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ABSTRACT

Detecting and describing movement of vehicles in established transportation infrastructures is 
an important task. It helps to predict periodical tra�c patterns for optimizing tra�c regulations 
and extending the functions of established transportation infrastructures. The detection 
of tra�c patterns consists not only of analyses of arrangement patterns of multiple vehicle 
trajectories, but also of the inspection of the embedded geographical context. In this paper, we 
introduce a method for intersecting vehicle trajectories and extracting their intersection points 
for selected rush hours in urban environments. Those vehicle trajectory intersection points (TIP) 
are frequently visited locations within urban road networks and are subsequently formed into 
density-connected clusters, which are then represented as polygons. For representing temporal 
variations of the created polygons, we enrich these with vehicle trajectories of other times of the 
day and additional road network information. In a case study, we test our approach on massive 
taxi Floating Car Data (FCD) from Shanghai and road network data from the OpenStreetMap 
(OSM) project. The �rst test results show strong correlations with periodical tra�c events in 
Shanghai. Based on these results, we reason out the usefulness of polygons representing 
frequently visited locations for analyses in urban planning and tra�c engineering.

1. Introduction

Tracked movement of objects is nowadays widely avail-

able and used for various applications in our society 

(Dodge et al. 2016). Detailed vehicle movement for 

example can bene�t the prediction of short-term and 

long-term tra�c situations.

One important domain of movement analysis is tra�c 

and transportation. Research outcomes on the nature of 

tra�c and transportation are important for most of the 

world’s population. Understanding tra�c and how tra�c 

congestion or gridlocks appear and propagate in time and 

space is a task that has high importance to future genera-

tions. Besides tremendous emissions caused by tra�c in air, 

land, and water, there is a gigantic loss of time and money 

every day in the world due to vehicle tra�c congestion.

Moving object data-sets coming from mobile sensor 

devices such as Global Navigational Satellite Systems 

(GNSS), Global System for Mobile Communications 

(GSM), and Wireless Local Area Network (WLAN) are 

nowadays frequently discussed and analyzed. In case 

the moving objects are vehicles acquired with GNSS 

receivers, we talk about Floating Car Data (FCD). Due 

to its already available communication infrastructure for 

monitoring the vehicles, taxi �eets of urban environ-

ments deliver massive FCD collections.

In general, movement analysis includes detection 

of the �rst- and second-order e�ects (O’Sullivan and 

Unwin 2010). �e �rst-order e�ects respect the context 

of movement, such as the visited environment, the mode 

of transportation, or any other domain speci�c infor-

mation (Gschwend and Laube 2012). �e second-or-

der e�ects consist of detecting interactions of multiple 

entities, such as meeting points, convoys, and �ocks 

(Gudmundsson, Laube, and Wolle 2012). �ese inter-

actions are helpful for associating vehicle movement 

trajectories with tra�c congestion events or stoplight 

dynamics, in case of analyzing FCD. �e methods for 

detecting the second-order e�ects of movement include 

the usage of similarity measures, which can be tempo-

ral, spatial, or spatio-temporal (Ranacher and Tzavella 

2014).

Our idea is to de�ne speci�c taxi trajectory arrange-

ment patterns by detecting areas with high vehicle �ow 

rates. A�er de�ning these areas, we give an indication 

of an implied geographical context, as for example the 

function and grade of complexity of parts or the trans-

portation infrastructure. �e �rst step in this approach 

is to visually inspect taxi trajectories of selected time 

windows as intersected polylines. Figure 1 shows the 

idea of visual inspection with polyline layer ordering 
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within a geographic information system (GIS). �is 

approach bases on a previous study in Keler, Krisp, and 

Ding (2017). �e ordering in Figure 1(a) and (b) might 

base on the starting time of each taxi trajectory or the 

total length of the polyline segments. A�erward, these 

patterns of speci�c polyline intersections can serve for 

extracting polyline intersection points. �is has the idea 

to detect: (1) the varying point densities and (2) time 

and velocity di�erences in selected investigation areas.

Additionally, we detect self-intersections of the entities 

and provide statistics on what vehicles intersect each other. 

�e last mentioned information may provide information 

on vehicle driving behavior and speci�c transportation 

infrastructures that are passed by the drivers. A�er de�n-

ing locations that are frequently visited by taxis, we enrich 

those with information on the transportation infrastruc-

ture. �e idea behind this is to inspect correlations between 

transportation infrastructure complexity and frequencies 

of passing taxis for the same locations. �is reasoning is 

visually presented in Figure 1, where the trajectory polyline 

layers are ordered by starting times of the vehicle trips. �is 

might result in patterns for road intersections with tra�c 

lights (Figure 1a), and elevated intersections (Figure 1b), 

depending on the di�erent intersection patterns. Figure 

1(c) shows one example with a selected part of the trans-

portation infrastructure in Shanghai.

High numbers of vehicle trajectories result in visual 

representations with high cluttering e�ects as in Figure 

1(c). One idea to avoid these appearances is to extract 

only the intersection points of the polyline representa-

tions. �ose points should imply additional information 

on the trajectory intersection, namely time and velocity 

di�erences.

2. Methods for analyzing tra�c and mobility 

based on FCD

When analyzing tra�c data, we have to di�erentiate 

between di�erent data types and di�erent research 

domains with di�erent established methods. �e 

methods in the domain of analysing tra�c and mobility 

will be our focus.

�e analysis techniques are connected with vehicle 

trajectory representations, the representations of road 

networks, and how to match these two sources via 

algorithms. Another group of approaches include map 

inference techniques, which allow the generation of road 

segments based on FCD.

Analysing tra�c data may consist of various 

approaches. Based on Chen, Guo, and Wang (2015), 

these approaches mainly include the preprocessing of 

data, derivation of patterns by various analysis methods 

and their representation. �e way of tra�c data analysis 

is always dependent on the underlying data-sets. Wang 

et al. (2014) named three di�erent data input classes for 

tra�c data analysis: static tra�c sensors, mobile devices, 

and merged solutions (includes both classes). �e most 

common form of tra�c data is trajectory (Chen, Guo, 

and Wang 2015), which o�en represents movement 

of a concrete object. �e great advantage of trajecto-

ries (derived from mobile devices) is the possibility of 

unbiased representations of the tra�c density (Treiber 

and Kesting 2013).

One common challenge is the e�cient handing FCD 

and other data from mobile devices due to its o�en 

massive size. Chen et al. (2016) solved this challenge 

using a compressed linear reference (CLR) technique 

for transforming network time geographic entities from 

spatiotemporal space (x, y, t) into 2D space. �e outcome 

of the approach allows more feasible handling of the 

massive movement data in a classical spatial database. 

�e subsequent step would be to de�ne movement pat-

terns that characterize urban tra�c situations as urban 

tra�c congestion. Bertini (2005) reviews the de�nition 

and measurement of urban tra�c congestion using the 

results of a questionnaire for transportation experts. �e 

answers are very di�ering, especially in the measurement 

of urban tra�c congestion. In general, the groups of 

measuring delay (29%), level of service (20%), and vol-

ume over capacity (14%) are the biggest. Bertini (2005) 

Figure 1. Imagined examples of trajectory polyline intersections with the example of (a) a detected road intersection with traffic 
lights, and of (b) elevated intersections, in comparison with (c) a trajectory polyline intersection patterns from real taxi trajectory 
data.
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shows with this result that instead of highway tra�c con-

gestion measuring urban tra�c congestion has many 

di�erent possibilities. Besides describing movement 

in geographic space, which may be a two- or three-di-

mensional Euclidean movement space (Gudmundsson, 

Laube, and Wolle 2012; Wang et al. 2015a), we have the 

option to inspect vehicle movement in the network space 

(Ji, Luo, and Geroliminis 2014; Lan et al. 2014). Using 

average information of graphs with arcs and nodes, it is 

possible to detect congestion propagation and bottleneck 

identi�cation in a computationally e�cient way (Wang 

et al. 2015b). �is allows modeling the street network 

for the car driver domain with weighting of road seg-

ments based on derived travel time or restrictions such 

as road closure, accidents or tra�c congestion. Other 

approaches include the interactive selections based on 

road segments for deriving tra�c congestion durations 

using tra�c jam propagation graphs (Wang et al. 2013). 

We can enrich the network space, which consists of arcs 

and nodes, with real-time information or with averaged 

day-wise tra�c information for the detection of traf-

�c anomalies (Lan et al. 2014). �e enriching process 

of road segments (arcs) with tra�c data from mobile 

tracking devices is in most cases connected with an 

adapted Map Matching (MM) algorithm. MM is the task 

of connecting FCD with digital road segments and has 

become a frequently used group of methods with over 36 

di�erent algorithms in the year 2006 (Quddus, Ochieng, 

and Noland 2007; Zhao et al. 2012). Besides matching 

quality, the computational e�ciency is important in 

designing MM algorithms. One di�cult condition for 

MM in some urban road networks are elevated roads 

and on-ramps between multiple elevation levels (Li et 

al. 2007). �is requires intelligent solutions for the case 

of no available height components within FCD records. 

Besides the mentioned MM approaches, there should be 

a decisive di�erentiation with those approaches handling 

low-frequency FCD, as in the case of the case study in 

this work. In general, the higher indistinctness occurs 

when sampling interval are higher within FCD set. Chen 

et al. (2014) focused on this challenge with the introduc-

tion of a new approach that can achieve accuracy and 

computational performance comparable to those MM 

algorithms developed for in-vehicle navigation.

Another group of methods includes movement aggre-

gation by introducing irregular tessellation of space 

(Gudmundsson, Laube, and Wolle 2012), which may 

be based on FCD clustering. For the case of taxi FCD, 

o�en pick-up and drop-o� points of individual taxis are 

clustered for detecting spatio-temporal hotspots. Besides 

partitioning clustering as k-means (Krisp et al. 2012), 

the most frequent clustering approaches include densi-

ty-based methods (Rinzivillo et al. 2008; Yue et al. 2009; 

Pan et al. 2013) for taxi pick-up and drop-o� points. 

When clustering all available FCD records or only those 

with certain extracted spatio-temporal pattern like low 

velocities (Andrienko et al. 2011) di�erent FCD constel-

lations (Körner 2011) are possible such as points, lines, 

or polygons.

Instead of Andrienko et al. (2011), we inspect clusters 

of trajectory intersection points (TIPs) and not veloci-

ty-based clusters. Point clusters of low vehicle velocity 

are in general indicators for tra�c congestion events in 

selected times of the day. Our idea is to extract trajec-

tory intersections as an indicator of ongoing movement 

during locally known rush hours and thus represent the 

most e�cient transportation infrastructure elements.

Based on FCD aggregation, we can create �iessen 

polygons (Andrienko and Andrienko 2010) or introduce 

spatial grid cells (Andrienko and Andrienko 2007). For 

these features, which were also called summation places 

(Rinzivillo et al. 2008), we can introduce di�erent aver-

age parameter classi�cations.

Another connected topic is road map inference from 

FCD. Several groups of methods are proposed for con-

structing road networks based on vehicle trajectories. 

For Duruisseau and Rouvoy (2014), there are three 

main groups of approaches for map inference, which 

are K-Means clustering, trace merging, and kernel den-

sity estimation. Within this research, one challenge is 

to detect road intersections, especially when they are 

missing in available road network data (Wang, Wei, and 

Forman 2013). One indicator for detecting road inter-

sections can be direction changes in the vehicle trajec-

tory, which is for Xie et al. (2015) not always helpful 

when working with real data. For inferring road maps 

from sparsely sampled trajectories Qiu, Wang, and Wang 

(2014) propose the use of density-based point clustering. 

Map inference o�en consists of numerous steps as an 

inference pipeline as in the case of Biagioni and Eriksson 

(2012) with �ve methods that are used subsequently.

3. Test taxi �oating car data (FCD) and data 

preprocessing

In the following, we give an overview on our test data-sets 

and their respective preprocessing steps for the later anal-

ysis. Besides taxi Floating Car Data (FCD) sets, we include 

road network data from the OSM project in our analysis.

3.1. Taxi �oating car data (FCD) from Shanghai

We inspect a taxi FCD set resulting from a survey (GPS) 

on a taxi �eet in Shanghai (“SUVnet-Trace Data”).1 

�ere is a varying number of inspected taxis ranging 

time-dependent from around 7000 to around 10,000. 

�e reason for this time-dependency might be caused by 

the taxi driver’s behavior to switch o� and turn on their 

respective tracking devices. Depending on the time of 

day some of the taxi drivers turn their tracking device o� 

and some new appearing turn it on. �e data structure 

of the inspected data-set is shown in Table 1.
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patterns in Figure 3, we can assign di�erent types of 

transportation infrastructure elements with the ones in 

aerial imagery that are visually detectable.

We de�ne every TIP by intersecting, respectively, 

two trajectories. Additionally, we calculate additional 

attributes for every taxi TIP based on the two respec-

tive trajectories. �ese attributes include interpolated 

time di�erence, average velocity di�erence as pictured 

in Figure 4. Besides this, it is possible to distinguish an 

intersection between two trajectories or self-intersection 

by comparing if the vehicle identi�cations are di�ering. 

�e additional attribute travel time di�erence Δt results 

from created vectors between every consecutive point of 

individual trajectories. Subsequently, these vectors are 

enriched with averaged time stamps based on the time 

stamps of every two consecutive points. Our way of FCD 

inspection bases on Körner (2011) and his four constel-

lation possibilities for FCD analysis: point, vectors, tra-

jectories, and bundles of trajectories. Our method aims 

to extract point representations from the last mentioned 

and to compute di�erences in averaged attribute values.

�e created TIPs are the base for our approach of 

de�ning locations with frequent taxi movement dur-

ing rush hours. Every intersection point is created by 

intersecting every two trajectories as in Figure 4(a). 

�e computed attributes are two di�erent types of tem-

poral information, namely Δt̄
v̄
, Δt̄ and t̄. Each of these 

attributes is assigned to line segments of the trajectory 

polylines. �e attribute values that are assigned to TIP 

are the di�erences between intersecting line segments. 

Figure 4(a) shows the way of how average velocities dif-

ferences Δv̄ are computed based on averaged instanta-

neous measures v̇ in every movement position. Figure 

4(b) consists of computing travel time based on v̇ multi-

plied by the distance between two movement positions. 

Figure 4(c) show how an average time stamp t̄ is esti-

mated based on time stamps ṫ.

3.3. OSM road network of Shanghai and extracted 

street nodes

According to Stanica, Fiore, and Malandrino (2013), the 

OSM project has one of the most accurate freely available 

digitized road networks. Additionally it has, depending 

Besides the selected attributes (car ID, longitude, lat-

itude, time, and instantaneous velocity in Table 1), there 

are four further original attributes that are not used in our 

approach. In our testing, we use in our study a taxi FCD 

partition of one selected day (�ursday the 22 February 

2007) from originally 15 days of acquisition between the 

1 February and 1 March 2007. Each day of taxi FCD has 

over six million records. �roughout the data, there are 

di�ering sampling intervals in time, which in some cases 

results in time jumps between consecutive points. A�er 

detecting bigger time jumps to the mentioned opera-

tional status of the taxi tracking device by setting spatial 

bu�ers, we can inspect temporal jumps during continu-

ous acquisition. �e variation of these temporal jumps 

is between 1 and 30 s and has an average of around 14 s 

for all the data partition of the inspected day.

3.2. Derivation of taxi trajectory intersection 

points

Based on the explained taxi FCD, we �rst create individ-

ual trajectories for each entity as polyline representations 

and then extract the intersection points of all trajectory 

polylines. Figure 2 shows a work�ow diagram of this 

process.

�e calculation step of trajectory generation (see le� 

part of Figure 2) results in taxi trajectory polylines for 

selected time windows as linear interpolation between 

movement positions of every taxi driver. �ose trajec-

tory polylines can be visualized as in Figure 3 by color-

ing every polyline based on the underlying total length. 

Brighter colors show longer polylines and indicate 

higher velocities. By inspecting the selected intersection 

Table 1. Data structure of the inspected taxi FCD set of Shang-
hai.

Fieldname Details

Car ID The unique ID of the car, in 5 digits
Longitude In degree (°); accurate to the 6th decimal 

place
Latitude In degree (°); accurate to the 6th decimal 

place
Instantaneous velocity Accurate to 0.1 km/h
Record date In form of YYYY-MM-DD
Record time In form of hh:mm:ss

Figure 2. Workflow for creating taxi TIPs.
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Krisp and Keler (2015), we would like not only to cal-

culate the complexity of crossings, but as well respect 

other parts of the road network. We expect a correlation 

of high node densities in road crossings with frequent 

trajectory intersections.

4. Tra�c analysis based on taxi TIP

We introduce the concept of analysing tra�c with TIP. 

Individual taxi drivers are only a small portion of all 

tra�c participants in urban environments. Nevertheless, 

we argue that the detected movement patterns are rep-

resentative for the entire tra�c situation within a city, 

on the investigation area, a relatively high quality of 

road connectivity as it was evaluated by Graser, Straub, 

and Dragaschnig (2014) for vehicle routing quality in 

Vienna. In our approach, we used only a derivation of 

the original OSM road network, which is represented by 

polylines. Similar to Krisp and Keler (2015), we propose 

the abstraction of high node density for complicated 

crossings. �e idea is to compare the frequency of taxi 

visits in crossings and in other road segments with its 

de�ned complexity. �erefore, we extracted the nodes 

of all available road segments (OSM class “highway”) 

within the administrative borders of Shanghai, except 

the pathways of pedestrians. Instead of the approach in 

Figure 3. Different visual patterns of taxi trajectory polylines at selected infrastructure elements, such as (a) crossroads, (b) crossing 
with changes in elevation, (c) on-ramps, (d) elevated highway, (e) elevated highway, and, (f ) Nanpu bridge on-ramp.

Figure 4. Attribute computation for trajectory polylines with (a) travel time based on average velocity differences, (b) travel time 
based on distances, and (c) travel time as averaged time stamps.
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Points To Identify Clustering Structure), which was 

introduced by Ankerst et al. (1999).

�is algorithm connects points to clusters by cal-

culated point densities resulting from the settings of 

search distance (Epsilon) and minimum point number 

(MinPts). A�er several tests, we introduced a search dis-

tance and minimum point number based on the aim of 

achieving more than 1000 TIP clusters. �erefore, we set 

the search distance to 150 m (Epsilon = 150 m) and the 

number of respected points to 4 (MinPts = 4). As a result, 

we de�ne 1231 taxi TIP clusters for the time from 8:00 to 

9:00 am on �ursday the 22 February 2007 in Shanghai.

4.2. Creation of polygons and subsequent 

enrichment with tra�c and road information

From the 1231 de�ned taxi TIP clusters, we generate 

1231 taxi TIP polygons (convex hulls) using the gi� 

wrapping algorithm, which is also called Jarvis March 

(Jarvis 1973). �is part of the work�ow (see Figure 6) 

is a generalization step for facilitating further analy-

ses. As stated in Section 3.2, we can detect correlations 

between complex road crossings and taxi TIP cluster 

polygons by visual inspection. Nevertheless, there are 

some exceptions due to the elevated roads in Shanghai. 

since there is a high coverage of the used taxi FCD on 

the urban road network of Shanghai, especially during 

rush hours. In the following, we present examples of 

the methodological steps of how TIP are processed and 

represented using test FCD sets.

4.1. Density-based clustering of taxi TIP

As we are interested in frequently visited areas during 

rush hours, we extract one selected rush hour from our 

test data: from 8:00 to 9:00 am Within this time window, 

we have in total 283,141 records from which we calculate 

4243 valid taxi trajectories (Figure 5a). A�er the taxi TIP 

extraction step (see Figure 3), we �nally gained 15,741 TIP 

(Figure 5b). Additionally, we preselected self-intersecting 

trajectories (Figure 5c) and their extracted TIP (Figure 5d).

Places with high taxi intersection point densities 

indicate elevated transportation infrastructure elements 

(high taxi TIP density, high speed di�erences) or fre-

quently visited crossings not in�uenced by tra�c conges-

tion (high TIP density, low speed di�erences). Following 

the last mentioned case, we used the typical rush hours 

of the selected investigation area in Shanghai for detect-

ing taxi TIP densities. �ese densities were grouped by 

the density-based clustering method OPTICS (Ordering 

Figure 5. Visualization of (a) used taxi trajectory polylines, (b) resulting TIP extracts, (c) trajectory polylines with self-intersections, 
and (d) resulting self-intersection point extracts.
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than road partitions with a single lane. Crossings with 

on-ramps include more nodes than most of the other 

crossings with no on-ramps, and so on. �e idea behind 

this de�nition is to inspect the proportion of the number 

of road network segment intersections. For the veri�ca-

tion, this idea it is possible to inspect the density of taxi 

positions in selected areas.

An overview on the level of complexity is visualized 

in Figure 8 by varying coloration of the trajectory inter-

section polygons showing classes of counted road net-

work nodes and the derived node density.

4.3. Analyzing time series of tra�c information in 

de�ned cluster polygons

�e created and enriched polygons have time-dependent 

average parameter values, which can be represented as 

time series. Time series are o�en visualized with interac-

tive elements for visual analysis. One common solution 

for the visualization of temporal data is the use of time 

slider tools. Instead of these examples, we use slider tools 

for polygons and not for raster data or trajectory points. 

Following, our variation in space do not appear, but only 

the coloration of spatially �xed areas (polygons) varies in 

space. Furthermore, we can match the di�ering time-de-

pendent attribute values for each polygon in the two-di-

mensional Euclidean space with road segments (arcs) 

and connection points (nodes) in the network space. �e 

preferred way of inspection in this paper is the creation 

of attribute tables for selected taxi TIP cluster polygons 

without the connection to road segments.

5. Results and discussion

In the following, we apply the previous methodology 

for a data partition and inspect the attribute values for 

extracted taxi TIP cluster polygon for selected rush 

�ese taxi TIP cluster polygons are caused by frequent 

vehicle movement on both elevation levels.

A�er the de�nition of the shape and size of taxi TIP 

cluster polygons, we enrich them with average parame-

ters calculated from taxi FCD partitions of one selected 

day (�ursday, 22 February 2007). �erefore, we selected 

di�erent time windows and calculate average parame-

ter information for each of the 1231 taxi TIP polygons. 

We enriched all polygons with average information of 

selected times of the day with the following average 

parameters (see Figures 4 and 6): taxi TIP density, taxi 

position density, average velocity, average velocity dif-

ferences, average time di�erences, tra�c congestion 

indicator, and tra�c congestion value c.

For a visual representation of the taxi TIP polygons 

in Figure 7, we select the three parameters taxi density, 

average velocity, and congestion value c for certain hours 

of a working day. �ose are hours in Shanghai that are 

typically in�uenced by high congestion events based on 

statistics from Sun et al. (2009): from 7:00 to 8:00 am and 

from 5:00 to 6:00 pm

With the result in Figure 7, we have the historical 

average values for a typical working day. For reasons of 

comparison, we also use this procedure for the other 

hours of the working day.

A�erward, the 1231 created polygons are extended by 

information on the complexity of transportation infra-

structure. As mentioned in Section 3.3 and pictured in 

Figure 6, we simply count selected OSM road network 

nodes within taxi TIP polygons. �e additional attrib-

utes of taxi TIP polygons are the counted OSM road net-

work nodes and the road network node density in each 

taxi TIP polygon. In our approach, the complexity of a 

transportation infrastructure element is dependent on 

the amount of its extracted nodes. �is means that road 

partitions with multiple road lanes are more complex 

Figure 6. Workflow for creating and enriching taxi TIP polygons.
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Figure 7. Comparison between the three quantities taxi density, avg. speed, and traffic congestion value c, respectively, for two 
selected time windows.

Figure 8. Level of complexity of transportation infrastructure elements for the center area of Shanghai, with (a) counted road network 
nodes and (b) calculated node density.
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A�er comparing the detected density-based clusters 

with OSM street node densities, we may give answer 

on a more or less positive correlation. In Figure 8, it is 

detectable that the surface area of the trajectory inter-

section polygons is o�en not bindingly important for 

detecting complex infrastructure elements. It is o�en 

the case that simply the number of counted nodes (see 

Figure 8 a) shows more details than an overview about 

the node density distribution (see Figure 8 b).

5.2. Inspection of enriched taxi TIP polygons for 

half a day

As an example, we select one TIP polygon with high 

taxi TIP densities during rush hours (Figure 9). Figure 

9 shows an area in the northern part of Shanghai, where 

within the taxi TIP polygon at least one elevated highway 

segment is connected with multiple lower order road 

segments. Since this de�ned location has high taxi �ow 

rates during rush hours, which is our indication resulting 

hours. A�erwards, we select one taxi TIP cluster poly-

gon and enrich it with data from o�-peak hours for 12 

consecutive hours in Shanghai.

5.1. Inspection of enriched taxi TIP polygons (in 

space) for selected rush hour times

In Figure 7, we compare the enriched taxi TIP polygons 

with the quantities taxi density, average speed and tra�c 

congestion value c for two selected times of a working 

day with typical rush hours in Shanghai (Sun et al. 2009). 

Figure 7 shows that the taxi density in both times of the 

day has low variations in the central part of Shanghai, 

especially in polygons with bigger surface areas. In con-

trast to this insight, there are great variations in average 

speed values and tra�c congestion value c. �is might 

indicate di�erent tra�c situations in the same location 

but on di�erent elevation levels, as for example tra�c 

congestion on the ground and free �owing tra�c on an 

above elevated highway segment.

Figure 9. Selection of TIP polygon in the north of Shanghai based on taxi FCD from 8:00 to 9:00 am on 22 February 2007.

Table 2. Distribution of the average traffic information in one selected area in Shanghai from 8:00 am to 8:00 pm (Thursday, 22 
February 2007).

ahttp://sh.edushi.com/.

Selected locationa Time window Counted taxi TIP
Counted taxi 

positions Δv̄ (km/h) v̄ (km/h)
Tra�c congestion 

value c

(OSM nodes = 65; OSM node density = high)

8:00–10:00 1178 236 20.6 21.4 Heavy
10:00–12:00 510 156 20.2 30.0 Mediocre
12:00–14:00 483 144 18.1 25.3 Mediocre
14:00–16:00 195 126 24.5 24.9 Mediocre
16:00–18:00 52 68 29.9 28.6 Low
18:00–20:00 55 86 30.1 35.3 Low

http://sh.edushi.com/
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Notes

1.  “SUVnet-Trace Data” was obtained from the Wireless 
and Sensor networks Lab (WnSN) at Shanghai Jiao 
Tong University, http://wirelesslab.sjtu.edu.cn/taxi_
trace_data.html.

2.  http://map.baidu.com/
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