunctive Normal Form (CNF) and encoded in the QDIMACS file for-
mat, that is the standard format for QBF solvers. Already with this encoding
we could solve more examples than using the WS1S approach.

In this simple translation, one cause of high complexity is due to the consis-
tency conditions between the strategy variables across different paths. However,
most of these variables are not used for the counterexample itself but appear
only in the consistency condition. One optimization removes these unnecessary
variables from the encoding. Therefore, we collect all strategy variables and
(when possible) their temporal occurrence from the LTL specification. For every
used strategy variable we build the dependency graph that contains all variables
which can influence the outcome of the strategy. In the last step, we remove all
variables that are not contained in any dependency graph.

Detecting Unrealizable Specifications of Distributed Systems 89

6 Completeness

Proposition 1 states that the characterization of unsatisfiable formulas with
counterexamples is complete. Our method, however, searches for counterex-
amples involving only a bounded number of external paths and the follow-
ing example shows this leads to incompleteness. Consider the ECL∃ formula
Φinf := ∃∅ � y. ϕinf with temporal specification ϕinf := � (y �= x) where x
is a free coordination variable. Φinf is unsatisfiable because for every strategy
fy : ∅∗ → 2{y} there exists a path σ ∈ (2{x})ω that simulates exactly the output
of the strategy, as the formula is evaluated over the full binary x-tree. Assume
for contradiction that a finite set of paths P ⊆ (2{x})ω suffices to satisfy ¬ϕinf

against any strategy fy. Interpreting the outcome of the strategy as a path and
considering all possible strategies gives us a full binary tree T . Let ρ be a path
from T that is not contained in P (after renaming y in ρ to x). Such a path must
exists because there are infinite many different paths in T . Choose the strategy
fρ
y that belongs to ρ. For all paths in P it holds that � (y �= x) and thus no
path satisfies ¬ϕinf.

However, in practice finite external counterexamples are sufficient to detect
many errors in specifications. In this section we give a semantic characterization
of the finite path satisfiability based only on the LTL specification.

Given an ECL∃ formula Φ = Q∃. ϕpath → ϕ. We assume w.l.o.g. that ϕ only
contains coordination variables Ce ⊆ C that are not used as a channel as otherwise
one could replace a variable c ∈ C \ Ce by the strategy variable corresponding to
the channel. The semantics of the LTL formula ¬ϕ, denoted by �¬ϕ�, gives us
a language L ⊆ (2S × 2Ce)ω . From L we obtain the relation R ⊆ (2S)ω × (2Ce)ω

between paths of strategy variables and paths of coordination variables. We say
that an LTL formula ψ over variables S×Ce admits finite external paths if there
exists a function r : (2S)ω → (2Ce)ω such that (1) for all σ ∈ (2S)ω it holds that
r(σ) = ρ ⇔ σR ρ, and (2) {r(σ) | σ ∈ (2S)ω} is finite.

Let RAψ be the deterministic Rabin word automata for LTL formula ψ. RAψ

contains a path split if there exist a state q in the automaton where (1) there are
two outgoing edges labeled with (s, p) and (s′, p′) where s �= s′ and p �= p′, and
(2) from q we can build accepting runs visiting q infinitely often and containing
exclusively the (s, p)-edge or (s′, p′)-edge.

Theorem 7. An LTL formula ψ over variables S × Ce admits finite external
paths if and only if the automaton RAψ has no path split.

7 Experimental Results

We have carried out our experiments on a 2.6 GHz Opteron system. For solving
the QBF instances, we used a combination of the QBF preprocessor Bloqqer [17]
in version 031 and the QBF solver DepQBF [18] in version 1.0. For solving the
WS1S instances, we used Mona [16] in version 1.4-15.

Table 1 demonstrates that the Byzantine Generals’ Problem remains, despite
the optimizations described above, a nontrivial combinatorial problem: we need

90 B. Finkbeiner and L. Tentrup

to find a suitable set of paths for every possible combination of the strategies
of the generals. The bound given in the first column reads as follows: The first
component is the number of branchings for the input variable v in all three
architectures. The last three components state the number of branchings for the
outputs of the faulty nodes in their respective architectures. For example, bound
(1, 1, 0, 0) means that we have two branches for v, c12, and c13, while we have only
one branch for c23 and c32. More precisely, starting from always zero functions
K1,K2,K3, the bound (1, 1, 0, 0) sets K1(v) = K2(v) = K3(v) = K1(c12) =
K1(c13) = 1 and K2(c23) = K3(c32) = 0. To prove the unrealizability, we need
one branching for the input v and one branching for every coordination variable
that serves as a shared variable for a faulty node, i.e., the bound (1, 1, 1, 1). The
number of branches and thereby the formula size grows exponentially with the
number of branchings for the input variables.

Table 1. Result of the Byzantine Generals’ Problem example

Bound Result #Clauses #Variables Memory (MB) Time (s)

(0, 0, 0, 0) Unsatisfiable 57 44 5.06 0.00
(1, 0, 0, 0) Unsatisfiable 228 143 5.71 0.05
(1, 1, 0, 0) Unsatisfiable 2286 1095 17.83 2.16
(1, 1, 1, 0) Unsatisfiable 2904 1375 18.41 2.42
(1, 1, 1, 1) Satisfiable 3522 1655 28.88 11.95

The table shows the time and memory consumption of Bloqqer 031 and De-
pQBF 1.0 when solving the encoding of the Byzantine Generals’ Problem in
QBF with a fixed length of 3 unrollings.

The CAP Theorem for two nodes is encoded as the ECL∃ formula

∃{req1} � com1.∃{req1, chan2} � out1.∃{req2} � com2.∃{req2, chan1} � out2.
(� (chan1 = com1) → � ((out1 = out2) ∧ ((req1 ∨ req2) ↔ �2 (out1 ∨ out2)))) ∧
(� (chan2 = com2) → � ((out1 = out2) ∧ ((req1 ∨ req2) ↔ �2 (out1 ∨ out2)))) .

The architecture is similar to Fig. 1(a) with the difference that there is a direct
communication channel between the two processes (chan1, chan2). The formula
states that the system should be available and consistent despite an failure of
one process. Table 2 shows that our method is able to find conflicts in a speci-
fication with an architecture up to 50 nodes within reasonable time. When we
drop either Consistency, Availability, or Partition tolerance, the corresponding
instances (AP, CP, and CA) become satisfiable. Hence, our tool does not find
counterexamples in these cases.

Discussion. We evaluate the different encodings that we have used in the fol-
lowing. There does not exist an algorithm that decides whether a given ECL∃
formula is unsatisfiable. We used a sound approach where we bound the number
of paths and encoded the problem in QPTL. The reason for incompleteness was

Detecting Unrealizable Specifications of Distributed Systems 91

Table 2. Result of the CAP Theorem example

Instance Result #Clauses #Variables Memory (MB) Time (s)

ap 2 Unsatisfiable 1232 619 9.22 0.29
ca 2 Unsatisfiable 1408 763 12.47 0.87
cp 2 Unsatisfiable 48 42 5.05 0.00
cap 2 Satisfiable 110 84 5.05 0.00
cap 5 Satisfiable 665 426 5.06 0.05
cap 10 Satisfiable 2590 1556 6.49 0.35
cap 25 Satisfiable 15865 9146 35.47 2.83
cap 50 Satisfiable 62990 35796 87.84 44.03

The table shows the time and memory consumption of Bloqqer 031 and
DepQBF 1.0 when solving the encoding of the CAP Theorem in QBF
with a fixed length of 2 unrollings.

shown in Sec. 6; in some cases one may need infinite many paths to show unsatis-
fiability. Our encoding in WS1S (Mona) loses the ability to find counterexample
paths of infinite length, e.g., the ECL∃ formula ∃∅ � y.�� (� y ↔ x) with free
coordination variable x is unsatisfiable where two paths that are infinitely of-
ten different are sufficient to prove it. The QPTL encoding is capable of finding
these paths while the WS1S encoding is not. However, Mona could not solve any
satisfiable instance given in Tables 1 and 2. Lastly, for the translation in QBF we
do not only restrict ourself to paths of finite length (WS1S), but we also bound
the paths to length k where k is an additional parameter. With this encoding
we approximate the reactive behavior of our system by a finite prefix. It turned
out that despite of this restriction we could prove unsatisfiability for many in-
teresting specifications. In practice, one would first use the QBF abstraction in
order to find “cheap” counterexamples. After hitting the number of paths that
the QBF solver can no longer handle within reasonable time, one proceeds with
more costly abstractions like the WS1S encoding.

8 Conclusion

We introduced counterexamples for distributed realizability and showed how to
automatically derive counterexamples from given specifications in ECL∃. We
used encodings in QPTL, WS1S, and QBF. Our experiments showed that the
QBF encoding was the most efficient. Even problems with high combinatorial
complexity, such as the Byzantine Generals’ Problem, are handled automati-
cally. Given that QBF solvers are likely to improve in the future, even larger
instances should become tractable. Possible future directions include building a
set of benchmarks, evaluating more solvers, and use the information about an
counterexample given by QBF certification [19] to build counterexamples for the
specification. As the bound given for the encoding is not uniform, i.e., there is a
bound for each coordination variable, and the observation that the performance
depend on the chosen bound, it is crucial to find suitable heuristics that rank the
importance of the coordination variables. Also, more types of failures could be

92 B. Finkbeiner and L. Tentrup

incorporated into our model, e.g., variations of the failure duration like transient,
or intermittent. Lastly, it would be also conceivable to use similar methods to
derive a larger class of infinite counterexamples.

References

1. Lamport, L., Shostak, R.E., Pease, M.C.: The byzantine generals problem. ACM
Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

2. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:
Proc. FOCS 1990, pp. 746–757 (1990)

3. Kupferman, O., Vardi, M.Y.: Synthesizing distributed systems. In: LICS, pp. 389–
398. IEEE Computer Society (2001)

4. Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: LICS, pp. 321–330.
IEEE Computer Society (2005)

5. Finkbeiner, B., Schewe, S.: Bounded synthesis. International Journal on Software
Tools for Technology Transfer 15(5-6), 519–539 (2013)

6. Brewer, E.A.: Towards robust distributed systems (abstract). In: PODC, p. 7.
ACM (2000)

7. Church, A.: Logic, arithmetic and automata. In: Proc. 1962 Intl. Congr. Math.,
Upsala, pp. 23–25 (1963)

8. Abadi, M., Lamport, L., Wolper, P.: Realizable and unrealizable specifications of
reactive systems. In: Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M.
(eds.) ICALP 1989. LNCS, vol. 372, pp. 1–17. Springer, Heidelberg (1989)

9. Kupferman, O., Vardi, M.Y.: Synthesis with incomplete information. In: Proc. of
ICTL (1997)

10. Raman, V., Kress-Gazit, H.: Analyzing unsynthesizable specifications for high-
level robot behavior using LTLMoP. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 663–668. Springer, Heidelberg (2011)

11. Li, W., Dworkin, L., Seshia, S.A.: Mining assumptions for synthesis. In: MEM-
OCODE, pp. 43–50. IEEE (2011)

12. Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Environment assumptions for syn-
thesis. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201,
pp. 147–161. Springer, Heidelberg (2008)

13. Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in a distributed
environment. In: PODC, pp. 50–61. ACM (1984)

14. Dimitrova, R., Finkbeiner, B.: Synthesis of fault-tolerant distributed systems. In:
Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 321–336. Springer,
Heidelberg (2009)

15. Finkbeiner, B., Schewe, S.: Coordination logic. In: Dawar, A., Veith, H. (eds.) CSL
2010. LNCS, vol. 6247, pp. 305–319. Springer, Heidelberg (2010)

16. Henriksen, J.G., Jensen, J.L., Jørgensen, M.E., Klarlund, N., Paige, R., Rauhe,
T., Sandholm, A.: Mona: Monadic second-order logic in practice. In: Brinksma,
E., Steffen, B., Cleaveland, W.R., Larsen, K.G., Margaria, T. (eds.) TACAS 1995.
LNCS, vol. 1019, pp. 89–110. Springer, Heidelberg (1995)

17. Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Bjørner,
N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 101–115.
Springer, Heidelberg (2011)

18. Lonsing, F., Biere, A.: DepQBF: A dependency-aware QBF solver. JSAT 7(2-3),
71–76 (2010)

19. Balabanov, V., Jiang, J.H.R.: Unified QBF certification and its applications. For-
mal Methods in System Design 41(1), 45–65 (2012)

	Detecting Unrealizable Specificationsof Distributed Systems
	1 Introduction
	2 Distributed Realizability
	3 Counterexamples to Distributed Realizability
	4 FromECL∃ to QPTL
	5 FromQPTLtoQBF
	6 Completeness
	7 Experimental Results
	8 Conclusion
	References

