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Abstract

The development of wireless telecommunication systems has been rapid during the last two

decades and the data rates as well as the quality of service (QoS) requirements are continuously

growing. Multiple-input multiple-output (MIMO) techniques in combination with orthogonal

frequency-division multiplexing (MIMO–OFDM) have been identified as a promising approach

for high spectral efficiency wideband systems. 

The optimal detection method for a coded MIMO–OFDM system with spatial multiplexing

(SM) is the maximum a posteriori (MAP) detector, which is often too complex for systems with

high order modulation. Suboptimal linear detectors, such as the linear minimum mean square error

(LMMSE) criterion based detection, offer low complexity solutions, but have poor performance

in correlated fading channels. A list sphere detector (LSD) is a tree search based soft output

detector that can be used to approximate the MAP detector with a lower computational

complexity. The benefits of the more advanced detectors can be realized especially in a low SNR

environment by, e.g., increasing the cell coverage. In this thesis, we consider the linear minimum

mean square error (LMMSE) criterion based detectors and more advanced LSDs for detection of

SM transmission. 

The LSD algorithms are not as such feasible for hardware implementation. Therefore, we

identify the design choices that relate to the performance and implementation complexity of the

LSD algorithms. We give guidelines to the LSD algorithm design and propose the proper trade-

off solutions for practical wireless systems. The more stringent requirements call for further

research on architectures and implementation. In particular, it is important to address the

parallelism and pipelining factors in the architecture design to enable an optimal trade-off between

used resources and operating speed. We design pipelined systolic array architecture for LMMSE

detector algorithms and efficient architectures with given algorithm properties for the LSD

algorithms. 

We consider the VLSI implementation of the algorithms to study the true performance and

complexity. The designed architectures are implemented on a field programmable gate array

(FPGA) chip and CMOS application specific integrated circuit (ASIC) technology. Finally, we

present some measurement results with a hardware testbed to verify the performance of the

considered algorithms. 

Keywords: architecture, ASIC, detector, FPGA, implementation, LSD, MIMO, OFDM,

soft-output, tree search
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Tiivistelmä

Langattoman tietoliikenteen kehitys on ollut nopeaa viimeisien vuosikymmenien aikana ja jär-

jestelmiltä vaaditaan yhä suurempia datanopeuksia ja luotettavuutta. Multiple-input multiple-

output (MIMO) tekniikka yhdistettynä monikantoaaltomodulointiin (MIMO-OFDM) on tunnis-

tettu lupaavaksi järjestelmäksi, joka mahdollistaa tehokkaan taajuusalueen hyödyntämisen. 

Optimaalinen ilmaisumenetelmä tilakanavoituun (SM) ja koodattuun MIMO-OFDM järjes-

telmään on maximum a posteriori (MAP) ilmaisin, joka on tyypillisesti liian kompleksinen

toteuttaa laajakaistajärjestelmissä, joissa käytetään korkean asteen modulointia. Alioptimaaliset

lineaariset ilmaisimet, kuten pienimpään keskineliövirheeseen (LMMSE) perustuvat ilmaisimet,

ovat suhteellisen yksinkertaisia toteuttaa nykyteknologialla, mutta niiden suorituskyky on varsin

heikko korreloivassa radiokanavassa. Listapalloilmaisin (LSD) on puuhakualgoritmiin perustu-

va pehmeän ulostulon ilmaisin, joka pystyy jäljittelemään MAP ilmaisinta sitä pienemmällä

kompleksisuudella. Kehittyneemmät ilmaisimet, kuten LSD, voivat parantaa langattoman ver-

kon suorituskykyä erityisesti ympäristössä, jossa on matala signaalikohinasuhde, esimerkiksi

mahdollistamalla suuremman toiminta-alueen. Tässä väitöskirjassa on tutkittu kahta LMMSE

ilmaisinta ja kolmea LSD ilmaisinta SM lähetyksen ilmaisuun. 

Yleisesti LSD algoritmit eivät ole sellaisenaan toteutuskelpoisia kaupallisiin järjestelmiin.

Väitöskirjassa on tämän vuoksi tutkittu LSD:n toteutukseen liittyviä haasteita ja toteutusmene-

telmiä ja annetaan suosituksia LSD algorithmien suunnitteluun sekä ehdotetaan sopivia toteutus-

kompromisseja käytännön langattomiin järjestelmiin. Haastavammat suorituskyky- ja latenssi-

vaatimukset edellyttävät lisätutkimuksia toteutusarkkitehtuureihin ja toteutuksiin. Erityisesti rin-

nakkaisten resurssien käyttö ja liukuhihnatekniikka toteutusarkkitehtuureissa mahdollistavat

optimaalisen kompromissin löytämisen toteutuksessa käytettyjen resurssien ja laskentanopeu-

den väliltä. Väitöskirjassa suunnitellaan tehokkaat arkkitehtuurit tutkituille LMMSE ja LSD

algoritmeille ottaen huomioon niiden ominaisuudet. 

Väitöskirjassa tutkitaan algoritmien toteutusta VLSI tekniikalla ja pyritään saamaan realisti-

nen arvio algoritmien kompleksisuudesta ja suorituskyvystä. Algoritmeille suunnitellut arkkiteh-

tuurit on toteutettu sekä FPGA piirille että erillisenä toteutuksena ASIC teknologialla. Väitöskir-

jassa esitetään myös testilaitteistolla tehtyjä mittaustuloksia ja varmistetaan toteutettujen algorit-

mien suorituskyky. 

Asiasanat: arkkitehtuuri, ASIC, FPGA, ilmaisin, LSD, MIMO, OFDM, pehmeä

ulostulo, puuhaku, toteutus
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Symbols and abbreviations

b coded binary bit vector

BC number of nodes in a complex valued search tree with given

configuration

BR number of nodes in a real valued search tree with given configuration

C0 squared sphere radius

Cmem memory sphere radius

Cm×n set of complex m×n matrices

D node coefficient used in scheduled search method

DR diagonal matrix generated by the SGR algorithm

D2
LMMSE squared mean square error metric

∆it latency of a LSD algorithm implementation iteration

∆tot throughput time of a LSD algorithm implementation

ES transmitted symbol power

fc carrier frequency

fD Doppler frequency

γ signal-to-noise ratio

H channel matrix in frequency domain, NR ×NT

H̃ residual channel matrix in frequency domain, NR ×NT

Hr real equivalent channel matrix in frequency domain, MR ×MT

imax number of applied CORDIC micro rotations

Im{·} imaginary part

K size of the candidate list with K-best-LSD

κ precomputed normalization constant in CORDIC micro rotations

LA1 a posteriori information in the input of the detector

LA2 a posteriori information in the input of the decoder

LD(bk) a posteriori information of the kth bit

LD1 a posteriori information in the output of the detector

LD2 a posteriori information in the output of the decoder

LE1 extrinsic information given by the detector

LE2 extrinsic information given by the decoder
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Lavg number of node visit resources available in average per subcarrier in

scheduled search method

Lit
avg average number of executed LSD algorithm iterations

Llimit threshold value for LLR clipping

Lnode maximum search limit in terms of visited nodes with limited search

method

Lnode(n) maximum search limit in terms of visited nodes for nth subcarrier with

scheduled search method

Lmax maximum LLR clipping value

Lmin minimum number of node visit resources reserved for each subcarrier

in scheduled search method

L LSD candidate list

Li K-best-LSD algorithm architecture partial candidate list at layer i

Lk,+1 set of candidate vectors having bk =+1

λ wavelength of the used transmission frequency

MR dimension for real equivalent system model, MR = 2NR

MT dimension for real equivalent system model, MT = 2NT

n1 information of extended nodes in LSD algorithm

n2 information of extended nodes in LSD algorithm

Nc number of OFDM subcarriers

Ncand LSD candidate list size

Nmax
cand maximum possible LSD candidate list size for a particular configuration

NR number of receive antennas

NT number of transmit antennas

Nused number of OFDM subcarriers used for data transmission

n noise vector, NR ×1

nr real equivalent noise vector, MR ×1

N partial candidate information; subscripts c and f used to denote child

and father candidates

Ω complex QAM constellation

Ωr real part of QAM constellation

P power consumption

p permutation order vector

Q number of bits in QAM symbol

Q unitary matrix

12



QA matrix consisting of orthogonalized columns of the decomposed matrix

by the SGR algorithm

R coded transmission rate

Rdet implementation detection rate

R
(asic)
det ASIC implementation detection rate

R
(fpga)
det FPGA implementation detection rate

R upper triangular matrix

Rxx covariance matrix of transmitted symbol vector

Rnn covariance matrix of noise vector

R̃nn covariance matrix of residual channel matrix

RRX spatial correlation matrix at the receiver

RTX spatial correlation matrix at the transmitter

Re{·} real part

R
m×n set of real m×n matrices

s partial candidate symbol vector; subscripts c and f used to denote child

and father candidates

S memory set used in the LSD algorithms

σ2 noise power

χk,+1 set of possible bit vectors having bk =+1

τmac delay of a processing element in a multiplication array

τinv delay of a processing element in an inversion array

τstage delay of a pipeline stage of K-best-LSD algorithm architecture

Tc channel coherence time

U upper triangular matrix generated by the SGR algorithm

VC number of visited nodes by the K-best-LSD algorithm in complex val-

ued signal model

VR number of visited nodes by the K-best-LSD algorithm in real valued

signal model

Walg work factor value of algorithm implementation

WLLR work factor value of LLR calculation unit implementation

WR memory sphere radius scaling variable

W LMMSE coefficient matrix, NR ×NT

x transmitted signal vector, NT ×1

xr real equivalent transmitted signal vector, MT ×1

x
MT
i last MT − i+1 components of the vector x
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y received signal vector, NR ×1

ỹ received signal vector multiplied with orthogonal matrix, i.e., ỹ = QTy,

MR ×1

yr real equivalent received signal vector, MR ×1

Z set of integer numbers

⌊·⌉ rounding to the closest integer

⌈·⌉ ceil operation, i.e., rounding to the closest higher integer

{·}k
kth element in the set

(·)∗ complex conjugate of the argument

(·)T transpose of the argument

(·)H complex conjugate transpose (Hermitian) of the argument

| · | absolute of the argument

∥ · ∥1 1-norm

∥ · ∥2 Euclidean norm, i.e., 2-norm

∥ · ∥F Frobenius norm of the matrix
ˆ(·) estimate of the argument
˜(·) soft output of the argument

(W, I,S) fixed-point word length presentation, where W, I and S refer to the total

number of bits, the number of bits used for the integer part, and the

unsigned or signed type of value representation

xi ith element of the vector x

xi ith column of the matrix X

Xi, j (i, j)th element of the matrix X

arctan(·) inverse trigonometric function of tangent

cos(·) cosine of the angle

d(x) squared (partial) Euclidean distance of vector x

diag(x) diagonal matrix with the elements of vector x on the main diagonal

exp(·) exponential function, i.e., e(·)

E(·) expectation of the argument

fc(·) correlation function in Jacobian algorithm

ln(·) natural logarithm of the argument

O(·) complexity order

P(·) probability of the argument to occur

p(·) probability density function
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|X| determinant of the matrix X

X−1 inverse of the matrix X

I identity matrix; a subscript can be used to indicate the dimension

max(·) maximum

min(·) minimum

sgn(·) sign of the argument

sin(·) sine of the angle

Si(x) SEE middle point of the vector x

tan(·) tangent of the angle

tr(X) trace of matrix X

≈ approximative equal

2G second generation cellular systems

3G third generation cellular systems

3GPP Third Generation Partnership Project

4G fourth generation cellular systems

AD absolute distance

ADD addition

APP a posteriori probability

ASIC application specific integrated circuit

AWGN additive white Gaussian noise

BER bit error rate

B3G beyond 3G

BLAST Bell Labs space-time architecture

BRAM block random access memory

BB baseband

BS base station

BW bandwidth

CDF cumulative distribution function

CDMA code division multiple-access

CMOS complementary metal-oxide semiconductor

CNTR control unit

COMP comparison

CORDIC coordinate rotation digital computer

CORR highly correlated
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CP cyclic prefix

CSI channel state information

CWC centre for wireless communications

CU complexity unit

dB decibel

D-BLAST diagonal Bell Labs space-time architecture

DI decoder iteration

DIV division

DL downlink

DMI direct matrix inversion

EB4G Elektrobit 4G hardware test platform

ED Euclidean distance

EDGE enhanced data rates for GSM evolution

FDD frequency division duplex

FDMA frequency division multiple access

FEC forward error control

FER frame error rate

FFT fast Fourier transform

FPGA field programmable gate array

GE gate equivalents

GI global iteration

GPRS Generalized Packet Radio Service

HDL hardware description language

HE horizontal coding

HLS high level synthesis

HW hardware

HSPA high-speed packet access

IFFT inverse fast Fourier transform

IMT-A international mobile communications - advanced

IP internet protocol

IR increasing radius

ISI inter-symbol interference

L1 1-norm

L2 2-norm

LLR log-likelihood ratio
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LMMSE linear minimum mean square error

LORD layered orthogonal lattice detector

LR lattice reduction

LS limited search

LSD list sphere detector

LST layered space-time

LTE long term evolution

LTE-A long term evolution advanced

LUT look-up-table

MAC multiply and accumulate

MAP maximum a posteriori

ML maximum likelihood

MIMO multiple-input multiple-output

MISO multiple-input single-output

MITSE MIMO techniques for 3G system and standard evolution

MMSE minimum mean square error

MSE mean square error

MT mobile terminal

MUL multiplication

NLOS non-line-of-sight

OFDM orthogonal frequency division multiplexing

OFDMA orthogonal frequency division multiple access

OSIC ordered successive interference cancellation

PAD partial absolute distance

PAPR peak-to-average power ratio

PDF probability density function

PE processing element

PED partial Euclidean distance

QAM quadrature-amplitude modulation

QoS quality of service

QPSK quadrature phase-shift keying

QRD decomposition of the matrix into an orthogonal and a triangular matrix

RACE Radio Access Emulator platform

RAM random access memory

RF radio frequency

17



RTL register transfer level

RX receiver

SC-FDMA single-carrier frequency division multiple access

SD sphere detector

SDMA space division multiple access

SDR semidefinite relaxation

SEE Schnorr-Euchner enumeration

SGR Squared Givens rotation

SIC successive interference cancellation

SINR signal-to-interference-plus-noise ratio

SIPO serial-input parallel-output

SISO single-input single-output

SfISfO soft-input soft-output

SM spatial multiplexing

SNR signal-to-noise ratio

SQRD sorted QR decomposition

SS scheduled search

STBC space-time block codes

STC space-time codes

STTC space-time trellis codes

SVD singular value decomposition

TCM trellis coded modulation

TDD time division duplex

TDMA time division multiple access

TPU tree pruning unit

TX transmitter

TU typical urban

UL uplink

UNC uncorrelated

VB Viterbo-Boutros

V-BLAST Vertical Bell Labs space-time architecture

VE vertical encoding

VLSI very large scale integration

WiMAX worldwide interoperability for microwave access

WCDMA wideband code division multiple access
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WLAN wireless local-area network

WMAN wireless metropolitan-area network

ZF zero forcing
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1 Introduction

The development of wireless communication systems has been rapid during the last two

decades and the data rates as well as the quality of service (QoS) requirements are con-

tinuously growing to enable a rich user experience in wireless communication services.

This will require high capacity and flexibility from future wireless communication sys-

tems and networks given that regulation and other factors render the radio frequency

(RF) spectrum a scarce and valuable resource. Therefore, the physical layer of future

wireless communication networks must be capable of providing an ever-increasing ca-

pacity in terms of high spectral efficiency, higher data rates and larger numbers of si-

multaneous users. Advanced technologies such as the use of multiple antennas both at

the transmitter and receiver enable very efficient utilization of the spectrum. The use of

multiple antennas both in the transmitter and receiver results in a so-called multiple-

input-multiple-output (MIMO) radio channel [1, 2] as opposed to the conventional

single-input-single-output (SISO) radio channel. MIMO in combination with orthogo-

nal frequency-division multiplexing (OFDM) (MIMO–OFDM) have been identified as

a promising approach for high spectral efficiency wideband systems [3]. The increasing

data rates and higher capacity requirements call for improved receiver implementations

and architectural design. The more stringent performance requirements call for further

research on architectures and implementation of baseband receiver algorithms as well.

The solution for the implementation is a trade-off between hardware complexity and

operational performance.

In this thesis, different detector algorithms required in the reception of MIMO–

OFDM downlink (DL) signals are considered. In addition to algorithm research and

development, the architecture design of the algorithms, and implementation aspects

and trade-offs are addressed in order to develop efficient implementations in terms of

performance and complexity. Special focus is put on the list sphere detector (LSD)

algorithms [4], which have recently emerged as a very promising approach to solving

the detection problem.
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1.1 Wireless system development

In order to satisfy the need for higher data rates and more efficient wireless systems, the

dominating second generation (2G) cellular system Global System for Mobile Commu-

nications (GSM) [5], which was still used mainly for voice communication, has been

upgraded with advanced features such as Generalized Packet Radio Service (GPRS)

[6, 7] and Enhanced Data Rates for GSM Evolution (EDGE) [7]. The 2G systems

divided users in separate time, frequency or code domains in the available radio spec-

trum by time-, frequency-, or code division multiple access (TDMA, FDMA, CDMA)

methods, respectively [8, 9]. The third generation partnership project (3GPP) [10] in-

troduced the 3G cellular systems [11] and their improved versions with High Speed

Packet Access (HSPA) [12], which provide better support for multimedia and internet

based services with higher data rates compared to 2G systems. The 3G systems are

currently in active commercial usage and the most common Universal Mobile Telecom-

munications System (UMTS) technology uses wideband CDMA (WCDMA) [11] as the

underlying air interface. At the same time, other wireless networks with less support for

mobility, such as OFDM [13–15] based wireless local area network (WLAN) or Wi-Fi

[16] and wireless metropolitan area network (WMAN) [17] systems, are undergoing

rapid development.

Research and development that extends beyond 3G (B3G) cellular communication

systems is also ongoing. The 3GPP is currently working on extensions to 3G standards

called 3G Long Term Evolution (LTE) [18], which is based totally on packet data and an

internet protocol (IP) network infrastructure. The 3G LTE standard includes advanced

wireless technologies such as MIMO communications with multiple antennas at both

the base station (BS) and mobile terminal (MT) and OFDM. The LTE specification tar-

gets peak data rates up to 100 and 50 Mb/s in DL and uplink (UL), respectively. Other

evolving B3G systems also exist, such as the WMAN based Worldwide Interoperabil-

ity for Microwave Access (WiMAX) system standard [19]. The main physical layer

distinction in the 3G LTE systems compared to the 3G systems is the introduction of or-

thogonal frequency division multiplexing (OFDM) and orthogonal frequency division

multiple access (OFDMA) [20] for DL and single-carrier frequency division multiple

access (SC-FDMA) [21] for UL instead of the WCDMA based solutions in 3G systems.

Research on the 4th generation (4G) cellular system after B3G systems has also

started and is currently called International Mobile Telecommunications-Advanced

(IMT-A). The 3GPP will propose the evolution of the 3G LTE system framework as
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LTE advanced (LTE-A) and it is included in the 3GPP Releases 10 and beyond. The

targeted data rates are 1 Gb/s in the local area and 100Mb/s with outdoor area coverage.

1.2 MIMO–OFDM communications

The high data rate requirements of future wireless communication can be achieved by in-

creasing spectral efficiency since the available RF spectrum bandwidth (BW) is limited

in practical systems. The use of multiple antennas at both the transmitter and receiver,

which is usually referred to as MIMO communication, offers improved capacity and

significant potential for improved reliability compared to single antenna systems with-

out additional transmission time or BW [2, 22–25]. The multiple antenna transmission

is also challenging for the analog front-end and RF parts, and calls for methods to com-

pensate for the nonidealities, e.g., see [26, 27]. A MIMO system of NT transmit and NR

receive antennas for a total of NTNR links can be applied to performance improvements

compared to single antenna systems [2]. The performance improvements achieved by

the use of MIMO communication include array gain, diversity gain, interference re-

duction and spatial multiplexing (SM) gain [2]. Several practical concepts, which are

briefly introduced in this section, have been developed to realize the potential of MIMO

communication.

Traditionally, multiple antennas have been used in wireless transmission in order

to attain array gain or diversity gain. The array gain is achieved by processing at the

transmitter or the receiver called beamforming, and results in an increase in average

received signal-to-noise ratio (SNR) via coherent combining [2, 28], i.e., the operating

range of the communication system can be extended. Beamforming uses multiple corre-

lated antenna elements to focus the energy in the desired directions. Multiple antennas

can also be used to reduce co-channel interference, which occurs due to use of the same

frequency band in neighboring cells in a wireless system [22, 28]. This is carried out

by adjusting the beam pattern so that there are nulls in the directions of the interfering

co-channel users and high directivity towards the desired user. Interference reduction al-

lows frequency reuse and thus an increase in multi-cell capacity. For more information

about adaptive antennas, see [29, 30].

The diversity gain can be used to mitigate fading in a wireless fading channel

by transmitting the same signal multiple times over independently fading paths in

time/frequency/space and combining the signal at the receiver. Thus, the diversity gain

increases the link reliability and QoS in a wireless communication system. Spatial di-
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versity can be gained if there are multiple spatially separated transmit and/or receive

antennas that are used to transmit and/or receive multiple redundant signals. Space-

time codes (STC) can be designed to jointly correlate transmitted symbols in spatial

and temporal domains in order to improve the reliability of the transmission and in-

crease the data rate, when the channel state information (CSI) is only known at the

receiver [25, 31–33]. Space-time trellis codes (STTCs) [33], which may be interpreted

as a generalization of trellis coded modulation (TCM) [34] to multiple transmit anten-

nas, achieve both diversity and coding gain with multiple antennas, but require rather

high decoding complexity. A simple transmit diversity technique [35] was proposed

by Alamouti for two transmit antennas, which achieves full diversity gain, but requires

only simple linear processing for decoding. A generalization of the technique, space-

time block codes (SBTCs), was introduced to an arbitrary number of antennas in [36].

The STBCs achieve full diversity with regard to the number of transmit and receive

antennas, but do not offer any additional coding gain.

Spatial multiplexing, where the transmitted information bit sequence is split into

multiple parallel streams that are transmitted simultaneously over the different transmit

antennas at the same frequency band, is a simple method to gain a linear increase in the

spectral efficiency in a MIMO channel. The capacity increase is linearly proportional to

the minimum number of transmit and receive antennas in a rich scattering environment

[1, 37]. Forward error control (FEC) coding, also called channel coding, is typically

applied with the schemes to guarantee a certain error performance and several different

encoding options such as vertical encoding (VE) and horizontal encoding (HE) can be

applied to spatial multiplexing schemes [2]. Layered space-time (LST) architectures

combined with channel coding offer pragmatic and powerful methods to increase the

data rate, i.e., achieve spatial multiplexing gain, in systems with multiple antennas at

both transmitter and receiver [38–41]. Very high spectral efficiency can be achieved

in Bell Labs’ layered space-time (BLAST) systems by employing multiple antennas

at both transmit and receive sides. The original proposal by Foschini [38] is known

as diagonal BLAST (D-BLAST). A simplified version of BLAST known as vertical

BLAST (V-BLAST) was introduced in [39]. Since the individual spatial layers are

superimposed during the transmission, they have to be separated at the receiver by a

detector. The separation of the layers at the receiver is based on differences in the spatial

signatures in the MIMO channel and MIMO systems exploit multipath propagation to

separate the multiplexed data streams instead of mitigating them as in conventional
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antenna array systems. Different detection algorithms are discussed in more detail in

the following section.

MIMO communications techniques typically assume a frequency-flat fading radio

channel environment, i.e., the coherence bandwidth of the channel is larger than the

bandwidth of the signal. However, MIMO communications will be mainly used in

wideband systems that experience frequency-selective fading, and, thus, intersymbol

interference (ISI) [42, 43]. This may cause significant performance degradation to the

MIMO communications schemes if suitable techniques such as equalization are not ap-

plied for mitigating ISI [44]. Another possibility is to apply a multicarrier transmission

scheme such as OFDM [13, 14, 45]. OFDM divides the frequency-selective channel

into a set of parallel frequency-flat fading channels and applies a guard interval in the

OFDM symbol, called a cyclic prefix (CP), which should be long enough to accom-

modate the delay spread of the channel. Thus, OFDM does not require any additional

equalization techniques for mitigation of ISI. OFDM can be implemented with an in-

verse fast Fourier transform (IFFT) at the transmitter and a fast Fourier transform (FFT)

at the receiver, which makes it simple and attractive for practical use. A downside of

OFDM is that it is sensitive to synchronization errors and suffers from a larger peak-

to-average power ratio (PAPR) [46]. However, MIMO–OFDM has been identified as

a promising approach for high spectral efficiency wideband systems and has been in-

cluded in many upcoming wireless standards.

1.3 Review of the earlier and parallel work

A review of the literature and parallel work related to the detection in MIMO systems is

presented in this section. The review includes the main algorithms, architecture designs

and implementations introduced in the literature. First, the optimal detection methods

are reviewed in Section 1.3.1. The linear detection methods and non-linear improve-

ments are presented in Section 1.3.2. A class of algorithms, generally called as sphere

detectors (SD), are reviewed in Section 1.3.3. Finally, other approximations of optimal

detection methods are reviewed in Section 1.3.4.

1.3.1 Optimal detection methods

The MIMO detection problem of an uncoded system can be considered as a so-called

integer least squares problem, which can be solved optimally with a hard-output max-
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imum likelihood (ML) detector [47]. The ML detector solves optimally the so-called

closest lattice point problem by calculating the Euclidean distances (EDs) between the

received signal vector and points in the lattice formed by the channel matrix and the re-

ceived signal, and selects the lattice point that minimizes the Euclidean distance to the

received vector. The ML detection problem can be solved with an exhaustive search,

i.e., checking all the possible symbol vectors and selecting the closest point. The ML

detector achieves a diversity order of NR, i.e., a full spatial diversity with regard to

the number of receive antennas; however, it is computationally very complex and not

feasible as the set of possible points increases.

Practical communication systems apply FEC coding in order to achieve near ca-

pacity performance. The optimal way to process the spatially multiplexed and FEC

coded data sequence would be to use a joint detector and decoder for the whole coded

data sequence and decode the most probable data sequence. However, the joint de-

tection and decoding problem is non-deterministic polynomial-time (NP)-hard, which

makes it computationally very complex with realistic parameters and not feasible with

the current technology [48, 49]. However, the optimal receiver can be approximated

by using an iterative receiver with a separate soft-input soft-output (SfISfO) detector

and decoder, which exchange reliability information between the units [4]. The opti-

mal SfISfO detector would be the maximum a posteriori (MAP) detector [50], which

is more complex than an ML detector and also too complex for systems with a large

number of transmitted spatial layers and high order modulation. The soft output a pos-

teriori probabilities (APPs) are expressed with log-likelihood ratio (LLR) values. The

Jacobian logarithm [51] and the so-called log-MAP algorithm reduces the complexity

of the original symbol-by-symbol MAP algorithm [50], which is also called the BCJR

algorithm after the authors. A less complex max-log-MAP approximation can also be

applied with rather small performance loss compared to the log-MAP [51].

Implementations

Optimal detection methods are not typically feasible for hardware implementation with

a high number of transmit antennas and high order constellations. However, some very

large scale integration (VLSI) architecture designs and implementations have been in-

troduced in the literature. VLSI architecture design and implementation of an ML de-

tector with approximate a posteriori probability for a maximum 4×4 MIMO has been

proposed in [52] and further developed in [53]. A more efficient VLSI design of a 4×4
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MIMO ML detector has been introduced in [54]. More recently, a VLSI architecture

design and implementation of a reduced complexity exhaustive search max-log-MAP

algorithm, which can be applied for two transmit antennas with up to 64- quadrature

amplitude modulation (QAM), has been introduced in [55].

1.3.2 Linear detection methods and non-linear

improvements

Suboptimal linear detectors [38, 56, 57] offer straightforward and low complexity solu-

tions to suppress the interference between transmitted spatial layers. Linear detectors

based on the principle of zero-forcing (ZF) suppress the interference among the spatial

layers completely by filtering the received signal with an inverse of the channel, but

also cause noise enhancement. The linear minimum mean square error (LMMSE) cri-

terion based detectors also take the noise into account and minimize the total expected

error, which typically results in better performance compared to the ZF based detector.

The linear detectors have adequate performance in low correlated channels, but suffer

from rather poor performance in correlated fading channels especially those with a high

coding rate [58, 59]. The diversity order of linear detectors is equal to NR −NT +1.

An alternative detection strategy known as nulling and cancellation, which is based

on linear detection methods, has been proposed [39, 60, 61]. The nulling and cancel-

lation techniques can be divided into two main categories: parallel interference cancel-

lation (PIC) [62] and successive interference cancellation (SIC) [38]. PIC technique

applies a linear detector to obtain an initial estimate of the transmitted data layer. Each

layer is then nulled with the estimate from other layers followed by an additional detec-

tion stage to refine the estimate. A slightly different detection approach, where a tree

search algorithm is applied together with the PIC technique, has been presented in [63].

The SIC technique detects the transmitted signal one layer at a time, and removes the

interference of the detected layers from the received signal before detecting the next

layer. Thus, SIC achieves an increase in diversity order after each detected layer [38].

The performance of SIC depends highly on error propagation of the first detected layers

as an incorrect first decision leads easily to decision errors with the rest of the layers.

The error propagation can be minimized by detecting the most reliable layers first. The

ordered serial interference cancellation (OSIC) detector or the V-BLAST architecture

[1, 39] sorts the layers in descending order with the signal to interference plus noise
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ratio (SINR) and detects the strongest layer first. The SIC detectors achieve a diversity

order of NR −NT + k for the kth detected layer. Thus, the SIC detectors offer better

performance compared to linear detectors and the OSIC detector achieves an additional

diversity gain for the weakest layers, which are detected last.

Another technique called lattice reduction (LR) can be applied to improve the perfor-

mance of linear detectors and their non-linear improvements [64–68]. Lattice reduction

techniques modify the ill-conditioned channel matrix to nearly an orthogonal basis by

linear processing and is, thus, more suitable for linear or SIC detection. The Lenstra-

Lenstra-Lovasz (LLL) algorithm [69] is a popular and efficient algorithm to determine

a reduced basis for a channel matrix. The LR aided linear detectors are able to achieve

the same diversity order as the ML detector in V-BLAST systems with a rather small

complexity addition [64].

Implementations

The implementation complexity of linear detectors is feasible as the filtering coefficients

need to be recalculated only as the channel state changes, and, thus, the complexities

of the linear detectors are much lower compared to the optimal detectors and their vari-

ants. Several approaches, such as QR decomposition (QRD), Cholesky decomposition

or direct matrix inversion (DMI) [70, 71], exist to solve the matrix decomposition re-

quired by the linear detectors and more advanced methods based on them [70, 72]. The

QRD based methods, which have good numerical properties with fixed-point imple-

mentation, are typically applied in the literature [70]. The implementation of QRD can

be done with several different methods, e.g., Gram-Schmidt orthogonalization, Givens

rotations, or Householder transformations [70]. The coordinate rotation digital compu-

tation (CORDIC) [73] algorithm and the squared Givens rotation (SGR) [74] algorithm

are square root free algorithms that can be applied for the calculation of Givens rota-

tions.

The architectural design of matrix operations in the literature is often based on sys-

tolic array structures with communicating processing elements (PEs) due to the low

latency requirements of MIMO receivers [75, 76]. A highly parallel and complex ar-

chitecture can be considered for high speed applications [77] and a less complex archi-

tecture with easy scalability and time sharing PEs can be considered for less latency

critical applications [78].
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Various architecture designs and implementations exist in the literature. Pipelined

VLSI architecture and implementation of a 4× 4 MIMO LMMSE detector based on

DMI has been presented in [71]. An efficient QRD and CORDIC based 4× 4 MIMO

LMMSE detector implementation on a field programmable gate array (FPGA) has been

presented in [79]. A low complexity VLSI architecture of a 4×4 MIMO SIC detector

based on a square root algorithm via CORDIC is presented in [80]. A VLSI archi-

tecture and FPGA implementation of a 4× 4 MIMO SIC detector based on QRD and

CORDIC has been introduced in [81] and later implemented in an application specific

integrated circuit (ASIC) in [82]. The performances and implementation complexities

and latencies of a LMMSE and SIC detectors are presented in [83]. Recently various

VLSI architecture designs and implementations of LR techniques based on a modified

LLL algorithm have been introduced in the literature, e.g., in [84–87].

1.3.3 Sphere detection

A class of algorithms, generally called sphere detectors (SD) [48, 88–91], can be used to

solve or approximate the hard output ML solution with reduced complexity compared

to the full-complexity ML detector. SDs are based on preprocessing and tree search

algorithms and their application to the MIMO detection problem has gained renewed

attention in the literature during the last few decades [92]. The preprocessing algorithm,

e.g., QRD, is used to convert the lattice search to a form that is problem friendly and

applicable to a tree search algorithm. More advanced preprocessing techniques such

as LR or ordering of the layers can be applied to hasten the tree search, and, thus,

reduce the complexity [47, 93]. The tree search algorithm then aims to find the shortest

path in a search tree formed by the MIMO channel matrix and the transmitted symbols,

i.e., solves the exact ML solution or suboptimal solution depending on the algorithm

search strategy. The algorithms in the literature are often divided into three categories

according to the search strategy: the breadth-first (BF) search, the depth-first search

(DF), and the metric-first (MF) search [93–95].

Tree search algorithms

Depth-first algorithms are based on a sequential search and go through a variable num-

ber of nodes in the search tree depending on the channel realization and the SNR. The

algorithms explore the tree along the depth until the cost metric of the path is below
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a defined threshold called a sphere radius. They then return and pursue another unex-

plored path. DF algorithms are able to find the exact ML solution if the search is not

bounded. The Pohst enumeration method is often considered to be the original sphere

algorithm [89]. The algorithm search complexity is bounded by selecting a constant

sphere radius, which limits the search in the tree to the most likely paths. The main

problem with implementation of the Pohst algorithm is the selection of the sphere ra-

dius. The Viterbo-Boutros (VB) implementation [96] introduced a modification of the

original Pohst algorithm with adaptive updating of the sphere radius. Thus, with the

VB implementation applied, the algorithm can be started with an infinite radius and the

problem of the initial radius can be solved. The Schnorr-Euchner enumeration (SEE)

[97] can be seen as a more efficient modification of the Pohst enumeration and VB im-

plementation, where the admissible paths, which are also called nodes, of each layer

are spanned in a zig-zag order starting with the closest middle point, whereas the Pohst

enumeration searches the admissible nodes without any ordering [48].

Breadth-first algorithms, such as the M algorithm [98] or the K-best algorithm

[99, 100] with sphere radius, extend the search in a layer-by-layer basis with multi-

ple paths and always proceed in the depth direction of the tree. The algorithms always

keep a constant number of candidate paths in each layer of the tree if no sphere radius

constraint is introduced, but also requires sorting of the candidate paths at each tree

layer. BF algorithms guarantee a fixed number of visited nodes, which makes the al-

gorithm very suitable for implementation. However, the breadth-first search strategy

does not guarantee the exact ML solution and the search as such is inefficient in term of

visited nodes especially with higher order modulation compared to the other tree search

strategies.

Metric-first algorithms are based on a sequential search method and the search al-

ways proceeds along a path with the best cost metric among the stored paths in the tree

search [93, 95]. MF algorithms are based on Dijktra’s algorithm [101, 102], which was

originally used to solve the single-source shortest path problem for a graph. The stack

algorithm was introduced for the decoding of convolutional coding by Zigangirov [103]

and Jelinek [104]. The application of metric-first algorithms for MIMO detection has

been applied in [105–107]. MF algorithms find the exact ML solution and the search

strategy is efficient in terms of visited nodes in the search tree, but requires storing and

ordering of the paths studied [95].
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Soft output SDs

Hard output sphere detectors may cause significant performance degradation when used

as a detector part in an iterative receiver compared to the optimal soft output MAP

detector in a communication system with FEC. However, there are methods proposed

in the literature to modify hard output SDs to give soft reliability information of the

transmitted bits as an output. The list sphere decoder (LSD), which was originally

proposed by Hochwald and ten Brink [4], applies the tree search algorithm to obtain a

list of candidate symbol vectors instead of finding only the ML estimate. The candidate

list is then used to calculate the soft output LLRs, i.e., the probabilistic soft information

of the transmitted coded bits. The size of the candidate list and the bounding of the

tree search define the tradeoff between complexity and the quality of the soft output

information. List sphere detector algorithms are modified to continue the tree search

until a defined list is obtained and the algorithms can often be derived from the sphere

detector algorithms with minor modifications. Another approach is to execute separate

directed tree searches to find the counterhypotheses bits for the ML solution to be used

in the LLR calculation as proposed in [108, 109]. The approach requires multiple tree

searches, but fewer nodes have to be studied per search compared to LSD algorithms

as only a single solution per search is required. Solutions with lower complexity have

been developed further in [110–113]. The soft output sphere detectors typically use

max-log-MAP approximation to calculate the LLRs [51].

SD implementations

The practical feasibility of various SD versions is supported recently by architecture de-

signs and practical implementations reported in the literature. Most of the implementa-

tions are based on VLSI technology and designed for systems with flat fading channels,

e.g., OFDM systems. In hardware implementations of SDs the key problem is to deter-

mine the number of nodes visited and the required hardware resources in the detection

of the symbol vector with a given channel realization. In general, the BF based SD im-

plementations guarantee a fixed detection throughput with variable performance, while

the DF and MF based implementations offer better performance with variable detection

throughput. However, various implementation techniques have also been proposed to

make the SDs more implementation friendly and they are briefly reviewed below.
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VLSI architecture designs with multiple parallel tree pruning units have been pro-

posed for DF based SD in [114, 115]. Other VLSI architecture designs and implementa-

tions of a hard output DF based sphere detector for 4×4 MIMO systems with 16-QAM

have been considered in [116, 117] and further developed into a soft output detector

in [111, 113, 118]. Implementation trade-offs between complexity and performance,

such as the use of different norms [117], LLR clipping [4, 111] and bounding of the

runtime constraints [111], have also been considered in the literature to enable efficient

implementation. Pipelined and parallel VLSI architectures and implementations of soft

output BF based SD have been introduced for a 4×4 MIMO system with 16-QAM in

[99, 100], where [99] includes a technique to improve the quality of the soft output. An

architecture design and implementation of BF based SD with an enhanced enumeration

and sorting method has been proposed for 64-QAM in [119]. A slightly different BF

based SD design, which does not require sorting, has been introduced in [120] for a

4× 4 MIMO system with 16-QAM and with 64-QAM in [121, 122]. A VLSI archi-

tecture and implementation of hard output MF based SD has been introduced for 4×4

MIMO system with 16-QAM in [123].

1.3.4 Other approximations of optimal detection

Another approximation method of hard output ML MIMO detection presented in the lit-

erature is the semidefinite relaxation (SDR) approach, which was originally introduced

to the area of digital communications in [124]. SDR changes the exponentially complex

ML detection problem into polynomial. This is done by first solving a simpler relaxed

finite alphabet problem on the transmitted symbol vector into a matrix inequality and

then applying semidefinite programming to solve the resulting problem. The conceptu-

ally simple SDR approach was proposed for MIMO detection in [125, 126] and it has

also been shown to achieve maximum diversity order [127].

A probabilistic approximation method has been proposed for the computation of

MAP detector soft-outputs via the sequential Monte Carlo methods in [128]. The pro-

posed soft-input soft-output method can be used without CSI at the receiver and it can

be easily calculated with parallel computations, which makes it feasible for implementa-

tion. The convergence properties and the performance of the methods have been further

studied in [129, 130]. Moreover, the implementation details of such a detector have

been studied and an efficient hardware architecture presented in [131].
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A novel detection method called a layered orthogonal lattice detector (LORD) has

been proposed in the literature [132, 133]. LORD achieves MAP performance in the

case of two transmit antennas, at the same time keeping complexity much lower than

the exhaustive search-based ML detection technique and an approximation of max-log-

MAP in the case of more antennas. LORD reformulates the lattice in the detector,

which results in complexity savings. A more implementation oriented version of the

algorithm was proposed in [134]. Furthermore, improved versions of the LORD called

as turbo-LORD were introduced in [135, 136].

A MIMO detection method based on fully connected trellis and a forward-backward

recursion is proposed in [137]. The method approximates the MAP detector and is

based on a suboptimal double-direction trellis traversal algorithm. A fixed throughput

VLSI architecture and implementation is presented in [137].

1.4 Scope and objectives of the thesis

The scope of this thesis in a broad sense is to develop receiver algorithms to enable ad-

vanced transmission techniques that enable a more efficient use of the radio spectrum.

The motivation for this is the fact that the radio spectrum is a limited resource and, thus,

should be used more efficiently to serve the increasing needs. MIMO antenna tech-

niques and OFDM air interface have been identified and widely accepted as key parts of

spectrum efficient future wireless communication systems. The reception of a spectrum

efficient SM transmission in a MIMO–OFDM system requires a detector in the receiver

to separate the transmitted data streams. Different detector algorithms with different

performance characteristics can be applied for MIMO signal detection. More advanced

algorithms, such as the list sphere detector, offer better performance compared to the

more traditional linear detectors and, thus, enable higher data rates and more power ef-

ficient transmissions, which reduce the network structure costs and/or guarantee more

satisfied customers for the network operators. However, more advanced algorithms typi-

cally also require more complex signal processing, which leads to increased silicon area

and power consumption at the receiver. A fair comparison of the algorithms requires

knowledge of both implementation complexity and performance. The objective is to

study and compare the implementation complexity and the performance of different

detector algorithms.

The algorithm development process from theory to a feasible implementation to

be used in a telecommunication system requires multiple different phases, which are
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usually carried out by different people in industry. Another objective of this thesis is

to apply a joint process between different development phases to ensure efficient al-

gorithm implementation. The theoretical algorithm work and performance simulations

with floating point representation are done first to create the algorithm and ensure the

performance. The algorithms are modified to be feasible for implementation, which

requires some implementation tradeoffs between performance and complexity. The ar-

chitecture design is a key point in efficient implementation, where the main functional

units and the possibilities for parallelism and pipelining of the algorithm are identified

and the architecture is designed. The hardware implementation is then done with a

handwritten hardware description language (HDL) description or with a high level syn-

thesis (HLS) tool produced HDL description for selected technology. FPGA and ASIC

technologies are considered for algorithm implementation.

1.5 Author’s contribution and outline of the thesis

The thesis is written as a monograph for the sake of clarity, but parts of the contributions

in Chapters 2–5 have been published in thirteen original publications, including two

journal papers [138, 139] and eleven conference papers [140–150]. The author has had

the main responsibility in developing the original ideas as well as writing the papers

[138–148]. The other authors provided ideas, comments and help to the first author

with the exceptions explained below. The author also guided and participated closely in

the work in [149, 150].

The author has also implemented the detector algorithms in the simulation software

and performed all computer simulations. The other parts of the simulation software

have been developed by Dr. Nenad Veselinovic and Dr. Mikko Vehkaperä in CWC.

The typical urban (TU) channel models, which were produced with the model by Dr.

Esa Kunnari [151], and the WINNER [152, 153] channel models were used in the

computer simulations. The LMMSE detector algorithm architecture design, hardware

implementation, and measurements have been done in co-operation with the authors in

[140, 142]. The K-best-LSD architecture design and implementation have been done

in co-operation with the first author in [149, 150]. The author has been responsible for

the architecture design and the hardware implementation of the other LSD algorithms

presented.

The thesis also includes some additional results by the author, which have not yet

been published. The results on the L1 norm in Section 3.5 have not been published.
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The LSD architecture design in Section 4.2 includes additional details on parallelism

and pipelining, and detailed scalability and timing results that have not been published.

More complete results, i.e., synthesis results, and comparison of LSD implementation

results, have been done on the hardware implementation in Section 5.2 that have not

been published. The measurement results on the RACE platform in Section 5.3.2 have

not been published. The author had the main responsibility in the unpublished work in

Section 3.5 and the more detailed results in Sections 4.2 and 5.2. The measurements

with the RACE platform in Section 5.3 have been done by Markku Jokinen and guided

by the author. The thesis follows the organization given below.

Chapter 2 considers detection in MIMO–OFDM systems. A generic link level sys-

tem model is presented for the MIMO–OFDM downlink cellular system. The detector

algorithms considered, which include the optimal ML and MAP detectors, the linear

MMSE detector, and the list sphere detector, are introduced and described, and the per-

formances of the detectors are compared. Different algorithm choices are introduced

for the LMMSE detector and the LSD. The results have been included in part in [138–

141, 143, 146]. The contributions of this chapter are as follows. The LMMSE detector is

derived from existing algorithms in the literature [38, 73, 74]. Different existing prepro-

cessing and tree search algorithms from the literature are derived as LSD based on [4].

Numerical performance examples of different detectors are presented and compared.

The performance and complexity of LSD preprocessing algorithms are also presented

and compared.

Chapter 3 identifies and presents some key challenges encountered in the imple-

mentation of the LSD algorithms in practical wireless systems. The results have been

included in part in [138, 139, 144, 145]. The contributions of this chapter are as follows.

The effects of limiting the dynamic range of the soft output LLR values of the LSD are

studied. Similar studies with slightly different approaches also exist in the literature,

e.g., in [4, 111]. The use of the real valued and the complex valued signal models in

the LSD is studied and compared in terms of complexity. Two methods are proposed to

limit and fix the search complexity of the sequential search LSD algorithms. Limiting

the LSD algorithm search complexity has also been proposed earlier in the literature

[4, 111], and the proposed scheduled search (SS) method is further developed from

[111]. A novel memory sphere radius is proposed for the IR-LSD algorithm to decrease

the number of stored candidates and the complexity of the algorithm tree search. The

use of the L1 norm in the LSD algorithm, which has been proposed in [117], is studied

and compared to the use of the L2 norm in terms of performance and complexity. A
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simple scaling method is proposed for the LSD algorithm with the L1 norm to approx-

imate the L2 norm and to compensate for the performance loss with the L1 norm. The

performance of the iterative receiver with a variable number of global iterations (GIs)

and their effect on the computational complexity have been studied.

Chapter 4 focuses on the architecture design for the detector algorithms consid-

ered. The contributions of this chapter are as follows. The key functional units of

the algorithms are identified and efficient architectures are designed for MIMO–OFDM

systems. The possibilities for parallelism, pipelining and scalability in the microar-

chitecture units are studied and analyzed. The results have been included in part in

[139, 140, 147–150]. The LMMSE detector architectures for both CORDIC and SGR

algorithms are designed with systolic array structures. Systolic array based design with

slightly different approaches have also been introduced earlier in the literature, e.g., in

[75–78]. Architectures are introduced for the SQRD preprocessing algorithm, for the

considered LSD algorithms and for the max-log-MAP LLR calculation unit. Slightly

different architecture designs have also been introduced earlier in the literature, e.g., for

DF based SD in [111, 113, 116–118], for BF based SD in [99, 100], and for MF based

SD in [123].

Chapter 5 contains the hardware implementation results of the LMMSE detector

and LSD and their designed architectures. The contributions of this chapter are as

follows. The synthesis results, which include complexity, power consumption, and

latency, are presented and analyzed. The feasibility of the implementations on telecom-

munication standards is also studied. Moreover, measurement results with the algo-

rithms on FPGA based hardware testbeds are presented. The results have been included

in part in [139, 142, 147, 148]. Several earlier and parallel hardware implementa-

tion results also exist in the literature, e.g., LMMSE detectors in [71, 79] and SDs in

[99, 100, 111, 113, 116–118, 123]. The implementation results presented in the thesis

are competitive with the other implementations when performance, complexity, power

consumption and detection rate are jointly considered. Furthermore, there have been no

general comparison and analysis of different LSD algorithm implementations reported

in the literature.

Chapter 6 concludes the thesis. The main results and conclusions are summarized.

Moreover, some remaining open questions and directions for future research are dis-

cussed.
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2 Detection in MIMO-OFDM systems

This chapter describes the MIMO–OFDM system model assumed in the thesis and in-

troduces the considered detection algorithms.

2.1 System model

A MIMO–OFDM system is considered with NT transmit (TX) antennas and NR receive

(RX) antennas. A spatial multiplexing (SM) transmission with NT spatial streams is

used with a quadrature amplitude modulation (QAM) constellation and with the as-

sumption NR ≥ NT. The received signal at baseband can be expressed for each of the

Nc subcarriers in terms of code symbol interval as

y = Hx+n, (1)

where y ∈CNR×1 is the received signal vector, x ∈CNT×1 is the transmit symbol vector

and n ∈CNR×1 is the noise vector with independent and complex zero-mean Gaussian

elements with equal power σ2 for both real and imaginary parts. The channel matrix

H ∈ CNR×NT contains complex Gaussian fading coefficients with unit variance. The

entries of x are chosen independently from a complex QAM constellation Ω with sets of

Q transmitted coded binary information bits b= [b1, . . . ,bQ]
T per symbol, i.e., |Ω|= 2Q.

The corresponding coded transmission rate is R = NTQ bits per channel use (bpcu).

In the case of sphere detectors, a real equivalent system model is often assumed.

Any complex linear MIMO system model can be reduced to an equivalent real model

by separating the real and imaginary parts. The real system model can be written as

yr = Hrxr +nr, (2)

where the real-valued channel matrix is

Hr =

[

Re{H} −Im{H}
Im{H} Re{H}

]

∈ R
2NR×2NT , (3)
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Fig 1. A MIMO-OFDM system with NT transmit and NR receive antennas.

and the real-valued vectors are defined as

yr =
[

Re{yT} Im{yT}
]T

∈ R
2NR×1,

xr =
[

Re{xT} Im{xT}
]T

∈ Z
2NT×1, (4)

nr =
[

Re{nT} Im{nT}
]T

∈ R
2NR×1,

where Re{·} and Im{·} denote real and imaginary parts, respectively. Let us define the

new dimensions MR = 2NR and MT = 2NT. The real symbol alphabet is now Ωr = Z,

e.g., Ωr ∈ {−3,−1,1,3} in the case of 16-QAM. For simplicity, the subindices are

omitted in the sequel.

In the practical case of a system with FEC, the optimal way to decode the coded

signal would be to use a joint detector and decoder for the whole coded data block.

This, however, is computationally very complex and not feasible with the current tech-

nology. A suboptimal way is to have a separate soft-input soft-output (SfISfO) detector

and decoder at the receiver, where the detector generates soft reliability information as

an input to the decoder. The turbo principle can be applied in the receiver so that the

detector and decoder exchange the information in an iterative fashion as illustrated in

the block diagram of the system in Figure 1. The detector generates soft output APPs

LD1 from received data y and a priori information LA1, and calculates extrinsic infor-

mation LE1. This information is fed as a priori information LA2 to the decoder after

interleaving. The decoder output APPs LD2 can then be fed back to the detector.

The a posteriori probability log-likelihood ratio (LLR) of the kth transmitted bit bk,

conditioned on the received signal vector y, is denoted as LD(bk) and is defined to be
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the ratio of the conditional probabilities of the bit taking its two possible values, i.e.,

LD(bk) = ln
P(bk =+1|y)
P(bk =−1|y) . (5)

By using Bayes’ theorem, the probability can be written as [4, 154]

LD(bk) = ln

(

p(y|bk =+1)

p(y|bk =−1)

P(bk =+1)

P(bk =−1)

)

= ln
P(bk =+1)

P(bk =−1)
+ ln

p(y|bk =+1)

p(y|bk =−1)

= LA(bk)+LE(bk|y),

(6)

where LA(bk) is the a priori information and LE(bk) is the extrinsic information of the

bits provided by the detector or decoder.

2.2 ML detector

The MIMO detection problem of an uncoded system can be considered as a so-called

integer least squares problem. The problem can be solved optimally with a maximum

likelihood (ML) detector [47], which minimizes the error probability. The ML detector

solves optimally the so-called closest lattice point problem by calculating the Euclidean

distances (EDs) between received signal y and lattice points Hx and selects the lattice

point that minimizes the Euclidean distance to the received vector y, i.e.,

x̂ML = arg min
x∈ΩNT

||y−Hx||22. (7)

The ML detection problem can be solved with an exhaustive search, i.e., checking all

the ΩNT possible symbol vectors x and selecting the closest point.

2.3 MAP detector

The optimal SfISfO detector for the calculation of the APP LD(bk) is the maximum a

posteriori (MAP) detector. The probability of a transmitted bit bk =+1 is equal to the

sum of all the probability combinations containing a bk = +1 for that given bit. Then,

for a system containing additive white Gaussian noise (AWGN), the probability can be

determined directly from the cost information known about the candidates as

p(y|bk =+1) =
2

|Ω|NT
√

2πσ 2 ∑
x∈χk,+1

e
−||y−Hx||2

2σ2 , (8)
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where χk,+1 = {x|bk =+1} is the set of ΩNT−1 bit vectors x having bk =+1. The MAP

solution in the logarithm domain, also often called the log-MAP, solution is obtained

by calculating the a posteriori probability LLRs LD(bk) by using all the possible ΩNT−1

bit vectors x with both conditional probability variables p(y|bk =±1) as

LD(bk) = LA(bk)+ ln
p(y|bk =+1)

p(y|bk =−1)

= LA(bk)+ ln
∑x∈χk,+1

exp(−||y−Hx||2
2σ2 )

∑x∈χk,−1
exp(−||y−Hx||2

2σ2 )

= LA(bk)+ ln ∑
x∈χk,+1

exp(
−||y−Hx||2

2σ2
)− ln ∑

x∈χk,−1

exp(
−||y−Hx||2

2σ2
),

(9)

The exact calculation of (9) is obviously a very complex task as the number of consid-

ered bit vectors ΩNT−1 increases exponentially with the number of transmit antennas

NT and the constellation Ω used. The well known Jacobian algorithm can be used to

compute the logarithm sum in (9) as follows

ln(ea1 + ea2) = max(a1,a2)+ ln(1+ e|a1−a2|)

= max(a1,a2)+ fc(|a1 −a2|),
(10)

where fc(.) is a correction function [51]. The correction function can be approximated

with a look-up table with negligible performance degradation [51, 155]. A less complex

max-log approximation is calculated by approximating the sum in (10) by only the

maximum value as

ln(ea1 + ea2)≈ max(a1,a2). (11)

The correction term ln(1+ e|a1−a2|) is already quite small when |a1 − a2| > 2 and the

performance loss due to a max-log approximation is rather small compared to the log-

MAP algorithm [51]. The a posteriori probability LLRs LD(bk) can then be calculated

as

LD(bk)≈ LA(bk)+ max
x∈χk,+1

(
−||y−Hx||2

2σ2
)− max

x∈χk,−1
(
−||y−Hx||2

2σ2
). (12)

2.4 LMMSE detector

The use of suboptimal linear detectors [38] offers a low complexity solution compared

to the optimal ML and MAP detectors for the separation of transmitted data streams
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at the receiver. The linear detector is an attractive alternative if the rather poor per-

formance of the detector in correlated fading channels and in a low signal-to-noise

ratio (SNR) environment is acceptable [58]. The linear minimum mean square error

(LMMSE) criterion based detector [38] minimizes the mean square error (MSE), i.e.,

the interference and noise, between the transmitted signal vector x and the soft output

vector x̃. The LMMSE design criterion for an OFDM subcarrier is

D
2
LMMSE = min

W
E
{

∥x−WHy ∥2
F

}

, (13)

where W ∈ CNR×NT is the LMMSE coefficient matrix, and ∥A∥2
F = tr

(

AAH
)

denotes

a squared Frobenius norm of the matrix A. By using the well known Wiener solution

[156], the LMMSE detector for MIMO-OFDM can be then reduced to

W =
(

HRxxHH +Rnn

)−1
HRxx, (14)

where Rxx and Rnn are the symbol and noise covariance matrices, respectively. Because

the LMMSE detector has no prior knowledge of the channel code structure, we assume

Rxx = EsINT , where Es is the transmitted symbol power. The thermal noise between re-

ceive antennae and subcarriers is also considered to be uncorrelated, i.e., Rnn = 2σ2INR .

Then the solution of (14) is equivalent to

W =
(

HHH +
2σ2

Es
INR

)−1
H. (15)

The soft output of the LMMSE detector x̃ is then calculated by multiplying the

received signal vector y with the conjugate transpose of the coefficient matrix W as

follows

x̃ = WHy. (16)

The calculation of the LMMSE solution in (15) requires a matrix inversion opera-

tion which is computationally the most complex task of the detector. The solution for

the LMMSE front-end coefficients W can be seen as a common problem of solving a

linear system

AX = B, (17)

where the matrix to be inverted, the desired LMMSE coefficients and the right hand

side of the equation are defined, respectively, as A = HHH + 2σ2

Es
INR ∈ CNR×NR , X =

W ∈CNR×NT , B = H ∈CNR×NT . The solution for (17) can be calculated by using QR de-

composition (QRD) via Givens rotations [70]. The coordinate rotation digital computer
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(CORDIC) [73] and the squared Givens rotations (SGR) [74] algorithms are considered

for the calculation of QRD, and the back substitution algorithm [70] and the triangular

matrix inversion algorithm [157] to calculate the solution after QRD.

2.4.1 CORDIC algorithm

In QRD a symmetric positive definite matrix A from (17) can be factored as A = QR,

where Q ∈ CNR×NR is a unitary matrix, i.e., QHQ = QQH = I and R ∈ CNR×NR is an

upper triangular matrix. The CORDIC method provides pipelined implementations of

the Givens rotations for QRD using shifts and additions or subtractions without the need

to compute trigonometric functions or square roots [73, 158]. Then (17) can be written

as

QRX = B (18)

RX = QHB. (19)

Matrix X can be solved from the upper triangular system using back substitutions [70].

The two-dimensional rotation step in Givens rotations annihilates one element at

a time from the given appropriate pairs of rows. The rotation step is repeated several

times for the matrix A in order to construct R and Q. In one rotation step the kth element

of the row a = [0, . . . ,0,ak, . . . ,aNR ] is to be annihilated by the rotation. Another row

r = [0, . . . ,0,rk, . . . ,rNR ] is applied in order to obtain QRD. For real valued a and r the

rotation is
[

r̄

ā

]

=

[

cos(θ) sin(θ)

−sin(θ) cos(θ)

][

r

a

]

= cos(θ)

[

1 tan(θ)

−tan(θ) 1

][

r

a

]

,

(20)

where θ is chosen so that āk = 0. If the angle of θ is such that tan(θ) is a power of 2,

the multiplication can be done using only bit-shift operations. A general angle can be

constructed as a series of such angles with the tangent value equal to the power of 2,

and in practice the sum can be approximated with imax values [158]

θ =
∞

∑
i=0

ρiθi ≈
imax

∑
i=0

ρiθi, (21)

where ρi = {−1,+1} and θi is constrained so that tan(θi) = 2−i.

46



The rotation in (20) is accomplished in a multistage manner by a series of micro

rotations. The micro rotations result in a series of intermediate results. The CORDIC

implementation with imax stages results from (20) as [158]

[

r[0]

a[0]

]

= κ

[

r

a

]

, (22)

[

r[1]

a[1]

]

=

[

r[0]

a[0]

]

+ρ020

[

−a[0]

r[0]

]

, (23)

...
[

r̄

ā

]

=

[

r[imax]

a[imax]

]

+ρimax 2−imax

[

−a[imax]

r[imax]

]

, (24)

where κ = ∏
imax
i=0 cos(θ)i is a precomputed normalization constant and the sign of the

micro rotation is determined by ρi = sgn(r
[i−1]
k )sgn(a

[i−1]
k ).

The case of complex input data requires that the leading elements of two processed

rows are made real. Thus, the typical step of the Givens approach can be replaced by a

more complicated step involving three sub-steps as [158]

[

r′

a′

]

=

[

e− jφr 0

0 e− jφa

][

r

a

]

, (25)

[

r̄

ā

]

=

[

cos(θ) sin(θ)

−sin(θ) cos(θ)

][

r′

a′

]

, (26)

where φr = arctan Im(rk)
Re(rk)

, φa = arctan Im(ak)
Re(ak)

and θ = arctan
a′k
r′
k

. The combination of four

CORDIC elements can be applied to a supercell for complex data [158].

2.4.2 SGR algorithm

The QRD with the SGR algorithm is different from that presented in Section 2.4.1. The

decomposition of a symmetric positive definite matrix A with the SGR algorithm is

expressed as [74]

A = QAD−2
R U, (27)

where U=DRR∈CNR×NR is a upper triangular matrix, DR = diag(R)∈ IRNR×NR , QA =

QDR ∈ CNR×NR . Matrix QA consists of the orthogonalized columns of the matrix A.
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Now (17) can be written as [74]

QH
AAX = QH

AB

DRQHQDRD−2
R UX = QH

AB

UX = QH
AB

X = U−1QH
AB.

(28)

The SGR algorithm is used to determine QA and U from A as in (27). The annihila-

tion is done for one element at a time from appropriate pairs of rows as in (20). In the

SGR algorithm, the selected pairs of rows a and r are first scaled as [74]

u = rkr

a = w
1
2 v,

(29)

where rk is the kth element of r and given scalar w > 0. With the scaling in (29) only

half of the multiplications and no square roots are required in the annihilation of ak com-

pared to normal Givens rotations [74]. The rotation performed by the SGR algorithm is

now
[

ū

v̄

]

=

[

1 wvk

− vk
uk

1

][

u

v

]

, (30)

and w̄ = wuk/ūk. The relationship to (20) holds with representations

ū = r̄kr̄

ā = w̄
1
2 v̄.

(31)

An upper triangular matrix U, i.e., U = DRR = diag(R)R ∈CNR×NR , is formed in the

end of the annihilation process of the matrix A ∈CNR×NR [74].

The desired coefficient matrix X in (28) is determined by calculating the inverse of

matrix U and by multiplying with QH
AB. The inversion of the upper triangular matrix

U is performed using an algorithm listed in Algorithm 1 [157]. It should be noted that

inversion of the upper triangular matrix U could also be calculated by a back substitution

algorithm. However, the algorithm listed in Algorithm 1 is less complex in number of

required operations [157, 159].

2.4.3 LLR calculation

The LMMSE gives a soft output estimate x̃ of the transmitted symbol vector x as an

output. The LMMSE detector aims to compensate for the effect of the channel, but in
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Algorithm 1 Inversion of triangular matrix [157]

1: if i = j then

2: U−1
i j = 1

U j j

3: else if i < j then

4: U−1
i j =− 1

U j j
∑

j−1
m=1 U−1

im Um j

5: else if i > j then

6: U−1
i j = 0

7: end if

practice, the compensation is never perfect. Thus, the effect of the residual channel H̃,

which is defined below, has to be taken into account in the calculation of LE(bk|x̃l). The

residual channel matrix is calculated as [160]

H̃ = WHH, (32)

and the corresponding interference plus noise covariance matrix as

R̃nn = H̃− H̃H̃H. (33)

The LE(bk|x̃l) of the LMMSE detector output can then be calculated as

LE(bk|x̃l) = ln
∑xl∈Ωk,+1

exp(
||x̃l−H̃l,lxl ||
[R̃nn]l,l

)

∑xl∈Ωk,−1
exp(

||x̃l−H̃l,lxl ||
[R̃nn]l,l

)
(34)

= ln ∑
xl∈Ωk,+1

exp(
||x̃l − H̃l,lxl ||

[R̃nn]l,l
)− ln ∑

xl∈Ωk,−1

exp(
||x̃l − H̃l,lxl ||

[R̃nn]l,l
) (35)

≈ max
xl∈Ωk,+1

(
||x̃l − H̃l,lxl ||

[R̃nn]l,l
)− max

xl∈Ωk,−1

(
||x̃l − H̃l,lxl ||

[R̃nn]l,l
), (36)

where (35) and (36) are the log-MAP and max-log-MAP solutions from the LMMSE

soft-output, respectively.

2.4.4 Implementation properties

The required matrix inversion and QRD of the matrix A in (17) is the most problematic

part of the LMMSE solution in terms of numerical properties. The applied QRD via

Givens rotations is shown to offer very favorable roundoff properties with fixed-point

implementation [70].
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The CORDIC algorithm [73] is a numerically stable method for the calculation of

the QRD. The Givens rotation is accomplished with the CORDIC algorithm via sim-

ple shift and add operations, and results in an approximation of the rotation, where the

required accuracy is obtained by choosing the proper number of iterations and fixed-

point word lengths for the coefficients. Furthermore, the CORDIC algorithm does not

severely affect the dynamic range of the rotated samples. The effects of the angle ap-

proximation error and the rounding error on the accuracy of the CORDIC computation

have been analyzed in [158].

The SGR [74] algorithm calculates an exact QRD result as presented in section

2.4.2. However, the algorithm is proposed to be used with floating point arithmetic

[74] due to scaling of the coefficients in (29) and (30). Thus, a large dynamic range is

required for the coefficient representation with fixed-point implementation. Especially

the calculation of − vk
uk

in (30) is crucial to the numerical accuracy [74]. The problem can

be compensated for by introducing adaptive scaling of the variables in the calculation.

The back substitution algorithm and triangular matrix inversion algorithm have been

shown to be numerically stable with fixed-point implementation [70, 157].

2.5 List sphere detector

The sphere detector algorithms achieve the ML solution in (7) with a reduced number

of considered candidate symbol vectors in the search. When we assume a real equiv-

alent signal model, this is done by limiting the search to points that lie inside a MR-

dimensional hyper-sphere S(y,
√

C0) centered at y. After QR decomposition (QRD) of

the channel matrix H, the condition can be written as [91]

||y−QRx||22 ≤C0 (37)

||QTy−Rx||22 ≤C0 (38)

||ỹ−Rx||22 ≤C0, (39)

where R ∈ IRMR×MT is an upper triangular matrix with positive diagonal elements, Q ∈
IRMR×MR is an orthogonal matrix, ỹ = QTy, and C0 is the squared radius of the sphere.

Due to the upper triangular form of R the values of x can be solved from (39) level by

level using the back-substitution algorithm. Let x
MT
i = (xi,xi+1, . . . ,xMT)

T denote the

last MT − i+ 1 components of the vector x. The sphere search can be illustrated with

a tree structure as shown in Figure 2, where the algorithm aims at finding the shortest
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Fig 2. A tree structure of a sphere detector with real signal model, 2×2 antenna

system and 4-QAM.

path between the root layer and the bottom layer. First, the last elements of the possible

symbol vectors are calculated, i.e, xMT and then xMT−1 and so on. The squared partial

ED (PED) of x
MT
i can be calculated as [117]

d(xMT
i ) = d(xMT

i+1)+ |ỹi −
MT

∑
j=i

Ri, jx j|2

= d(xMT
i+1)+ |bi+1(x

MT
i+1)−Ri,ixi|2,

(40)

where d(xMT
MT

) = 0, bi+1(x
MT
i+1) = ỹi −∑

MT
j=i+1 Ri, jx j, Ri, j is the (i, j)th term of R and

i = MT, . . . ,1. Depending on the search strategy and the channel realization, the SD

searches a variable number of nodes in the tree structure, and aims to find the point x =

x
MT
1 , also called a leaf node, for which the ED d(xMT

1 ) is minimum. The pruning order

of the possible nodes, which are often called leaves, at each layer is defined based on the

enumeration method. We assume the use of the Schnorr-Euchner enumeration (SEE)

[97, 161], which determines the pruning order according to the Euclidean distance. The

SEE middle point with real presentation can be solved as follows [91]

Si(x
MT
i+1) =

⌊

1

Ri,i

(

ỹi −
MT

∑
j=i+1

Ri, jx j

)⌉

=

⌊

bi+1(x
MT
i+1)

Ri,i

⌉

,

(41)

where ⌊·⌉ denotes rounding to the closest integer. The pruning order can then be deter-

mined based on knowledge of the real symbol alphabet [91] and the previously studied

nodes. The pruning order can also be determined by calculating (40) with all possible

symbols xi and sorting the results in order, which might be less complex to implement

with low order constellations.
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The hard ML solution that is given as an output by the SD may cause significant

performance degradation compared to the optimal soft output MAP detection in a com-

munication system with FEC. The more appropriate detector is the list sphere detector

(LSD) [4] that can be used for obtaining a list of candidate symbol vectors and the cor-

responding EDs L ∈ Z
Ncand×NT as an output, where Ncand is the size of the candidate

list so that 1 ≤ Ncand ≤ 2QNT . The output candidate list can then be used to approximate

the MAP solution LD(bk). A high level architecture of the list sphere detector structure

is shown in Figure 3. The preprocessing unit decomposes the channel matrix H into

an upper triangular matrix R and an orthogonal matrix Q, which are given as an input

with received signal y to the LSD algorithm. The LSD algorithm unit executes the tree

search and gives the candidate list L as an output. The approximation of LD(bk) is

calculated in the log-likelihood ratio (LLR) calculation unit using the given candidate

list.
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Fig 3. A high level architecture of a list sphere detector.

2.5.1 Preprocessing algorithms

The preprocessing unit is used to decompose the channel matrix H into an upper tri-

angular form as in (39), which enables the symbol-by-symbol tree search with a back

substitution algorithm. Typically QRD is assumed in the literature to perform the chan-

nel matrix decomposition into an upper triangular matrix R and an orthogonal matrix

Q, which are given as an input with received signal y to the LSD algorithm. However, it

has been shown that the complexity of the sphere detection algorithm search can be de-

creased by applying different more sophisticated ordering or preprocessing approaches

before the SD algorithm [48, 91, 111, 162]. The preprocessing of the channel matrix
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has to be recalculated as the channel changes, i.e., it is relative to the channel coherence

time. Thus, the complexity reduction of the sphere detector algorithm is obtained with

much less effort as the sphere detector algorithm operates at symbol rate, which is typ-

ically much higher than the channel coherence time. Obviously one would also think

that the complexity of the LSD algorithms can be decreased by similar approaches. We

consider two ordering methods for the channel matrix H.

Column ordering based on Euclidean norm

Column ordering according to the Euclidean norm has been proposed for sphere detec-

tion, e.g., in [90, 91, 162]. In this method the channel matrix columns hi are ordered

in a descending order according to the Euclidean norm ∥hi∥ before the QRD, i.e., the

signal from transmit antenna i with the strongest channel gain ∥hi∥ is ordered to be at

the root layer of the search tree. This typically decreases the complexity of the sphere

search as the strongest signal decisions are made at the beginning of the tree traversal.

The preprocessing algorithm gives the matrices R and Q, and a vector p as an output,

where p denotes the permutation order of the columns of H.

Sorted QRD algorithm

The sorted QRD (SQRD) algorithm [163] is an extension to the modified Gram-Schmidt

procedure by reordering the columns of the channel matrix prior to each orthogonaliza-

tion step. The algorithm jointly calculates a very close to optimized detection order,

which is achieved by the V-BLAST detection algorithm [39], and the QRD of the chan-

nel matrix. This means that the absolute values of the diagonal elements |Ri,i| of the re-

sulting upper triangular matrix R are minimized in the process of calculating the QRD.

Thus, the strongest layer is located at the root layer of the search tree. The SQRD

algorithm is listed as Algorithm 2 [163].
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Algorithm 2 [Q,R,p] = SQRD(H)

1: Initialize matrices R = 0,Q = H,p = (1, . . . ,MT)

2: for i = 1 to MT do

3: normi = ∥qi∥2

4: end for

5: for i = 1 to MT do

6: ki = argminl=i,...,MT norml

7: Exchange columns i and ki in R,p,norm and in the first MR + i−1 rows of Q

8: Ri,i =
√

normi

9: qi := qi/Ri,i

10: for k = i+1 to MT do

11: Ri,k = qH
i qk

12: qk := qk −Ri,kqi

13: normk := normk −R2
i,k

14: end for

15: end for

2.5.2 Tree search algorithms

The tree search algorithms in the literature are often divided into three categories ac-

cording to the search strategy: the breadth-first, the depth-first, and the metric-first [98].

We introduce a LSD algorithm based on each one of those different search strategies in

the next subsections.

K-best-LSD algorithm

The K-best-LSD algorithm listed as Algorithm 3 is a modification from the K-best-

SD algorithm [100] to the LSD algorithm. The algorithm is based on the breadth-first

strategy, i.e., the search proceeds one layer at a time in the search tree by extending

the partial candidates s with admissible nodes and calculating the PEDs d(s). Then at

most the K =Ncand partial candidates with the lowest PED are selected for the next level.

The number of nodes studied can be limited by setting a predefined sphere radius C0 and

discarding the candidates with high PED, which have a minor effect on soft output LLR.

The partial candidate information N (s,d(s)), which includes the the partial candidate
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at layer i, s = x
MT
i and the corresponding PED d(s), is stored into memory sets L and

S , and the kth element in the set L is described as {L }k. The search is continued in

a similar fashion by extending the stored partial candidates with admissible nodes until

all the layers have been checked. If more than K partial candidates are stored in set

S , a sorting operation is required to determine the K best candidates for the next layer.

The K-best-LSD algorithm search goes through a fixed number of nodes in the tree

structure if no enumeration method is introduced. However, it should be noted that the

output candidate list L of the algorithm does not necessarily contain the most probable

candidates with the lowest EDs, which may result in inaccurate likelihood information

approximation and performance loss.

Algorithm 3 [L ] = K-best-LSD(ỹ,R,C0,K,Ωr,MT)

1: Initialize set {L }0 with N (s0 = x
NT
NT
,d(s) = 0) and empty set S

2: for Layer i = MT to 1 do

3: for k = 0 to |L |−1 do

4: Remove N (s = x
MT
i+1,d(s)) from {L }k

5: for j = 1 to |Ωr| do

6: Determine sc = (xi,s)
T, where xi = {Ωr} j and calculate d(sc)

7: if d(sc)<C0 then

8: Store Nc(sc,d(sc)) to S

9: end if

10: end for

11: end for

12: Sort S according to the PED if |S |> K

13: Move K candidates with smallest PED from S to L and empty S

14: end for

SEE-LSD algorithm

The Schnorr-Euchner enumeration (SEE) - LSD is a depth-first search based algorithm

and it is listed as Algorithm 4. It is an extension of SEE-SD [97] to a list sphere

detector, and the algorithm continues the search until all admissible nodes have been

checked and the required candidate list L has been obtained. The output candidate list

L includes the most probable candidates, i.e., the candidates with the lowest ED. The

main difference between the SEE-LSD and the SEE-SD algorithm is that the sphere
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radius C0 is not updated until the final list is full, and the C0 is equal to the candidate

with the largest ED in the final candidate list L . The search is continued until all the

admissible nodes have been searched.

The sequential algorithm initially starts from the root layer and extends the partial

candidate s = x
MT
MT

with the best admissible node determined by the SE enumeration.

The search tree pruning loop in the algorithm extends the considered partial candidate

s = x
MT
i+1 with the next best available child node in each iteration until the PED of the

extended partial candidate exceeds the sphere radius C0 or a leaf node s = x
MT
1 is found.

In the case of a leaf node s= x
MT
1 , the candidate information N (s,d(s)), which includes

the candidate s and the corresponding ED d(s), is added to the final candidate list L

if the ED d(s) is lower than the current sphere radius C0. The radius is always updated

to be equal to the highest ED in the final list when the final candidate list is full and a

new leaf node is found. If the extended candidate exceeds the C0 or all the admissible

nodes have been checked, the algorithm moves one layer higher and continues with the

next best admissible node. The next best admissible node is determined based on the

previously extended nodes.
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Algorithm 4 [L ] = SEE-LSD(ỹ,R,Ncand,Ωr,MT)

1: Initialize set L , and set C0 = ∞, m = 0, n1 = 1, i = MT

2: Initialize N (s = x
MT
MT

,d(s) = 0)

3: while (i ̸= MT and n1 ̸= |Ωr|) do

4: if n1 = |Ωr| then

5: Set i = i+1, determine n1 and continue with N (s = x
MT
i+2,d(s))

6: else

7: Determine the n1th best node xi for sc = (xi,x
MT
i+1)

T and calculate d(sc)

8: if d(sc)<C0 then

9: if sc is a leaf node, i.e., i = 1 then

10: Store NF(sc,d(sc)) in {L }m

11: Set m = m+ 1 or, if L is full, set m according to {L }m with max ED

and C0 = {d(s)}m

12: Continue with N (s = x
MT
i+1,d(s)), n1 ++ and i = 1 if n1 +1 ≤ |Ωr|

13: else if i ̸= 1 or n1 +1 = |Ωr| then

14: Set i = i−1 and n1 = 1, and continue with N (sc,d(sc))

15: end if

16: else if d(s)≥C0 and i ̸= MT −1 then

17: Set i = i+1, determine n1 and continue with N (s = x
MT
i+2,d(s))

18: else

19: End the algorithm

20: end if

21: end if

22: end while

IR-LSD algorithm

The increasing radius (IR) - LSD is listed as Algorithm 5. The IR-LSD algorithm uses

the metric first search strategy and it is a modification of Dijkstra’s algorithm [101]

to a LSD algorithm. The algorithm is optimal in the sense of the number of nodes

in the tree structure visited [95, 101]. The output candidate list L includes the most

probable candidates, i.e., the algorithm always gives exactly the same output as the

SEE-LSD algorithm. The algorithm uses the so-called metric-first search [95], where
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the algorithm always extends the partial candidate with the lowest PED in one extend

loop.

The algorithm operates in a sequential fashion; it initially starts from the root layer

with partial candidate s = x
MT
MT

, and determines the next best admissible node xi at layer

i with SEE. The child candidate is then defined as sc = (xi,x
MT
i+1)

T. The algorithm also,

if possible, extends the father candidate s f = x
MT
i+2 with the next best admissible node

xi+1. The SEE, which is used to determine the next best admissible node, requires

the information of already extended nodes, and the information is defined as n1 and

n2 for the considered candidate and its father candidate, respectively. The algorithm

uses two memory sets for storing the candidates, the final candidate set L and the

partial candidate set S . In the algorithm search, the partial child candidate information

NS (sc,d(sc),n1) and the possible father candidate information NS

(

s f ,d(s f ),n2
)

are

stored to set S after each tree pruning loop. In the case the child candidate sc is a leaf

node and smaller than the current radius C0, the candidate information NL (sc,d(sc))

is stored to the final list set L . The sphere radius C0 is updated when L is full and

the candidate with the largest ED is replaced with a new leaf candidate. After storing

the candidate(s), the algorithm finds the candidate information NS with the minimum

PED d(s) from set S and continues the algorithm if the PED is smaller than the current

radius C0. It should also be noted that n1 = 0 is used in the tree pruning loop if the

extended node is not a leaf node, and the n, which is read from S , is used as n2.
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Algorithm 5 [L ] = IR-LSD(ỹ,R,Ncand,Ω,MT)

1: Initialize sets S and L , and set C0 = ∞, m = 0, n1 = 1

2: Initialize N (s = x
MT
MT

,d(s) = 0,n2 = 2, i = MT)

3: while C0 < d(s) do

4: Determine the n1th best node xi for sc = (xi,x
MT
i+1)

T and calculate d(sc)

5: Determine the n2th best node xi+1 for father candidate sf = (xi+1,x
MT
i+2)

T and

calculate d(sf) if n2 ≤ |Ωr|
6: if d(sc)<C0 then

7: if sc is a leaf node, i.e., i = 1 then

8: Store NF(sc,d(sc)) in {L }m

9: Set m = m+1 or, if L is full, set m according to {L }m with max ED and

C0 = {d(s)}m

10: Continue with N (s = x
MT
i+1,d(s),n1 ++,1) if n1 +1 ≤ |Ωr|

11: else

12: Store Nc(sc,d(sc),n2 = 2, i−−) in S

13: end if

14: end if

15: if Nf calculated and d(s f )<C0 then

16: Store Nf(sf,d(s)f,n2 ++, i) in S

17: end if

18: Continue with N with min PED from S and set n1 = 1

19: end while

2.5.3 LLR calculation

The LSD algorithm output candidate list L is used to approximate the extrinsic infor-

mation LE(bk|y) in the log-MAP solution (9). The approximation can be calculated

either for the log-MAP or max-log-MAP solution as

LE(bk|y) = ln ∑
x∈Lk,+1

exp(
−d(x)

2σ2
)− ln ∑

x∈Lk,−1

exp(
−d(x)

2σ2
)

≈ max
x∈Lk,+1

(
−d(x)

2σ2
)− max

x∈Lk,−1

(
−d(x)

2σ2
),

(42)

where Lk,+1 = {x|bk =+1} is the set of candidate vectors x having bk =+1. The per-

formance of the LSD may suffer due to too small a list size and, thus, inaccurate LD(bk)
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values. If the LSD algorithm output candidate list size Ncand is large enough, the impact

of the unknown results on the approximation is likely to be relatively small, and the ap-

proximation of LD(bk) is accurate enough for adequate performance. Depending on the

list size, Ncand, it provides a tradeoff between the performance and the computational

complexity. We will also present a method to compensate for the effect of unreliable

LLRs in Section 3.1.

2.6 Numerical examples

The performance of different detector algorithms is studied via computer simulations.

A turbo coded MIMO–OFDM system was assumed with QAM constellations, and Nc =

512 with Nused = 300 used data subcarriers. A bit-interleaved coded modulation (BICM)

with 1/2 rate [13o,15o] turbo code was applied in an uncorrelated (UNC) and highly

correlated (CORR) 6 tap typical urban (TU) channel with a user velocity of 120 kmph.

The CORR channel spatial correlation matrices RTX at the transmitter and RRX at the

receiver are presented as

RRX =













1.00 −0.69+0.34i 0.49−0.36i −0.38+0.35i

−0.69−0.34i 1.00 −0.69+0.34i 0.49−0.36i

0.49+0.36i −0.69−0.34i 1.00 −0.69+0.34i

−0.38−0.35i 0.49+0.36i −0.69−0.34i 1.00













(43)

RTX =













1.00 0.80+0.34i 0.42+0.45i 0.14+0.39i

0.80−0.34i 1.00 0.80+0.34i 0.42+0.45i

0.42−0.45i 0.80−0.34i 1.00 0.80+0.34i

0.14−0.39i 0.42−0.45i 0.80−0.34i 1.00













. (44)

The system operates with a 5 MHz bandwidth (BW) at a carrier frequency fc = 2.4

GHz. The LSD algorithm soft output is calculated with a max-log-MAP approximation

as in 42 and the soft outputs of the detector algorithms are decoded in an iterative

max-log-MAP turbo decoder with 8 iterations. The parameters used in the computer

simulations summarized in Table 1 correspond to the parameters proposed in [164] for

initial performance evaluation in 3G LTE. The performance examples are presented in

throughput vs. SNR γ , where the throughput is determined as the number of correctly

received bits in a time interval.
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Table 1. Working assumptions for computer simulations.

Parameter Used configuration

Carrier frequency fc 2.4 GHz

Bandwidth 5 MHz

Number of subcarriers Nc 512

Used data subcarriers Nused 300

Subcarrier spacing 15 kHz

OFDM symbol duration 71.35µs

FFT duration 66.67µs

Cyclic prefix duration 4.69µs

Modulation 4−, 16− and 64-QAM

Code rate 1/2

User velocity 120 kmph

Channel model Typical Urban (6 tap model)

2.6.1 Comparison of detector algorithms

The performances of the K-best-LSD, the SEE-LSD and the IR-LSD with the real val-

ued signal model and with different list sizes Ncand are studied with different system

parameters, and compared to ML detector, log-MAP detector, max-log-MAP detector,

and LMMSE detector based receivers. The throughput of the 4× 4 MIMO–OFDM

system with the K-best-LSD based receiver with different list sizes and with 16- and

64-QAM is presented in UNC and CORR channels in Figures 4 and 5, respectively.

The K-best-LSD is applied with C0 = ∞. The throughput of the 4× 4 MIMO–OFDM

system with the SEE-LSD and the IR-LSD based receivers with different list sizes Ncand

and with 16- and 64-QAM is presented in UNC and CORR channels in Figures 6 and

7, respectively. The outputs of the SEE-LSD and the IR-LSD are exactly the same,

i.e., output list L includes the candidates with lowest ED in the search tree, and thus,

LSDs are not separated in the performance examples. The results illustrate the effect

of the list size Ncand on the quality of the max-log-MAP approximation in (42). The

maximum list size Nmax
cand that correspond to the optimal log-MAP detection output of

the exhaustive search algorithm is 2NTQ. Thus, the Nmax
cand values with a 2×2 MIMO sys-

tem with 4-, 16- and 64-QAM constellations are 16, 256, and 4096, respectively. The

corresponding maximum list sizes Nmax
cand for a 4×4 MIMO system are 256, 65536, and
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16777216, respectively. It can be seen that the performance loss due to the max-log-

MAP approximation compared to the log-MAP detector is approximately 0.2–0.5 dB

and that the max-log-MAP performance can be achieved with the LSD based receivers

with a much lower list size than the exhaustive search algorithm with the maximum

list size Nmax
cand. The results also illustrate the differences between the different LSD al-

gorithms and the effect of the channel correlation. The K-best-LSD requires list sizes

of Ncand = 256 and Ncand = 512 in the UNC channel in a 4× 4 MIMO system with

16-QAM and 64-QAM, respectively. However, the SEE-LSD or the IR-LSD requires

only a list size of Ncand = 128 and Ncand = 256 in the UNC channel in a 4× 4 MIMO

system with 16-QAM and 64-QAM, respectively. The difference in performance of

different LSDs is due to the search strategy of the algorithms and the fact that the K-

best-LSD does not guarantee an output candidate list L with the lowest ED candidates.

It can be also noted that a lower list size Ncand is required for the CORR channel com-

pared to the UNC channel to achieve max-log-MAP performance. This is due to the

higher probability for larger sets Lk,±1 for different bits bk in the calculation of (42) in

the CORR channel, which is discussed in more detail in Section 3.1. The determined

list sizes Ncand, which achieve close to the max-log-MAP detector performance, are

shown in Tables 2 and 3 for the K-best-LSD, SEE- and the IR-LSD, respectively. The

performance loss of the hard output ML detector compared to the optimal soft output

log-MAP detector is approximately 3–4 dB. Although the performance of the LMMSE

detector is adequate in an uncorrelated channel, the LMMSE performance suffers sig-

nificantly in highly correlated channel realization. The LSD implementation aspects

and requirements are discussed in more detail in Chapter 3.
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Table 2. The determined list sizes for K-best-LSD.

2×2 4×4

4-QAM Ncand = 16 Ncand = 32

16-QAM Ncand = 128 Ncand = 256

64-QAM Ncand = 256 Ncand = 512

Table 3. The determined list sizes for SEE-LSD and IR-LSD.

2×2 4×4

4-QAM Ncand = 16 Ncand = 32

16-QAM Ncand = 64 Ncand = 128

64-QAM Ncand = 128 Ncand = 256

2.6.2 Comparison of LSD preprocessing methods

We study the effect of LSD preprocessing methods to the LSD based receiver perfor-

mance. We compare the traditional QRD, column ordering based on Euclidean norm

and SQRD methods, which are described in Section 2.5.1, via computer simulations.

We also study the effect of advanced preprocessing to the total computational complex-

ity of the LSD.

The performance of K-best-LSD was studied with different preprocessing algo-

rithms and with different list sizes. The number of visited nodes by the K-best-LSD

is fixed with given output list size K, and a higher K value results in better performance

to certain extend as the LLR approximation gets more accurate. The performance of

the K-best-LSD with different list sizes in both UNC and CORR channels is shown

in Figure 8. It can be seen that the when the applied list size is high enough in UNC

channel, the performance difference between different preprocessing methods is not

significant. When the list size is low enough or the channel is highly correlated, the

SQRD algorithm with ordering gives approximately 0.2 dB additional gain over the tra-

ditional QRD without ordering. The column ordering according to the Euclidean norm,

however, actually shows worse performance compared to the other preprocessing meth-

ods in the CORR channel. The results indicate that the Euclidean norm of the channel

matrix columns is not very good method to determine the detection order of the trans-

mitted layers especially in a correlated channel realization. Also it can be noted that

the additional gain by the SQRD algorithm is higher in CORR channel compared to the

UNC channel. The number of visited nodes by the sequential search LSD algorithms,

the SEE-LSD and the IR-LSD, is a variable that depends on the channel realization.

65



10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2525
0

5

10

15

20

25

30

35

E
S
/N

0
 (dB)

T
h
ro

u
g
h
p
u
t 
(M

b
p
s
)

4x4 MIMO, 16−QAM, real K−Best−LSD and turbo decoder

 

 

QRD, list=31

QRD, list=15

QRD, list=7

Column ordering, list=31

Column ordering, list=15

Column ordering, list=7

SQRD, list=31

SQRD, list=15

SQRD, list=7

UNC channel

CORR channel

Fig 8. Throughput vs SNR: Performance of the real K-best-LSD with different list

sizes and preprocessing methods in 4×4 antenna system with 16-QAM.

The total complexity of the LSD algorithms is relative to the number of visited nodes in

the search tree. Thus, we studied the distribution of the number of visited nodes by the

LSD algorithms and the performance of the system with limited maximum number of

visited nodes. Histograms of the visited nodes by the SEE-LSD and IR-LSD algorithms

with different preprocessing methods in UNC and CORR channel are shown in Figures

9 and 10. The average number of visited nodes by the algorithms with different pre-

processing methods in both channel scenarios are listed in Table 4. The ratio of visited

nodes by the LSD with the column ordering and SQRD preprocessing compared to the

traditional QRD preprocessing is shown in brackets. It can be seen that the correlation

properties of the channel affect significantly to the number of visited nodes. Figures

9 and 10, and Table 4 show that both the column ordering according to the Euclidean

norm and the SQRD decrease the distribution of the number of visited nodes clearly

for the UNC channel approximately 20% and 30%, respectively. The results in CORR

channel show, similarly as with K-best-LSD, that the column ordering according to the

Euclidean norm actually increases the number of visited nodes by the SEE-LSD and
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the IR-LSD algorithms. The SQRD preprocessing, however, decreases the number of

visited nodes approximately 20% on average compared to the QRD.
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Table 4. The average number of visited nodes by the SEE-LSD† and IR-LSD∗

algorithms in different channels with different preprocessing methods.

UNC CORR

QRD 397† (100%) / 268∗ (100%) 1001† (100%) / 618∗ (100%)

Col 302† (76%) / 213∗ (79%) 1106† (110%) / 705∗ (114%)

SQRD 269† (68%) / 193∗ (72%) 821† (82%) / 509∗ (82%)

The simulations results showed that the SQRD as preprocessing decreases the num-

ber of required visited nodes by the LSD algorithms by approximately 20−30%. The

number of additional multiplication (MUL) and addition (ADD) operations required by

the preprocessing algorithms compared to traditional QRD are listed in Table 5. The

required number of operations in the PED calculation in (40) are also listed in Table 5

assuming that the average layer in PED calculation is the middle layer of the search tree.

The number of additional and saved operations on average for IR-LSD and SEE-LSD

algorithms with SQRD preprocessing in a 4×4 MIMO system with 16-QAM are listed

in Table 6. It can be seen that a significant number of operations are saved with the

SQRD applied as preprocessing.

Table 5. The number of additional real operations due to preprocessing and the

PED calculation operations in (40).

Col SQRD PED

MUL NTNR NTNR +∑
NT−1
j=1 j 2NT −4+1

ADD NT(NR −1) NT(NR −1)+∑
NT−1
j=1 j 2NT −4+1

Table 6. The number of added and saved real operations with the IR-LSD and

the SEE-LSD with the SQRD in 4× 4 MIMO system with 16-QAM and in UNC∗ and

CORR† channels.

IR-LSD (saved) SEE-LSD (saved) SQRD (additional)

MUL 375∗/545† 640∗/900† 22

ADD 375∗/545† 640∗/900† 18
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2.6.3 Conclusions

The performances of different detector algorithms were studied and compared. The soft

output max-log-MAP performance can be achieved with the LSD based receivers with

much lower list size than the exhaustive search algorithm with maximum list size Nmax
cand

and a lower LSD list size Ncand is required for the highly correlated channel compared

to the uncorrelated channel for similar performance. The K-best-LSD requires higher

list size compared to the SEE-LSD or the IR-LSD to achieve the max-log-MAP perfor-

mance, because the K-best-LSD does not guarantee an output candidate list L with the

lowest ED candidates. The performance loss due to the max-log-MAP approximation

compared to the log-MAP detector is approximately 0.2–0.5 dB, and the performance

of the hard output ML detector looses approximately 3–4 dB compared to the optimal

soft output log-MAP detector. The performance of the LMMSE detector is adequate in

uncorrelated channel, but, however, the LMMSE performance suffers significantly in

highly correlated channel.

We also studied the effect of the LSD preprocessing methods to the LSD based re-

ceiver performance and complexity. The results indicate that the Euclidean norm of the

channel matrix columns is not very good method to determine the detection order of the

transmitted layers especially in a correlated channel realization. The SQRD algorithm

with the K-best-LSD provides some additional gain compared to the traditional QRD

algorithm with low LSD list sizes. The SQRD algorithm with the SEE-LSD or the IR-

LSD decreases the number of visited nodes approximately 20% on average compared

to the QRD with similar performance. Thus, a significant number of operations are

saved with the SQRD algorithm applied as preprocessing.
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3 LSD implementation trade-offs

In this chapter, we identify and study some key implementation challenges encountered

in the implementation of the LSD algorithms in practical wireless systems. We focus

on six significant challenges, namely, limiting the dynamic range of the soft output log-

likelihood ratio values to the decoder, comparing the real and complex signal models

in the LSD, limiting the search complexity of the LSD algorithm, applying the IR-LSD

memory sphere radius to lower the required memory access, applying the L1 norm

in the LSD algorithm, and analyzing the complexity and performance tradeoffs of an

iterative receiver.

3.1 LLR clipping

In the calculation of the soft output LLR values, the exact MAP solution is obtained by

calculating the (9) by using all the possible ΩNT−1 bit vectors x with both conditional

probability variables. The exact calculation of (9) is obviously a very complex task as

the number of considered bit vectors ΩNT−1 increases exponentially with the number

of transmit antennas NT and used constellation Ω. The list sphere decoder uses a lim-

ited number of elements in the considered sets χk,+1 ∩L and χk,−1 ∩L by using the

LSD output candidate list L to approximate the likelihood information LD(bk) in (12),

which decreases the complexity of the calculation of (12) significantly compared to the

full set of candidates. The accuracy of the approximation depends on the quality of

the candidate list L and the list size Ncand. The SEE-LSD and the IR-LSD algorithms

provide a list L including the most probable candidates, while the K-best-LSD algo-

rithm does not guarantee that. This typically leads to a better approximation with the

SEE-LSD and the IR-LSD compared to the K-best-LSD with the same list size. If the

size Ncand of the candidate list L is large enough so that both sets Lk,+1 and Lk,−1

include candidates for the bit bk, the approximation of the LD(bk) is typically accurate

enough for adequate performance. However, the performance of the LSD may suffer

due to too small a list size, and thus, inaccurate LD(bk) values. The error in the approx-

imation of the LD(bk) is especially large in the case where all the candidates in L for

the bit bk belong to either Lk,+1 or Lk,−1. In that case the approximation of one of the

conditional probabilities p(y|bk =±1) goes to zero, which leads to an infinite value in
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(12). As the information is used as a priori information in the decoder, the decoder is

most likely not able to correct the falsely detected signals.

3.1.1 Clipping methods

The effect of an unreliable LD(bk) may be reduced by limiting the LD(bk) range, which

is often called LLR clipping. Several LLR clipping methods for different algorithms

have been proposed, e.g., in [108, 111, 165, 166]. All the methods aim at reducing the

detector algorithm complexity required to achieve a certain performance. The LLR clip-

ping in [108, 111] is used to control the search effort used in the bit counterpart search.

The method can not be applied as such for LSD algorithms due to the differences in

the algorithms. The LLR clipping in [165, 166] is based on the reliability information

and the channel state information (CSI) to determine close to optimal LLR clipping

values with additional complexity. We introduce two simple methods to process LD(bk)

information and study the impact of the methods on the performance of a coded system.

Importantly, both presented methods are simple to implement and are suitable for VLSI

implementation. The LD1(bk) calculated in the detector is given as LA2(bk) input to the

decoder as illustrated in Figure 1 in Section . By limiting the dynamic range of the

variable, the decoder can overcome the wrong information given as LA2(bk) in (6).

Method 1: A very simple way to prevent very large LD(bk) values is to limit the

dynamic range of the LD(bk) value as [4]

LDclip(bk) =

{

LD(bk), if|LD(bk)| ≤ Lmax

sgn(LD(bk))Lmax if|LD(bk)|> Lmax,
(45)

where LDclip(bk) is the clipped likelihood information and Lmax is the selected maximum

value for |L(bk)|.
Method 2: The second method differs slightly from the first. The LD(bk) values are

clipped to Lmax if a threshold value of Llimit > Lmax is exceeded as

LDclip(bk) =

{

LD(bk), if|LD(bk)| ≤ Llimit

sgn(LD(bk))Lmax if|LD(bk)|> Llimit.
(46)

The main idea of Method 2 is to clip only the very large LD(bk) values, which are

due to a small LSD list size, and bypass the LD(bk) values where both bit values are

present in (42). This can be achieved by setting the Llimit value large enough. Graphical

illustrations of both methods are shown in Figures 11(a) and 11(b).
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(a) Method 1 (b) Method 2

Fig 11. A graphical illustration of the LLR clipping methods.

3.1.2 Numerical examples

We studied the impact of the two different LLR clipping methods on the performance of

the system via computer simulations. The same parameters were assumed as in Section

2.6. We studied the distribution of the calculated LLR values and a histogram of the IR-

LSD soft-output LLR distribution with Ncand = 1024 and Ncand = 8 and with different

SNR values is shown in Figure 12. It should be noted that the two dimensional curves

are plotted into a three dimensional figure for illustrative purposes. The ES/N0 = 18dB

and ES/N0 = 26dB cases studied reflect low and high throughput operating points of

the system, respectively. The LLR values were limited to Lmax = 100 to show the very

large values. It can be seen that with increasing SNR the deviation of LLR widens and

we can see more high LLR values, but the probability of |LD| > 40 and |LD| > 20 is

fairly low with the higher and lower SNR values, respectively. The effect of the small

list size can be seen as a large amount of Lmax values in the histogram as the probability

of empty set Lk,+1 or Lk,−1 in the calculation of L(bk) is significantly higher.

We also studied the impact of different clipping methods and Lmax values on the

performance of the system to determine the optimal clipping method and the threshold

value to be used for clipping. It should be noted that while too low a value for Lmax

prevents the detector from giving any significant a priori information to the decoder,

too high a value for Lmax allows the possibility for a priori information that is too high

caused by an L that is unreliable or too small which the decoder can not correct in the

case of a wrong decision. Performance of the IR-LSD with Ncand = 8, which is equal to
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the SEE-LSD with the same list size, and real K-best-LSD with Ncand = 64 with both

clipping methods applied are shown for a 4×4 MIMO system with 16-QAM in Figure

13. Method 2 is applied with Llimit = 100 to clip only the very large LD(bk) values. The

results show that the performance of a system is clearly improved by applying LLR

clipping to limit the effect of the moderate LLR approximation compared to the system

without clipping. We also notice that there is no significant performance difference

between the two clipping methods with the IR/SEE-LSD. However, we noticed from

the results that Method 1 is clearly better with K-best-LSD. The reason for this is the

different outputs from the IR/SEE-LSD and the K-best-LSD. The IR/SEE-LSD gives

the most probable candidates as an output, and thus, the LLR approximation is rather

good and reliable in the cases where both bits are present in (12). The K-best-LSD

output, however, may result in a poor LLR approximation when candidates for both

bits are present in (12). Thus, we conclude that Method 1 is a good choice as it requires

less dynamic range for the L(bk) before clipping. The simulation results show that

Lmax = 8 gives the best performance, which means that the dynamic range of probability

P(bk =±1|y) is limited between [0.0003,0.9997]. We also studied if and how the code

rate possibly inter-plays with the optimal Lmax value at the detector. The performance

of a IR/SEE-LSD based system with code rates 1/3 and 4/5 and with different Method

1 clipping values are shown in Figure 14. We can see that with a lower code rate 1/3

the value Lmax = 6 gives the best performance with a difference of 0.1 dB compared

to Lmax = 8. The performance of the system with a higher code rate 4/5 is maximized

with the value Lmax = 10, but the difference from the value Lmax = 8 is approximately

0.05 dB. The results indicate that as the decoder has more parity bits to be used in the

decoding, the decoder should rely less on the a priori information LA2(bk) from the

detector and the Lmax can be set to be a lower value. However, the differences are rather

small, and in practice, Lmax = 8 gives good results.

It was shown that the LLR clipping enhances the performance of LSD based systems

with low list size and, thus, impacts on the required list size. The required list sizes for a

system without LLR clipping have been determined in [141, 143]. We applied Method

1 with Lmax = 8 for LLR clipping in the following results. The performance was studied

in two channel models, a highly correlated and an uncorrelated typical urban channel,

in order to study the effect of the channel correlation. Performance examples of a 4×4

MIMO system with 16-QAM with the IR/SEE-LSD are shown in Figure 15, and the

same case with the real K-best-LSD with different list sizes is shown in Figure 16. It

can be seen that the required list size with the IR/SEE-LSD decreases significantly with
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Fig 12. A histogram of the LLR values with IR/SEE-LSD with different list sizes

and SNR values in a 4× 4 antenna system with 16-QAM. ([138], published by per-

mission of Elsevier).

LLR clipping applied and, e.g., the required list size of IR/SEE-LSD decreases from

64 to 8 in a 4× 4 MIMO system with 16-QAM. The results in Figure 16 show that

the required list size with the K-best-LSD does not decrease as significantly as with

the IR/SEE-LSD as discussed earlier. However, in the same case the LLR clipping still

reduces the required list size from 128 to 64. The benefit of the LLR clipping with the

real and complex1 K-best-LSD is smaller than that with the IR/SEE-LSD, because of

the breadth-first search strategy that usually leads to having both bk = +1 or bk = −1

candidates in the LLR calculation, but does not provide the most probable candidates.

Thus, the quality of the obtained list is not as high as with IR/SEE-LSD and a larger

list size is required for similar LLR approximation. However, it can be noted that the

quality of the obtained list increases as the channel is more uncorrelated, i.e., the tree

search is easier. The required list sizes were determined for 2× 2 and 4× 4 MIMO

systems with 4-QAM, 16-QAM, and 64-QAM, and the results are concluded in Table

7.

1The real and complex versions are rigorously defined and considered in more detail in Section 3.2.
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Fig 13. Throughput vs SNR: Performance of the IR/SEE-LSD and the real K-best-

LSD with different LLR clipping methods and values in a 4×4 antenna system with

16-QAM. ([138], published by permission of Elsevier).

Table 7. List sizes for IR/SEE-LSD∗, real K-best-LSD† and complex K-best-LSD‡

with LLR clipping. ([138], published by permission of Elsevier).

2×2 4×4

4-QAM not studied Ncand = 8∗/32†/32‡

16-QAM Ncand = 8∗/16†/16‡ Ncand = 8∗/64†/128‡

64-QAM Ncand = 16∗/64†/64‡ Ncand = 16∗/128†/256‡

3.1.3 Conclusions

We introduced two simple LLR clipping methods to process the soft output LLR LD(bk)

and studied the impact of the methods on the performance of a coded system. We

showed that the LLR clipping enhances the performance of LSD based systems with low

list size and, thus, lowers the required list size Ncand. There is no significant performance

difference between the two clipping methods with the IR/SEE-LSD, but Method 1 is

clearly better with the K-best-LSD. This is due to the less reliable candidate list L
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Fig 14. Throughput vs SNR: Performance of the IR/SEE-LSD with different code

rates and LLR clipping values in a 4×4 antenna system with 16-QAM. ([138], pub-

lished by permission of Elsevier).

with K-best-LSD, which might lead falsely to large L(bk) values even with both bk =

+1 or bk = −1 candidates present in the LLR calculation. Thus, we propose to use

Method 1 as it ensures good performance and requires less dynamic range for the L(bk)

before clipping. The coding rate has a small effect on the optimal clipping values, but

the differences are rather small, and in practice, Lmax = 8 gives good results, i.e., the

dynamic range of P(bk = ±1|y) is limited between [0.0003,0.9997]. It was also noted

that the LLR clipping reduces the required list size Ncand more with the IR/SEE-LSD

than with the K-best-LSD.

3.2 Real and complex signal model

The SD and LSD algorithms are often assumed to apply a real equivalent system model

[91, 99, 167–169] especially in the implementation of the algorithms. However, com-

plex valued signal models are also applied in the literature [4, 111, 117]. The definition

of the signal model does not affect the mathematical equivalence of the expressions,
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Fig 15. Throughput vs SNR: Performance of the IR/SEE-LSD with different list

sizes in a 4× 4 antenna system with and without LLR clipping. ([138], published

by permission of Elsevier).

but it affects the lattice definition where the LSD algorithm search is executed. Thus,

there is a need to justify the selection of the signal model by studying the effect of it

on the LSD search and on the total complexity of the search. The complex valued sys-

tem model can be presented as an equivalent real valued signal model as indicated in

Section 3.1.1.

The complexity of the LSD algorithms is relative to the number of visited nodes in

the search tree and the size of the search tree, and, as already mentioned, the size of

the search tree depends on the applied signal model. The use of a real valued system

model doubles the depth of the search tree, i.e., MT = 2NT, but decreases the number of

branches at each level compared to the complex signal model, i.e., |Ωr| = |Ω| 1
2 . Thus,

the total number of branches in the search tree with a real valued signal model is given as

BR = ∑
MT
i=1 |Ωr|i, and with complex valued signal model as BC = ∑

NT
i=1 |Ω|i. A graphical

illustration of the different tree shapes is shown in Figure 17. The sizes of the real and

complex valued search trees approach each other as the number of transmit antennas

NT and the constellation size |Ω| increase, but the search tree size is larger with the real

valued signal model with moderate NT and |Ω|, e.g., in a 4× 4 system with 16-QAM
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Fig 16. Throughput vs SNR: Performance of the real K-best-LSD with different list

sizes in a 4× 4 antenna system with and without LLR clipping. ([138], published

by permission of Elsevier).

BR = 87380 and BC = 69904. Thus, it is likely that the number of visited nodes by the

LSD algorithm increases somewhat with a real valued signal model.
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Fig 17. A tree structure of a sphere detector with a 2×2 MIMO system and 4-QAM.

The considered LSD algorithms were described in detail in Section 2.5.2. The main

complexity of the LSD algorithm comes from the PED calculation in (40), which is

executed for each node studied. When considering the choice of the signal model,

we should notice that the complexity of the PED calculation in (40) includes different

operations with real and complex valued signals. The numbers of operations required

to calculate (40) depends on the number of transmit antennas NT and the current layer i

in the search tree. They are listed as real operations in Table 8 given that one complex

MUL is equal to three real MULs and five real ADDs and one complex ADD is equal

to two real ADDs. As a numerical example, we assume that NT = 4 and the average

studied node in both the real and the complex valued search tree is in the middle of the

tree depth, i.e., E[iR] = MT/2 = 4 and E[iC] = NT/2 = 2. Then the number of required

real operations on average for the PED calculation is 9 MULs and 21 ADDs for the

complex signal model, and 5 MULs and 5 ADDs for the real signal model. Thus, we

can say that on average the complexity of one LSD algorithm node check in a system

with NT = 4 is approximately double the complex valued signal model compared to the

real valued signal model.
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Table 8. The number of real operations used for PED calculation in (40). ([138],

published by permission of Elsevier).

Real valued signal model Complex valued signal model

MUL 2NT − i+1 3(NT − i+1)

ADD 2NT − i+1 7(NT − i+1)

3.2.1 Numerical examples

We studied the impact of the real and the complex valued signal models on the number

of visited nodes by the considered LSD algorithms via computer simulations. The

simulations were executed with the same parameters as those in Section 2.6.

The number of visited nodes by the K-best-LSD algorithm depends on the signal

model and the applied list size K = Ncand. The K-best-LSD algorithm visits a fixed

number of nodes given the list size and that no sphere radius is introduced, i.e., C0 = ∞.

The number of visited nodes by the real valued K-best-LSD and the complex valued

K-best-LSD algorithms are determined as VR = ∑
MT
i=1 |S ||Ωr| and VC = ∑

NT
i=1 |S ||Ω|,

where |S | is the number of stored candidates at each layer as in Algorithm 3. The

numbers of visited nodes in different antenna and constellation cases with determined

list sizes in Table 7 are listed in Table 9. It can be seen that the K-best-LSD with the

real valued signal model visits fewer nodes in all the cases except the 4×4 MIMO with

a QPSK case compared to the complex valued signal model with the same performance.

The reason for this is the difference in possible signal points in one layer between the

real and the complex valued signal model, i.e., |Ωr|= |Ω| 1
2 . As the algorithm visits all

the possible child nodes of the stored partial candidates at each layer, the search with

the real valued signal model is done with less visited nodes in total even though visiting

double the number of layers.

Table 9. Number of visited nodes with the real valued K-best-LSD† and the com-

plex valued K-best-LSD‡ with determined list sizes. ([138], published by permis-

sion of Elsevier).

2×2 4×4

4-QAM not studied 254†/212‡

16-QAM 148†/272‡ 1364†/4368‡

64-QAM 1096†/4160‡ 5704†/36928‡
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The number of visited nodes by the sequential search LSD algorithms varies with chan-

nel realization and SNR. We studied the number of visited nodes by the IR-LSD and

the SEE-LSD algorithms with both the real and the complex valued signal model by

collecting data from the computer simulations. The data is then plotted as a histogram

to illustrate the distribution of the number of visited nodes by the LSD algorithms. The

number of visited nodes were studied in highly correlated and uncorrelated TU channel

to also examine the effect of the channel realization. The number of visited nodes by

the SEE-LSD algorithm in a 4×4 MIMO system with 16-QAM and 64-QAM are illus-

trated in Figures 18 and 19. It can be seen that the SEE-LSD algorithm with the real

valued signal model visits approximately 1.5-2 times the number of nodes visited by

the algorithm with the complex valued signal model in the 4×4 MIMO with 16-QAM

case, but the difference slightly decreases with 4× 4 MIMO with 64-QAM case. The

number of nodes visited by the IR-LSD algorithm in 4×4 MIMO system with 16-QAM

and 64-QAM are shown in Figures 20 and 21, respectively. The results show that the

number of visited nodes by the algorithm is relative to the total number of nodes in the

search tree, and the difference between the real and the complex valued signal model

decreases from 16-QAM to 64-QAM. The algorithm with the real valued signal model

visits approximately 1.3-1.5 times the number of nodes visited by the complex algo-

rithm. It can also be noted that the channel realization and correlation properties of the

channel have an effect on the distribution of the visited nodes with both the SEE-LSD

algorithm and the IR-LSD algorithm. The results also confirmed that the difference in

the number of visited nodes between the real and complex valued signal model decrease

as the NT and |Ω| increase.

3.2.2 Conclusions

We studied the difference between using the real valued or complex valued signal model

in the LSD algorithm. The real signal model is clearly the better choice to be applied

with LSD algorithms given the number of visited nodes and the complexity difference

in required operations in one node check. The complexity of one LSD algorithm node

check in a system with NT = 4 is approximately double with the complex valued signal

model compared to the real valued signal model. We noted that the distribution of

the number of nodes visited by the LSD algorithm varies significantly depending on

the LSD algorithm search method. We also noted that the channel realization affects

the distribution of the number of nodes visited by the sequential search algorithms.
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Fig 18. Histogram of the number of visited nodes per symbol vector with real and

complex SEE-LSD in TU channel with a 4× 4 MIMO system with 16-QAM. ([138],

published by permission of Elsevier).
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Fig 19. Histogram of the number of visited nodes per symbol vector with real and

complex SEE-LSD in TU channel with a 4× 4 MIMO system with 64-QAM. ([138],

published by permission of Elsevier).
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Fig 20. Histogram of the number of visited nodes per symbol vector with real

and complex IR-LSD in TU channel with a 4×4 MIMO system with 16-QAM. ([138],

published by permission of Elsevier).
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Fig 21. Histogram of the number of visited nodes per symbol vector with real

and complex IR-LSD in TU channel with 4× 4 MIMO system with 64-QAM. ([138],

published by permission of Elsevier).
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However, in general, the IR-LSD and the SEE-LSD algorithms with the real valued

signal model are less complex compared to the complex valued signal model. The K-

best-LSD with the real signal model also visits fewer nodes with all the configurations

studied except the 4×4 MIMO with QPSK case compared to the complex signal model

with the same performance.

3.3 Limited search

In the hardware implementation of an algorithm for a practical system, there is usually

a predetermined time to execute the process that the algorithm carries out. In order to re-

serve the hardware resources for the algorithm to meet the given timing constraints, we

need to determine the so-called worst case scenario and determine the algorithm com-

plexity accordingly. From the considered list sphere detectors, the K-best-LSD checks a

fixed number of nodes when C0 = ∞ and, thus, the complexity of the algorithm is fixed.

The SEE-LSD and the IR-LSD, however, visit a variable number of nodes depending on

the channel realization, and the hardware implementation of these algorithms as such is

not feasible for a system with a fixed latency requirement.

In order to fix the complexity of the SEE-LSD and the IR-LSD algorithms, we

propose a simple way to modify the algorithms to limit the maximum number of nodes

visited by the LSD algorithm, which we call limited search (LS). The while loop in the

algorithm description of the SEE-LSD in Algorithm 4 and the IR-LSD in Algorithm

5 can be replaced with a f or loop, which means that a predefined maximum number

of loop runs is set and a maximum of Lnode nodes studied. If the sphere search is

not completed within the defined maximum limit Lnode, the algorithm is stopped and

the current final candidate list L is given as an output. Another more sophisticated

alternative is to use a scheduling algorithm as, e.g., in [111, 170]. We modified the

scheduling algorithm in [111] to be more suitable for the SEE-LSD and the IR-LSD

algorithms and call it scheduled search (SS). We use the algorithm to determine the

search limit Lnode(n) for the nth subcarrier in the OFDM symbol as

Lnode(n) = NusedLavg −
n−1

∑
i=1

Lnode(i)− (Nused −n)Lmin, (47)

Lnode(n) =

{

DLavg, if Lnode(n)> DLavg

Lnode(n) if Lnode(n)≤ DLavg,
(48)
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where NusedLavg is the total node run-time constraint for the whole OFDM symbol and

Lmin is minimum number of studied nodes reserved for each subcarrier. The Lnode(n)

is also upper limited to a maximum of DLavg nodes, where D is a node coefficient, to

prevent the use of too many resources in one subcarrier. The idea behind the sched-

uled search is that the algorithm is able to allocate higher maximum limits Lnode(n) for

subcarriers that have a channel realization resulting in low SNR while subcarriers with

easier channel realization can be allocated with lower limits Lnode(n).

3.3.1 Numerical examples

We studied the effect of limited search and scheduling algorithm via Monte Carlo sim-

ulations to determine the performance of the method. The numerical examples were

executed with the same parameters as in Section 2.6, and including LLR clipping with

Lmax = 8 and the real valued signal model. First we studied the number of visited nodes

in the search tree by the IR-LSD and the SEE-LSD algorithms to determine the initial

limit values Lnode. The histograms of the number of visited nodes in a 4× 4 MIMO–

OFDM system with 16-QAM and LSD list size Ncand = 8 in the TU channel are shown

in Figures 18 and 20 for the SEE-LSD and IR-LSD algorithms, respectively. It can be

noted that the channel realization and especially the correlation properties of the chan-

nel affect the distribution of the number of nodes visited by the LSD algorithms and it

should be taken into account when determining the proper limit parameter values for

the search.

Numerical examples of the real SEE-LSD algorithm with both LSD and SS methods

and with different parameters in a 4× 4 MIMO–OFDM system with 16-QAM and in

the TU channel are shown in Figure 22. It can be seen that there is no performance loss

with the real SEE-LSD algorithm with the LS method as the LSD algorithm search limit

Lnode is set high enough. However, we note that the proper maximum limit value Lnode

for the depth-first search has to be set relatively high compared to the distribution of the

visited nodes and the proper value Lnode = 3000 in a correlated channel equals to 98.8%

of the cumulative distribution function (CDF), i.e., Pr[X
(CORR,18dB)
SEE ≤ Lnode = 3000] =

0.988, where X
(CORR,18dB)
SEE is the CDF determined from the histogram of the TU channel

with SNR= 18dB. The corresponding value in an uncorrelated channel, Lnode = 700,

equals to 98.7% of the CDF. The sensitivity to the limiting is due to the depth-first

search strategy, where the search does not proceed uniformly in the search tree and the

first node decision in the highest layer is emphasized. Thus, if the search is limited,
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Fig 22. Throughput vs SNR: Performance of the real SEE-LSD with limited max-

imum number of nodes in a 4× 4 MIMO–OFDM system with 16-QAM. ([138], pub-

lished by permission of Elsevier).

one part of the tree, which could contain a relatively probable path, might be left totally

unexamined. The SS method improves the performance of the SEE-LSD based receiver

with approximately 0.5 dB compared to the LS method with proper parameters and the

same resources, i.e., Lnode = Lavg = 2000. The SS method with a relatively small Lmin

and relatively large D values shows the best performance results, because the SEE-LSD

algorithm is able to detect most of the subcarriers with difficult channel realization

properly with large Lnode and is still able to achieve a non empty candidate list L

for the rest of the subcarriers with Lmin due to the depth first search strategy. Then

the impact of limiting the IR-LSD algorithm search with both LS and SS methods on

the performance of the system was studied. Numerical examples of the performance

with different limited search parameter values in a 4× 4 MIMO–OFDM system with

16-QAM and in TU channels are shown in Figure 23. It can be seen that there is no

performance loss with the real-valued IR-LSD algorithm as the LS method limit Lnode

is set high enough, i.e., Lnode = 200/500 in the UNC/CORR channel. The performance
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Fig 23. Throughput vs SNR: Performance of the real valued IR-LSD with limited

maximum number of nodes in a 4× 4 MIMO–OFDM system with 16-QAM. ([138],

published by permission of Elsevier).

degradation of the system with the LSD search limit set to Lnode = 500 nodes, which is

a rather low limit compared to the determined distribution of visited nodes X
(CORR,18dB)
IR ,

is about 0.2−0.3 dB at maximum compared to the LSD with an unlimited search. The

CDF with determined Lnode equals to 80.6%, i.e., Pr[X
(CORR,18dB)
IR ≤ Lnode = 500] =

0.806. The corresponding value in an uncorrelated channel, Lnode = 160, equals to

79.5% of the CDF. The good tolerance of the IR-LSD algorithm to the LS method is

due to the metric-first search strategy, where the algorithm proceeds uniformly in the

search tree. A more sophisticated SS method was also applied with Lavg = 200/400

and with different Lmin and D values for the UNC/CORR channel. The SS method

slightly outperforms the simple LS method, i.e., by ≈ 0.1 dB, with proper parameter

configuration when the same resources are applied Lnode = Lavg. In practice, Lmin has to

be set high enough and D not too large to guarantee enough nodes for each subcarrier

detection and a non empty output candidate list L . We determined the proper search

limits Lnode for the algorithms for highly correlated TU channels and they are listed
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in Table 10. It should be noted that the highly correlated channel scenario is difficult

for the sphere search, and the results listed can be considered as the so-called worst

case scenario limits. The results show that the channel correlation properties effect the

distribution of nodes in the algorithm, and a feasible search limit Lnode can be set lower

in an uncorrelated channel.

3.3.2 Conclusions

We proposed two methods to limit and fix the search complexity of the SEE-LSD and

IR-LSD algorithms: limited search (LS) and scheduled search (SS) methods. The re-

sults show clearly that both the considered sequential search algorithms work well with

a limited search. The SEE-LSD algorithm performs ≈ 0.5 dB better with the more

sophisticated and complex SS method compared to the LS method, but the IR-LSD al-

gorithm achieves only a minor performance gain, which is due to the different search

strategies of the algorithms. However, both the SS and the LS methods are feasible for

implementation. The results indicate that the CDF of the visited nodes can be used as a

guideline for determining the proper Lnode value.

3.4 IR-LSD memory sphere radius

The IR-LSD algorithm [106, 143], which was described in Section 2.5.2, is optimal

in the sense of number of nodes visited in the tree structure [95, 106]. The algorithm

always extends the partial candidate N with the lowest PED in one extend loop, but

requires that the visited nodes are maintained in metric order to ensure the optimality,

which requires the usage of memory and sorting [98]. The algorithm stores at maximum

a single additional partial candidate N in the memory and, thus, requires a memory unit

of Lnode candidates at maximum when the search is limited to Lnode iterations. The min-
Table 10. Determined maximum node limits for the real valued IR-LSD† and the

real valued SEE-LSD‡ with LLR clipping in a highly correlated TU channel. ([138],

published by permission of Elsevier).

2×2 4×4

4-QAM not studied 250†/300‡

16-QAM 80†/150‡ 500†/3000‡

64-QAM 200†/400‡ 1000†/ > 10000‡
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imum candidate in the memory also has to be searched in each iteration [98]. Sorting or

minimum search are costly operations and the complexities of the operations are related

to the number of the sorted elements [102, 171]. The memory access in the sorting of

an added partial candidate to the memory set S may be the limiting factor in the imple-

mentation if the memory set S gets close to full, i.e., the sorting time likely increases

with a growing number of occupied elements in the memory set S [102, 171].

We propose to use a novel memory sphere radius Cmem to decrease the number

of stored candidates and the complexity of the required minimum search [139]. The

added extended partial candidates N are first compared to the Cmem and stored to the

memory S only if d(s) < Cmem. Thus, the amount of stored partial candidates N is

reduced depending on the definition of Cmem. We define Cmem based on the previously

solved candidate(s) in the final list(s) with a minimum ED minx∈L (d(x)), which is then

scaled with a determined radius scaling variable WR to store only the potential partial

candidates to the partial memory set S . The minimum ED values can be averaged over

time and frequency, i.e., OFDM subcarriers, and then the memory sphere radius can be

written as

Cmem =WRE[min
x∈L

(d(x))]. (49)

The impact of Cmem on complexity and performance is studied with numerical examples

in Section 3.4.1.

3.4.1 Numerical examples

The numerical examples were executed to verify the feasibility of the memory sphere

radius. A turbo coded 4×4 MIMO-OFDM system configuration was applied as in the

simulations in Section 2.6 in a Winner B1 channel [152] with a user velocity of 60

kmph. The receiver includes an IR-LSD with a list size Ncand = 15 and a max-log-MAP

turbo decoder with 8 iterations. A SQRD preprocessing is assumed in the LSD and

LLR clipping was applied with Lmax = 8.

We studied the impact of the memory sphere radius Cmem on the IR-LSD perfor-

mance and determined a proper value for WR to be used for the cases studied. We stud-

ied the complexity reduction in terms of the average number of executed iterations Lavg

with L
16QAM
node = 80 and L

64QAM
node = 150. The memory unit S and the sorting architecture

is designed as a binary heap [102, 171] data structure, which is presented in more detail

later in Section 4.2. The sorting in a heap data structure is done via up- and down-heap
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Table 11. The average number of visited nodes and executed heap operations,

and performance loss in IR-LSD with Cmem.

WR, 16-QAM C0 4.0 3.0 2.0 1.7

Lavg 77 76 70 47 35

Avg. up-heaps 1.09 0.68 0.48 0.25 0.18

Avg. down-heaps 1.45 1.39 1.19 0.72 0.53

Perf. loss (dB) 0.0 0.0 0.0 0.1 0.7

WR, 64-QAM C0 4.0 3.0 2.5 2.0

Lavg 116 113 104 93 74

Avg. up-heaps 1.03 0.63 0.44 0.33 0.23

Avg. down-heaps 1.59 1.46 1.23 1.03 0.76

Perf. loss (dB) 0.0 0.0 0.0 0.1 0.4

operations [102, 171], and we also studied the average number of required heap oper-

ations in the partial memory S in one subcarrier detection. The numerical results of

the IR-LSD with different WR values are listed in Table 11. The performance of the

IR-LSD is not degraded significantly as the WR value is selected to be large enough and

only the potential partial candidates are stored to partial memory S with W
16QAM
R ≥ 2.0

and W
64QAM
R ≥ 2.5. As the Cmem is relative to the average minimum candidates over

time and frequency, any unnecessary resources, i.e., algorithm iterations, are not used

to obtain candidates with relatively high ED in the case of difficult channel realizations.

Thus, the average numbers of visited nodes decreases without loosing performance as

shown in Table 11. The average number of up- and down-heap operations is also de-

creased, which significantly reduces the required memory access and the latency of the

heap sorting.

3.4.2 Conclusions

We proposed to use a novel memory sphere radius Cmem with the IR-LSD algorithm to

decrease the number of stored candidates and the complexity of the required minimum

search during the algorithm tree search. We showed that the average numbers of visited

nodes decreases with memory sphere radius without losing performance. Also, if a

heap memory structure is used with the IR-LSD algorithm, the average number of up-

and down-heap operations decreases, which significantly reduces the required memory

access and the latency of the heap sorting.
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3.5 L1 norm

Most of the arithmetic operations required by the LSD algorithms are executed in PED

calculations. Normally the squared Euclidean distance or the L2 or 2-norm without

square root operation is applied in the LSD algorithm decision metric as presented in

(40). However, simplified norm calculation methods, such as the absolute norm or infi-

nite norm, have also been introduced to decrease the complexity of the LSD algorithm

[172]. The use of the L1 or absolute value norm in the tree search instead of the ED cal-

culation simplifies (40) and results in decreased complexity as one multiplication and

one addition less is required per one node extension. We will call the L1 norm based

metric calculation a partial absolute distance (PAD) calculation. The total number of

operations saved per OFDM subcarrier detection then depends on the total number of

nodes visited by the tree search algorithm, i.e., depends on the system configuration

and the channel realization. The partial absolute distance calculation with simplified L1

norm algorithm and with a real signal model can then be written as [70]

d(xMT
i )≈ d(xMT

i+1)+ |ỹi −
MT

∑
j=i

Ri, jx j|. (50)

It has been shown that the usage of the L1 norm also results in a degradation in the

performance with an uncoded system as the hard output tree search is made based on

the L1 norm [172]. The use of the L1 norm in a coded system may result in a different

final candidate list L compared to the use of the L2 norm due to the different decision

metrics in the search. The use of absolute distance (AD) values in (42) also results

in distorted LLR approximation. We studied the performance of the MIMO–OFDM

system with an IR-LSD based receiver in the UNC and CORR channels and compared

the L1 and L2 norm based IR-LSD algorithms. We also studied the effect of the L1

norm on the IR-LSD algorithm tree search by using the L1 norm in the tree search and

then recalculating the final list candidates’ ED values with the L2 norm. The results

of a coded 4× 4 MIMO–OFDM system with 16-QAM are shown in Figure 24. It can

be seen that the performance loss due to the use of the L1 norm is approximately 1–

1.4 dB compared to the L2 norm at 4% FER and higher in a highly correlated channel.

It can also be seen that the main performance loss in the UNC channel is due to the

distorted tree search with the L1 norm based LSD algorithm as the recalculated final

list L with the L2 norm gives the very similar performance. The recalculation of the
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Fig 24. The performance of the IR-LSD based receiver with different norm modifi-

cations.

final list L with the L2 norm gives approximately a 0.4 dB gain in the CORR channel.

The performance difference is due to more accurate LD(bk) approximation in (42).

3.5.1 L1 norm and Euclidean norm approximation

The distance calculation in the LSD algorithm is done in parts by summing the par-

tial distances of each level together as shown in (40). The use of the L1 norm in the

LSD algorithm reduces the number of required arithmetic operations, but results in per-

formance degradation due to a different metric in the tree search and distorted LLR

approximation. It is not trivial to compensate for the effect of the L1 norm on the tree

search without adding complexity as each PAD calculation by the tree search algorithm

should be approximated to the corresponding L2 norm value. The distorted LLR ap-

proximation can be compensated for by recalculating the final distance metrics with

L2 norm, but complexity reduction of the L1 norm usage is then lost due to the added

complexity. Another possibility is to approximate the L2 norm ED by scaling the final

list L1 norm AD values properly, e.g., as done by a rather complex method in [173].

In order to illustrate the problem, the correlation between the L1 norm and L2 norm
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Fig 25. Measurement data showing the candidate list distance metric values with

the L1 norm and L2 norm.

distance values are shown by plotting the samples of LSD algorithm final list distances

calculated with both L1 and L2 norms in Figure 25. It can be seen that there is no exact

method to transform the final list AD values calculated with the L1 norm into corre-

sponding L2 norm ED values. However, the performance of the L1 norm based LSD

can be improved by approximating the L2 norm based results. We propose a novel and

simple method to compensate for the performance degradation due to the use of the L1

norm in the distance calculation. The proposed solution works especially in spatially

correlated MIMO channels, where the use of the L1 norm in the LSD algorithm leads

to a distorted LLR approximation as shown in Figure 24. The L2 norm approximation

is proposed to be done by multiplying the L1 norm values with a predefined coefficient

a and adding a constant b as

||x||2 = a||x||1 +b. (51)

The coefficient a and the constant b can be determined for each channel scenario and

different values can be used for different distance values. A determined scaling look-up-

table (LUT) for a highly correlated TU channel, which is based on Figure 25, is listed

in Table 12. The performance of different LSD based receivers with different norm
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calculation methods is studied via computer simulations. The performance examples of

a 4×4 MIMO system with 16-QAM and with LSD based receivers with list size 15 and

a turbo decoder in a highly correlated typical urban channel are shown in Figures 26, 27

and 28. The LSD algorithm tree search is implemented with either an L1 norm or L2

norm based decision metric calculation. The LLR approximation is calculated with a

final list L that is based on the L2 norm, the L1 norm, the recalculated L2 norm or the

proposed method to scale the AD values as in Table 12. It can be seen that the K-best-

LSD with the L1 norm performs approximately 0.7 dB worse at 4% FER compared to

the K-best LSD with the L2 norm. The performance of K-best LSD with the L1 norm

improves approximately 0.4 dB when the proposed ED scaling is applied. The SEE-

LSD with the L1 norm loses 1.2dB compared to the L2 norm based SEE-LSD, and the

proposed L2 ED scaling improves the performance of the L1 norm based SEE-LSD by

0.4dB. The performance of IR-LSD with the L1 norm is 1.25dB worse compared to the

L2 norm based IR-LSD, and the ED scaling improves performance by 0.25dB. Thus,

it can be concluded that the ED scaling can be used to improve the LSD performance

when the L1 norm is applied in the LSD algorithm. The required SNR values in the

CORR channel for 4% FER performance with LSD based receivers with different norm

methods are listed in Table 13.

Table 13. The required SNR of a 4×4 MIMO–OFDM system with 16-QAM and with

different LSDs based receivers for 4% FER in the CORR channel.

Method L2 norm L1 norm L1 norm with scaling

K-best-LSD 22.5dB 23.2dB (+0.7dB) 22.8dB (+0.3dB)

SEE-LSD 21.55dB 22.75dB (+1.2dB) 22.3dB (+0.75dB)

IR-LSD 21.55dB 22.8dB (+1.25dB) 22.55dB (+1.0dB)

Table 12. The determined coefficient a and constant b values.

Coefficient a Constant b Applied L1 norm value range

a = 0 b =−0.1 ||x||1 < 0.4

a = 0.29 b =−0.1 1.0 ≥ ||x||1 > 0.4

a = 0.80 b =−0.6 2.0 ≥ ||x||1 > 1.0

a = 2.40 b =−3.6 3.0 ≥ ||x||1 > 2.0

a = 4.13 b =−8.8 6.0 ≥ ||x||1 > 3.0

a = 5.0 b =−15.0 ||x||1 > 6.0
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Fig 26. The performance of the K-best-LSD based receiver with different norm

modifications.

The use of the L1 norm in the LSD algorithm decreases the complexity compared to

the L2 norm based LSD algorithm with a cost of degraded performance. The proposed

scaling method with an L1 based LSD algorithm increases the complexity as the final

list L AD values have to be scaled as in (51). The complexity increase is, however, very

small compared to the performance improvement. In order to illustrate the complexity

difference, the complexity of the K-best-LSD algorithm with list size Ncand of 15 and

with L2 norm, L1 norm and L1 norm with AD scaling, and LLR calculation for a 4×4

MIMO system with 16-QAM is listed in Table 14. The complexity is listed in required

division (DIV), MUL, ADD and comparison (COMP) operations per detection. The

use of the L1 norm in distance metric calculations results in 380 fewer MUL and ADD

operations compared to the L2 norm. The ED scaling results in only 15 more MUL

and ADD operations and 150 COMP operations, because only the final list candidates

have to be scaled. The proposed scaling method can be implemented with a look-up-

table (LUT) and multiply and accumulate (MAC) unit. The LUT is required to store the

coefficients a and constants b, and the MAC unit is used to execute (51) for the LSD

output list ED values. Parallel MAC units can also be used for faster implementation.
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Fig 27. The performance of the SEE-LSD based receiver with different norm mod-

ifications.
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Fig 28. The performance of the IR-LSD based receiver with different norm modifi-

cations.
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Table 14. The complexity of K-best-LSD with list size Ncand = 15 in a 4× 4 MIMO

system with 16-QAM.

L2 norm L1 norm L1 norm with scaling

DIV 1 1 1

MUL 1915 1535 1550

ADD 1916 1536 1551

3.5.2 Conclusions

We studied the use of the L1 norm in the LSD algorithm tree search, which decreases

the complexity of the search, but also degrades the performance of the LSD. We pro-

posed to use a simple scaling of the LSD algorithm output list L distance metric values

to approximate the L2 norm ED. We showed that the scaling method can be used to

compensate for the performance loss due to the use of the L1 norm with minor addi-

tional complexity. The complexity increase is very small compared to the performance

improvement.

3.6 Complexity and performance of an iterative receiver

The optimal joint receiver can be approximated by using an iterative receiver and soft-

input soft-output (SfISfO) detector and decoder [4]. The performance of the system is

increased to a certain extent with each global iteration (GI), where the soft reliability

information is fed back to the detector from the decoder. However, the iterative re-

ceiver structure also increases the computational complexity of the receiver with each

GI as more signal processing is done. The effect of the receiver convergence properties

depend on multiple variables such as decoder iterations, channel code properties and

channel realization [174]. Thus, it is not straightforward to determine the optimal re-

ceiver configuration and how much computing effort should used in detector, decoder

and global iterations in total.

We studied the performance of the iterative receiver with variable GIs and their

effect on the computational complexity by numerical examples. The numerical exam-

ples were executed for a 4×4 MIMO-OFDM system with 16-QAM and with the same

system model parameters as in earlier sections with the following details. The LLR
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Fig 29. FER vs. SNR: Performance of the real IR-LSD based receiver in a 4× 4

MIMO system with 16-QAM. ([138], published by permission of Elsevier).

clipping was applied with Lmax = 8, the IR-LSD was operating with variable Lnode, the

max-log turbo decoder was operating with 4 or 8 decoder iterations (DI) and the iter-

ative receiver was operating with 1–3 GIs. Performance examples of a real IR-LSD

based receiver are shown in Figure 29. We can see that the 2nd GI improves the per-

formance approximately 0.5 dB at FER 10−2 and there is not much performance gain

with a 3rd GI. It can be also noted that 4 DIs are sufficient with 2 or more GIs and

the increase in the IR-LSD Lnode from 150 nodes to 300 nodes improves performance

by approximately 0.7 dB. Similar performance behavior could also be seen from the

numerical examples with a K-best-LSD based receiver. Typically the performance and

the complexity of the receiver are both important measures, when designing a system.

Therefore, we also calculated the required computational complexity for different re-

ceiver configurations to compare and determine the most efficient configuration. The

complexity calculation includes the required arithmetic operations of LSDs and the

max-log turbo decoder, which are MUL, ADD, COMP and DIV, with a given number

of iterations for the reception of one OFDM symbol, i.e., 2400 transmitted bits. The

memory requirements and word length requirements were omitted from the calculations.

In order to get an explicit complexity description, we approximated the computational
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complexity of the required arithmetic operations according to their relative complexity

units (CU) to NAND2 operation, i.e., according to how many 1-bit NAND2 ports are

required for the corresponding 1-bit operation. The approximations used are listed in

Table 15. The approximation is based on the authors’ experience and from [175].

The performance and complexity of K-best-LSD or IR-LSD and max-log turbo de-

coder based receivers with different configurations are shown in Figures 30 and 31,

respectively. The figure curves describe the required SNR for a 4 % target FER and the

corresponding complexity of the receiver with the variable LSD Lnode or list size Ncand

in calculated complexity units. It can be seen that the complexity from the decoder itera-

tions dominates the total complexity and that there is only minor performance gain with

8 DI compared to 4 DI when 2 or more GIs are executed. Also the performance gain

of a 3rd GI with the given system configuration is minor compared to the additional

computational complexity required. The cost of increased number of visited nodes by

the LSD is minor compared to the additional performance gain with both IR-LSD and

K-best-LSD. Thus, we can say that with the given system configuration it makes sense

to use the additional computational cost for LSD to achieve a better soft output approx-

imation. The use of the 2nd GI with lower amount of decoder resources (4DI) is also

justified.

Table 15. The number of 1-bit NAND2 ports used for the corresponding 1-bit

arithmetic operation. ([138], published by permission of Elsevier).

Operation MUL ADD COMP DIV

Required NAND2’s 12 5 4 30

3.6.1 Conclusions

We studied the performance of the iterative receiver with variable GIs and their effect on

the computational complexity. The results indicated that with the typical system config-

uration it is beneficial to use the additional computational cost for the LSD algorithm to

achieve a better soft output approximation, i.e., study more tree nodes in the algorithm

search. The use the 2nd GI with a lower amount of decoder resources is also justified.

However, it should be noted that the numerical examples only give some guidelines to

the design and they depend on system configuration.
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Fig 30. Required SNR for 4% target FER vs. required operation complexity with

different K-best-LSD based configurations. ([138], published by permission of

Elsevier).

3.7 Summary

In this chapter, we introduced and studied different methods related to the implemen-

tation of a list sphere detector. We studied six significant challenges, namely, limiting

the dynamic range of the soft output log-likelihood ratio (LLR) values to the decoder,

comparing the real and complex signal models in the LSD, limiting the search com-

plexity of the LSD algorithm, applying a IR-LSD memory sphere radius to lower the

required memory access, applying the L1 norm in the LSD algorithm, and analyzing

the complexity and performance tradeoffs of an iterative receiver.

We introduced two simple LLR clipping methods to process the soft output LLR

LD(bk) and studied the impact of the methods on the performance of a coded system.

We showed that the LLR clipping enhances the performance of LSD based systems with

low list size and, thus, lowers the required list size Ncand. We proposed to use Method

1 as it ensures good performance and requires less dynamic range for the L(bk) before

clipping. The coding rate had a small effect on the optimal clipping values, but the

differences are rather small, and in practice, Lmax = 8 gives good results.
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Fig 31. Required SNR for 4% target FER vs. required operation complexity with

different IR-LSD based configurations. ([138], published by permission of Else-

vier).

We studied the difference between using the real valued or complex valued signal

model in the LSD algorithm. The real valued signal model is clearly the better choice to

be applied with LSD algorithms given the number of visited nodes and the complexity

difference in the required operations in one node check.

We proposed two methods to limit and fix the search complexity of the SEE-LSD

and the IR-LSD algorithms: limited search (LS) and scheduled search (SS) methods.

The results show clearly that both considered sequential search algorithms work well

when the sequential search is limited. Both the SS and the LS methods are feasible for

implementation, and a minor performance gain can be achieved with the more sophisti-

cated and complex SS method.

We proposed to use a novel memory sphere radius Cmem with the IR-LSD algorithm

to decrease the number of stored candidates and the complexity of the required mini-

mum search during the algorithm tree search. We showed that the average numbers of

visited nodes decreases with the proper selected memory sphere radius without loosing

performance.
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We studied the use of the L1 norm in the LSD algorithm tree search, which de-

creases the complexity of the search, but also degrades the performance of the LSD.

We proposed to use a simple scaling of the LSD algorithm output list L distance met-

ric values to approximate the L2 norm ED. We showed that the scaling method can be

used to compensate for the performance loss due to the use of the L1 norm with minor

additional complexity.

We studied the performance of the iterative receiver with a variable number of GIs

and their effect on the computational complexity. The results indicated that with the

typical system configuration it is beneficial to use the additional computational cost for

the LSD algorithm to achieve a better soft output approximation, i.e., study more tree

nodes in the algorithm search. The use the 2nd GI with a lower amount of decoder

resources is also justified.
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4 Architecture design

The architecture design is a key point in efficient implementation of an algorithm. In

this chapter, we identify and introduce the key functional units of the considered de-

tection algorithms, and design efficient architectures for MIMO–OFDM systems. The

possibilities for parallelism and pipelining in the microarchitecture units are introduced

and analyzed.

4.1 LMMSE detector

The architecture design is highly dependent on the specific application. In an OFDM

system, the detection has to be done separately for each subcarrier. Thus, the detector

coefficient matrix W in (15) also has to be calculated separately for each subcarrier.

The calculation of the coefficient matrix W is computationally the most complex part

of the LMMSE detector and, more specifically, the calculation of the matrix inversion

via QRD as presented in Section 2.4. The dimensions of the required matrix inversion

depend on the number of receive antennas NR. The coefficient matrix W needs to be

updated as the channel changes, i.e., according to the channel coherence time Tc. The

total complexity of the LMMSE detector depends mainly on these variables. The high

level architecture of the LMMSE detector is presented in Figure 32. The architecture

consists of an LMMSE coefficients calculation block, adaptive scaling blocks, a data

detection block, and memory blocks. The LMMSE detector coefficient matrix calcu-

lation in (15) requires several matrix operations such as matrix-matrix multiplications,

QRD, and back substitution or inversion of a triangular matrix. The architectural de-

sign of matrix operations in the literature is often based on systolic array structures

with communicating processing elements (PEs) [75, 76]. We design the architecture

and the operations using triangular, two dimensional and linear systolic arrays.

The matrix-matrix multiplication can be implemented using two-dimensional sys-

tolic array architecture or a memory shared linear systolic array architecture [70]. The

two-dimensional array enables a fast and parallel data flow. The multiplication of two

matrices of dimensions A×B and B×C requires AC PEs with MAC operation as an

A×C two-dimensional array [76]. The delay of the array is (A+B+C−1)τmac clock

cycles, where τmac is the delay of one PE in clock cycles. The linear array requires less
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Fig 32. The LMMSE detector high level architecture. ([142], published by permis-

sion of IEEE).

resources in hardware implementation, but time-shared scheduling increases the delay

of the array. In a linear array one PE is used to compute all elements of a column, and,

thus, only C PEs are required [76]. The delay of the linear array is (AB+C)τmac clock

cycles for the whole multiplication.

A conventional method for computing the QRD is to use a simple and highly paral-

lel triangular array architecture [75, 76]. A triangular array architecture enables simple

data flow, high throughput with pipelining, and is feasible for matrices with low dimen-

sions, e.g., for 2× 2 matrices. Both the algorithm for inversion of a triangular matrix

[157] and the back substitution algorithm [70] can be implemented using a triangular

array architecture. The matrix inversion of an A×A square matrix can be computed us-

ing a cascade of two triangular arrays with total of A(A+1) PEs [157]. The total time

required for matrix inversion with such an architecture is 5Aτinv clock cycles, where

τinv is the delay of one PE in the array [157].

However, the triangular architecture has certain drawbacks, such as a growing num-

ber of required PEs with increasing matrix dimensions and, thus, a lack of easy scal-

ability. As an alternative structure, a linear array architecture could be considered for

larger systems. A derivation of a linear QR array from a triangular QR array has been

presented, e.g., in [78, 176]. A linear array mapping of the triangular matrix inversion

algorithm has been presented in [177]. The linear array architecture for an A×A matrix

inversion employs only 2A PEs [78]. The total latency of such a linear array architecture
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Fig 33. The CORDIC based LMMSE detector architecture for a 2×2 MIMO system.

([140], published by permission of IEEE).

is (4A2 +2A−2)τinv clock cycles. A detailed description of the designed architectures

for the calculation of the coefficient matrix W is presented for both CORDIC and SGR

based designs in the following subsections. Architecture solutions are designed for

2×2 and 4×4 MIMO systems.

4.1.1 CORDIC Based Design

The CORDIC based LMMSE detector architecture for a 2× 2 MIMO system is illus-

trated in Figure 33. The matrix A from (17) is formed in part A1 using a linear array

of complex multipliers and summation blocks. The complex multipliers are used in

parallel to calculate one element of A in one time interval. The matrices A and B from

(17) are then fed via a serial-input parallel-output (SIPO) buffer to part A2 which con-

sists of two systolic arrays. The calculation of the matrices R and QHB from (19) is

carried out in the upper part of A2 with CORDIC based triangular and two-dimensional

systolic arrays. Then the lower triangular systolic array applies the back substitution

algorithm to form the desired matrix X = W. The architecture presented in Figure 33

does not require much control logic and the mapping of data flow is relatively easy. The

latency of the architecture is very feasible for high data rate applications and it enables

efficient pipelining [157]. The applied architecture is designed for systems with rather

low matrix dimensions, i.e., a 2×2 MIMO system, as the complexity of the triangular

array architecture grows dramatically with increasing matrix dimensions. Thus, we de-

signed a less complex architecture to be used with larger matrix dimensions. The QRD
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([140], published by permission of IEEE).

array, which is the most complex part of the design, is replaced with a less complex lin-

ear systolic array. The linear array requires more control logic and the overall latency

of the calculation of detector coefficients is higher, but the required complexity is less

compared to the triangular array architecture. The CORDIC based LMMSE detector

architecture for a 4× 4 MIMO system is illustrated in Figure 34. The triangular array

used for back substitution is not replaced with a linear array, because the complexity

of the array is only a fraction compared to the complexity of the QRD array. Also the

matrix multiplication part A1 includes four parallel multipliers to enable the calculation

of one element of the matrix A in one time interval.

CORDIC and Back Substitution Array

The CORDIC based QRD array cells and the used word lengths are shown in Figure 35.

The array contains two types of cells, the round vectoring cells and the square rotating

cells. The round boundary cell performs the vectoring operation, i.e., it computes the

angles needed for annihilation of the incoming data samples. Two real CORDIC blocks

are needed for complex implementation. The boundary cell sends the angle values

to the inner square cells in the same row. The inner square cell calculates the new

rotated sample values based on the angle values given from the boundary cell. Three

real CORDIC blocks are needed for each block using complex valued arithmetic. The
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dataflow in the array is illustrated for 2×2 and 4×4 MIMO system designs in Figure

36. In the 2×2 MIMO system design the values of the upper triangular matrix R can be

read from the array after all samples are inside of the array and the values of the array

B are the result of multiplication QHB. In the time-shared design for a 4× 4 MIMO

system, the implementation requires several shift registers to handle multiple values

simultaneously. The complexity of the CORDIC-array is determined by the number

of CORDIC iterations and the word length used [73, 158]. The back substitution

array cells and the used word lengths are illustrated in Figure 37. The triangular array

structure includes two different types of cells. The boundary round cell performs a

complex by real division operation. The inner cell contains a complex multiplication

and an arithmetic subtraction operations. the back substitution block must be connected

correctly to the QR and the input samples must be organized in certain way. A new

sample is latched in every clock interval in a 2× 2 array with twice the clock rate as

with a QRD array. The problem with a 4×4 array is that results from QR are ready at

very different times and they must be stored to a memory. Thus, random access memory

(RAM) blocks are used to store both R and QHB real and imaginary values. The values

are then read simultaneously to the 4× 4 array. The overall complexity of the back

substitution array is relatively low compared to the QRD array and it is dominated by

the reciprocal divider blocks.

4.1.2 SGR Based Design

The SGR based LMMSE detector architecture for the 2×2 MIMO system is presented

in Figure 38. The architecture is designed to support pipelining and to be feasible for

high data rate applications. Thus, two-dimensional arrays are used for matrix multipli-

cations and conventional fast triangular arrays for the matrix inversion. The matrix A in

(17) is calculated in part A1 using a two dimensional multiplication array. The dataflow

of such an array is illustrated, e.g., in [76]. The matrix inversion by QRD and triangular

matrix inversion are done in part A2 using a cascade of two triangular arrays [157]. The

lower triangular array in part A2 also executes the calculation of A−1 = U−1QH
A. The

two dimensional array in the A3 part, which is similar to the array in part A1, calcu-

lates the matrix multiplication of terms A−1 and B in (28). The architecture presented

in Figure 38 is more suitable for systems with rather low matrix dimensions. We also

designed an architecture with linear systolic arrays for increasing matrix dimensions,

e.g., 4×4 MIMO system and larger. The SGR based LMMSE detector architecture for
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Fig 35. Hardware realization of the CORDIC vectoring and rotating cells. ([140],

published by permission of IEEE).
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Fig 36. The dataflow of the CORDIC 2×2 and 4×4 array.

a 4× 4 MIMO system is presented in Figure 39. A linear array architecture is applied

for each part in Figure 39. The linear structure used for both matrix multiplications in

parts A1 and A3 decreases the required number of PEs from 16 to 4. Also the QRD and

triangular matrix inversion arrays in part A2 are replaced with a linear array [78], which

decreases the number of PEs from 20 to 8. The linear array requires more control logic

and the overall latency of calculation of the detector coefficients is much higher, but

the complexity saving compared to a triangular array grows dramatically with increas-

ing matrix dimensions. The dataflow of a linear array architecture is discussed, e.g., in

[78, 177, 178].

SGR and Triangular Matrix Inversion Array

The systolic array architecture for the SGR algorithm includes three different kinds of

cells as shown in Figures 38 and 39 for 2× 2 and 4× 4 MIMO systems, respectively.

In the architecture the round boundary cell is only a delay element except for the last
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Fig 37. Hardware realization of the Back substitution array cells. ([140], published

by permission of IEEE).
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Fig 38. The SGR based LMMSE detector architecture for a 2× 2 MIMO system.

([140], published by permission of IEEE).
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Fig 39. The SGR based LMMSE detector architecture for a 4× 4 MIMO system.

([140], published by permission of IEEE).
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Fig 40. Hardware realization of the SGR array cells. ([140], published by permis-

sion of IEEE).

shaded cell. Hardware realizations and the used word lengths of the last round boundary

cell and the square internal cell are presented in Figure 40. The main operations of the

SGR algorithm are executed in the square internal cell. Each cell consists of arithmetic

blocks such as divider, multipliers, adders, multiplexers, and registers. The shaded

blocks and the bold lines depict complex signal representation. The complexity of the

SGR array is dominated by the complex reciprocal divider block, which is executed

in the square internal cell. It should be noted that all the cells in the linear array in

Figure 39 include both the boundary cells and the square internal cell. The triangular

matrix inversion array cells and the used word lengths are presented in Figure 41. The

array includes two different kinds of cells. The linear array architecture cells include

the operations of both cells. The design is based on [157] with certain simplifications.
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Fig 41. Hardware realization of the triangular matrix inversion array cells. ([140],

published by permission of IEEE).

The round cells do not need to calculate the reciprocal division operation, because the

required operation is already calculated in another cell and can be directed to the cell

as Yin2. This decreases significantly the complexity of the array. The complexity of

the array is dominated by the reciprocal divider block, which is executed in the square

internal cell. The dataflow of the 2× 2 SGR and triangular matrix inversion array is

illustrated in Figure 42. Matrix A is fed to the QRD array in rows in every clock interval.

It is followed by an identity matrix I2 to form the matrix QA. The lower array calculates

the inversions of the matrices and the output of the array is the matrix U−1QH
A.
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Fig 42. The dataflow of SGR and triangular matrix inversion array for a 2×2 MIMO

system.

4.1.3 Scalability

The designed architectures are scalable to be used with different antenna configurations,

but the number of PEs in the arrays have to be modified according to the applied con-

figuration. The required dimensions of the systolic array architecture are related to the

applied number of transmit antennas NT and receive antennas NR. The dimensions of

the channel matrix H ∈CNR×NT determine the number of PEs required in the architec-

ture used for the matrix-matrix multiplications in parts A1 and A3 of the architecture

figures. The two-dimensional and linear arrays can then be derived easily for the applied

system as discussed earlier in section 4.1. The matrix inversion of the A ∈CNR×NR is

calculated in part A2 as shown in the architecture figures. The size of the inversion

array is dependent on the dimensions of the A, i.e., the number of receive antennas NR.

Thus, the required triangular or linear array can be easily scaled for the applied system.
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4.2 List sphere detector

A high level architecture of the list sphere detector consists of the preprocessing unit,

the LSD algorithm unit and the LLR calculation unit as illustrated in Figure 3. The

units in the LSD architecture have different performance requirements that should be

taken into account in the architecture design. The preprocessing unit, which calculates

the decomposition of the channel matrix H for each OFDM subcarrier, recalculates the

operations as the channel realization chances, i.e., according to the channel coherence

time Tc. The LSD algorithm unit, however, executes the tree search for each OFDM sub-

carrier within the OFDM symbol interval and the LLR calculation unit then calculates

the soft outputs also for each subcarrier in the OFDM symbol interval. Thus, typically

the preprocessing unit outputs can be used in the LSD algorithm for several consecutive

OFDM symbols and the latency requirements are not as strict as with the other units in

the LSD architecture. It should also be noted that multiple units can be used in par-

allel to support higher data rate requirements in the OFDM system as the processing

operations of separate subcarriers are independent. In the following subsections, we

design architectures for the SQRD preprocessing algorithm [163], for the considered

LSD algorithms and for the LLR calculation unit.

4.2.1 SQRD algorithm

The SQRD algorithm high level architecture is illustrated in Figure 43. The architecture

operates in a sequential fashion, and calculates one row of the R and one column qi of

the Q in each iteration. The norm calculation unit calculates the channel matrix column

norms, which are used to determine the initial permuting order p of the columns. The

norm calculation requires a total of M2
T MUL operations, and, thus, different levels of

parallelism and pipelining can be applied for the microarchitecture of the unit. The con-

trol logic unit defines the permutation order p of columns at iteration i as i = 1 . . .MT,

and controls the calculation units and the memory access. The memory unit is used

for storing the Q and R matrices during the decomposition. The registers are used to

temporarily store the currently used rows of R and columns of Q, and the norm values.

The actual calculation of the diagonal element Ri,i and the column qi is executed in the

calculation unit, which requires a square-root, a reciprocal division operation and MR

MULs. Parallelism and pipelining can be applied in the MUL operations. The iterative

update unit updates the elements in Ri,k, the columns qk, and the norm values |hk|2,
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Fig 43. A high level architecture of a sorted QR decomposition unit.

where k = 1, . . . ,MT. The update of the variables can be carried out by MAC units, but

the number of computations depend on the current iteration i. We designed an efficient

time-sharing microarchitecture for the calculations, which enables different levels of

parallelism and pipelining, and it is illustrated in Figure 44. The parallel MAC units

are time-shared to calculate first the Ri,k variable with a given k, and then the column

qk and the norm value |hk|2 are updated. The architecture calculates iteratively all k

values. As the number of different values assigned for the parameter k varies depending

on the decomposition phase, the maximum efficient level of parallelism is to use MT

MAC units. The presented architecture calculates one decomposition at a time and a

new decomposition can be started as the previous values are read from the RAM. An-

other alternative way to design the architecture would include MT parallel processing

units, where each of the units executes the processing for a single column of the decom-

posed matrix. Such an architecture can be pipelined to enhance the processing speed.

However, more resources are also needed, and, thus, we decided to proceed with the

presented architecture.
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Fig 44. The designed microarchitecture for the SQRD iterative update unit. ([147],

published by permission of IEEE).

Fig 45. The pipelined architecture for the K-best-LSD algorithm.

4.2.2 K-best-LSD algorithm

The K-best-LSD algorithm is based on a breadth first search strategy and it prunes a

fixed number of nodes in the search when C0 = ∞. These characteristics make the

algorithm very suitable for hardware implementation with parallel and pipelined archi-

tecture. An architecture for the K-best-LSD algorithm is shown in Figure 45. The

architecture consists of separate tree pruning units (TPUs) and sorter units, which are

combined in a sequential fashion to enable an efficient pipeline structure. There are a

total of MT TPUs in the architecture, where each TPU executes the calculation of (40)

with all the possible symbols for the partial candidates in the corresponding tree search

layer i in Algorithm 3. The sorting unit is required after the TPU in the ith layer if

the number of output partial candidates |Si| is larger than the applied variable K, i.e.,

K < |Si|. The sorting unit sorts K smallest partial candidates according to their EDs

and they are given as output Li to the next TPU layer. After the last pipeline stage, the

final candidate list L1 is given as an output.
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Fig 46. The K-best-LSD TPU microarchitecture.

TPU

The K-best-LSD algorithm TPU microarchitecture is illustrated in Figure 46. The TPU

in Figure 46 calculates the node extensions with all possible symbols Ωr for a partial

candidate {Li}k given as input to the unit, and a total of |Li|, i.e., up to K, partial

candidates are pruned. The TPU, which consists of two subunits, calculates first the

bi+1(x
MT
i+1) for the particular partial candidate as in (40) and then the PED with all

possible symbol extensions Ωr. The number of required operations depends on the

search layer i: the calculation of bi+1(x
MT
i+1) requires MT − i MUL and MT − i−1 ADD

operations and the PED calculation requires |Ωr| MUL and ADD operations. It should

also be noted that no operations are required in the first layer in the calculation of

bi+1(x
MT
i+1). Both subunits can be applied with parallelism and/or pipelining to enhance

the processing time of a single partial candidate {Li}k. Also multiple partial candidates

can be pruned in parallel by applying multiple parallel calculation units of the one

shown in Figure 46.
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Fig 47. The microarchitecture for the insertion sorter unit with n = 3.

Sorting unit

The sorting unit, which is executed after the TPUs, is performed with an insertion sort-

ing algorithm [102, 149, 171]. The algorithm is a modification of the parallel insertion

sorting algorithm presented in [179]. The insertion sorter is easy to implement and is

efficient for rather small data sets [102, 171]. The insertion sorter has a worst case

complexity of O(kn), where k is the number of input elements and n is the number of

the smallest elements to be sorted. The microarchitecture of the insertion sorter for

n = 3 sorted elements is illustrated in Figure 47. The insertion sorter includes n regis-

ters, where the sorted elements are stored, comparator(s), and control logic. The partial

candidates to be sorted are fed to the sorter in a serial fashion. The PED of the new

partial candidate is then compared to the stored partial candidates’ PEDs in ascending

order until the comparison condition is fulfilled or all the stored partial candidates have

been compared (when K < n). When the correct sorted position is found, the partial

candidates with larger PEDs are shifted to higher registers and the partial candidate in

the last register in the sorter is discarded. The insertion sorter microarchitecture can

also be implemented with parallelism and pipelining to enhance the processing speed.

When parallel comparison units and logic are applied for different sorting elements, a

pipelining structure can be implemented to the sorter, where each pipelining stage con-

sists of one register and comparison logic. After the sorter, the sorted n candidates can

be passed to the output.
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Fig 48. Timing diagram of the pipelined K-best-LSD algorithm architecture.

Timing and Scalability

The K-best-LSD algorithm architecture is designed to include pipelining, where each

stage executes the tree pruning for the corresponding tree search layer. The through-

put period of different stages, i.e., the TPU and sorter unit, should be made as close to

each other as possible to achieve efficient design, because the throughput period of the

pipeline structure is equal to the latency of the longest pipeline stage. Thus, the TPUs

and sorter units that are at the end of the pipeline and include more operations should

be implemented with more parallel processing. The timing diagram of the pipelined

K-best-LSD architecture is illustrated in Figure 48. Each pipeline stage processes on

different subcarrier at a certain time instant, and a fully loaded pipeline structure oper-

ates on MT subcarriers. Total latency of a single subcarrier detection is MTτstage, where

τstage is the pipeline throughput period.

The architecture is scalable as such for different constellations Ω, but the number of

transmit antennas NT determine the required number of stages MT = 2NT in the architec-

ture. Thus, the number of stages should be selected according to the largest supported

NT. The parallelism and pipelining choices should also be designed according to the

largest supported Ω to maximize the throughput of the architecture.
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Fig 49. A scalable architecture for the SEE-LSD algorithm.

4.2.3 SEE-LSD algorithm

The SEE-LSD algorithm is a depth-first search based algorithm as listed in Algorithm

4. The SEE-LSD algorithm is not as such very suitable for implementation, because

the algorithm prunes a variable number of nodes in the search tree depending on the

system configuration and channel realization. A scalable architecture for the SEE-LSD

algorithm, which consists of a tree pruning unit (TPU), a control unit (CNTR) and a

memory unit, is shown in Figure 49. The architecture operates in sequential fashion

and prunes a single node in the search tree in each iteration. The TPU executes the

tree pruning, and the CNTR determines the partial candidate for the next iteration and

the possible final candidate to be stored in the memory unit. The problem of variable

complexity is solved by applying an input variable Lnode, which sets a maximum limit

for the number of nodes to be pruned by the architecture as discussed in Section 3.3.

After a total of Lnode iterations the architecture gives the candidate list L as an output.
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TPU

The SEE-LSD algorithm TPU microarchitecture is illustrated in Figure 50. The TPU

microarchitecture is divided into two sub-units that can be implemented with different

levels of parallelism and pipelining. It should be noted that the SEE-LSD algorithm

TPU microarchitecture has to be able to calculate the tree pruning for partial candi-

dates in different search layers as opposed to the K-best-LSD algorithm TPU, which

is designed for a particular search layer. Typically the TPU should be made as fast as

possible with the proper parallelism and pipelining configuration as the latency of the

unit directly affects the throughput of the SEE-LSD algorithm architecture.

The first unit calculates bi+1(x
MT
i+1), which is the part of PED calculation that is in-

dependent of the new symbol xi, as in (40). The unit can be implemented with different

levels of parallelism and/or pipelining for faster calculation of the MUL operations. The

number of required multiplications is MT− i−1 and, thus, depends on the current layer

i, where i = 1, . . . ,MT. We have determined via Monte Carlo simulations that a large

portion of the depth-first search node extensions are executed in the upper part of the

search tree. Thus, less than MT/2 parallel MULs should be used in general to have an

efficient implementation.

The second unit executes the Schnorr-Euchner enumeration, i.e., determines the nth

best node xi, and calculates the PED of the extended partial candidate accordingly. The

enumeration is designed in a modified fashion from the method presented in [91, (14)].

Instead of calculating the costly and high latency division operation, we calculate the

absolute value in (40) with |Ωr| different symbols xi. The calculation can be imple-

mented with different levels of parallelism and/or pipelining, i.e., 1− |ΩR| separate

parallel MAC units can be used. The desired nth best node is determined by defining

first the node, i.e., the symbol, with the minimum PED. The information with the sign

of value is used to determine the desired nth best node [91] and the PED is then updated.

Memory unit

The memory unit is used to store the Ncand final candidates with the smallest EDs, which

are found during the SEE-LSD algorithm tree search. The memory unit is designed

as a binary heap [102, 171] data structure, which keeps the stored elements in order

according to the selected cost metric. The memory unit L is implemented as max-
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Fig 50. The microarchitecture for the extension of the candidate. The first unit

calculates the bi+1 variable, and the second units execute the enumeration and

updates the PED. ([147], published by permission of IEEE).

heap, where the new element NF(sc,d(sc)) is always ordered in the heap as it is stored.

The heap elements are kept in order so that the final candidate with the maximum ED

is always at the top of the heap [102, 171].

The new final candidate is stored to the next available memory slot at the bottom

of the heap or to the top of the heap if the memory is full and the ED of the new

candidate is smaller than the ED of the current maximum candidate in the memory.

The sorting is done via an up-heap operation from the bottom of the heap or with a

down-heap operation from the top of the heap [102, 171]. Then the element is swapped

to the correct position with the up-heap operation, which requires a read and a write

operation to the memory, or with the down-heap operation, which requires two read

operations and a write operation to the memory. The storing of a new element requires

a time complexity of O(log2(k)) in the worst case [102, 171], where k is the size of the

memory and ⌈log2(k)⌉ is the height of the heap. The memory unit microarchitecture

with up- and down-heap logic is illustrated in Figure 51. The memory unit can be

implemented with dual port memory to enhance the memory access. However, the
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Fig 51. A microarchitecture of the memory unit with heap logic. ([139], published

by permission of IEEE).

latency of the final memory unit is not a critical issue, because it is not accessed often

in the SEE-LSD algorithm architecture and the size of the memory is quite small.

CNTR

The required control logic for the SEE-LSD algorithm architecture is rather simple.

The logic determines the next search level i and next admissible node n1 for the next

algorithm iteration based on the partial candidate, which was extended in the TPU. If

the extended candidate is a leaf node and d(s) < C0, the final candidate is stored to

the memory unit and the sphere radius C0 is possibly updated. The CNTR unit also

terminates the search after Lnode iterations.

Timing and Scalability

The SEE-LSD algorithm architecture operates in sequential fashion a total of Lnode

iterations, where the parameter Lnode should be selected as suitable to provide the de-

sired performance. The latency of the algorithm iterations consists of the latency of the

CNTR and the latency of the TPU or the memory unit. The TPU and memory unit oper-
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Fig 52. Timing diagram of the SEE-LSD algorithm architecture.

ations are designed to be executed in parallel, where the TPU is typically the slower unit

as it includes more operations and the memory unit is executed only seldom. The tim-

ing diagram of the SEE-LSD algorithm architecture is illustrated in Figure 52. In order

to maximize the throughput of the SEE-LSD algorithm architecture, the TPU should be

implemented with proper parallelism and pipelining. The parameter Lnode can also be

lowered to increase the throughput with the cost of decreased performance.

The SEE-LSD algorithm architecture is as such scalable for system configurations

with different number of transmit antennas NT and different constellation Ω. The

change in the configuration affects the required value in the parameter Lnode with a

given performance requirement. The required list size Ncand and the amount of opera-

tions in the TPU also increase with NT and Ω, which results in increased latency if no

additional resources are applied. Thus, the parallelism and pipelining choices should

be designed according to the highest supported configuration.

4.2.4 IR-LSD algorithm

The IR-LSD algorithm is a metric-first search based algorithm as listed in Algorithm 5.

The IR-LSD algorithm as such is the least suitable for implementation of the considered

LSD algorithms, because the algorithm prunes a variable number of nodes in the search

tree depending on the system configuration and channel realization. The algorithm also

requires that the visited nodes be maintained in metric order to ensure optimality, which

requires the usage of memory and sorting [98]. The IR-LSD algorithm architecture

is shown in Figure 53, and includes a tree pruning unit (TPU) with two calculation
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Fig 53. A scalable architecture for the IR-LSD algorithm. ([139], published by

permission of IEEE).

modules, a partial candidate memory unit, a final candidate memory unit, and a control

logic (CNTR) unit. In each iteration, the TPU executes the tree pruning for two partial

candidates, and the CNTR determines the partial candidate for the next iteration and

the possible final candidate to be stored in the memory unit. The problem of variable

complexity is solved by applying an input variable Lnode, which sets a maximum limit

for the number of nodes to be pruned by the architecture as discussed in Section 3.3.

After a total of Lnode iterations the architecture gives the candidate list L as an output.

TPU

The IR-LSD algorithm TPU microarchitecture is illustrated in Figure 54. The IR-LSD

algorithm architecture TPU is similar to the TPU in the SEE-LSD algorithm architec-

ture with two similar candidate extension modules, which execute the tree pruning for

the new selected candidate and the corresponding father candidate in parallel. The

latency of the parallel units, i.e., the parallelism and pipelining choices, should be de-

signed to be as similar as possible for efficient design. The extension of the candidate
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Fig 54. The microarchitecture for the TPU in IR-LSD algorithm architecture.

is also divided into two sub-unit microarchitectures that can be implemented with dif-

ferent levels of parallelism as illustrated in Figure 54 in detail. The first unit calculates

bi+1(x
MT
i+1) and bi+2(x

MT
i+2) for the new partial candidate and the father candidate, which

is the part of PED calculation that is independent of the new symbols xi and xi+1, as in

(40). The unit can be implemented with different levels of parallelism and/or pipelining

for faster calculation of the MUL operations. The number of required multiplications

in the calculation of bi+1(x
MT
i+1) is MT − i− 1 and, thus, depends on the current layer i,

where i = 1, . . . ,MT. We have determined via Monte Carlo simulations that a large por-
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tion of the IR-LSD search node extensions are executed in the upper part of the search

tree. Thus, less than MT/2 parallel MULs should be used in general to have an efficient

implementation.

The second parallel units execute the Schnorr-Euchner enumeration for both can-

didates, i.e., determine the n1th and n2th best nodes for xi and xi+1, and calculate the

PEDs of the extended candidates accordingly. The enumeration is designed in a modi-

fied fashion from the method presented in [91, (14)]. Instead of calculating the costly

and high latency division operation, we calculate the absolute value in (40) with |Ωr|
different symbols xi. The calculation can be implemented with different levels of par-

allelism and/or pipelining, i.e., 1−|Ωr| separate parallel MAC units can be used. The

degree of parallelism should be decided depending on the slowest parallel unit in the

whole IR-LSD algorithm architecture to optimize the performance. The desired nth best

node is determined by defining first the node, i.e., the symbol, with the minimum PED.

The information with the sign of value is used to determine the desired nth best node

[91] and the PED is then updated.

Memory Units

There are two memory units in the IR-LSD architecture: the partial candidate memory

set S and the final memory set LF. The memory units are designed as binary heap

[102, 171] data structures, which keep the stored elements in order according to the

selected cost metric. The partial candidate memory set S is implemented as min-heap,

where the elements N (s,d(s),n2, i) are ordered so that the candidate with the minimum

PED is always sorted to be at the top of the heap. The final memory set LF, which is

similar to the memory unit in the SEE-LSD architecture, is implemented as max-heap,

where the stored final candidates N (s,d(s)) are sorted according to the ED. The storing

of a new element requires a time complexity of O(log2(k)) in the worst case [102, 171],

where k is the size of the memory and ⌈log2(k)⌉ is the height of the heap. The size

of the partial candidate memory S is equal to Lnode elements since, at maximum, the

minimum candidate {S }0 is removed and two additional candidates Nc and N f are

added to the memory in each iteration. In practice, the partial memory size is always

larger than the final memory size and the latency of the ordering of the elements might

become a limiting factor in the IR-LSD algorithm implementation with a large Lnode.

We modified the access to the memory unit to limit unnecessary storing and re-

moving of partial candidates. The new partial candidate(s) Nc and possible N f are
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first compared to the minimum candidate {S }0 in the CNTR unit, and if the candi-

date on the top of the heap has the minimum PED, the candidate is removed from the

memory and the new partial candidate(s) are added to the heap. The addition of the

first candidate is done by storing it to the top of the heap over the minimum candidate

and applying the down-heap operation [102, 171] to sort the heap. Otherwise, the new

candidate (child or father) is added to the next free memory address and the heap is

sorted via an up-heap operation [102, 171]. We also apply the memory sphere radius

Cmem to decrease the amount of memory access as the updated candidates are discarded

if d(s) < Cmem. The memory unit microarchitecture with up- and down-heap logic is

illustrated in Figure 51.

CNTR

The control logic unit includes an iteration counter for the IR-LSD algorithm architec-

ture and determines the candidates to be stored in the memory units and to be used in

the search in the next algorithm iteration. The candidate to be used in the TPU unit in

the next iteration is determined as the candidate with minimum PED from the extended

candidates Nc and N f , and the minimum candidate in partial memory {S }0. If either

one of the extended candidates Nc or N f is selected for the next algorithm iteration,

{S }0 remains in the memory. Thus, unnecessary memory access is minimized as the

candidates Nc and N f are not directly stored to the memory. The extended partial

candidate(s) to be stored in S are also conditioned with Cmem to minimize memory

access. If the extended candidate Nc is a leaf node and d(s) < C0, the final candidate

is stored to the memory unit and the sphere radius C0 is possibly updated. The CNRT

also terminates the search after Lnode iterations.

Timing and Scalability

The IR-LSD algorithm architecture and its timing are designed to minimize the latency

in one algorithm iteration by introducing parallel operations. The straightforward data

flow mapping of Algorithm 5 would first extend the new candidates, then store them in

memory units, and finally determine the new candidate for the next iteration. However,

the data flow can be designed more efficiently to reduce the latency of one algorithm

iteration. The timing diagram for the architecture is illustrated in Figure 55. After the

TPU extends the partial candidates in the current iteration, the control logic unit de-
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Fig 55. Timing diagram of the IR-LSD algorithm architecture, which illustrates the

parallel operations in the architecture.

termines the new candidate for the TPU at the next iteration and the stored candidates

for the memory units from the current iteration. The TPU and memory units are then

executed in parallel, which decreases the latency significantly compared to the straight-

forward mapping of the algorithm. In order to maximize the throughput of the IR-LSD

algorithm architecture, the TPU and partial memory unit should be implemented with

proper parallelism and pipelining. Also the parameter Lnode can be lowered to increase

the throughput with the cost of decreased performance.

The limit for the number of algorithm iterations Lnode should be defined separately

for different system configurations or according to the most complex supported config-

uration. A proper Lnode value depends on the channel realization and on the search tree

size, i.e., on the number of independent data streams and the constellation size |Ω|. A

larger tree size requires a higher Lnode value. Partial memory resources of Lnode ele-

ments are reserved for the memory unit S according to the highest supported system

configuration. The amount of parallelism and pipelining in the TPU unit can be modi-

fied based on latency requirements. However, the TPU unit latency should be optimized

to match the memory unit S and its logic, which are executed in parallel, for efficient

implementation.
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Fig 56. The designed microarchitecture for an LLR calculation unit that uses

the max-log-MAP approximation. Different levels of parallelism can be applied to

the MUL operations and to the logic for searching the maximum values. ([139],

published by permission of IEEE).

4.2.5 LLR calculation

The soft output information LD(bk) is calculated with the LSD algorithm output list

L by using the LLR calculation unit. The LLR calculation unit microarchitecture,

which calculates the max-log-MAP approximation as in (6), is illustrated in Figure

56. The architecture can be divided into two main parts: the scaling of the ED values

and the search for maximum values for each bit. The two main parts can be applied

with pipelining structure to enhance the throughput of the unit. The ED values in the

candidate list L are scaled by multiplying them with the inverse of the noise variance

1/(2σ2), i.e., a reciprocal division and a total of Ncand MUL operations are required.

Different levels of parallelism and pipelining can be applied for the MUL operations

in order to speed up the calculations as illustrated in Figure 56. The max-log-MAP

approximation is calculated for each bit bk, where k = 1 . . .QNT. The calculation of

LD(bk) requires that all the Ncand ED values in the candidate list L be checked in order

to determine the maximum values for both bit counterparts. Thus, two sequential logic

loops are required in the calculation with the final list index m and bit value index k as

illustrated in the architecture description in Figure 56. The latency of the loops can be

decreased by applying parallel logic and/or pipelining to check multiple ED values or
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bits in parallel. It should be noted that the possibility for parallel implementation of the

logic is a clear benefit of the max-log-MAP approximation compared to the log-MAP

algorithm [51]. The log-MAP algorithm requires an addition of a look-up table value

after each max operation, which makes the design of parallel logic challenging.

The soft output LLR calculation unit can be used as such for different system con-

figurations. The total throughput of the unit depends on the LSD output list size Ncand

and the number of bits in the each subcarrier QNT.

4.3 Summary

In this chapter, we designed efficient architectures for the considered detector algo-

rithms for MIMO–OFDM systems. We identified and introduced the key functional

microarchitecture units and exploited the possibilities for parallelism and pipelining. It

should also be noted that multiple architecture units can be used in parallel to support

the higher data rate requirements in an OFDM system.

The introduced LMMSE detector architectures were based on systolic array struc-

tures with communicating PEs. We focused on the calculation of the LMMSE coeffi-

cient matrix via QRD as it is computationally the most complex part of the detector. We

presented a fast pipelined triangular array and a less complex time shared linear array ar-

chitecture for both the SGR and the CORDIC based 2×2 and 4×4 LMMSE detectors,

respectively. The systolic array cell structures and the dataflow were designed and intro-

duced in detail. The presented triangular or linear array structures can be easily scaled

for the systems with different antenna configurations with modified array structure.

We designed architectures for different list sphere detector subunits. Architectures

were introduced for the SQRD preprocessing algorithm, for the considered LSD algo-

rithms and for the max-log-MAP LLR calculation unit. The SQRD algorithm archi-

tecture operates in a sequential fashion, and calculates one matrix decomposition at a

time. A parallel and pipelined architecture was designed for the K-best-LSD algorithm,

which makes the algorithm very suitable for hardware implementation. The K-best-

LSD algorithm architecture is scalable as such for different constellations Ω, but the

number of transmit antennas NT determine the required number of stages MT = 2NT in

the architecture. Scalable architectures were designed for the SEE-LSD algorithm and

the IR-LSD algorithm, which operate in a sequential fashion. The architectures include

implementation tradeoffs introduced in Section 3, which make them more suitable for

hardware implementation. The SEE-LSD algorithm and the IR-LSD algorithm architec-
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tures are as such scalable for system configurations with different numbers of transmit

antennas NT and different constellation Ω. A parallel and pipelined architecture was

also introduced for the max-log-MAP LLR calculation unit.
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5 Hardware implementation

In this chapter, we focus on the hardware implementations of the considered detec-

tor algorithms and their designed architectures. The LMMSE detector implementation

results are first presented in Section 5.1. The LSD implementation results are then pre-

sented in Section 5.2. Measurement results with algorithms on FPGA based hardware

testbeds are presented in Section 5.3. Finally, the results are summarized in Section 5.4.

5.1 LMMSE detector

The CORDIC based LMMSE detector architectures for 2×2 and 4×4 MIMO systems

and the SGR based LMMSE detector architecture for a 2× 2 MIMO system were im-

plemented to a Xilinx Virtex-II XC2V6000 FPGA chip. The CORDIC based LMMSE

detector was done in handwritten very high speed integrated circuits (VHSIC) hard-

ware description language (VHDL) and functionally verified in ModelSim. The SGR

based LMMSE detector architecture was developed and simulated in System Generator

for DSP software tool [180] from Xilinx. The Mentor Graphics Leonardo synthesis

tool was used for the synthesis for the Xilinx Virtex-II XC2V6000 FPGA chip. All

the FPGA implementations were designed for 66MHz frequency and optimized for low

area and low latency. The implementation results in this section are presented for the

LMMSE coefficient matrix calculation block, which dominates the total complexity of

the LMMSE detector, and for the whole detector structure. The only difference in the

two considered designs is the LMMSE coefficient calculation block, i.e., other parts

of the detector are the same as illustrated in Figure 32. The division operation in the

boundary cell is implemented using a reciprocal divider from the Xilinx intellectual

property core library [181] and two real multipliers.

5.1.1 Synthesis results

The device utilizations of the CORDIC based LMMSE detector implementations for

2× 2 and 4× 4 MIMO systems have been listed in Table 16. The CORDIC based

implementation uses 16 bit fixed-point internal word lengths in the coefficient matrix

W calculation, which includes matrix-matrix multiplications, a CORDIC based QRD,
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Table 16. Synthesis results of the CORDIC based LMMSE detector for the Xilinx

Virtex-II XC2V6000 FPGA chip. ([140], published by permission of IEEE).

Resource Coeff. calc. 2×2 Whole detector 2×2 Whole detector 4×4

CLB Slices 11910 15834 20722

Block RAMs 6 20 58

Block Multipliers 20 32 58

and a back substitution operation. The CORDIC algorithm that is used to calculate the

QRD is implemented with imax = 10 iterations. It should be noted that the number of

iterations and fixed-point word lengths may be decreased depending on the required ac-

curacy. A design with imax = 7 iterations and 12 bit internal word length would require

approximately 30% less slices in the synthesis. The device utilization of the SGR based

LMMSE detector implementation for a 2×2 MIMO system has been listed in Table 17.

The architecture for a 4× 4 MIMO system was not implemented in a FPGA, because

the EB4G hardware testbed used was configured only for a 2×2 MIMO. However, the

complexity estimate is approximately in the same ratio as with the CORDIC based im-

plementation. The SGR based implementation uses mainly 18 bit fixed-point internal

word lengths in the coefficient matrix calculation, which includes matrix-matrix mul-

tiplications, a SGR based QRD and a triangular matrix inversion operation. The most

crucial part in terms of word length requirements is the SGR based QRD. The variables

are scaled adaptively before the matrix inversion due to the high dynamic range require-

ments of the SGR algorithm. The matrix A to be inverted in the A2 part is scaled to

a desired level according to the highest value of each matrix. The scaling is then com-

pensated for after the matrix inversion as illustrated in Figure 38. In the QRD array, the

reciprocal divider is the most accuracy demanding operation and requires the largest

dynamic range. The implemented divider uses 20 bit fixed-point word length and also

three step adaptive scaling to reduce the required dynamic range of the signal. It can be

noted from the area reports in Tables 16 and 17 that the CORDIC based design requires

more slices and less block multipliers compared to the SGR based design. This is due

to normal arithmetic applied in the SGR algorithm and the rotation based arithmetic

applied in the CORDIC algorithm. Also the required word lengths with fixed-point

arithmetic are a little higher with the SGR based design.
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Table 17. Synthesis results of the SGR based LMMSE detector for a 2× 2 MIMO

system for the Xilinx Virtex-II XC2V6000 FPGA chip. ([140], published by permis-

sion of IEEE).

Resource Coeff. calc. Whole detector

CLB Slices 7422 11346

Block RAMs 14 28

Block Multipliers 77 89

5.1.2 Latency

The detector implementations are designed to support pipelining in order to efficiently

calculate the LMMSE coefficients for multiple subcarriers in an OFDM system. The

pipeline is able to give the next output after four clock cycles for a SGR based detector.

The CORDIC based pipeline is able to give the output matrix every clock cycle. The

total latency for the design with a given number of subcarriers consists of the latency of

the fixed data path for the first calculated subcarrier, the latency from the input buffer,

and the pipeline latency for the additional pipelined subcarriers. Most of the latency in

the detector implementations is due to the QRD array.

Multiple wireless telecommunication standards, such as IEEE 802.11n [16], 3GPP

LTE [182], and IEEE 802.16e [17], apply the MIMO–OFDM technique. In a MIMO–

OFDM receiver, the LMMSE detector coefficients should be recalculated for each sub-

carrier within the channel coherence time interval, i.e., while the channel can be as-

sumed to be static, in order to achieve good performance. The channel coherence time

Tc for 50% correlation can be calculated as Tc ≈ 9
16π fD

[183] where fD is the Doppler

frequency. Then, e.g., with a carrier frequency fc = 2.4 GHz and a velocity of 120 kmph

the channel coherence time is Tc ≈ 670 µs. The latencies of calculating the LMMSE

detector coefficients for different telecommunication standards with different numbers

of subcarriers with different detector implementations have been listed in Table 18. The

LMMSE detectors for a 2×2 MIMO system calculate the detector coefficients for the

Nused = 52 subcarriers in 802.11n in 11µs and 9µs with CORDIC and SGR based de-

signs. The latency of the CORDIC based LMMSE detector for a 4× 4 MIMO system

is 50µs. The latency for calculating the 2× 2 MIMO system LMMSE detector coeffi-

cients in the 3GPP LTE system with 20 MHz BW and with Nused = 1200 subcarriers is

32µs and 148µs with CORDIC and SGR based designs, respectively, and 680µs with

the CORDIC based LMMSE for a 4×4 MIMO system. The latency for calculating the
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Table 18. Latencies for the LMMSE detector coefficients calculation with parame-

ters from different wireless telecommunication standards.

Standard 802.11 3GPP LTE 802.16e

Bandwidth 20 MHz 20 MHz 20MHz

Number of used subcarriers Nused 52 1200 1703

Latency, 2×2 CORDIC 11 µs 32 µs 40 µs

Latency, 2×2 SGR 9 µs 148 µs 209 µs

Latency, 4×4 CORDIC 50 µs 680 µs 970 µs

2×2 antenna LMMSE detector coefficients for the maximum Nused = 1703 subcarriers

in 802.16e is 40µs and 209µs with CORDIC and SGR based design, respectively, and

970 µs with the CORDIC based LMMSE for a 4×4 MIMO system.

5.1.3 Conclusions

The implementation results of the CORDIC and SGR based LMMSE detectors were

presented in this section. The area reports in Tables 16 and 17 showed that the CORDIC

based design requires more slices and less block multipliers compared to the SGR based

design. This is due to arithmetic operations applied in the SGR algorithm and the

rotation based arithmetic applied in the CORDIC algorithm. Also the required word

lengths with fixed-point arithmetic are a little higher with the SGR based design. Most

of the latency in the detector implementations is due to the QRD array. In order to

achieve efficient pipelining and dataflow, the latency of different cells should be close

to each other. In the SGR implementation, the square cell in Figure 40 is the bottleneck

for the dataflow. The latencies of the CORDIC cells are quite close to each other and,

thus, the dataflow is rather balanced. However, it should be noted that the latencies

of CORDIC cells depend on the number of applied CORDIC iterations and required

accuracy.

It can be noted that the LMMSE detector implementations for 2×2 MIMO systems

are fast enough to calculate the coefficient matrices for all MIMO–OFDM subcarriers

in the example channel coherence time of 670 µs and the FPGA implementation is

feasible as such for application in a receiver in different telecommunications standards.

The CORDIC based implementation for a 4×4 MIMO system is also feasible in most

cases. In the case when the time interval is too tight for one detector, multiple detectors

can be used in parallel.
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5.2 List sphere detector

The different LSD subunit architectures, which were introduced in Section 4.2, were

implemented for both a Xilinx Virtex-5 FPGA chip and 0.18µm complementary metal-

oxide semiconductor (CMOS) ASIC technology for a 4 × 4 MIMO system and the

results are presented in this Section. First, the results on the word length study are

presented in Section 5.2.1. The SQRD preprocessing algorithm implementation results

are then introduced in Section 5.2.2. The implementation results of all three considered

LSD algorithms are introduced in Section 5.2.3. The implementation results of the

max-log-MAP based LLR calculation unit are introduced in Section 5.2.4.

The implementation of algorithms was done by writing the algorithm architecture

description with fixed-point ANSI C++ language and then applying the Mentor Graph-

ics Catapult C Synthesis tool [184] to produce a bit-accurate, parallel register transfer

level (RTL) description. The Catapult C Synthesis tool was used to study and compare

different microarchitecture solutions with different levels of parallelism and pipelining,

and the most efficient design was then selected for implementation. The RTL descrip-

tion was synthesized with Mentor Graphics Precision RTL or Synopsys Design Com-

piler for the FPGA chip and the ASIC technology, respectively. The SQRD FPGA

RTL was designed with 100MHz frequency and the other designs with 150MHz fre-

quency. The ASIC RTL was designed with 250MHz frequency and the ASIC power

estimation was done with the Synopsys PrimeTime tool. The Virtex-5 FPGA resource

allocation results include control logic block (CLB) slices, block random access mem-

ories (BRAMs), and DSP48 units, which includes a 18× 18 bit embedded multiplier.

The ASIC complexity is given in area and in gate equivalents (GEs), where one GE

corresponds to the area of a two-input drive-one NAND gate.

5.2.1 Word length study

A fixed-point word length study was done via computer simulations to determine ade-

quate fixed-point word lengths to be used in the LSD implementation. The simulations

were executed for a 4× 4 MIMO–OFDM system with 16- and 64-QAM. The fixed-

point word lengths presented in this section are listed as (W ,I,S), where the W , I, and

S refer to the total number of bits, the number of bits used for the integer part, and the

unsigned or signed type of value representation, respectively [185, 186]. The numeri-

cal range and quantization step of unsigned and signed fixed-point representations are
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Table 19. Fixed-point representations.

Type Numerical range Quantization step

unsigned (W, I,u) 0 to (1−2−W)2I 2−(W−I)

signed (W, I,s) (−0.5)2I to (0.5−2−W)2I 2−(W−I)

Table 20. The determined word lengths for the SQRD algorithm in a 4× 4 MIMO

system with 16-QAM.

SQRD H R Q norm sqrt() div()

(W, I,S) (11,3,s) (26,4,s) (26,3,s) (27,5,u) (23,3,u) (21,3,u)

listed in Table 19. The SQRD preprocessing algorithm word lengths were defined only

for 16-QAM and they are listed for different variables in Table 20. The SQRD algo-

rithm requires up to 27 bits in total for the representation of internal variables in the

calculations. We noted that the total number of required bits in the representation of in-

ternal variables increases with decomposed matrix columns, i.e., with MT, because the

decomposition of the channel matrix H is executed in a column by column fashion and

the previously solved elements are used iteratively in the decomposition calculations of

the following columns. The LSD algorithm and the LLR calculation word lengths for

both 16- and 64-QAM are then listed for different variables in Table 21. The LSD algo-

rithm variables require up to 12 and 15 bits in the word length representation with 16-

and 64-QAM, respectively. The output candidate list ED values should be represented

with 10 and 14 bit word lengths in total with 16- and 64-QAM, respectively. The LLR

calculation variables, which do not depend on the constellation size, require up to 10

bits for the representation and the soft-output LD(bk) requires 6 bits in total word length

representation. It should also be noted that the required word lengths can be decreased

by applying proper scaling of the variables.

5.2.2 SQRD algorithm

The SQRD algorithm implementation is based on the architecture presented in Figure

43 in Section 4.2.1. The real valued signal model is applied and the implemented algo-

rithm decomposes a real valued channel matrix with MT = MR = 8, which is equivalent

to a 4× 4 MIMO system. The implementation is done for up to 16-QAM with the

fixed-point word lengths presented in Table 20. The SQRD algorithm architecture is

implemented with parallelism and pipelining. The calculation of column norms is im-
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Table 21. The determined word lengths for the LSD algorithms and the LLR calcu-

lation for a 4×4 MIMO system with 16- and 64-QAM.

Signal 16-QAM 64-QAM

ỹ (10,4,s) (14,5,s)

R (9,3,s) (13,4,s)

Ω (8,1,s) (12,2,s)

bi(s) (12,5,s) (15,5,s)

d(s) (10,5,u) (14,5,u)

σ (8,0,u) (8,0,u)

LLR internal (10,5,s) (10,5,s)

LD(bk) (6,4,s) (6,4,s)

Table 22. Synthesis results of the SQRD preprocessing algorithm with the real

valued signal model, MT = MR = 8, and 16-QAM for a Xilinx Virtex-5 FPGA chip.

FPGA Slices BRAMs DSP48s Latency

SQRD 1159 2 24 1303 cc / 13.03 µs

plemented with two parallel MULs, which are pipelined with a throughput interval of

one clock cycle. The update of Qi and the iterative update loop are also implemented

with two parallel MULs, which are similarly pipelined.

The synthesis results of the SQRD algorithm implementation with the real valued

signal model and with MT = MR = 8 are listed in Table 22 for the Virtex-5 FPGA

chip. The FPGA implementation requires 1159 slices, 2 BRAMs and up to 24 DSP48s,

which include an embedded multiplier unit, due to the rather high word lengths. The

latency of a single channel matrix decomposition is 1303 clock cycles (cc) or 13.03 µs,

i.e., 76.7k operations per second. The corresponding synthesis results for the 0.18µm

CMOS technology are listed in Table 23. The ASIC implementation requires 96.8 kGEs

and consumes 154 mW power. The latency for a singe channel matrix decomposition

is 4.34 µs, i.e., 230k operations per second, which is significantly faster than the FPGA

implementation. The higher latency of the FPGA implementation is mainly due to the

wire routing delay in the chip. We also calculated the required parallel SQRD resources

with 0.18µm CMOS technology resources for a downlink receiver in a 3GPP LTE stan-

dard transmission with 20 MHz bandwidth and with Nused = 1200. We assume a 4×4

MIMO–OFDM system with 16-QAM and the channel coherence time is assumed to be

Tc ≈ 670 µs as in Section 5.1.2. Thus, a 8×8 real-valued SQRD is required, which is
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Table 23. Synthesis results of the SQRD preprocessing algorithm with the real

valued signal model, MT = MR = 8, and 16-QAM for 0.18µm CMOS technology.

ASIC Area (mm2) kGEs Power (mW) Latency

SQRD 1.18 96.8 154 1084 cc / 4.34 µs

Table 24. The required SQRD preprocessing ASIC resources in the LSD detection

of 3GPP LTE standard with 20MHz BW and with Nused = 1200.

4×4 MIMO–OFDM, 16-QAM Area (mm2) kGEs Power (mW)

8×8 real-valued SQRD 9.0 745 1190

able to recalculate the SQRD for all Nused = 1200 subcarriers within the channel coher-

ence time. The required 0.18µm CMOS technology resources are scaled linearly from

the SQRD implementation results and are listed in Table 24. The SQRD preprocessing

implementation, which is able to recalculated the SQRD for all Nused = 1200 subcarri-

ers within the channel coherence time Tc, requires a complexity of 745 kGEs and the

power usage is 1.2W .

5.2.3 Tree search algorithms

The synthesis results on the multiplication block and the tree search algorithms, the

K-best-LSD algorithm, the SEE-LSD algorithm, and the IR-LSD algorithm, are pre-

sented in this Section. Then the detection rates and the efficiency of the LSD algorithm

implementations are presented and analyzed.

Multiplication block

The LSD algorithms take ỹ and R as an input. The calculation of ỹ = QTy requires

a matrix-to-vector multiplication, which has to be done prior to the tree search. The

multiplication is done in multiplication block with a single pipelined MUL, which is de-

signed according to the LSD algorithms implementation latency. The synthesis results

of the implementation for a Virtex-5 FPGA chip and for 0.18µm CMOS technology

are listed in Tables 25 and 26. The constellation size affects the required word lengths

and, thus, the multiplier block is more complex for a system with higher constellation

size. In general, the complexity of the multiplication block is low compared to the total

complexity of the LSD.
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Table 25. Synthesis results of the multiplication block for an SM system with

NT = NR = 4 for Xilinx Virtex-5 FPGA chip.

Mult. block Slices BRAMs DSP48s Latency

16-QAM 59 1 2 64 cc / 427 ns

64-QAM 73 1 2 64 cc / 427 ns

Table 26. Synthesis results of the multiplication block for an SM system with

NT = NR = 4 for 0.18µm CMOS technology.

Mult. block Area (mm2) kGEs Latency Power (mW)

16-QAM 0.05 4.5 64 cc / 256 ns 10.2

64-QAM 0.08 6.7 64 cc / 256 ns 14.2

Table 27. Synthesis results of the K-best-LSD algorithm for an SM system with

NT = 4 for Xilinx Virtex-5 FPGA chip.

K-best Slices BRAMs DSP48s Latency Throughput

16-QAM 3459 0 36 458 cc / 4580 ns 64 cc / 640 ns

64-QAM 4364 0 36 458 cc / 4580 ns 64 cc / 640 ns

K-best-LSD algorithm

The K-best-LSD algorithm implementation is based on the pipelined architecture pre-

sented in Figure 45 in Section 4.2.2. The K-best-LSD algorithm is implemented with

K = 16 for both 16- and 64-QAM, which means that the difference between the im-

plementations in complexity is due to the higher required word lengths with the larger

constellation size. Different pipeline stages in the implementation are optimized to have

a similar latency, which means that more parallelism is applied to the latter stages. The

synthesis results of the K-best-LSD algorithm implementation for the Virtex-5 FPGA

chip and for the 0.18µm CMOS technology are listed in Tables 27 and 28, respectively.

The FPGA implementation requires 3459 and 4364 slices, and 36 DSP48s for the 16-

and 64-QAM designs, respectively. The throughput period is 640 ns for both designs

per detected subcarrier. The ASIC implementation then requires 127 and 194 kGEs with

a power consumption of 345 and 458 mW for 16- and 64-QAM designs, respectively.

The throughput period is 256 ns for both designs per detected subcarrier.
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Table 28. Synthesis results of the K-best-LSD algorithms for an SM system with

NT = 4 for 0.18µm CMOS technology.

K-best Area (mm2) kGEs Latency Throughput Power (mW)

16-QAM 1.51 127.3 458cc/1.83µs 64cc/256ns 345

64-QAM 2.37 193.9 458cc/1.83µs 64cc/256ns 458

Table 29. Synthesis results of the SEE-LSD algorithm for an SM system with

NT = 4 for Xilinx Virtex-5 FPGA chip.

SEE-LSD Slices BRAMs DSP48s Latency

16-QAM 182 0 5 16 cc / 107 ns per it.

64-QAM 302 0 10 18 cc / 120 ns per it.

Table 30. Synthesis results of the SEE-LSD algorithms for an SM system with

NT = 4 for 0.18µm CMOS technology. ([139], published by permission of IEEE).

SEE-LSD Area (mm2) kGEs Latency Power (mW)

16-QAM 0.13 10.6 13 cc / 52 ns per it. 25

64-QAM 0.27 22.0 16 cc / 64 ns per it. 38

SEE-LSD algorithm

The SEE-LSD algorithm implementation is based on the architecture presented in Fig-

ure 49 in Section 4.2.3. The SEE-LSD architecture TPU for 16-QAM was implemented

with four parallel pipelined MULs in the first subunit and four parallel MULs in the lat-

ter subunit. The TPU for 64-QAM was implemented with four parallel pipelined MULs

in the first subunit and eight parallel MULs in the latter subunit. Both algorithm imple-

mentations are done for output list size Ncand = 15. The synthesis results of the SEE-

LSD algorithm implementation for the Virtex-5 FPGA chip and for the 0.18µm CMOS

technology are listed in Tables 29 and 30. The FPGA implementation requires 182 and

302 slices, and 5 and 10 DSP48s for the 16- and 64-QAM designs, respectively. The

latency is 107 ns and 120 ns for the 16- and 64-QAM designs per algorithm iteration.

The ASIC implementation then requires 10.6 and 22 kGEs with a power consumption

of 25 and 38 mW for the 16- and 64-QAM designs, respectively. The latency is 52 ns

and 64 ns for the 16- and 64-QAM designs per algorithm iteration.
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Table 31. Synthesis results of the IR-LSD algorithm for an SM system with NT = 4

for Xilinx Virtex-5 FPGA chip.

IR-LSD Slices BRAMs DSP48s Latency

16-QAM 798 1 10 18 cc / 120 ns per it.

64-QAM 859 2 20 20 cc / 133 ns per it.

Table 32. Synthesis results of the IR-LSD algorithms for an SM system with NT = 4

for 0.18µm CMOS technology. ([139], published by permission of IEEE).

IR-LSD Area (mm2) kGEs Latency Power (mW)

16-QAM 0.31 25.4 14 cc / 56 ns per it. 57

64-QAM 0.59 48.2 17 cc / 68 ns per it. 90

IR-LSD algorithm

The IR-LSD algorithm implementation is based on the architecture presented in Figure

53 in Section 4.2.4. The IR-LSD architecture TPU for 16-QAM was implemented, as

in the SEE-LSD algorithm, with four parallel pipelined MULs in the first subunits and

four parallel MULs in the latter subunits. The TPU for 64-QAM was implemented with

four parallel pipelined MULs in the first subunit and eight parallel MULs in the latter

subunit. Both algorithm implementations are done for output list size Ncand = 15. The

memory unit S was implemented with dual port RAM to enhance the memory access.

The maximum number of algorithm iterations is limited to 175 and 225 in the 16- and

64-QAM implementation, respectively. Thus, the memory unit size was 175x31 and

225x35 bits for the 16- and 64-QAM, respectively. The synthesis results of the IR-

LSD algorithm implementation for the Virtex-5 FPGA chip and for the 0.18µm CMOS

technology are listed in Tables 31 and 32. The FPGA implementation requires 798 and

859 slices, 1 and 2 BRAMs, and 10 and 20 DSP48s for the 16- and 64-QAM designs,

respectively. The latency is 120 ns and 133 ns for the 16- and 64-QAM designs per

algorithm iteration. The ASIC implementation then requires 25.4 and 48.2 kGEs with

a power consumption of 57 and 90 mW for the 16- and 64-QAM designs, respectively.

The latency is 56 ns and 68 ns for the 16- and 64-QAM designs per algorithm iteration.
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Detection Rates

The detection rate Rdet denotes the amount of transmitted coded bits that the LSD algo-

rithm implementation is able to detect in a certain time with a given complexity. The

total detection rate Rdet of the LSD algorithm implementation can be calculated as

Rdet =
NTQ

∆tot
bits/s, (52)

where ∆tot corresponds to the throughput time of the LSD algorithm implementation.

The throughput time for the sequential search algorithm implementations, the SEE-LSD

algorithm and the IR-LSD algorithm, is defined as ∆tot =∆itL
it
avg, where ∆it is the latency

per algorithm iteration and Lit
avg is the average number of executed algorithm iterations.

Thus, the achievable detection rate Rdet depends on the defined maximum limit for vis-

ited nodes Lnode, which should be properly selected to meet the desired FER target with

a given channel realization and SNR γ . It should be noted that the IR-LSD algorithm

implementation checks two nodes in one algorithm iteration and that the K-best-LSD

algorithm implementation detection rate is fixed as the algorithm search goes through

a fixed number of nodes with variable performance depending on the channel realiza-

tion and SNR. Also it should be noted that the implementation of multiple parallel LSD

algorithms can be used to achieve a higher detection rate.

The detection rates of the LSD algorithm ASIC implementations for 16- and 64-

QAM in different channel environments are listed in Table 33. The listed SNR range

is selected as the operating range of the LSD based receiver with a given configuration

and channel environment. The detection rates of the SEE-LSD algorithm and IR-LSD

algorithm implementations are lower at low SNR as more algorithm iterations are re-

quired to achieve adequate performance. The detection rates at high SNR correspond

to cases where the minimum number of iterations provides adequate performance. The

LSD algorithm implementations have different performances and complexities, and,

thus, we also compare the efficiency of the implementations. The comparison is done

with an algorithm work factor Walg, which is calculated as a multiplication product be-

tween the used resources in terms of GEs and the implementation throughput time per

subcarrier ∆tot, and a smaller value reflects a more efficient implementation [187, 188].

The algorithm work factor values of the LSD algorithm ASIC implementations for 16-

and 64-QAM in different channel environments are listed in Table 34. Also the perfor-

mances of the implementations relative to the max-log-MAP detector are listed in Table

34. All of the LSD algorithm implementations have advantages in certain channel envi-
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Table 33. Detection rates of the LSD algorithm ASIC implementations in different

channel environments.

R
(asic)
det IR-LSD alg. SEE-LSD alg. K-best-LSD alg.

16-QAM, UNC [4.14,31.7]Mbps [1.07,34.2]Mbps 62.5Mbps

γ = [13−19] dB

16-QAM, CORR [1.70,31.7]Mbps [0.35,34.2]Mbps 62.5Mbps

γ = [21−26] dB

64-QAM, UNC [3.71,39.2]Mbps [1.12,41.6]Mbps 93.8Mbps

γ = [20−25] dB

64-QAM, CORR [1.62,39.2]Mbps [0.30,41.6]Mbps 93.8Mbps

γ = [30−35] dB

Table 34. Performance and work factor numbers of the LSD algorithm ASIC imple-

mentations in different channel environments.

IR-LSD alg. SEE-LSD alg. K-best-LSD alg.

16-QAM, UNC Walg [0.097,0.013] [0.158,0.005] 0.030

γ = [13−19] dB Perf. Max-log - 0.6dB Max-log - 0.8dB Max-log - 0.4dB

16-QAM, CORR Walg [0.239,0.013] [0.472,0.005] 0.030

γ = [21−26] dB Perf. Max-log - 0.5dB Max-log - 0.5dB Max-log - 1.2dB

64-QAM, UNC Walg [0.311,0.029] [0.473,0.013] 0.050

γ = [20−25] dB Perf. Max-log - 1.2dB Max-log - 1.2dB Max-log - 0.9dB

64-QAM, CORR Walg [0.715,0.029] [1.757,0.013] 0.050

γ = [30−35] dB Perf. Max-log - 0.7dB Max-log - 0.7dB Max-log - 2.0dB
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Table 35. The required LSD algorithm ASIC resources in the LSD detection of

3GPP LTE standard with 20MHz BW and with Nused = 1200.

4×4 MIMO–OFDM, 16-QAM Area (mm2) kGEs Power (mW)

IR-LSD alg. 2.6-49.0 216-4010 485-9000

SEE-LSD alg. 1.0-100 83-8140 198-19200

K-best-LSD alg. 6.5 547 1480

ronments and SNR values. The K-best-LSD algorithm implementation achieves rather

good performance in the uncorrelated channel with a fixed Walg, but the performance

suffers in highly correlated channels. The algorithm work factor Walg is best in low SNR

values, but the performance cannot be tuned with the channel as in the sequential search

algorithms. The SEE-LSD algorithm implementation is the most efficient in high SNR

values, but is the least efficient in low SNR because of the algorithm search strategy.

The IR-LSD algorithm implementation is more efficient at low SNR compared to the

SEE-LSD algorithm implementation and more efficient at high SNR compared to the

K-best-LSD algorithm implementation. Both sequential search algorithm implementa-

tions perform much better compared to the K-best-LSD algorithm implementation in

highly correlated channels with the cost of additional complexity. The performance

of the sequential search algorithms can also be tuned with the penalty of additional

complexity according to the requirements.

We also calculated the required parallel LSD algorithm resources with 0.18µm

CMOS technology for a downlink receiver in a 3GPP LTE standard transmission with

20 MHz bandwidth and with Nused = 1200. We assume a 4×4 MIMO–OFDM system

with 16-QAM, i.e., the LSD algorithm must be capable of the detection rate of 268.8

Mbps. The required 0.18µm CMOS technology resources are scaled linearly from the

LSD algorithm implementation results and are listed in Table 35. The required re-

sources with IR-LSD algorithm and SEE-LSD algorithm implementations depend on

the defined performance of the algorithms as discussed earlier in this Section.

5.2.4 LLR calculation

The max-log-MAP LLR calculation unit implementation is based on the architecture

presented in Figure 56 in Section 4.2.5. The implementation is designed for LSD al-

gorithm output list size Ncand = 15, which was used in the SEE-LSD algorithm and

IR-LSD algorithm implementations. The LLR calculation unit consists of two sepa-
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Table 36. Complexity and latency of different LLR calculation unit microarchitec-

ture implementations.

Microarchitecture 1 2 3 4

Parallelism (scale/max) 1/1 5/15 5/full 2/15

Pipelined loop (scale/max) no/no yes/yes yes/no yes/yes

Area estimate 98k 358k 1737k 284k

Latency (µs) 1.20 0.112 0.052 0.132

Work factor WLLR 0.117 0.040 0.090 0.037

rate parts, which execute the scaling of the candidate list ED values and the search for

maximum ED values for each bit bk.

The LLR calculation unit can be implemented with various different microarchi-

tectures with different levels of parallelism and pipelining. We used the Catapult C

Synthesis tool to compare the different microarchitecture implementations and to select

the most efficient microarchitecture. The different microarchitecture implementations

are listed in Table 36. The parallelism and pipelining rows denote the amount of par-

allelism in the scaling of the ED values and the search for the maximum ED values

and also if pipelining is applied to the corresponding part. Then a LLR work factor

value WLLR is calculated as a product between the area estimate and the latency of the

microarchitecture implementation to compare the efficiencies of the microarchitectures.

A smaller WLLR denotes more efficient microarchitecture. It can be seen from Table 36

that the design number 4 is the most efficient microarchitecture. Thus, the implemen-

tation was done with two parallel and pipelined MULs in the scaling of the EDs and

the maximum ED search operation was executed for one bit with parallel and pipelined

logic, i.e., 15 EDs are checked at one sequential iteration. The same implementation can

be used for both 16- and 64-QAM. The difference with processing a larger constellation

size is that the same list size is used for a larger number of bits bk, i.e., the maximum

ED logic loop is executed more times. The synthesis results of the LLR calculation unit

implementation for the Virtex-5 FPGA chip are listed in Table 37. The FPGA imple-

mentation requires 629 slices and 2 DSP48s. The latency of the soft output calculation

for a single subcarrier is 246 ns and 300 ns for the 16- and 64-QAM, respectively. The

corresponding detection rates RFPGA
det are then 65.0 Mbps and 80.0 Mbps for the 16- and

64-QAM. The synthesis results for the 0.18µm CMOS technology are listed in Table 38.

The ASIC implementation complexity is 18.5 kGEs and it consumes 25.6 mW power.

The latency of the soft output calculation for a single subcarrier is 132 ns and 164 ns
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Table 37. Synthesis results of the LLR calculation unit for a Xilinx Virtex-5 FPGA

chip.

FPGA Slices BRAMs DSP48s Latency Rate R
(fpga)
det

16-QAM 629 0 2 246 ns per subc. 65.0 Mbps

64-QAM 629 0 2 300 ns per subc. 80.0 Mbps

Table 38. Synthesis results of the LLR calculation unit for 0.18µm CMOS technol-

ogy.

ASIC Area (mm2) kGEs Latency Power (mW) Rate R
(asic)
det

16-QAM 0.23 18.5 132 ns per subc. 25.6 121.2 Mbps

64-QAM 0.23 18.5 164 ns per subc. 25.6 146.3 Mbps

Table 39. The required LLR calculation unit ASIC resources in the LSD detection

of 3GPP LTE standard with 20MHz BW and with Nused = 1200.

4×4 MIMO–OFDM, 16-QAM Area (mm2) kGEs Power (mW)

LLR calculation unit 0.51 40.9 57

for the 16- and 64-QAM, respectively. The corresponding detection rates R
(asic)
det are

then 121.2 Mbps and 146.3 Mbps for the 16- and 64-QAM. We also calculated the

required parallel LLR calculation unit resources with 0.18µm CMOS technology for

a downlink receiver in 3GPP LTE standard transmission with 20 MHz bandwidth and

with Nused = 1200. We assume a 4× 4 MIMO–OFDM system with 16-QAM, i.e., the

LLR calculation unit must be capable of a detection rate of 268.8 Mbps. The required

0.18µm CMOS technology resources are listed in Table 39.

5.2.5 Conclusions

The implementation results of a list sphere detector and its subunits were presented in

this section for both FPGA and ASIC technologies. The results included the complex-

ity and the hardware throughput time, and also the power usage for the ASIC results.

The preprocessing unit and the LSD algorithm unit are the most complex and power

consuming parts of an LSD.

The SQRD algorithm implementation requires high fixed-point word lengths, which

partly lead to a high complexity. The complexity could be possibly reduced with a

different algorithm choice for decomposition and applying word length scaling in the
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algorithm. In practice, the recalculation interval for the channel matrix decomposition

can be adjusted and adjacent subcarriers might be assumed to be correlated, which

would lead to reduced complexity.

The implementation results of the LSD algorithms indicated that the choice of the

most suitable algorithm depends on the applied system requirements. Different perfor-

mance, complexity and power usage requirements may lead to a different LSD algo-

rithm choice. The K-best-LSD algorithm implementation is fairly efficient with a fixed

detection rate, but the performance suffers in highly correlated channel realizations.

The tradeoff between complexity and performance of both IR-LSD and SEE-LSD algo-

rithm implementations can be adjusted with the Lnode variable. This may be beneficial

in systems with different bandwidth modes, such as the 3GPP LTE [18] and WiMAX

[19] standards, as the existing resources can be scheduled more efficiently to the work

load, i.e., higher Lnode values can be applied and better performance achieved with lower

bandwidth systems. The IR-LSD algorithm implementation was more efficient in diffi-

cult channel realizations and at low SNR while the SEE-LSD algorithm implementation

is the most efficient in good channel realization and at high SNR.

The max-log-MAP LLR calculation unit complexity and power usage is rather mi-

nor compared to the preprocessing unit and the LSD algorithm unit. Additional per-

formance gain could be achieved in LSD by applying the Jacobian algorithm, i.e., log-

MAP, in the LLR calculation unit.

5.3 Measurements

The measurements were done with two different hardware platforms. Real-time mea-

surement results with LMMSE detector implementations and an EB4G hardware plat-

form are introduced in Section 5.3.1. Non-real-time measurement results with all con-

sidered detector algorithms and a RACE hardware platform are introduced in Section

5.3.2.

5.3.1 EB4G platform

The performance measurements of LMMSE detector implementations were done with

an FPGA based EB4G MIMO–OFDM hardware testbed [189]. A Propsim C8 MIMO

channel emulator [190] was used to create the real-time baseband (BB) or radio fre-

quency (RF) channels in the 2×2 MIMO system. A photo of the measurement configu-
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ration is shown in Figure 57 and the EB4G main technical parameters are listed in Table

40. A coded SM transmission with quadrature phase shift keying (QPSK) and with bit-

interleaving is applied with a soft output LMMSE detector and a Viterbi decoder at the

receiver. The 1/2 rate convolutional code is applied with [171o,133o] polynomial and

the coding is done over one OFDM symbol interval. A least squares based channel es-

timator is used in the EB4G with two OFDM pilot symbols per frame [191]. A correct

SNR value is used in the measurements with no estimation error. Two different non

line-of-sight (NLOS) channel profiles from the WINNER [152, 153] channel model are

used as a channel in the measurements. The effect of channel correlation properties is

measured by using different antenna separations. An antenna separation of 0.5λ , i.e.,

1/2 the wavelength of the used transmission frequency, is used at the receiving mobile

terminal (MT). Antenna separations of 0.5λ , 4λ , and 10λ are used at the transmitting

base station (BS). A lower value of antenna separation corresponds to more correlated

antennas.

The FPGA implementations of the LMMSE detectors for 2 × 2 antennas were

mapped to a Xilinx Virtex-II XC2V6000 chip in the EB4G testbed with the Xilinx

NGDBuild software tool. The performances of both CORDIC and SGR based LMMSE

detector implementations were measured at BB or RF and compared to computer sim-

ulation results. The computer simulations have been done in Matlab with a floating

point representation. The least squares channel estimator used in the real-time mea-

surements is modeled to Matlab by adding noise to the channel coefficients [191]. The

LMMSE coefficient calculation operates at a frame interval and the data detection, i.e.,

a matrix-vector multiplication, is done for all 52 data subcarriers in a 4 µs OFDM sym-

bol interval. Performance results of the LMMSE detector in the WINNER A1 channel

are shown in Figures 58 and 59 for CORDIC and SGR based implementations, respec-

tively. The bit error rate (BER) performances of the LMMSE detector implementations

are shown at both BB and RF. It can be noted that the performance loss due to increased

correlation between antennas is higher in the measurements compared to the simulated

results. The total performance loss of the measured BB system compared to the simu-

lation results is between 2–2.5dB at 1% BER with BS antenna separations of 4λ and

10λ . The antenna separation of 0.5λ , i.e., the high correlation case, results in higher

implementation loss. The WINNER A1 channel scenario is rather flat fading and, in the

case of a difficult channel realization, it affects multiple subcarriers. Thus, the channel

coding and the interleaving are not able to correct the errors. It can be seen from the

measurements that the BER performance of the SGR based detector starts to saturate
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Fig 57. The measurement configuration consisting of a Propsim C8 channel emu-

lator on the left and an EB4G hardware testbed on the right. ([142], published by

permission of IEEE).

Table 40. The main parameters of the EB4G platform.

Parameter Used configuration

RF operating frequency range 2400–2500 MHz

Sample rate 20 MHz

Total signal bandwidth 16.9 MHz

FFT size 64 (52 data subcarriers)

OFDM symbol duration 3.2 µs FFT + 0.8 µs CP

Frame length 80 µs

Data symbols in one frame 16

Convolutional code 1/2 rate, [171o,133o] polynomial

Convolutional decoder Viterbi decoder

Channel estimator least squares based estimator

155



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1616
10

−4

10
−3

10
−2

10
−1

10
0

SNR

B
E

R

2x2 MIMO, SM, Conv. coding, QPSK, WINNER A1 channel, 5kmph

 

 

Sim, BS=½

Sim, BS=4

Sim, BS=10

CORDIC BB, BS=½

CORDIC BB, BS=4

CORDIC BB, BS=10

CORDIC RF, BS=½

CORDIC RF, BS=4

CORDIC RF, BS=10

Fig 58. A convolutional coded SM system with the CORDIC based LMMSE detec-

tor and the Viterbi decoder in the WINNER A1 channel with 5kmph velocity. ([142],

published by permission of IEEE).

earlier than the performance of the CORDIC based detector. This is due to the high

dynamic range requirements of the SGR algorithm. The performance loss due to the

RF units is approximately 2 dB compared to the BB system. Performance results of

the LMMSE detector in the WINNER B1 channel at BB are shown in Figure 60. The

performance loss between the BB measurements and the simulation results is between

1.5–2dB at 1% BER for 4λ and 10λ antenna separations. The performance loss with

a 0.5λ separation is now lower compared to the WINNER A1 channel. In this case

the WINNER B1 channel is more frequency selective, and, thus, the channel coding

and the interleaving are able to decrease the effect of bad channel realizations. The

performance gap between floating point simulations and fixed-point implementation is

also smaller as the occasional errors due to implementation are being corrected more

effectively by the channel code. The measurements illustrate the performance of the

SM system with a soft output LMMSE detector at the receiver. The performance loss

of a measured coded fixed-point implemented system at BB compared to a simulated

floating point system varied between 0.5–7dB at a 1% target BER. The measurements

showed that the performance of the SM system with a fixed-point representation at the
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Fig 59. A convolutional coded SM system with the SGR based LMMSE detector

and the Viterbi decoder in the WINNER A1 channel with 5kmph velocity. ([142],

published by permission of IEEE).

receiver is highly dependent on the channel correlation properties. The channel real-

ization with higher correlation properties results in a higher eigenvalue spread of the

channel matrix, which leads to higher dynamic range in the signal representation in

the calculation of W. It can be concluded that the applied word lengths were insuffi-

cient for the A1 channel environment with 0.5λ antenna separation at BS and that the

performance loss compared to the simulated results was ≥5dB. Thus, in the case of

highly correlated antennas, the larger word length requirements should be recognized.

The measurements show that the CORDIC based LMMSE detector is less vulnerable

to difficult channel realizations compared to the SGR based LMMSE detector. Thus,

the CORDIC based LMMSE detector implementation is more attractive choice due to

more feasible fixed-point properties.

5.3.2 RACE platform

The Radio Access Emulator (RACE) platform [192] and the Propsim C8 MIMO chan-

nel emulator [190] were used to perform non-real-time measurements with detector
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Fig 60. Convolutional coded SM system with a LMMSE detector and Viterbi de-

coder in the WINNER B1 channel with 120kmph velocity. ([142], published by

permission of IEEE).

algorithms. The RACE platform is a MIMO–OFDM capable software defined radio

prototyping platform utilizing Matlab and HW acceleration via FPGA signal process-

ing circuits. The OFDM front end, the digital to analog domain conversions, and the

RF parts operating in the ranges of 300–2700 MHz and 3500–5800 MHz are executed

in real-time in HW. The other baseband algorithms such as channel coding/decoding

and detection are executed non-real-time in a Matlab environment. The signal flow be-

tween the real-time and non-real-time parts is buffered and the data transmission and

reception is executed in bursts. The RACE platform functionality is illustrated in a

block diagram in Figure 61 and a picture of the measurement configuration is shown in

Figure 62. The RACE platform was configured for link level measurements as a 2×2

MIMO–OFDM system with the same parameters as in Section 2.6. A WINNER B1

channel model was used with Propsim with antenna separations of 0.5λ and 4λ at MS

and BS, respectively. The K-best-LSD, the SEE-LSD, the IR-LSD and the LMMSE

detectors were executed in Matlab in RACE with floating point representation. The

FER measurement results with a RACE platform and the computer simulations results

of a turbo coded 2× 2 SM system with 16- and 64-QAM and with different detectors
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Fig 61. The RACE platform functionality.

and a turbo decoder are shown in Figure 63. It can be seen that the performance of

the detector algorithms in the RACE platform is within 1 dB until approximately 2%

FER. The saturation of performance is due to the noise floor of the RACE platform,

which is caused by the combination of finite word lengths in the OFDM front end and

digital to analog domain conversions, and RF parts. The measurement results verify the

differences in performance between different detector algorithms. The LSD algorithms

perform better compared to the LMMSE detector. SEE-LSD and IR-LSD with Ncand

with a rather large Lnode also outperform the K-best-LSD with K = 15 as expected.
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Fig 62. The measurement configuration consisting of a Propsim C8 channel emu-

lator on the right and a RACE platform on the left.
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Fig 63. Turbo coded SM system with different detectors and turbo decoder in the

WINNER B1 channel with a 60kmph velocity.
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5.4 Summary

We presented the FPGA synthesis results of the CORDIC based LMMSE detector for

2×2 and 4×4 MIMO systems and an SGR based LMMSE detector for a 2×2 MIMO

system. The CORDIC based design requires more slices and less block multipliers com-

pared to the SGR based design. We also compared the latencies of the implementations

to the requirements of a downlink receiver in different telecommunication standards.

The 2× 2 LMMSE detector implementations are fast enough as such to be used in a

receiver in different standards with maximum bandwidths. The 4× 4 CORDIC imple-

mentation is also feasible in most cases.

The list sphere detector implementations, which included the SQRD algorithm, the

LSD algorithms, and the max-log-MAP LLR calculation unit, were presented for a

4×4 MIMO system. The synthesis results and operating rates were presented for both

FPGA chip and ASIC technology. The SQRD implementation was done to support

up to 16-QAM and the other LSD units were done to support up to 16- and 64-QAM.

The SQRD preprocessing unit and the LSD algorithm unit are the most complex and

power consuming parts of a list sphere detector while LLR calculation unit complex-

ity and power usage is rather minor compared to the other units. The high fixed-point

word length requirements of the SQRD algorithm implementation lead to a high com-

plexity, which could be compensated for by applying word length scaling. The imple-

mentation results of the LSD algorithms indicated that the choice of the most suitable

algorithm depends on the applied system requirements. Different performance, com-

plexity and power usage requirements may lead to a different LSD algorithm choice.

The K-best-LSD algorithm implementation is a good tradeoff between complexity and

performance if certain performance degradation can be tolerated. The possibility to ad-

just the tradeoff between complexity and performance of both IR-LSD and SEE-LSD

algorithm implementations is beneficial in systems with different bandwidth modes. We

also estimated the total complexity and power usage of the required parallel resources

of different LSD units for a downlink receiver in 3GPP LTE standard transmission with

20 MHz bandwidth.

Real-time measurement results were presented with the 2×2 LMMSE detector im-

plementations and an EB4G hardware platform. The measurements showed that the

CORDIC based LMMSE detector is less vulnerable to difficult channel realizations

compared to the SGR based LMMSE detector due to more feasible fixed-point prop-

erties. Non-real-time measurement results were presented with all considered detec-

161



tor algorithms and RACE hardware platform with a 2× 2 MIMO configuration. The

measurement results verified the differences in performance between different detec-

tor algorithms. The LSD algorithms perform better compared to the LMMSE detector.

SEE-LSD and IR-LSD with Ncand with a rather large Lnode also outperform the K-best-

LSD with K = 15 as expected.
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6 Conclusion and future work

The scope of this thesis in a broad sense was to develop receiver algorithms for advanced

transmission techniques which enable more efficient use of the radio spectrum. This

was motivated by the fact that the radio spectrum is a limited resource and, thus, in

order to serve the increasing demand, the spectrum should be used more efficiently.

Moreover, the objective was to study and compare the implementation complexity and

performance of different detector algorithms. Another objective of this thesis was to

apply a joint process between different development phases to ensure efficient algorithm

implementation.

Chapter 2 introduced the MIMO–OFDM system model and the considered detector

algorithms. The main emphasis was given to the linear MMSE detector, which was

implemented via CORDIC or SGR algorithms, and the list sphere detector. Three LSD

algorithms with different search methods were introduced, namely the K-best-LSD al-

gorithm, the SEE-LSD algorithm, and the IR-LSD algorithm. The performances of the

detector algorithms were compared via numerical examples. It was shown that the max-

log-MAP performance could be achieved with the LSD based receivers with a much

lower computational cost than with the exhaustive search algorithm. It was also shown

that a significant number of operations are saved with the SQRD algorithm applied as

LSD preprocessing. The performance of the linear MMSE detector is adequate in un-

correlated channel realization although the performance suffers significantly in highly

correlated channel realization.

Chapter 3 introduced different methods and implementation tradeoffs to modify the

list sphere detector to be less complex and feasible for implementation. It was shown

that LLR clipping lowers the required LSD candidate list size, and, thus, lowers the

complexity of an LSD. It was also shown that the real valued signal model is clearly

the better choice to be applied with LSD algorithms given the number of visited nodes

and the complexity difference in required operations in one node check. Two methods

were proposed to limit and fix the search complexity of the LSD sequential search algo-

rithms: a limited search method and a scheduled search method. The numerical results

showed clearly that both considered sequential search algorithms work well when the

search is limited and both proposed methods are feasible for implementation. A minor

performance gain can be achieved with the more sophisticated and complex SS method.
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A novel memory sphere radius was proposed to be applied with the IR-LSD algorithm

to decrease the number of stored candidates and the complexity of the required mini-

mum search during the algorithm tree search. The numerical results showed that the

average number of visited nodes could be decreased with the proper selected memory

sphere radius without losing performance. The use of the L1 norm in the LSD algorithm

tree search, which decreases the complexity of the search, but also degrades the perfor-

mance of the LSD, was also studied. A simple scaling of the LSD algorithm output list

distance metric values was proposed to approximate the L2 norm Euclidean distance.

It was shown that the scaling method could be used to compensate for the performance

loss due to the use of the L1 norm with minor additional complexity. The performance

of the iterative receiver was studied with a variable number of global iterations and their

impact on the computational complexity was analyzed. The results indicated that with a

typical system configuration it is beneficial to use the additional computational cost for

an LSD algorithm to achieve a better soft output approximation, i.e., study more tree

nodes in the algorithm search. The use the 2nd global iteration with a lower amount of

decoder resources is also justified.

Chapter 4 focused to the architecture design for the considered detection algorithms.

The key functional microarchitecture units were identified and introduced and the possi-

bilities for parallelism and pipelining were exploited. The introduced LMMSE detector

architectures were based on systolic array structures with pipelined communicating pro-

cessing elements. The triangular or linear array structures presented can be easily scaled

for the systems with different antenna configurations with modified array structure. Ar-

chitectures were also designed for different list sphere detector subunits. Architectures

were introduced for the SQRD preprocessing algorithm, for the considered LSD al-

gorithms and for the max-log-MAP LLR calculation unit. A parallel and pipelined

architecture was designed for the K-best-LSD algorithm, which makes the algorithm

suitable for hardware implementation. Scalable architectures were designed for the

SEE-LSD algorithm and the IR-LSD algorithm, which operate in a sequential fashion.

The architectures include implementation tradeoffs introduced in an earlier section. It

was noted that multiple architecture units can be used in parallel to support higher data

rate requirements in an OFDM system.

The hardware implementation results and the measurement results on hardware

testbeds were introduced in Chapter 5. The FPGA synthesis results of the CORDIC

based LMMSE detector were presented for 2×2 and 4×4 MIMO systems and an SGR

based LMMSE detector was presented for a 2×2 MIMO system. It was noted that the
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CORDIC based design required more slices and less block multipliers compared to the

SGR based design. The latencies of the implementations were also compared to the re-

quirements of a downlink receiver in different telecommunication standards. The 2×2

LMMSE detector implementations were fast enough as such to be used in a receiver

in different standards with maximum bandwidths. The 4×4 CORDIC implementation

was also feasible in most of the cases. The list sphere detector hardware implementa-

tions included the SQRD algorithm, the LSD algorithms, and the max-log-MAP LLR

calculation unit, and the implementations were done for a 4×4 MIMO system. The syn-

thesis results and operating rates were presented for both FPGA chip and ASIC technol-

ogy. The SQRD implementation was done to support up to 16-QAM and the other LSD

units were done to support up to 16- and 64-QAM. The SQRD preprocessing unit and

the LSD algorithm unit are the most complex and power consuming parts of a list sphere

detector while LLR calculation unit complexity and power usage is rather minor com-

pared to the other units. The high fixed-point word length requirements of the SQRD

algorithm implementation leads to a high complexity, which could be compensated for

by applying word length scaling. The implementation results of the LSD algorithms

indicated that the choice of the most suitable algorithm depends on the applied system

requirements. Different performance, complexity and power usage requirements may

lead to different LSD algorithm choice. The K-best-LSD algorithm implementation is

a good tradeoff between complexity and performance if certain performance degrada-

tion can be tolerated. The possibility to adjust the tradeoff between complexity and

performance of both IR-LSD and SEE-LSD algorithm implementations is beneficial

in systems with different bandwidth modes. The total complexity and power usage of

required parallel resources of different LSD units was also estimated for a downlink

receiver in 3GPP LTE standard transmission with 20 MHz bandwidth.

Real-time measurement results were presented with the 2×2 LMMSE detector im-

plementations and a EB4G hardware platform. The measurements showed that the

CORDIC based LMMSE detector was less vulnerable to difficult channel realizations

compared to the SGR based LMMSE detector due to better fixed-point properties. Non-

real-time measurement results were presented with all considered detector algorithms

and a RACE hardware platform with a 2× 2 MIMO configuration. The measurement

results verified the differences in the performance between different detector algorithms.

It was verified that the LSD algorithms perform better compared to the LMMSE detec-

tor.
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The results presented in this thesis showed that the list sphere detector is feasible for

implementation and it can be applied to receivers in the latest telecommunication stan-

dards. The LSD offers close to optimal max-log-MAP performance and outperforms the

linear LMMSE detector especially in a correlated channel environment with a price of

additional complexity. The implementation aspects and tradeoffs related to LSD imple-

mentation offer still some interesting research topics and could be further investigated

to provide even less complex practical solutions. In addition, it would be interesting to

compare the performance and complexity of the considered LSD algorithms in more de-

tail to the single-tree-search based soft output SD algorithms. Practical problems, such

as the affect of channel estimation and synchronization on the performance, could also

be studied. Furthermore, the thesis focused on the detector design and implementation

for a link level system. The system level perspective and, e.g., the use of cooperative

communication systems, provide additional possibilities and open questions on detec-

tor implementation, which should be further studied. However, the results in this thesis

provide a good background for these additional topics.
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