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The investigation of cavitation in metastable liquids with molecular simulations requires an appro-
priate definition of the volume of the vapour bubble forming within the metastable liquid phase.
Commonly used approaches for bubble detection exhibit two significant flaws: first, when applied to
water they often identify the voids within the hydrogen bond network as bubbles thus masking the
signature of emerging bubbles and, second, they lack thermodynamic consistency. Here, we present
two grid-based methods, the M-method and the V-method, to detect bubbles in metastable water
specifically designed to address these shortcomings. The M-method incorporates information about
neighbouring grid cells to distinguish between liquid- and vapour-like cells, which allows for a very
sensitive detection of small bubbles and high spatial resolution of the detected bubbles. The V-method
is calibrated such that its estimates for the bubble volume correspond to the average change in system
volume and are thus thermodynamically consistent. Both methods are computationally inexpensive
such that they can be used in molecular dynamics and Monte Carlo simulations of cavitation. We
illustrate them by computing the free energy barrier and the size of the critical bubble for cavitation
in water at negative pressure. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4896216]

I. INTRODUCTION

By super-heating a liquid beyond the liquid–vapour co-
existence temperature or reducing its pressure below the
saturated vapour pressure, the liquid becomes metastable
and eventually transforms into the thermodynamically stable
vapour phase via a bubble nucleation mechanism. Remark-
ably, in the case of water, strongly negative pressures can be
reached experimentally before the liquid “breaks” under the
mechanical tension and cavitation occurs, which has impor-
tant implications for biological processes like water transport
in trees1–3 and the sonocrystallization of ice.4, 5 Since bub-
ble nucleation takes place at the nanoscale, observing it di-
rectly in experiments is very difficult. Thus, apart from the
nucleation rate, little information can be obtained from ex-
periments. Numerical simulations provide a complementary
technique to investigate the microscopic details of bubble nu-
cleation such as the size and shape of the critical bubble and
the structure of the liquid around it.

In order to describe the nucleation process, one requires
an adequate order parameter to track the phase transition
mechanism, i.e., to detect the formation and growth of a bub-
ble. Homogeneous bubble nucleation (or cavitation) from an
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addresses: christoph.dellago@univie.ac.at and cvaleriani@quim.ucm.es

super-heated fluid has been recently studied in simple liquids
(Lennard-Jones) using either the volume of the largest bub-
ble as a local order parameter6–8 or the density as a global
one.9 In recent work, Meadley and Escobedo10 demonstrated
that when comparing the nucleation free energy barrier ob-
tained with the volume of the largest bubble to the one com-
puted using the global density, the largest bubble volume is a
better reaction coordinate than the density; it correlates more
strongly with committor probabilities. Even though there is
a one-to-one relation between the two order parameters, the
authors showed that using a global order parameter can intro-
duce finite size effects as one observes the formation of mul-
tiple bubbles instead of capturing the formation of one single
critical nucleus.

In general, detecting vapour bubbles in a metastable liq-
uid is a challenging problem, since the vapour phase consists
both of “vapour-like” molecules and of “void” spaces. Thus,
to compute the volume of the largest bubble and use it as a
local order parameter, one needs to be able to identify vapour
regions in the metastable liquid, compute their volumes, and
select the largest one as the order parameter. This procedure
has been applied in Ref. 6, where homogeneous bubble nucle-
ation in a super-heated Lennard-Jones fluid was studied using
forward flux sampling, and the largest connected low-density
region was used as a local order parameter. The low-density
region was defined by means of a “grid-based” procedure:
(1) liquid and vapour-like particles were classified using the

0021-9606/2014/141(18)/18C511/13/$30.00 © 2014 AIP Publishing LLC141, 18C511-1
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first-neighbours distribution and, (2) a three-dimensional grid
was superimposed on the system, and (3) a cluster analysis
was performed on the void space, identifying the bubble with
the largest volume as the local order parameter.

Simulations of bubble nucleation in water are scarce.
A qualitative picture of bubble formation in strongly super-
heated water was provided in Ref. 11, and, more recently, a
detailed analysis of bubble formation in water under tension
was carried out in Ref. 12. In the latter, some of us have re-
cently shown that a valid alternative to a grid-based procedure
consists in employing a Voronoi-based analysis to detect the
largest bubble. However, the main drawback of this approach
is that performing a Voronoi tessellation is a CPU-time con-
suming task. In addition, most of the available open-source
Voronoi packages, as far as we have experienced, are not tai-
lored to target the task of detecting bubbles since the topo-
logical distance involves a different set of neighbours than the
geometrical one (distant molecules can share a Voronoi-face,
thus being Voronoi-neighbours even though they are far away
from each other).

In general, an order parameter to detect bubbles in wa-
ter should meet the following criteria. (1) The order parame-
ter should be local. When studying a nucleation process, the
use of a local order parameter allows to detect and follow the
growing nucleus instead of the variation of a global property
of the system. This is a prerequisite when studying nucleation
in a large system, where fluctuations can overshadow the sig-
nature of the nucleus when observables are averaged over the
entire system, and it allows to obtain structural information
about the nucleus and the surrounding liquid. (2) The order
parameter should not impose a specific shape on the detected
bubble, which is of particular importance when the order pa-
rameter is used in a free energy computation method such as
umbrella sampling, where the measured free energy barrier
height would be altered by excluding certain cluster shapes
from the sampling. (3) The order parameter should measure
the “true” volume of a bubble. In the same way we can mea-
sure the volume of macroscopic objects by the amount of liq-
uid they displace when immersed in a liquid, the volume of a
bubble detected by a local order parameter should be equiv-
alent to the average change in volume of the system between
the metastable liquid and a system containing such a bubble.
An order parameter calibrated in this fashion yields, up to dis-
cretization errors, a thermodynamically consistent volume es-
timate, which allows for direct comparison to experimental
data. (4) Since the order parameter has to be evaluated hun-
dreds of thousands of times during a typical simulation run, it
should be computationally inexpensive.

In what follows, building on the method introduced in
Ref. 6, we propose two novel grid-based methods tailored to
work for a network-forming liquid such as water. We will an-
alyze these order parameters with respect to the criteria listed
above and present physical features of the nucleation process,
in particular the size of the critical cluster and the free energy
barrier height for different degrees of metastability.

The rest of the paper is organized as follows. After giv-
ing simulation details in Sec. II, we describe the techniques
we used to study spontaneous nucleation and the case when
nucleation cannot happen spontaneously on timescales acces-

sible to computer simulation because the free energy barrier
is too high. In Sec. III we present the two different grid-
based methods to identify the volume of the largest bubble in
metastable water: the V-method and the M-method. To con-
clude, in Sec. IV we report a quantitative comparison of the
results obtained when computing the order parameter with
both methods in the study of spontaneous as well as non-
spontaneous nucleation. We discuss our results in Sec. V.

II. SIMULATION DETAILS

A. Molecular dynamics

We simulate metastable water using the rigid non-
polarizable TIP4P/2005 model13 which has been shown to
predict a number of water properties with great accuracy.14

Relevant to this work are the accurate predictions for the
vapour–liquid equilibrium15, 16 and the liquid–vapour surface
tension.17 We perform NpT molecular dynamics (MD) simu-
lations either using an in-house code, based on the code pre-
viously used in Ref. 18, or GROMACS.19

When using the home-made code, we simulate a sys-
tem of N = 2000 water molecules. We integrate the equa-
tions of motion with a time step of 2 fs using a time-reversible
quaternion-based integrator that maintains the rigid geom-
etry of water molecules. In particular, we carry out NpT-
MD using a slightly modified version of the Verlet inte-
grator proposed by Kamberaj et al.,20 based on the Trot-
ter decomposition schemes applied by Miller et al.21 and
Martyna et al.22 In this algorithm, the coupling to the sur-
rounding heat bath is implemented through thermostat chains
based on the Nosé–Hoover23, 24 approach with an inverse fre-
quency of 1 ps. Constant pressure is ensured by coupling
a barostat based on the Andersen approach25 to the heat
bath with a relaxation time of 3 ps, which is approximately
equal to the time a sound wave takes to traverse the simula-
tion box.26, 52 Long-range interactions are treated with Ewald
summation.

When using the GROMACS package, we simulate a
system of N = 500 (when nucleation is spontaneous) or N

= 4000 (when nucleation is not spontaneous) water molecules
in an NpT ensemble with a time step of 1 fs. The temper-
ature is kept fixed using the velocity rescaling thermostat27

with 1 ps (spontaneous nucleation) or 0.2 ps (non-spontaneous
nucleation) relaxation time and the pressure is set with
the isotropic Parrinello–Rahman barostat28 with a relax-
ation time of 2 ps (spontaneous nucleation) or 0.2 ps (non-
spontaneous nucleation). We constrain the geometry of the
water molecules with the SHAKE algorithm.29 Long-range
electrostatic interactions are treated using the smooth particle
mesh-Ewald method.30

B. Nucleation rates and barriers

When we over-stretch liquid water, bubbles start appear-
ing and disappearing at random in the system. Only when one
of them overcomes a critical threshold, the entire system can
cavitate. This corresponds to the system having to cross a
nucleation free energy barrier, whose height depends on the
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supersaturation (or amount of over-stretching). For low bar-
riers, i.e., high supersaturation, cavitation can be observed
spontaneously on the time-scales accessible to molecular
dynamics simulations. For high barriers, i.e., low supersat-
uration, the time until cavitation occurs spontaneously is
prohibitively long and thus one has to resort to rare event sam-
pling techniques such as umbrella sampling.

1. When nucleation is spontaneous
at the simulation timescale

In order to determine nucleation rates we apply the mean
first passage time (MFPT) analysis31 using the volume of the
largest bubble as a local order parameter. If the barrier is high
enough to guarantee separation of timescales between relax-
ation in the metastable basin and the barrier crossing event,
the average time τ (Vbubble) it takes until the largest bubble has
a volume of Vbubble for the first time is31

τ (Vbubble) = (τJ /2){1 + erf[c(Vbubble − V ∗
bubble)]} . (1)

Here, erf(x) is the error function, V ∗
bubble is the size of the crit-

ical bubble, c is a constant derived from the local curvature
around the top of the free energy barrier and proportional to
the Zeldovich factor Z = cπ−1/2, and τ J is the nucleation time.
The average time τ J the system takes to leave the metastable
state and reach the point where the transition to the vapour
phase is committed to proceed is related to the nucleation rate
J via

J =
1

τJ 〈V 〉
, (2)

where 〈V 〉 is the average volume of the system in the
metastable liquid state.

The MFPT analysis is performed in the following fash-
ion: by averaging over 200 independent MD trajectories
which start from the metastable liquid and subsequently trans-
form into the vapour phase, we compute the average time
τ (Vbubble) it takes until the bubble reaches a volume Vbubble
for the first time. We then fit Eq. (1) to the data to obtain the
nucleation rate J, the Zeldovich factor Z, and the size of the
critical bubble V ∗

bubble.
As in Ref. 12, we study nucleation from metastable liquid

water above the spinodal line, at 280 K and p = −2250 bar
(the spinodal at negative pressure has been calculated in
Ref. 32 and corresponds to psp ≈ −2440 bar at T = 280 K).
It has been shown in Ref. 12 that, at these thermodynamic
conditions, the volume of the critical cluster is smaller than
1 nm3 so that a system size of N = 500 molecules can easily
accommodate a critical bubble.

2. When nucleation is not spontaneous
at the simulation timescale

In order to compute the nucleation free energy barrier as
a function of bubble volume we use two rare-events numerical
techniques:

(1) Umbrella sampling33 with a hybrid Monte Carlo
(HMC) scheme.34, 35 We employ a modified version of the
Miller integrator21 using a Liouville operator decomposition
according to Omelyan36 for the centre of mass equations of

motion. During each HMC move the velocities are drawn
from the appropriate Maxwell–Boltzmann distribution and
the system is propagated according to Newton’s equations
of motion, where constant pressure is achieved by isotropic
volume fluctuations according to the Metropolis criterion.37

Each HMC step consists of three MD integration steps with a
time step of 8 fs. Sampling was enhanced by replica exchange
moves38 between neighbouring windows and the histograms
for the individual windows were pieced together using a self
consistent histogram method.39

(2) A novel molecular dynamics umbrella sampling
(HMC-NpT) scheme. Here, the system is propagated via a se-
ries of short NpT molecular dynamics trajectories where the
resulting configurations are fed to a standard umbrella sam-
pling scheme. More details on this method will be given in
Ref. 40.

III. NUMERICAL METHODS

To study homogeneous bubble nucleation from over-
stretched metastable water we use the volume of the largest
bubble, Vbubble, as a local order parameter. We propose to de-
tect the largest bubble choosing one of two approaches: the
V-method or the M-method. Both methods, inspired by the
grid-based analysis of Ref. 6, are tailored to successfully work
in a network-forming liquid such as water.

The bubbles emerging in the metastable liquid dur-
ing cavitation are essentially voids with rare occurrences of
vapour-like molecules due to the low density of the vapour
phase. Since both methods are based on detecting cubes on
a three-dimensional grid which are not occupied by liquid-
like molecules, we require a criterion to distinguish between
liquid- and vapour-like molecules in order to identify bubbles
correctly.

We investigated the suitability of three possible criteria
in Appendix A: the ten Wolde–Frenkel (WF) criterion,41 the
hydrogen bond (HB) criterion,42 and a criterion based on the
tetrahedral order parameter of Refs. 43 and 44 (q criterion).
Our comparison shows that the WF and the HB criteria per-
form equally well, while the q criterion is not as well suited
to differentiate between liquid and vapour. In this paper, we
use the WF criterion in conjunction with the V-method and
the HB criterion with the M-method. We would like to stress
that one could use either of the two criteria with the M- or the
V-method.

In what follows, we will describe each method step by
step.

A. V-method for the volume of the largest bubble

Having classified all molecules as liquid or vapour-like,
we proceed as follows.

Step 1: We divide the entire simulation box into small

cubes of equal size by superimposing a three-dimensional grid
on the system. Since the total volume fluctuates in a simula-
tion at constant pressure, the cube volume varies with the size
of the simulation box. In order to determine “occupied” cubes
we assume that each liquid water molecule occupies a sphere
with a radius rS corresponding to the first minimum in the ra-
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dial distribution function around its centre of mass. Then we
iterate over all cubes in the box and any cube whose center is
inside the sphere of a liquid-like water molecule is considered
to be occupied, hence, it is not part of a bubble.

Step 2: We assign unoccupied cubes to clusters such that
a cube and all its face-sharing neighbours are part of the same
cluster. Each of the clusters obtained in this fashion consti-
tutes a bubble and its volume v is the total volume of the
cubes which belong to the cluster. Even though the method
introduces some lattice discretisation errors by construction,
we assume these errors to be negligible in view of the approx-
imation of water molecules as spheres and the high spatial
resolution of the grid.

Step 3: Even though a method incorporating only the
first two steps can be used to describe bubble formation in the
metastable liquid by employing the volume of the largest clus-
ter as the order parameter, the definition of the bubble volume
is somewhat arbitrary as it depends on the choice of the grid
mesh and the radius of the exclusion spheres, which largely
determines the “volume” of the water molecules forming the
interface. Since the volume of the critical bubble V ∗

bubble is a
property of great interest, which is related to the height of
the free energy barrier via the nucleation theorem45 and thus
provides a connection to experimental data,46 our aim is to
develop an order parameter whose estimate of the bubble vol-
ume depends as little as possible on the choice of arbitrary
properties like rS or the grid resolution.

In analogy to the macroscopic realm, a reasonable def-
inition of the volume of a nanoscale object47 is to equate its
volume to the volume of the liquid it displaces, i.e., we equate

the volume of a bubble to the increase in system volume it
causes. While for a macroscopic object the effect of density
fluctuations of the liquid on such a volume estimate is negli-
gible, for small systems density fluctuations can influence the
estimated volume considerably. However, one can still require
from the definition of the bubble volume that it corresponds
to the increase in system volume on the average. In the fol-
lowing we explain how to calibrate the bubble volume such
that this requirement is obeyed.

1. Calibration of the bubble volume in the V-method

The thermodynamically consistent bubble volume
V V

bubble(v) is evaluated by computing the partial derivative
of the average system volume with respect to the number of
bubbles of size v,

V V
bubble(v) =

∂

∂n
〈V 〉n(v). (3)

Above, the superscript V indicates that V V
bubble is the estimate

obtained by the V-method. Here, 〈V 〉n(v) is given by

〈V 〉n(v) =
1

Q

∫

V e−β[H (rN )+pV ]δ[n(v, rN ) − n]drNdV,

where n(v, rN ) is the number of bubbles of size v in
a given configuration and Q =

∫

e−β[H (rN )+pV ]δ[n(v, rN )
− n]drNdV is the reduced partition function. Thus, 〈V 〉n(v)
is the average volume of the system under the condition that
the configuration contains exactly n bubbles of size v without

any restriction on the number of bubbles with other volumes.
The definition (3) quantifies the increase in average system
volume if a bubble of size v is added to the system.

For large bubbles, where it is unlikely that multiple such
bubbles or any larger bubbles occur in an equilibrium config-
uration, the partial derivative in Eq. (3) is simply the differ-
ence between the average volume 〈V 〉v of a system contain-
ing a largest bubble of size v and the average volume 〈V 〉 of
the metastable liquid (taken at the given thermodynamic state
point excluding the stable vapour phase):

V V
bubble(v) = 〈V 〉v − 〈V 〉, (4)

where 〈V 〉v = Q−1
∫

V e−β[H (rN )+pV ]δ[v(rN ) − v]drN dV

with the appropriate reduced partition function Q.
Although this order parameter has its roots in the average

change of the total system volume due to the presence of the
bubble, we stress that it is still a local order parameter which
does not impose any particular shape on the bubble, thus ful-
filling the requirements 1 and 2 stated in the Introduction.

We compute V V
bubble in different ways for small and large

v. Small bubbles form spontaneously in the metastable liq-
uid. In this regime, we compute the average system volume
as a function of the number n(v) of bubbles of size v in
a straightforward MD simulation. This calculation yields a
linear dependence of system volume on the number of bub-
bles as shown in Fig. 1. Data points depicted in the inset of
Fig. 1 are the partial derivatives ∂〈V 〉n(v)/∂n from Eq. (3),
i.e., the average increase in system volume due to the pres-
ence of one bubble of size v. In the second regime, i.e., for
large bubbles, where it is unlikely that more than one cluster
of volume v is present in the system, 〈V 〉v is obtained by av-
eraging the system volume within each window, defined as a
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FIG. 1. Average system volume 〈V 〉
n(v) as a function of the number n(v) of

bubbles with volume v for spontaneously forming small bubbles. The data
sets indicated by different colors are computed for average v-values of 0.95,
1.89, 2.84, 3.77, 4.73, 5.68 Å3 from bottom to top. Lines are linear fits to
the data and error bars indicate σ/

√
N , where σ is the standard deviation

and N is the number of samples (only points with N > 50 were used for
fitting). All data were obtained from simulations in the isobaric–isothermal
ensemble at T = 325.0 K and p = −1500 bar. The average volume of the
metastable liquid at these conditions is 〈V 〉 = 66.55 nm3. Inset: V V

bubble ob-
tained from the slope of the fits in the main plot. Symbols indicate the cor-
responding data in the main plot, where the data indicated by red circles are
omitted for clarity. The v-values shown are averages; fluctuations are smaller
than symbol size. The black line represents the fit to V V

bubble according to
Eq. (5) over the entire v-range depicted in Fig. 2.
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FIG. 2. V V
bubble as a function of the volume v of vapour-like cubes. Each

data point (except for the ones shown in the inset of Fig. 1) represents an
average over a window in an umbrella sampling simulation according to
Eq. (4). The black line shows the fit to the data by the use of Eq. (5). All
data were obtained from simulations in the isobaric–isothermal ensemble at
T = 325.0 K and p = −1500 bar.

range of v-values for the volume of the largest bubble, of a
HMC-umbrella sampling calculation. Results of these calcu-
lations are shown in Fig. 2.

In order to calibrate the V-method such that the grid-
based estimate for the bubble volume is mapped onto the av-
erage change in system volume caused by a bubble of volume
v we use a fit to the data shown in Fig. 2. Note that the func-
tional form of the fit is arbitrary and does not assume that the
bubble has a particular geometrical shape; in cases where one
finds no suitable functional form, simple numerical interpo-
lation of the data could be used. Here, we find that a fitting
function of the form

V V
bubble(v) ≈ v + k1v

2/3 + k2v
1/3, (5)

where k1 ≈ 1.17 nm and k2 ≈ 0.37 nm2 at T = 325.0 K and p

= −1500 bar, works very well (indicated by the black line in
the figures). This fitting function can be viewed as depending
on the cluster “surface” (proportional to v2/3) and on a term
that takes into account the average “curvature” of the cluster
(proportional to v1/3).53

Therefore, we calibrate our estimate for the bubble vol-
ume by mapping the volume v (measured in simulation by
summing over the unoccupied cubes forming the cluster) onto
the corresponding average change in system volume V V

bubble
caused by a bubble of size v. This calibration depends on the
thermodynamic state and as such, it has to be performed for
each state point. However, we would like to point out that
the procedure is simple and there are no additional simula-
tions necessary to map v onto V V

bubble. Due to this calibration
procedure used to approximate the average change in system
volume created by the bubble, the V-method is compatible
with requirement 3. Moreover, as we show in Appendix C, the
V-method is also computationally inexpensive and as such
obeys requirement 4.

In order to achieve high spatial resolution, we ensure that
the volume of each cube on the grid is less than 0.5 Å3 for the
metastable liquid leading to the choice of 523 cubes for a sys-
tem of N = 2000 water molecules. We choose the Stillinger

radius rS = 3.35 Å as the radius for the exclusion spheres.
This choice is a compromise between the ability to detect the
formation of small bubbles and minimising the occurrence of
misassigned liquid-like cubes in the metastable liquid.

B. M-method for the volume of the largest bubble

Having classified all molecules as liquid or vapour-like,
we proceed as follows.

Step 1: As in the V-method and in Ref. 6, we superim-

pose a three-dimensional grid on our system and assign each
cell on the grid to be either vapour or liquid-like depending on
the molecules occupying the cell. To do this, we consider the
oxygen’s Lennard-Jones diameter σ = 3.1589 Å13 to be each
molecule’s exclusion sphere: If the center of a cell is under an
exclusion sphere, it will be labeled as either liquid- or vapour-
like, according to the type of the molecule. When a cell con-
tains more than one type of molecules, for instance a liquid-
and a vapour-like molecule, it will be labelled as liquid-like.

Once we have classified all cells touched by molecules,
we are left with labelling cells which do not clearly belong to
any molecule: so called “empty cells.” These appear when the
size of the grid cells is comparable to the particle’s diameter
(see Appendix B 2). To classify the empty cells as liquid or
vapour-like, we analyse both their first and second neighbour
cells. If the number of face-sharing empty/vapour first neigh-
bour cells is at least 7, then we analyze the number of face-
sharing empty/vapour second neighbour cells: if they also are
at least 7, the empty cell is identified as vapour-like. This pro-
cedure allows to avoid considering the typical small “cavities”
characterizing a network-forming liquid as vapour-like cells.

Care should be taken when choosing the mesh size of the
grid, which is defined as � = L/δ, where L is the box edge
and δ the number of cells per edge. δ is a constant, therefore
the volume �3 of the grid cells fluctuates with the simula-
tion box in a simulation at constant pressure. For all system
sizes studied here, we set � to be about half of the oxygen di-
ameter, which is significantly smaller than the value of about
1.5σ chosen in Ref. 6. When choosing the proper value of �,
we aim to get a good balance between determining the vol-
ume of the bubble with good accuracy and avoiding to create
small cells not easily assignable as liquid or vapour-like (see
Appendices B 1 and B 3): in our study, we set � = L/19 for a
system of N = 500 molecules.

Step 2: Once we have allocated all cells of the grid, we

cluster vapour-like cells into bubbles and identify the bubble

with the largest volume as the local order parameter, V M
bubble,

where the superscript “M” indicates the M-method. A typ-
ical bubble obtained with the M-method is represented in
Figure 3.

By construction, the M-method satisfies the requirements
1 and 2 stated in the Introduction. It is also computationally
efficient, thus fulfilling requirement 4 (see Appendix C).

IV. RESULTS

In this section, we first use the two methods introduced
(V V

bubble and V M
bubble) to analyze trajectories of water at ambient
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FIG. 3. Typical post-critical bubble obtained with the M-method. The purple
spheres represent the vapour-like cells of the grid. We find that the detected
bubbles are roughly spherical for the various degrees of metastability inves-
tigated in this work, both for the V- and the M-method.

conditions and determine the distribution of bubble volumes.
Then, we study trajectories where spontaneous cavitation oc-
curs and compare the estimates for the volume of the largest
bubble obtained using both methods. For this case, we com-
pute the nucleation rate and elucidate nucleation properties
using the MFPT-formalism. After that, we choose a thermo-
dynamic state where nucleation is a rare event and compute
the nucleation free energy barrier as a function of bubble vol-
ume evaluated with both the V- and the M-method and corre-
late both nucleation free energy barriers.

A. Water at ambient conditions

Liquid water exhibits an open structure due to its ten-
dency to form a hydrogen-bond network. The resulting voids
in the liquid can pose a challenge to order parameters for bub-
ble nucleation: if the parameters of the method are ill chosen,
these voids can be detected as system-spanning bubbles which
mask the emergence of “true” bubbles, for instance, transition
states from the liquid to the vapour.

In principle, this can be easily avoided by tuning the pa-
rameters of the respective order parameters, namely, the mesh
point density and the radius of the exclusion spheres, such
that the detection of vapour in the liquid phase becomes ex-
tremely unlikely. However, unless done carefully, this comes
at the price of a decreased spatial resolution (including a sig-
nificant increase in the size of the smallest bubble that can
be detected by the order parameter) and as such our choices
for the parameters represent a compromise between avoiding
the detection of system-spanning bubbles and obtaining good
spatial resolution.

In order to assess how the V- and the M-method per-
form in liquid water, we analyze molecular dynamics trajec-
tories of liquid water at ambient conditions. Our results are
shown in Fig. 4, where the average frequency of occurrence
〈n(Vbubble)〉/〈V 〉 is the average number of times a bubble with
a volume between Vbubble and Vbubble + dV occurs per config-
uration per unit volume over the course of a trajectory.

Based upon these data, we conclude that the detected
bubbles are both rare and of very small size, which indicates
that the voids in the network-forming liquid are not detected
as system-spanning bubbles for the chosen parameters of the
respective methods. If one divided the systems into parts with
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FIG. 4. Frequency of occurrence 〈n(Vbubble)〉/〈V 〉 of bubbles of volume
Vbubble at ambient conditions. The width of each histogram bin is dV

= 0.012 nm3. The inset shows 〈n(Vbubble)〉/〈V 〉 on a logarithmic scale. The
histograms were obtained from an unbiased molecular dynamics simulation
at 298 K and 1 bar.

a volume of 1 nm3 each, at ambient conditions one would find
a bubble roughly in one of 180 such cubes when using the
M-method (due to its very accurate classification of vapour-
and liquid-like cells) and in one of 50 cubes when using
the V-method. The typical volume of the smallest bubble de-
tected is 0.017 nm3 for the M-method and 0.035 nm3 for the
V-method,54 comparable to the average volume occupied by
a water molecule at ambient conditions (∼0.03 nm3).

B. Comparing the V- and M-methods to detect
the volume of the largest bubble

We now consider 200 independent trajectories of spon-
taneous nucleation in over-stretched water at T = 280 K and
p = −2250 bar and evaluate the volume of the largest bubble
with both the V- and M-methods. In Figure 5 we show V M

bubble
versus V V

bubble.
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FIG. 5. Largest bubble volume estimates using the M-method (on the y-
axis) and the V-method (on the x-axis). The color of each point encodes
the probability P (V M

bubble|V
V
bubble) of finding V M

bubble ± 0.01 nm3 given a value
of V V

bubble ± 0.01 nm3. The dotted line shows the average volume estimate
〈V M

bubble(V V
bubble)〉, where green/pink dots correspond to precritical/postcritical

bubble volumes (with a critical volume of ∼0.7 nm3, see Table I). The solid
black line has a slope of one and is a guide to the eye. The fit parameters for
the V-method are k1 ≈ 0.99 nm and k2 ≈ 0.37 nm2 at these conditions (see
Eq. (5)).
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the same cavitating trajectory. The inset shows a zoom around t ∼ 2.60 ns.
Notice that the y-axis of the inset is on the right-hand side and the units are
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When comparing the M-method with the V-method, we
can distinguish two regimes connected by a crossover region.
When the largest bubble is small (�0.3 nm3), the volume esti-
mates obtained with the two methods are quite different. This
is because, by construction, the M-method avoids labelling
minute voids in the metastable liquid as bubbles whereas the
V-method detects small bubbles with a comparatively higher
frequency.

When the volume of the largest bubble exceeds this
regime, the two methods give more similar results, even
though the V-method yields larger volumes than the M-
method on average. The mean value of V M

bubble at a given value
of V V

bubble (shown as the dotted line in Fig. 5) does not change
its shape when passing the critical regime (indicated by the
change from green to pink dots) which implies that bubbles
on both sides of the free energy barrier have similar structural
properties.

For large bubbles (V V
bubble � 3 nm3, not shown), the ratio

between the average volume estimates obtained by the two
methods approaches 〈V M

bubble〉/V V
bubble ≃ 0.8, which allows for

an easy conversion between the volume estimates of both
methods for large bubbles.

In Fig. 6 we now focus on the time evolution of the vol-
ume of the largest bubble during a cavitation trajectory (one of
those shown in Fig. 5). While the overall shape of the curves
is similar, the volume estimate given by the M-method ex-
hibits fluctuations with a higher frequency than the V-method.
As shown in the inset of Fig. 6, both methods are able to
detect “almost-critical” Vbubble fluctuations, i.e., the growth
and shrinking of the largest bubble around its critical size of
∼0.7 nm3 (Table I). In what follows we will study the effect of
the two order parameters on the obtained values of nucleation
properties.

C. Spontaneous bubble nucleation
in over-stretched water

We first study over-stretched water at thermodynamic
conditions where bubble nucleation happens spontaneously

TABLE I. Nucleation time τ
J

(ns), Zeldovich factor Z (nm−3), critical vol-
ume V ∗

bubble (nm3), and nucleation rate J (1028 cm−3 s−1) at T = 280 K and
p = −2250 bar using different methods to identify the largest bubble. The
average volume of the metastable liquid is 〈V 〉 = 17.23 nm3.

Method τ
J

Z V ∗
bubble J

Wang6 1.88 4.93 0.11 3.09
Voronoi12 1.87 1.48 0.74 3.10
M-method 1.87 1.23 0.74 3.10
V-method 1.85 1.66 0.72 3.13

in the simulation. In particular, we investigate water bubble
nucleation at T = 280 K and p = −2250 bar as in Ref. 12.
For 200 MD trajectories, along which spontaneous cavitation
occurs, we compute the volume of the largest bubble and use
it as a local order parameter to follow the nucleation mecha-
nism. By means of the MFPT-formalism we compute the nu-
cleation rate, J, and the critical volume, V ∗

bubble. In order to
determine the volume of the largest bubble, we use several
approaches: the M- and V-methods proposed in this work as
well as the approaches used in Ref. 6 (which uses the WF
criterion to distinguish between liquid/vapour molecules) and
Ref. 12 (based on the Voronoi tessellation). In the latter al-
gorithm, the bubbles were detected by tracking down interfa-
cial molecules; therefore the volume of those molecules was
implicitly included in the final volume of the bubble. Since
neither the M-method nor the V-method, by construction, in-
cludes the interfacial molecules of the largest bubble as a part
of the bubble, when representing the results from Ref. 12 we
have re-computed the MFPT removing the volume of the in-
terfacial molecules.

The calculated values for τ (Vbubble) are presented in
Fig. 7. The steepest MFPT curve is obtained with the method
of Ref. 6. This method fails to detect small bubbles and
severely underestimates the volume of bubbles before the
system cavitates, thus underestimating the size of the criti-
cal volume. Interestingly, the MFPT curves obtained with the
M-method, the Voronoi-based method of Ref. 12 (removing
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FIG. 7. Mean first-passage time of the largest bubble at T = 280 K and
p = −2250 bar using the order parameters indicated in the legend. The sym-
bols are simulation data and the lines are fits to Eq. (1).
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the interfacial molecules) and the V-method have very simi-
lar shapes. These three methods allow to identify very small
bubbles (as shown by their smooth MFPT curve) and show
the inflection points and plateaus at essentially the same val-
ues. From the MFPT curves in Fig. 7 we calculate nucleation
properties such as τ J, J, Z, and V ∗

bubble
31, 48 (see Eq. (1)), as

reported in Table I.
Notice that the nucleation times τ J are independent of

the method used to identify the largest bubble. Since the
nucleation rate only depends on τ J, the nucleation rate is
independent of the method chosen to evaluate the size of the
largest bubble.

However, when comparing the Zeldovich factors and the
critical bubble volumes V ∗

bubble provided by the algorithms, we
observe some differences because both quantities are sensi-
tive to the method used to evaluate the largest bubble volume.
The smallest value of V ∗

bubble is detected with the method used
in Ref. 6, which also gives the largest value for the Zeldovich
factor: this implies that the curvature of the free energy barrier
is larger than in the other cases. In contrast, the Voronoi-based
method from Ref. 12 (removing the interfacial molecules),
the M-method and the V-method give very similar values of
V ∗

bubble
55 and Z. This means that not only are the methods able

to detect the critical bubble with essentially the same volume,
but also that the curvature of the computed free energy barrier
is quite similar.

D. Non-spontaneous bubble nucleation
in over-stretched water

We now study over-stretched water at thermodynamic
conditions (T = 325 K and p = −1500 bar) where bubble nu-
cleation does not happen spontaneously within the time scales
accessible to straightforward molecular dynamics simulation.
On the one side, we identify the largest bubble volume with
the V-method and use umbrella sampling combined with hy-
brid Monte Carlo to compute the bubble nucleation free en-
ergy barrier. On the other side, we identify the largest bubble
volume with the M-method and compute the bubble nucle-
ation free energy barrier using HMC-NpT.40

To compute the free energy as a function of the vol-
ume Vbubble we proceed in the following way. First we carry
out a straightforward molecular dynamics simulation at neg-
ative pressure and compute 〈n(Vbubble)〉, the average number
of bubbles with volume in a narrow interval [Vbubble, Vbubble
+ �Vbubble]. This simulation will yield 〈n(Vbubble)〉 in the
range of volumes that are accessible on the time scale
of the simulation. To compute the average bubble number
〈n(Vbubble)〉 for larger volumes Vbubble, we carry out umbrella
sampling simulations with a bias on the volume of the largest
bubble. The average bubble numbers obtained in such biased
simulations are then conjoined with the result of the straight-
forward molecular dynamics simulation, yielding the average
bubble number 〈n(Vbubble)〉 over a wide range of bubble vol-
umes extending beyond the critical volume.

For large bubble volumes, the probability to find
more than one bubble of a given volume at the same
time becomes negligible. Accordingly, in this regime, the
probability P (Vbubble) �Vbubble to find a bubble with vol-

ume in the interval [Vbubble, Vbubble + �Vbubble] is given by
P (Vbubble) �Vbubble = 〈n(Vbubble)〉. Note that the probability
density P (Vbubble) defined in this way is independent of the
interval width �Vbubble used for the calculation of the average
bubble number 〈n(Vbubble)〉. At negative pressures, the prob-
ability density P (Vbubble) has a minimum at V ∗

bubble, the criti-
cal bubble volume. According to classical nucleation theory,
the rate at which cavitation occurs in a system of total vol-
ume 〈V 〉 is proportional to the probability density P (V ∗

bubble)
of finding a bubble of critical volume V ∗

bubble in the system.
Hence, the nucleation rate, which quantifies the number of nu-
cleation events per unit time and unit volume, is proportional
to P (V ∗

bubble)/〈V 〉. It makes therefore sense to define the free
energy in a system of unit volume as

F (Vbubble) = −kBT ln

[

V 2
0 〈n(Vbubble)〉
〈V 〉�Vbubble

]

, (6)

where V0 is a constant determining the unit volume in which
the frequency of occurrence of bubbles is measured (in our
case, V0 = 1 nm3).

Then, F (V ∗
bubble) corresponds to the nucleation barrier

that needs to be crossed in order to form bubbles of super-
critical size.49 Note that this definition of the nucleation free
energy ensures that the nucleation barrier F (V ∗

bubble) reflects
the probability of critical bubbles and does not depend on the
probability distribution of small bubbles, which should not
affect the nucleation rate. The free energy F (Vbubble) obtained
using the M-method and the V-method is shown in Fig. 8.

The estimates for the free energy barrier heights obtained
using the M-method and the V-method, respectively, differ by
about 2 kBT, which constitutes reasonable agreement. At the
same time, the estimates for the critical volume at the top of
the barrier differ as one would expect: the critical volume ob-
tained using the V-method is 0.36 nm3(19%) larger than the
volume yielded by the M-method. These results are consis-
tent with our findings in the case of lower barriers, namely,
that on average the V-method gives higher estimates for the
bubble volumes than the M-method (see Fig. 5). Compared
to the predictions of classical nucleation theory, the obtained
values for the volume of the critical bubble are in reason-
able agreement (V ∗ CNT

bubble = 2.8 nm3) while classical nucleation
theory overestimates the height of the free energy barrier
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FIG. 8. Free energy F as a function of the bubble volume for the V- and
M-methods at T = 325 K and p = −1500 bar.
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(G* CNT = 43.6 kBT)50, 56 significantly, in agreement with pre-
vious simulation studies of nucleation (see, for instance,
Ref. 41).

V. DISCUSSION AND CONCLUSIONS

In this paper we present two accurate and efficient grid-
based methods to identify bubbles in a network-forming liq-
uid: the M-method and the V-method. While both methods
were built upon the grid-based approach in Ref. 6, they strive
to improve different aspects of the detection of bubbles in
water.

The M-method introduces an accurate approach to iden-
tify vapour-like cells in the liquid. In this method, cells are la-
beled as either liquid- or vapour-like using information about
nearest- and next-nearest neighbour cells in an effort to min-
imize the incorrect detection of small voids always present
in network-forming liquids. This implies that the method,
by taking into account additional neighbour shells, can be
tuned to achieve spatial resolutions that are not accessible to
straightforward grid-based approaches without wrongly de-
tecting percolation of voids in the metastable liquid.

The V-method, on the other hand, is focused on obtain-
ing a physically transparent volume estimate that is indepen-
dent of arbitrary parameter choices such as mesh resolution or
the radius of exclusion spheres. This is achieved by a calibra-
tion procedure that maps the bubble volume detected in the
simulation onto the average change in system volume caused
by bubbles of that size. Due to this calibration, the estimated
bubble volume is thermodynamically consistent and pVbubble
corresponds to the mechanical work associated with the for-
mation of the bubble. This calibration procedure can also be
used to improve other local order parameters when studying
nucleation.

Both the M-method and the V-method yield the volume
of the largest bubble, which can be used as a local order pa-
rameter. This allows one to directly track the evolution of
bubbles and analyze their properties in large systems where
a global order parameter would not be able to distinguish
the emergence of bubbles from fluctuations in the metastable
liquid. These order parameters achieve the goal of detecting
the volume and shape of bubbles in the liquid with high spa-
tial resolution without constraining the evolving bubbles to
a particular shape and are computationally inexpensive (see
Appendix C).

When simulating water at ambient conditions, both meth-
ods detect bubbles only rarely. Comparing the two meth-
ods, owing to the M-method’s extremely accurate detection
of vapour-like cells, the bubbles detected using the M-method
are even less frequent and the volume estimates for these bub-
bles are lower than in case of the V-method.

When comparing the nucleation properties obtained by
using either method, we find that both yield similar results.
Under conditions where cavitation occurs spontaneously in a
straightforward molecular dynamics simulation, the estimates
obtained for the volume of the critical cluster are in excel-
lent agreement between the two methods (see Table I). Under
these conditions, the estimates obtained by the methods also

agree very well with a Voronoi polyhedra analysis, which is a
very precise but computationally expensive method for bub-
ble detection.12

Closer to coexistence, when cavitation is extremely un-
likely on timescales accessible in simulation, we use umbrella
sampling to obtain an estimate for the free energy F (Vbubble)
as a function of bubble volume. Here, the estimate for the size
of the critical bubble obtained by using the V-method yields,
due to the volume calibration procedure, a larger value for the
critical cluster and a smaller curvature of the free energy bar-
rier than the M-method. However, the estimate for the height
of the free energy barrier, which largely determines the ex-
perimentally accessible cavitation rate, obtained by the two
methods is in good agreement. In the near future, we plan to
use the methods introduced here to perform a thorough study
of cavitation of water at negative pressure, evaluating the nu-
cleation rate at several thermodynamic conditions, analysing
the nucleation pathways, and characterising the properties of
the growing bubble.
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APPENDIX A: DISTINGUISHING BETWEEN LIQUID
AND VAPOUR-LIKE MOLECULES

In our paper, when using the V-method we have classified
liquid/vapour molecules with the ten Wolde–Frenkel (WF)
criterion,41 and when using the M-method with the hydrogen
bond (HB) criterion.42 In the following, we will demonstrate
that these criteria are suitable for the task of distinguishing be-
tween the liquid and the vapour phase of water. As a reference,
we also include an alternative criterion based on a tetrahedal
order parameter (the q criterion).

The WF criterion has been used by Wang et al.6 to study
cavitation in a super-heated Lennard-Jones fluid; it consists
of identifying each particle’s nearest neighbours using the
Stillinger radius rS (i.e., the first minimum of the radial distri-
bution function (RDF) as a fixed cutoff distance): for water,
we will only deal with the oxygen–oxygen RDF. Therefore,
a water molecule is defined as vapour-like if it has no neigh-
bours within its Stillinger radius.

The HB criterion is based on the number of donor
hydrogen-bonds per molecule.42

According to Ref. 42 (see Fig. 9), water molecule 1 do-
nates a hydrogen bond to molecule 2 if (1) the oxygen1–
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FIG. 9. Sketch of the hydrogen bond criterium from Ref. 42.

oxygen2 distance (rOO) is smaller than the first minimum of
the oxygen–oxygen RDF, (2) the hydrogen1–oxygen2 dis-
tance (rOH) between the closest hydrogen of the “donor”
molecule and the oxygen of the “acceptor” molecule is
smaller than the first minimum of the oxygen–hydrogen RDF,
and (3) the angle φ between the oxygen1–hydrogen1 vector
and the oxygen1–oxygen2 vector is smaller than 30◦.51 Only
if all three geometrical conditions are fulfilled, we consider
molecule 1 as donating a hydrogen bond to molecule 2.

To distinguish between liquid and vapour molecules in
either the M- or the V-method one could also use the tetra-
hedal order parameter q of Refs. 43 and 44. The q criterion,
proposed in Ref. 44, consists of computing for every molecule
i the quantity qi=1 − 3

8

∑3
j=1

∑4
k=j+1[cos(θijk) + 1

3 ]2, where
θ ijk is the angle formed by the oxygens of molecules i and two
of its four nearest neighbours j and k (the molecule i being at
the vertex of the angle). The q-parameter takes a value of 1
when the four nearest neighbours are in a perfect tetrahedral
arrangement around the central one.

We now compute the first-neighbours distribution using
either the WF, HB, or q criterion for the liquid and the vapour
phase and present our results in Fig. 10. (The thermodynamic
conditions at which we have performed these analysis are the
following: the liquid, with a density of ρ = 0.979 g/cm3,
has been equilibrated at T = 298 K and p = 1 bar and the
vapour, with a density of ρ = 0.01 g/cm3, at T = 570 K and
p = 53.45 bar.)

Using the WF criterion, from the nearest neighbours dis-
tribution of the liquid and vapour system, we can identify as
liquid-like all particles having a number of neighbours equal
to or larger than one and vapour-like otherwise (see Fig. 10,
WF).

From the distribution of H-bonded molecules in the liq-
uid and vapour system, we can identify as liquid-like all par-
ticles that donate at least one hydrogen bond and vapour
molecules are detected by their lack of donor hydrogen bonds
(see Fig. 10, HB). As expected, the maximum number of do-
nated H-bonds observed is two. In both cases, there is practi-
cally no overlap between the liquid and vapour distributions:
every vapour molecule lacks hydrogen bonds, whereas most
of the liquid molecules have two donor hydrogen bonds, as
expected for stable water.
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FIG. 10. First-neighbours distribution computed with the WF (left panel)
and with the q criterion (right panel) and distribution of donor/acceptor H-
bonded molecules computed with the HB criterion (middle panel) for a sys-
tem consisting of liquid water (black) or vapour (red).

In the q case (see Fig. 10, q), computing the distribution
of tetrahedrally ordered molecules in a vapour and a liquid,
we observe that the probability distributions overlap consid-
erably.

Given that the distributions are not overlapping, both the
HB and the WF criterion are equally well suited to distinguish
between vapour and liquid-like molecules, whereas the q cri-
terion seems not to be the best choice due to the clear overlap.

APPENDIX B: ASSIGNING EMPTY CELLS TO BE
LIQUID OR VAPOUR-LIKE IN THE M-METHOD

1. Initial labelling of the cells

In order to label each cell we proceed as follows. To start
with, we label as liquid-like the cells beneath liquid particles
and vapour-like the ones beneath vapour particles. Therefore,
depending on the grid mesh L/δ (where L is the simulation box
edge), we are left with a number of cells that do not clearly
belong either to the liquid or to the vapour. At this initial stage,
we make the assumption that empty cells are liquid-like. In
what follows, we describe an algorithm to properly label them
and correct for the initial guess.

2. The best choice for the threshold of the number of
empty/vapour neighbours in the first and second cell

In our study, to identify an empty cell as vapour-like, we
check that not only at least 7 of its first neighbours are neigh-
bours to each other and vapour-like but also 7 of its second

neighbours. In general, in order to choose the threshold for
the first and second neighbour cells, we want to make sure
that we avoid identifying empty cells in thermodynamically
stable water.

Figure 11 represents the distribution of having the largest
bubble of a given volume in the case of thermodynamically
stable liquid water at 1 bar and 298 K. The largest bubble has
been detected with the HB-criterion, assuming δ = 19, and
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FIG. 11. Distribution of the size of the largest bubble in a thermodynamically
stable liquid at 1 bar and 298 K for different numbers of Nnb and δ = 19.

different values of the threshold for the number of first and
second neighbours Nnb (we are always assuming that these
two thresholds are the same).

As shown in the figure, all distributions are peaked
around 0.017 nm3, comparable to the volume of a water
molecule (∼0.030 nm3) at these conditions: this means that
with the largest probability the largest vapour bubble has the
size of a water molecule. However, decreasing the threshold
value of Nnb, the largest bubble can reach much larger vol-
umes: this corresponds to detecting voids characteristic of the
network-forming liquid as vapour bubbles (for instance, in the
case Nnb = 6). Therefore, the best choice for Nnb corresponds
to the minimum value needed not to observe a distribution of
large bubbles (larger than one water molecule in a liquid) in
thermodynamically stable water. In our study, this condition
is met by the choice of having at least 7 empty cells that are
neighbours in the first cell together with 7 that are neighbours
in the second one.

3. The best choice for L/δ

As stated in Step 2 of the M-method, when setting the op-
timal value of the grid’s mesh size (L/δ) one has to satisfy two
conditions. On the one side, the size of the cell grid must be as
small as possible in order to reduce the error coming from the
discretization of the bubble’s volume. On the other side, the
size of the cell grid must be as large as possible to avoid to la-
bel the “holes” which exist (even in its thermodynamically
stable state) in a network-forming liquid such as water, as
vapour cells. Figure 12 represents a two-dimensional sketch
of the grid of liquid water molecules (represented by their
oxygens) in three possible scenarios characterised by a differ-
ent grid mesh L/δ: (a) 0.5σ < L/δ; (b) 0.33σ < L/δ < 0.5σ ;
and (c) L/δ < 0.33σ . The distance between the molecules is
slightly larger than σ (corresponding to the first minimum of
the oxygen–oxygen pair distribution function).

To explain the criteria for the choice of the thresh-
old of the number of first and second neighbours in
Fig. 12 (2D grid), 3 has been used as the minimum number of
empty/vapour-like neighbours. When we evaluate one empty
cell, we check if this cell has at least 3 first empty/vapour

(a) (b)

(c)

FIG. 12. Two-dimensional grid with usual liquid water-like structure. Solid
red circles are oxygens and the empty red circle is one removed particle. (a)
0.5σ < L/δ; (b) 0.33σ < L/δ < 0.5σ ; and (c) L/δ < 0.33σ . Blue cells are the
final bubble cells, cyan cells and green cells are the empty transformed into
liquid cells after applying the first neighbours criteria and second neighbours
criteria, respectively. (a) large, (b) medium, and (c) small.

neighbours that are also neighbours to each other and 3 or
more second neighbours of the same type. Thus, we can la-
bel this cell as vapour-like under first and second neighbour
criteria.

As in Ref. 6, in case (a) we determine whether empty
cells are liquid- or vapour-like. In this case, it is not necessary
to apply our neighbour criteria because the grid size is large
enough to allow to define every cell as vapour or liquid cells
(there are no empty cells). However, if we find empty cells,
we label all cells using only the first neighbour criterion. As
shown in the figure, when a void as large as one particle ap-
pears in the system, it is difficult to evaluate the bubble vol-
ume because we cannot detect empty cells. The drawback is
that this choice strongly penalises interfacial molecules, i.e.,
molecules with a small number of vapour neighbours.

Case (b) allows to better resolve the volume of the bub-
ble. In this case, to assign empty cells we need to recur not
only to the first neighbours, but also to the second ones. If
we consider only the first-neighbour cells, we will label the
empty cells between liquid particles as vapour-like (given
that most of their first neighbours are empty or vapour-like).
Whereas, considering also the second neighbour cells, we will
label the empty cells as liquid-like (given that their second
neighbours are not vapour-like).

Compared to the previous cases, the grid in case (c) is the
smallest. This situation can give more accurate estimates for
the volume, but one would need to recur to the third neighbour
cells in order to determine the nature of each empty cell. Even
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TABLE II. CPU (real) time (in minutes) for the M-method, the V-method,
and the Voronoi-method. Each algorithm was used to analyze the same 10 000
frames of a cavitating trajectory. Note that the presented results are highly
implementation dependent and should be considered only as indicative.

Method CPU-time

M-method 18
V-method 1.7
Voronoi12 452

though in this way we improve the accuracy of the definition
of the bubble’s volume, this method is CPU-time consuming.

Therefore, we conclude that the best compromise in
terms of CPU-time and precision in determining the bubbles’
volume is case (b). Labeling empty cells according to their
type of first and second neighbours corrects for the cells’ ini-
tial assignation. This allows us to find the real bubble not
the natural voids always present in a network-forming liquid.
Moreover, having properly detected all empty cells has also
the advantage to be able to clearly distinguish between two
neighbouring bubbles (without detecting them as a merged
single bubble6).

APPENDIX C: COMPARING THE COMPUTATIONAL
EFFICIENCY OF THE DIFFERENT METHODS

In order to compare the CPU-time needed to compute
the volume of the largest bubble using the V-method, the M-
method, and the Voronoi-method (as in Ref. 12), we select one
of the spontaneously nucleating trajectories (that cavitated in
13 ns) and run each of the algorithms on 10 000 frames of this
trajectory.

The benchmark was performed on a computer equipped
with an Intel Xeon X5680 @ 3.33 GHz processor. The oper-
ating system was 64-bit GNU/Linux and each algorithm was
running single-threaded. Results are presented in Table II.

The Voronoi-method is clearly the most computationally
expensive algorithm of the three, being two/three orders of
magnitude slower than the M-/V-method. When comparing
these two methods, the V-method is ten times faster than the
M-method. The main reason is that within the M-method, one
has to check both the first and the second neighbour shells in
order to assign a grid cell as liquid- or vapour-like, whereas
the V-method simply checks for molecules within a cutoff
distance.

When interpreting the CPU-time estimates given in
Table II, one should keep in mind that the estimates include
the time it takes to initially read the configurations from the
hard drive. The calibration procedure for the V-method is not
included in the CPU-time estimate.

In summary, grid-based methods are not only signifi-
cantly easier to implement than the Voronoi-method but also
computationally more efficient, making them a convenient
choice when studying bubble nucleation.
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the choice of the exclusion sphere radius (in our case, rS). This radius is
chosen sufficiently large as to prevent the erroneous detection of system-
spanning bubbles in the homogeneous metastable liquid. At the liquid–
bubble interface, this large diameter results in a “gap” between the surface
of the liquid and the detected bubble, thereby underestimating the true vol-
ume of the bubble.

54Note that we used the V-method in the parametrisation obtained from the
fit shown in Fig. 2, which was computed at negative pressures. Calibrating
the V-method at ambient conditions would result in a (likely small) change
in the volume of the detected bubbles but would not affect their frequency
of occurrence.

55The very similar estimates for V ∗
bubble appear to be at odds with the data

presented in Fig. 5, which show that the V-method gives larger volume es-
timates than the M-methods on average. However, since the MFPT-analysis
is based on the dynamics of the system, the obtained estimate depends
not only on the mean of the order parameter used to track bubble nucle-

ation but also on its fluctuations. In particular, a higher frequency of fluc-
tuations in the order parameter leads to a higher estimate for V ∗

bubble. As
Fig. 6 shows, estimates obtained with the M-method exhibit larger fluctu-
ations than estimates by the V-method, which, when V ∗

bubble is computed
from MFPT analysis, cancels the difference in the average bubble volume
detected by the two methods, leading to a virtually identical estimate for
V ∗

bubble.
56Since classical nucleation theory predicts the reversible work for a sin-

gle nucleus to grow to critical size, its prediction does not take the vol-
ume of the system into account. In order to make the CNT prediction
comparable to F (V ∗

bubble) as defined in Eq. (6), we follow Ref. 50 where
the number density ρ in the liquid is chosen as the (somewhat arbitrary)
prefactor entering the nucleation rates. Thus, the CNT prediction for the
barrier height is given by G* CNT = 16πγ 3/3�p2 − ln (ρ/ρ0), where
γ = 65.7 mJ/m2 is the surface tension for TIP4P2005 water at 325 K17

and ρ0 = 1/nm3.
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