
Detecting Web Page Structure for Adaptive Viewing on
Small Form Factor Devices

Yu Chen
Microsoft Research Asia
3F, Sigma Center, No. 49

Zhichun Road, Beijing, China
(8610)-62617711-3196

i-yuchen@microsoft.com

Wei-Ying Ma
Microsoft Research Asia
3F, Sigma Center, No. 49

Zhichun Road, Beijing, China
(8610)-62617711-3175

wyma@microsoft.com

Hong-Jiang Zhang
Microsoft Research Asia
3F, Sigma Center, No. 49

Zhichun Road, Beijing, China
(8610)-62617711-5791

hjzhang@microsoft.com

ABSTRACT

Mobile devices have already been widely used to access the Web.

However, because most available web pages are designed for

desktop PC in mind, it is inconvenient to browse these large web

pages on a mobile device with a small screen. In this paper, we

propose a new browsing convention to facilitate navigation and

reading on a small-form-factor device. A web page is organized

into a two level hierarchy with a thumbnail representation at the

top level for providing a global view and index to a set of sub-

pages at the bottom level for detail information. A page adaptation

technique is also developed to analyze the structure of an existing

web page and split it into small and logically related units that fit

into the screen of a mobile device. For a web page not suitable for

splitting, auto-positioning or scrolling-by-block is used to assist

the browsing as an alterative. Our experimental results show that

our proposed browsing convention and developed page adaptation

scheme greatly improve the user’s browsing experiences on a

device with a small display.

Categories and Subject Descriptors

H.4.3 [Information Systems Applications]: Communications

Applications – Information browsers; H.5.4 [Information

Interfaces and Presentation]: Hypertext/Hypermedia –

Navigation; I.7.5 [Document and Text Processing]: Document

Capture – Document analysis;

General Terms

Algorithms, Design, Experimentation, Human Factors

Keywords

Adaptive hypermedia, content adaptation, mobile browser

1. INTRODUCTION
In recent years we have seen the explosive growth of small

Internet devices such as handheld computers, personal digital

assistants (PDAs) and smart phones that have been used to

leverage the capabilities of the Web and provided users with

ubiquitous access to information than ever before. Despite the

proliferation of these devices, their usage for accessing the Web

today is still largely constraint by their small form factors such as

small screen. Because most of today’s web page has been

designed with the desktop computer in mind, and is often too

large to fit into the small screen of a mobile device. Web browsing

on such small devices is like seeing a mountain in a distance from

a telescope. It requires the user to manually scroll the window to

find the content of interest and position the window properly for

reading information. This tedious and time-consuming process

has largely limited the usefulness of these devices.

In order to improve the browsing experience, adaptation methods

have been proposed to modify web contents to meet the

requirement of client capability and network bandwidth [2–7,9–

11,15]. In [6], methods were proposed for distilling web objects

to reduce the consumption of network bandwidth and client

computation. For web pages, the existing methods are mostly

based on discarding format information. While this method

mainly focuses on reducing resource consumption, there are still

many works on beautifying the web page representation on small

form factor devices. In [9], the web page is reformatted on the

basis of page annotation. However, this approach requires a

practical solution to facilitate the creation of annotations for

existing web pages. The re-authoring technique proposed in [2]

required web pages to have sections and section headers, which

however, are rarely used in web page authoring today.

In the work of Buyukkokten et al. [3,4], an accordion

representation is generated and the detail content can be folded or

unfolded at client device. Since this method focuses on text

summarization, it does not leverage the graphic capabilities of

current devices. The SmartView [10] bears some similarity with

our work in presenting adapted web page using zoom-in and

zoom-out features.

1.1 A New Browsing Method
Our goal is to find a better way to enable easy navigation and

browsing of a large web page on a small-form-factor device.

Our major idea is to provide an overview of the web page and

allow the user to select a desired portion of the web page to zoom

in for detail reading (as shown in Figure 1). The overview is like a

Table of Content (TOC) for the original web page. Instead of

using traditional text based TOC, we provide a thumbnail on

which each block of semantically related content is represented

with a different color. By clicking on a block in the thumbnail, a

user can easily go to view the corresponding content which is

formatted to fit well into a small screen. Figure 1 shows the

process of this browsing convention.

In this paper, our major contributions are:

1. A novel idea of enabling easy browsing of a large web page

on a small screen device is proposed.

Copyright is held by the author/owner(s).

WWW 2003, May 20-24, 2003, Budapest, Hungary.

ACM 1-58113-680-3/03/0005.

2. A comprehensive page layout analysis algorithm is proposed

to detect the structure of an existing web page.

3. The proposed method has been implemented and tested on a

large set of web sites and pages to prove its applicability.

The rest of this paper is organized as follows. Section 2 describes

the overview of our approach. Section 3 presents the detail of

page analysis algorithm. Section 4 introduces the web page

adaptation method. Section 5 provides the performance evaluation

of our approach and describes the auto-positioning method. We

conclude our work in Section 6.

2. OUR APPROACH

In order to enable the new browsing method described in Section

1.1, there are two technical problems we need to solve. One is

how to detect the semantic structure of an existing web page, and

the other is how to split a web page into smaller blocks based on

the detected structure. Therefore, our approach for web page

adaptation consists of two processes as shown in Figure 2.

The first process performs a page analysis to extract the semantic

structure of a web page. From the extracted structure, different

content blocks are identified. In the second process, the web page

is split into many sub-pages according to the structure

information. For a given web page, a thumbnail is generated at the

top level and served as the navigational entry for all the sub-pages

at the bottom level. In case that a web page is not suitable for

splitting, an auto-positioning method or scrolling-by-block is used

to provide a similar user experience without physically breaking

up the original web page.

3. PAGE ANALYSIS
The goal of page analysis is to extract the semantic structure of an

existing web page. This structure is a hierarchical representation

of the web page, in which each node is a group of objects in the

web page. A node at a higher level of the hierarchy tends to

contain multiple objects with different information while a node at

a lower level tends to contain a single or a small number of

objects that is a part of an information unit. The goal of our page

analysis is to identify a set of nodes in the hierarchy, in which

each represents a unit of information that can be managed and

displayed individually as described in Section 1.1. These nodes

are called “content block” in the rest of this paper.

In our approach, identifying the content blocks from the semantic

structure of a web page is conducted in an iterative manner. At the

beginning, the whole web page is regarded as a single content

block. At each iteration, the page analysis algorithm finds a best

way to partition a content block into smaller ones. A set of content

blocks will remain at the end of the process, which serves as the

final information for page splitting. Figure 3 shows this process.

The final solution is dependent on the information contained in a

web page and can be derived by semantic analysis. However,

today’s natural language technology is still far from delivering a

satisfactory result. Our approach is to perform the analysis by

inferring the content structure of a web page embedded by the

web author.

3.1 Content Structure Embedded by the Web

Author
When the author creates a web page, he in general either uses a

template or has a page layout in mind to guide his design. For

Page Analysis

Page Splitting/

Auto-positioning

Figure 2. Our approach for web-page adaptation consists

of two processes. The first process analyzes the structure

of a give web-page, and the second process splits the web-

page into a two-level hierarchy. For a web-page not

suitable for splitting, an auto-positioning method (or

scrolling-by-block) is used to provide a similar user

experience.

Figure 1. The idea of organizing a web-page into a two

level hierarchy with a thumbnail representation for

providing a global view with each block of semantically

related content represented by a different color. By

clicking on a block in the thumbnail, a user can easily go

to view the corresponding content which is formatted to

fit well into a small screen.

Figure 3. The process of identifying the content blocks is

performed in an iterative way. It starts with the whole

web-page as a single content block, and then iteratively

partitions each content block into smaller ones until the

process reaches the final solution.

example, he may consider whether to put a header, footer, or side

bars in the page, and decide how many distinct topics in the body.

Although such a high-level content structure usually disappears

after the web page is constructed and sent to the client, it is

possible to recover this content structure based on the clues the

author embeds in the web page.

The author often creates a partition of content with visual

separators. Two kinds of visual separators are commonly used.

Explicit separators are created using certain HTML tags. Implicit

separators are created by leaving a blank space between content in

a web page.

Our page analysis algorithm consists of the following three steps:

first, we analyze the HTML DOM tree and detect the high-level

content blocks about the locations and sizes of header, footer, side

bar and body; then we analyze the content inside each high-level

content block to identify explicit separators to split the content

blocks; lastly, implicit separators are detected and used to split the

content blocks further. The whole process is shown in Figure 4.

3.2 High-Level Content Block Detection
When designing a web page, the author usually produces a

scaffold or template to guide the page design. The scaffold or

template is the high level structure of a web page. Layout related

tags are often used to produce a scaffold or template.

In most cases, a scaffold would contain one or more of the

following blocks: header, footer, left side bar, right side bar and

body. Extracting the high-level content block is to determine what

content falls into which high-level block. For any given content,

we can decide which block it should belong to by analyzing the

position and shape of the region it occupies. For instance, content

in header and footer usually has a flat shape (i.e. small

height/width ratio), while header content locates on the top of a

web page and footer content locates on the bottom.

3.2.1 Selecting Nodes
We first use an HTML parser to generate the HTML DOM tree

which also gives the position and dimension information for each

node in the DOM tree.

Then the DOM tree is traversed from <BODY> to its leaves to

select appropriate nodes and put them into a corresponding high

level content block. Selecting appropriate nodes is first conducted

by deciding whether it is better to keep a node as a unit or move

one level down to consider its child nodes as units. If a node is

too large, keeping it as a whole will produce erroneous results.

For example, in the Yahoo! home page, the <BODY> contains a

single child node <CENTER> which is used to align all the

content to the center of the page. If the node <CENTER> is kept

as a whole, we will not be able to detect its header and footer.

Figure 5 shows the algorithm for selecting nodes. We try to

classify a node into one of the header, footer, left side bar and

right side bar blocks. If it belongs to none of the above, then we

check if it is small enough to put into the body block. A pair of

thresholds (one for width and the other for height) is used to

determine whether a node is small enough. If the node exceeds the

thresholds, it will be split further. The above process is iterated

until all the nodes are classified into the five high-level blocks.

3.2.2 Detection of Header and Footer
Since the header block locates on the top of a web page, it is

intuitive to define a threshold N and let the upper N pixels of a

web page be the header region. If the region rendered by a node is

inside the header region, the node is classified into the header

block. Then the problem becomes how to select an appropriate

value for N. The challenge for selecting an appropriate N is

illustrated in Figure 6(a). In this figure, the regions of two nodes

overlap with the upper N pixels, and the node #1 does not belong

to the header block while the node #2 does. In this case, we can

not exclude the node #1 while trying to include the node #2 by

increasing the threshold N since the bottom of the node #2 is

lower than that of the node #1. To solve this problem, a dynamic

threshold based on the height/width ratio of the shape of the

region of a node is used. The smaller the ratio is, the bigger the

threshold is. Therefore, a node with flatter region will have a

higher possibility to be put into the header block.

Header?

Footer?

Left sidebar?

Right sidebar?

Small

Split

Put in header

Node

Put in footer

Put in left side bar

Put in right side bar

Put in body

Y

N

Y

N

Y

N

Y

N

Y

N

Sub-nodes

Figure 5. Selecting appropriate nodes and classifying them

into one of the five high level content blocks

N

Height/Width

Base threshold

Figure 6. Dynamic threshold for header and footer detection

(b)

1

2

(a)

Upper N

pixels

Web

Page

High-level

content block

detection

Explicit

boundary

detection

Figure 4. The three-step processing in our web-page analysis

algorithm

Implicit

boundary

detection

Figure 6(b) shows the desired curve for the dynamic threshold

which is approximated by letting N = base_threshold +

F(Height/Width) where F(x) = a/(b*x+c) and base_threshold, a, b

and c are constants. In our experiments, we found that the best

performance can be achieved by setting base_threshold = 160, a

= 40, b = 20, and c=1. A similar approach is also used for

classifying nodes to the footer block.

3.2.3 Detection of Left and Right Side Bar
The detection of left and right side bar is similar to the header and

footer. Since a side bar region depends on the width of the web

page, the threshold needs to be adaptive too. In our experiments,

we define the left 1/4 part of a web page to be the left side bar

region, and right 1/4 part to be the right side bar region. The

shape of the region of a node is not taken into account because the

left and right side bars usually contain several small regions which

are not slim in many cases.

Figure 7 shows the result of high level content block detection for

Microsoft’s home page. The blocks are represented by different

colors.

3.3 Explicit Separator Detection
The algorithm described in Section 3.2 is used to detect the high-

level content blocks. We could apply explicit separator detection

to further partition them. For example, the third node in the body

block as shown in Figure 8 contains three columns that can be

further segmented for easy browsing.

Explicit separators can be detected by analyzing the properties of

the tags. The following three types of explicit separators are

widely used:

• <HR> is the most frequently used explicit separator for

representing a horizontal line in a web page.

• The tags such as <TABLE>, <TD> and <DIV> have border

properties. When their border properties are set, there would be

separators at the corresponding borders.

• The third type of explicit separator is created using an image.

For example, in Figure 9, the gray vertical lines that separate

the content into three columns are images embedded in very

thin table cells. This type of separator can be detected by

analyzing the width and height of embedded images.

By analyzing the above three types of explicit separators, the

content in Figure 8 is partitioned into 4 sub-blocks and the result

is shown in Figure 9. As can be seen, the upper one contains the

icons. The three icons are placed in one block because they are

contained in a single image which can not be segmented further.

The lower part is divided into three columns.

In the next section, we will discuss the implicit separator detection

to divide each column further into two parts (as indicated by the

dashed line in Figure 9).

3.4 Implicit Separator Detection
Implicit separators are blank areas created intentionally by the

author to separate content. Because they cannot be directly

detected by analyzing the HTML DOM nodes, special techniques

have to be developed.

As these implicit separators are blank areas in a web page, we

develop a method to them by

• first collecting all the basic content blocks inside each high-

level content block after explicit separator detection;

• and projecting each basic content block along the horizontal

and vertical axes to generate projection diagrams;

• and based on the diagrams, the widest gap on each axis is

selected as an implicit separator to partition the block into

smaller ones;

• The previous process is iteratively applied to the small blocks

until no implicit separator is detected.

Figure 10 shows an example containing a fragment from MSN

home page which contains four basic content blocks. By

projecting them onto the vertical axis, the diagram is generated.

Zero projection value on the diagram indicates a possible implicit

Figure 8. The DOM structure of the third node in the body

block in Figure 7

Figure 9. The explicit separator detection

HR

Small gray image in thin <TD>

Figure 7. The result of high level content block detection on

the Microsoft’s home page

separator. As can be seen, the biggest gap will partition the

fragment into two blocks and the other two smaller gaps will be

detected to divide each of the blocks further.

Because the implicit separator detection is based on the projection

of basic content blocks onto the vertical and horizontal axes, the

size of basic content block is critical to the precision of detection.

Big content blocks may fail to reveal fine boundaries while small

blocks may produce more noise.

To resolve the problem, a method similar to that in [16] is used to

produce the basic content blocks. For example, the fourth content

block in Figure 10 is a <DIV> containing a sequence

“<A>
<A>
<A>

”. It is obvious that the

“<A>
” is the most frequent pattern appearing in the

sequence and can be grouped together. Then the three small

groups can be merged into a virtual node VN. Now the structure

inside the <DIV> becomes a form shown in Figure 11. The

virtual node VN is considered the basic content block since the

last
 represents an empty line.

The pattern recognition algorithm is shown in Figure 12 and

works as follows. First, we define an atomic node to be a leaf

node or a special tag such as the tag <A> since it denotes a

hyperlink and <MARQUEE>, <SELECT> and <MAP>. If a leaf

node is a text node and is the only child of its parent tag, it will be

selected as the atomic node. All the atomic nodes in the HTML

DOM tree are collected and arranged in the same order as they

appear in the HTML code.

A similarity measure based on text font, size, color, and tag

properties is applied to cluster the atomic nodes into groups. We

denote the atomic nodes of the same group with a same symbol,

changing the node sequence into a symbol string. From the string,

we detect all the possible patterns (sub-string) and compute their

frequency in terms of times of appearance in the string. Among

the patterns with highest frequency, we select the longest one and

group the pattern using a new symbol if its length is larger than 1.

If the length is equal to 1, we try to merge it with the adjacent

symbols. If no merge can be made, the pattern with the next

highest frequency will be selected. The same clustering method is

applied on the newly created string at each iteration until the

highest frequency is below a certain threshold.

We define a blank symbol to be
, space characters, blank

<TD> (i.e. <TD> containing space characters only), <MAP> or

<SCRIPT>. Except these blank symbols, each symbol in the last

string represents a visual unit VN for implicit separator detection.

4. PAGE ADAPTATION
The major problem for browsing a large web page on a small

screen is horizontal scrolling. A wide text body is often cut in half

and requires constant horizontal scrolling for reading. Our page

adaptation tries to resolve this problem by splitting a large web

page into smaller sub-pages that fit well into the small screen of a

mobile device.

We consider two methods for splitting a web page: the first is

called single-subject splitting; and the second is called multi-

subject splitting.

Single-subject splitting breaks the whole web page into several

sub-pages and connects them with next/back hyperlinks. When

browsing an adapted web page, the user will access each sub-page

one by one in the defined sequence. Figure 13(a) shows this

scheme.

Multi-subject splitting generates a new index page in addition to

sub-pages. The index page contains hyperlinks pointing to each

<A>
<A>
<A>

<DIV>

VN

<A>
 <A>
 <A>

Figure 11. Detection of basic content block by pattern

recognition and clustering. VN represents a virtual node.

Figure 10. Detecting implicit separators

Projection on the

vertical axis

Collect atomic nodes

Group atomic nodes

Detect patterns

Merge

Figure 12. The pattern recognition algorithm is used to

produce basic blocks for implicit separator detection.

P1

P2

P3

P1 P2 P3

I

Local index page

Sub-page

(a) (b)

Sub-page

Figure 13. (a) Single-subject splitting. (b) Multi-subject

splitting.

sub-page. So the result of multi-subject splitting is a two-level

hierarchy of content as shown in Figure 13(b). While browsing an

adapted web page, the user will first receive an index page. This

index page provides an overview and guidance for the user to

access each sub-page through the hyperlinks in the index page.

Single-subject splitting is suitable for a web page which contains

the content of a particular topic, such as a news story in the

MSNBC web site. Multi-subject splitting is more appropriate for

the homepage of a web site. In this paper, we use multi-subject

splitting as an example to illustrate our page adaptation technique.

4.1 Page Splitting and Sub-page Generation
Before conducting page splitting, we need to determine the

appropriate size of block so that it is smaller than or equal to the

screen size. Based on the result of page analysis, the content in the

final set of content blocks can be easily extracted and stored into

sub-pages.

Some content cannot be put into a sub-page directly because of

the problems of style and hyperlink. In the following, we discuss

how to resolve each of these problems.

4.1.1 Dealing with Style
HTML standard permits the author to use Cascading Style Sheet

(CSS) [12] and style inheritance to specify content style. CSS

allows the author to define the style of a tag, a tag class or tag

instance. Style inheritance allows the author to specify a node’s

style at one of its parent nodes. Extracting content from a block of

HTML file may lose some style information because the style

information from CSS and inheritance is not located together with

the content.

In order to keep the original appearance of a block, we need to

retrieve its style information. For the CSS case, since CSS is

usually specified in <HEADER> using <STYLE> or <LINK>,

we could copy the <HEADER> section of a web page into each

generated sub-page.

For the case of style inheritance, we must trace along the parent

link of a target node and retrieve all the style information of each

parent tag. The style information of each tag along the link is

merged. Whenever there is a conflict, a child tag will overwrite its

parent tag.

4.1.2 Dealing with Internal Hyperlinks
Internal hyperlinks are often used to assist a user to locate content

inside a web page. For example, … is used to

specify a place in a web page. Then …

can be used as a pointer to the specified place. When clicking on

an internal hyperlink, the browser will scroll directly to the

specified location.

After a web page is split into several sub-pages, the place specifier

and the pointer may appear in different sub-pages. For example,

… may appear in sub-page-1.htm while … appears in sub-page-2.htm. Our solution is

to change the pointer in sub-page-2.htm to <A href=“…/sub-

page-1.htm#id1”>…. The page splitting module is

responsible for searching the internal hyperlinks and making

appropriate modification.

4.1.3 Dealing with Relative Hyperlink Resolution
The author can specify an absolute hyperlink or a relative

hyperlinks in <A> and <AREA>. The Web browser resolves

relative hyperlinks to absolute ones according to the base URL of

the web page. The default base URL is the URL of the web page.

But the author can override the base URL using <BASE> tag. The

<BASE> tag resides in the <HEADER> section, which is another

reason of copying the <HEADER> section into each sub-page.

4.2 Index Page Generation
An index page which contains a thumbnail and hyperlinks to its

sub-pages will be generated after all the sub-pages are created. We

first generate href values based on the names of the sub-pages. For

example, we could name each sub-page in the form of

origin_xxx.htm, where origin denotes the name of the original

web page and xxx denotes the number of a sub-page.

We generate a thumbnail image for the original web page, and

mark the content blocks with different colors. Then we put an

 tag to reference the thumbnail image and corresponding

<MAP> tag in the index page (A <MAP> tag contains a

hyperlink to a sub-page.). While browsing an index page, the user

can click on any block in the thumbnail to access the

corresponding sub-page. Figure 14 shows an example of the index

page and sub-pages generated from the homepage of MSN.com.

5. Experimental Results
We conducted some experiments to evaluate the performance of

our algorithm. To perform the experiments, we selected 50

popular web sites and 200 typical web pages from them as our test

data. Each web page is adapted using our algorithm and the result

is evaluated by testers to put into one of the following three

categories: perfect, good and error. Perfect means that the page

analysis and splitting is perfect without any error. Good means

that the page analysis result is correct but there are minor errors in

page splitting and those errors do not affect the viewing of the

result. Error means that there are errors in both page analysis and

splitting processes, causing a browsing problem or losing some

information.

Figure 14. Page splitting for the homepage of MSN.com

Table 1 shows the list of 50 tested web sites and the

corresponding results. The number shows the percentage of

perfect cases in each web site. Note that this is a very strict

criterion, and we achieved 55% in average among these web sites.

Figure 15 shows the distribution of our performance evaluation

based on the three categories. Note that more than 90% of our

results are either perfect or good.

Table 1. The 50 tested web sites and the corresponding results

Web Site Perfect(%) Web Site Perfect(%)

Yahoo.com 60% Msnbc.com 17%

Msn.com 50% Jobsonline.com 0%

Aol.com 60% Flowgo.com 100%

Microsoft.com 20% Earthlink.net 25%

Altavista Search

Services

80% Americangreetings.

com

75%

Passport.com 75% Ivillage.com 100%

Hotmail.com 60% Mypoints.net 100%

Go.com 80% Cnn.com 20%

Netscape.com 0% Goto.com 0%

Amazon.com 60% Bizrate.com 75%

Excite.com 40% Mapquest.com 67%

Nbci.com 100% Passthison.com 0%

Ebay.com 80% Weather.com 75%

Bluemountain.com 80% Mo.net 50%

Lycos.com 0% Collsavings.com 100%

Real.com 60% Infospace.com 100%

Looksmart.com 80% Iwin.com 60%

Cnet.com 80% Espn.com 0%

Angelfire.com 40% Colonize.com 25%

Tripod.com 80% Travelocity.com 75%

Askjeeves.com

Search & Services

80% Windowsmedia.co

m

0%

About.com 100% Women.com sites 0%

Speedyclick.com
1
 N/A Disney Online 33%

Iwon.com 60% Zmedia.com 100%

Zdnet.com 80% Google.com 50%

Most of the splitting errors in the category of “Good” are related

to styles (including CSS), absolute positioning, or scripts used to

display dynamic menus. When browsing a web page on a mobile

device, these errors usually do not affect the viewing because

most of these features are not supported by mobile browsers.

For example, a web page from MSNBC uses absolute positioning

to place its right side bar, as shown in Figure 16(a). Although the

right side bar is correctly detected and put into a sub-page, its

position information causes a problem in display on desktop PC,

as shown in Figure 16(b). But fortunately on a mobile device such

1 The returned page is blank.

as a Pocket PC, the absolute positioning is ignored by its web

browser, so the result still looks fine, as shown in Figure 16(c).

We also evaluate the processing requirement of our algorithm.

Figure 17 shows the computation time for the three major

processing in our algorithm. The experiment was conducted on a

personal computer with 1.7 GHz CPU and 512M main memory.

The result is shown in millisecond. The page analysis and splitting

processing together take no more than 200 milliseconds. The

thumbnail generation is slow because we currently use screen

copy to obtain the image of the entire web page.

5.1 Further Analysis of the Results
In the following, we further discuss some of typical errors

happened in our experiment.

5.1.1 HTML Syntax Error
In the page analysis stage, HTML syntax errors left by the author

could cause the html parser to produce erroneous HTML DOM

tree, which could sometimes make the high-level content block

The right side bar is

positioned absolutely.

Figure 16. The problem caused by absolute positioning of the

right side bar in (a). When the corresponding sub-page is

shown on a desktop PC, its position information causes a

problem as shown in (b), but fortunately most mobile

browsers will ignore the information, so the result on these

small devices would still like fine as shown in (c).

(a) Original page

(b) On a Desktop PC (c) On a Pocket PC

0

200

400

600

800

1000

Time (ms)

Page

Analysis

Page

Splitting

Thumbnail

Generation

Figure 17. Processing time for our page adaptation algorithm

0%

20%

40%

60%

80%

100%

Error

Good

Perfect

Figure 15. The distribution of the performance evaluation

based on the three categories: perfect, good, and error.

detection produce unexpected results. For example, a pair of

misplaced <FORM> and </FORM> in a web page causes our

parser to place the footer of the web page under a small table in

the body. Consequently, the high-level analysis failed to detect the

content in the footer and produced an incorrect result.

5.1.2 Side Effects of Splitting
Splitting a large web page into smaller sub-pages could decrease

client loading time if it fetches only a few interested sub-pages.

However, the presentation of a sub-page sometimes could look

slightly different from what it appears in the original web page.

For example, the home page of Lycos (www.lycos.com) uses an

<IFRAME> as its header with width set to 100% and scrolling set

to no, which means its width is equal to its parent tag. After

splitting, the parent tag’s width is decreased, making the content

in <IFRAME> clipped. Since <IFRAME> does not has scroll

bars (scrolling property is no), the user cannot browse the content

which is clipped due to the smaller width.

Another side effect is related to scripts. For example, some web

pages use scripts to create dynamically scrolling text (e.g.

www.netscape.com). After splitting, a script and the text it

controls could be stored into two different sub-pages because they

are located far away from each other in the original web page. As

a result, the sub-page containing the script produces incorrect

result while the text in the other sub-page cannot scroll.

5.2 Auto-positioning instead of Splitting
Since scripts tend to create inter-dependencies among the

different part of a web page, they are problematic for splitting. For

a web page that uses scripts extensively, it is better not to split it.

Instead, assisting the user in scrolling the page is another direction

to go.

Auto-scrolling is a scheme that positions the viewing window

automatically based on the page layout information detected by

our algorithm. The difference between this approach and the

previous one is that the original web page is viewed when the user

clicks on a block in the thumbnail view. That is, the browser

switches back and forth between the thumbnail and original web

page to provide the scrolling-by-block function. This method

generates a very similar user experience to the page splitting

method. Figure 18 shows the comparison of web page adaptation

using page splitting and auto-positioning.

6. CONCLUSIONS
In this paper, we proposed a new method for facilitating the

browsing of a large web page on a small screen. A web page is

adapted and converted into a two level hierarchical organization

with a thumbnail page at the top level for providing a global view

and index to a set of sub-pages at the bottom level for detail

viewing. We developed a page analysis algorithm to extract the

semantic structure of an existing web page and a page splitting

scheme to partition the web page into smaller and logically related

content blocks. Our approach enables a new mobile browsing

experience by first presenting the thumbnail view of a give web

page and then allowing the user to select a particular region to

zoom in for detail information. Such a new browsing method

overcomes the limitation of a mobile device with a small screen

and makes them truly useful for information access. A large

amount of experiment and performance evaluation was also

conducted to show the effectiveness of our proposed algorithms.

7. ACKNOWLEDGMENTS
We are thankful to Mingyu Wang, Xing Xie, and Zheng Zhang

for many valuable discussions in shaping up this work.

8. REFERENCES
[1] Ashish, N. and Knoblock, C. Wrapper Generation for Semi-

structured Internet Sources. Proc. PODS/SIGMOD’97, May

1997.

[2] Bickmore, T.W. and Schilit, B.N. Digestor: Device-

independent Access to the World Wide Web. Proc. of the 6th

WWW Conference, 1997, pp655-663.

[3] Buyukkokten, O., Garcia-Molina, H. and Paepcke, A.

Accordion Summarization for End-Game Browsing on PDAs

and Cellular Phones. Proc. of the SIGCHI Conference on

Human Factors in Computing Systems, 2001, pp213-220.

[4] Buyukkokten, O., Garcia-Molina, H. and Paepcke, A. Seeing

the Whole in Parts: Text Summarization for Web Browsing

on Handheld Devices. Proc. of WWW-10, May 1-5, 2001,

Hong Kong.

[5] Chen, J.L., Zhou, B.Y., Shi, J., Zhang, H.J. and Wu, Q.F.

Function-based Object Model Towards Website Adaptation.

Proc. of WWW-10, May 1-5, 2001, Hong Kong.

[6] Fox, A., Gribble, S.D., et al. Adapting to Network and Client

Variation Using Infrastructural Proxies: Lessons and

Perspectives. IEEE Personal Communication, V5, I4, 1998,

pp10-19.

[7] Gu, X.D., Chen, J.L., Ma, W.Y., Chen, G.L. Visual Based

Content Understanding towards Web Adaptation. 2nd Intl.

(a) Page splitting

(b) Auto-positioning

Figure 18. The comparison of web-page adaptation using (a)

page splitting and (b) auto-positioning

Conf. on Adaptive Hypermedia and Adaptive Web Based

Systems (Malaga, Spain, May 2002), pp164-173.

[8] Hammer, J., Garcia-Molina, H., Cho, J., Aranha, R. and

Crespo, A. Extracting Semistructured Information from the

Web. Proc. PODS/SIGMOD’97, May 1997.

[9] Hori, M., Kondoh, G., Ono, K., Hirose, S. and Singhal, S.

Annotation-Based Web Content Transcoding. Proc. of

WWW-9, Amsterdam, Holland, May 2000.

[10] Milic-Frayling, N. and Sommerer, R. SmartView: Flexible

Viewing of Web Page Contents. Poster paper at the Eleventh

World Wide Web Conference, Hawaii, 2002

(http://www2002.org/CDROM/poster/172/).

[11] Rahman, A.F.R., Alam, H., Hartono, R. and Ariyoshi, K.

Automatic Summarization of Web Content to Smaller

Display Devices. In: Post Presentations of 6th International

Conference on Document Analysis and Recognition, Seattle,

The United States, Sept. 10-13, 2001.

[12] W3C. Cascading Style Sheets.

http://www.w3.org/Style/CSS/.

[13] W3C. HTML 4.0 specification.

http://www.w3.org/TR/html4/

[14] Wang, Y.L. and Hu, J.Y. A Machine Learning Based

Approach for Table Detection on The Web. Proc. of

WWW2002, May 7-11, 2002, Honolulu, Hawaii, USA.

[15] Yang, Y.D., Chen, J.L. and Zhang, H.J. Adaptive Delivery of

HTML Contents. WWW9 Poster Proceedings, May, 2000,

pp24-25.

[16] Yang, Y.D. and Zhang H.J. HTML Page Analysis Based on

Visual Cues. In: 6th International Conference on Document

Analysis and Recognition, Seattle, The United States, Sept.

10-13, 2001.

