
U N I V E R S I TAT I S O U L U E N S I SACTA

C
TECHNICA

U N I V E R S I TAT I S O U L U E N S I SACTA

C
TECHNICA

OULU 2018

C 667

Tuomo Hänninen

DETECTION ALGORITHMS

AND FPGA IMPLEMENTATIONS

FOR SC-FDMA UPLINK

RECEIVERS

UNIVERSITY OF OULU GRADUATE SCHOOL;

UNIVERSITY OF OULU,

FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING;

CENTRE FOR WIRELESS COMMUNICATIONS

C
 6

6
7

A
C

T
A

T
u
o

m
o

 H
ä
n
n
in

e
n

C667etukansi.fm Page 1 Thursday, June 7, 2018 1:52 PM

ACTA UNIVERS ITAT I S OULUENS I S

C Te c h n i c a 6 6 7

TUOMO HÄNNINEN

DETECTION ALGORITHMS AND

FPGA IMPLEMENTATIONS FOR

SC-FDMA UPLINK RECEIVERS

Academic dissertation to be presented with the assent
of the Doctoral Training Committee of Information
Technology and Electrical Engineering of the University
of Oulu for public defence in the OP auditorium (L10),
Linnanmaa, on 10 July 2018, at 12 noon

UNIVERSITY OF OULU, OULU 2018

Copyright © 2018
Acta Univ. Oul. C 667, 2018

Supervised by
Professor Markku Juntti

Reviewed by
Professor Kapil Dandekar
Doctor John McAllister

ISBN 978-952-62-1968-4 (Paperback)
ISBN 978-952-62-1969-1 (PDF)

ISSN 0355-3213 (Printed)
ISSN 1796-2226 (Online)

Cover Design
Raimo Ahonen

JUVENES PRINT

TAMPERE 2018

Opponent
Professor Jarmo Takala

Hänninen, Tuomo, Detection algorithms and FPGA implementations for SC-
FDMA uplink receivers.
University of Oulu Graduate School; University of Oulu, Faculty of Information Technology
and Electrical Engineering; Centre for Wireless Communications
Acta Univ. Oul. C 667, 2018

University of Oulu, P.O. Box 8000, FI-90014 University of Oulu, Finland

Abstract

The demand in mobile broadband communications is increasing dramatically. It is expected that
1000 times more mobile-network capacity will be needed within 10 years. Multiple-input,
multiple-output (MIMO) antenna configuration and spatial multiplexing are among the essential
techniques for reaching the targets. This creates motivation for study of advanced receivers for
combating inter-antenna interference (IAI) and inter-symbol interference (ISI). While various
receiver structures have been extensively considered for MIMO receivers, the emphasis has been
on those operating in downlink orthogonal frequency-division multiple access (OFDM) systems,
wherein ISI is not a problem.

In this thesis, advanced receiver structures for single-carrier frequency-division multiple
access (SC-FDMA) uplink systems were studied and analysed. Various receivers were compared
via MATLAB simulations, with the objective being to gain solid understanding of how they
perform in different channel environments. An efficient combination of IAI and ISI equalisation
for SC-FDMA receivers is proposed. The proposed receiver architecture is shown to be a
considerable improvement over the conventional linear minimum mean-square error (LMMSE)
receiver. Several MIMO detector algorithms and their performance–complexity characteristics are
presented. The K-best algorithm with a list size of 8 is shown to be the best option for practical
MIMO detector implementation of this receiver in the 4 × 4 MIMO 64-level quadrature amplitude
modulation (QAM) scenario.

The second objective involved examining the implementation aspects of the 8-best receiver to
achieve good understanding of the complexity of various implementation architectures. It
emerged that avoiding the sorting operation in the 8-best list sphere detector (LSD) tree-search
algorithm implementation is not recommendable in the 4 × 4 MIMO 64-QAM scenario. Several
field-programmable gate array (FPGA) implementations were carried out, with a range of high-
level synthesis (HLS) tools. It is shown that HLS tools have improved significantly and are
especially favourable for prototyping of large designs. Additionally, the importance of FPGA
technology selection is addressed. Smaller silicon technology should be exploited if base-station
baseband processing power consumption is to be minimised. The potential performance or
complexity-related gain with the latest FPGAs should be taken into account in comparison of the
performance–complexity characteristics of the algorithms. Differences of a few tens of per cent in
estimated complexity or performance between two algorithms are often below the threshold of
what can be gained or lost in the practical implementation process.

Keywords: detection, FPGA, high-level synthesis, LTE, MIMO, receiver, SC-FDMA,
uplink

Hänninen, Tuomo, Tukiasemien moniantennivastaanotinalgoritmit tulevaisuuden
matkaviestinjärjestelmissä.
Oulun yliopiston tutkijakoulu; Oulun yliopisto, Tieto- ja sähkötekniikan tiedekunta; Centre for
Wireless Communications
Acta Univ. Oul. C 667, 2018

Oulun yliopisto, PL 8000, 90014 Oulun yliopisto

Tiivistelmä

Tiheään asuttujen kaupunkien uudet langattomat palvelut tarvitsevat tietoliikenneverkkoja, jotka
mahdollistavat suuremman tiedonsiirtonopeuden ja kapasiteetin kuin sen, jonka nykyiset mobii-
liverkot voivat tarjota. On arveltu, että mobiiliverkkojen kapasiteetin tarve tuhatkertaistuu seu-
raavan kymmenen vuoden aikana. Tuhatkertainen kapasiteetti on arvioitu saavutettavan kasvat-
tamalla kolmea eri osa-aluetta kymmenkertaiseksi: taajuusspektrin määrä, spektrin käytön
tehokkuus sekä tukiasematiheys. Tämä väitöskirja keskittyy spektrin käytön tehokkuuden kas-
vattamiseen. Moniantennitoteutus (multiple-input multiple-output, MIMO) on siinä välttämä-
tön. MIMO-tekniikkaa hyödyntävien solukkojärjestelmien tukiasemavastaanottimissa tarvitaan
melko monimutkainen kanavakorjain sekä ilmaisin, joiden algoritmien optimointi ja toteutus
ymmärretään vielä sangen puutteellisesti.

Väitöskirjatutkimuksen päätavoitteena on tutkia edistyksellisiä vastaanotinrakenteita, joilla
saavutetaan LTE-A-standardin tavoitetiedonsiirtonopeus kohtuullisella kompleksisuudella. Työs-
sä keskitytään ns. nousevaan siirtosuuntaan (uplink) eli päätelaitteesta tukiasemaan tapahtuvaan
tiedonsiirtoon, jossa käytetään yhden kantoaallon taajuusjakomonikäyttötekniikkaa (single-car-
rier frequency-division multiple-access, SC-FDMA) ortognaalisen taajuusjakomonikäytön (ort-
hogonal frequency division multiple access, OFDMA) sijaan. Eri vastaanotinrakenteita ja näi-
den ilmaisinalgoritmeja vertaillaan tietokonesimuloinnein MATLAB-ympäristössä. Väitöskirjas-
sa ehdotetaan kaksiosaista vastaanotinrakennetta, jossa antennien välinen keskinäishäiriö (inter
antenna interference, IAI) ja symbolien välinen keskinäisvaikutus (intersymbol interference, ISI)
poistetaan kahdessa eri vaiheessa. Tietokoneimulaatiot osoittavat ko. rakenteen parantavan suo-
rituskykyä huomattavasti perinteiseen lineaariseen keskineliövirheen minimoivaan (linear mini-
mum mean square error, LMMSE) vastaanottimeen verrattuna. Nk. K parasta polkua valitsevan
MIMO-ilmaisinalgoritmin listan koolla kahdeksan todetaan tarjoavan 4 × 4 MIMO 64-tasoisen
kvadratuuriamplitudimodulaation (quadrature amplitude modulation, QAM) ympäristössä par-
haan kompromissin suorituskyvyn ja kompleksisuuden suhteen.

Käytännön toteutettavuuden kannalta keskitytään ohjelmoitavaan digitaalipiiritoteutukseen
(field-programmable gate array, FGPA) ja ns. korkean tason synteesi (high-level synthesis, HLS)
-työkalujen käyttöön vastaanottimen suunnittelussa. K parasta polkua valitsevan MIMO-ilmaisi-
nalgoritmin arkkitehtuurivertailut osoittavat, että sinänsä vaativaa lajittelualgoritmia ei aina kan-
nata yrittää välttää kirjallisuudessa aikaisemmin ehdotetulla ratkaisulla. Useita eri HLS työkaluja
käytetään FPGA toteutuksissa ja todetaan että työkalut ovat kehittyneet huomattavasti viimeisen
kahdeksan vuoden aikana. Lisäksi todetaan, että 16 nm viivanleveyden piireillä voidaan saavut-
taa noin 15 % suurempi ilmaisunopeus ja 60 % pienempi tehonkulutus verrattuna 28 nm viivan-
leveyttä käyttäviin piireihin. Erityisesti potentiaali tehonkulutuksen minimoiseksi kannattaa hyö-
dyntää, mikäli signaalinkäsittely näyttelee merkittävää roolia vastaanottimen kokonaistehonku-
lutuksessa. Kokonaisuutena todetaan, että toteutukseen liittyvät valinnat sekä vaikutus lopputu-
lokseen, tulisi ottaa huomioon jo algoritmien valinnassa. Pieni ero kahden eri algoritmin suori-
tuskyvyn välillä häviää helposti toteutusvaiheen ratkaisujen vaikutusten alle.

Asiasanat: FPGA, HLS, ilmaisin, LTE, MIMO, SC-FDMA, vastaanotin

To my parents

8

Preface

The research for this thesis was carried out at the Centre for Wireless Com-

munications (CWC) of the University of Oulu, in Finland. I want to thank

Professor Ari Pouttu, Dr Harri Posti, Professor Matti Latva-aho, Professor

Jari Iinatti, and Professor Markku Juntti, the directors of CWC during my

studies, for giving me the opportunity to work in such an inspiring environment

and for enabling me to conduct my thesis-related research in parallel with my

project-management responsibilities. I am especially grateful to my supervisor,

Professor Juntti, for his invaluable guidance and encouragement throughout my

postgraduate research and to Dr Posti for his support and inspiring discussions.

In addition, I would like to thank follow-up group leader Dr Harri Saarnisaari

and also Dr Johanna Vartiainen for overseeing my research. Matti Raustia

deserves thanks for hiring me to work at CWC in 2008. Finally, I would like to

express my gratitude to the reviewers of this thesis: Professor Kapil Dandekar,

from the USA’s Drexel University, in Philadelphia, and Dr John McAllister,

from the UK’s Queen’s University, in Belfast, Northern Ireland. Their comments

significantly improved the quality of the thesis.

The bulk of the work presented in this thesis was carried out in the Cooperative

MIMO Techniques for Cellular System Evolution (CoMIT) and Baseband and

System Technologies for Wireless Evolution (BASE) projects. I would like

to thank project managers Visa Tapio (Lic. Tech.) and Dr Janne Janhunen,

the technical steering group members, and my colleagues in those projects. I

am grateful to my co-authors in related work Dr Johanna Ketonen, Dr Juha

Karjalainen, Dr Janhunen, Muhammad Saad Saud, and Hamid Yadegar Amin

for the co-operation.

I would like to extend particular thanks to my office-mates and regular lunch

and travel companions Dr Harri Pennanen, Markku Jokinen, Hannu Tuomivaara,

Raghavendra Sathyanarayana, Dr Ville Niemelä, Dr Teemu Nyländen, Dr Maria

Kangas, Dr Timo Bräysy, Dr Marja Matinmikko, Marko Mäkeläinen, Kalle

Lähetkangas, Dr Konstantin Mikhaylov, Dr Juha Petäjäjärvi, Jarkko Kaleva,

Dr Heikki Karvonen, Dr Jussi Haapola, and Juho Markkula for the refreshing

moments and fruitful discussions. The administrative support of Antero Kangas,

9

Elina Komminaho, Kirsi Ojutkangas, Eija Pajunen, Hanna Saarela, Mari

Lehmikangas, Renata Kordasne Sebö, Jari Sillanpää, Dr Juha-Pekka Mäkelä,

and Timo Äikäs is highly appreciated too.

The research for this thesis was funded through project financing from the

Finnish Funding Agency for Technology and Innovation (Tekes), Elektrobit,

Nokia, Nokia Siemens Networks, and Xilinx, which is gratefully acknowledged. I

was privileged to receive personal grants for doctoral studies from the following

Finnish foundations: Emil Aaltosen Säätiö, Walter Ahlströmin Säätiö, Riitta ja

Jorma J. Takasen Säätiö, and Tauno Tönningin Säätiö. This support encouraged

me to carry on with my research work, and it is recognised with gratitude.

My deepest gratitude goes to my parents, for their love, support, and

encouragement of education. The love they have given throughout my life

is invaluable. I wish to thank my brother and all my friends who have been

there for me. Finally, my warmest thanks go to my girlfriend for the love and

understanding she has given me over these years.

Oulu, 19 June 2018 Tuomo Hänninen

10

Abbreviations

1G first generation

2G second generation

2.5G second and a half generation

3G third generation

3.5G third and a half generation

3GPP 3rd Generation Partnership Project

3GPP2 3rd Generation Partnership Project 2

4G fourth generation

4.5G fourth and a half generation

5G fifth generation

5G NR fifth-generation New Radio

8-PSK higher-order phase-shift keying (8 phases)

AMPS Advanced Mobile Phone Service

APP a posteriori probability

ASIC application-specific integrated circuit

AWGN additive white Gaussian noise

BER bit error rate

BF breadth-first

BPSK binary phase-shift keying

BLAST Bell Laboratories Layered Space-Time

BRAM block random-access memory

BS base station

BW bandwidth

CDMA code-division multiple access

CDMA2000 brand name for the IMT-MC mobile technology standards

cdmaOne brand name for the IS-95 standard

CP cyclic prefix

CSI channel state information

CWC Centre for Wireless Communications

D-BLAST Diagonal Bell Laboratories Layered Space-Time

D-AMPS Digital AMPS

11

DAC digital-to-analogue converter

DFT discrete Fourier transform

DL downlink

DSP digital signal processor

ED Euclidean distance

EDGE Enhanced Data Rates for GSM Evolution

ETSI European Telecommunications Standards Institute

FD frequency domain

FDD frequency-division duplex

FDMA frequency-division multiple access

FEC forward error control

FER frame error rate

FF flip-flop

FFT fast Fourier transform

FPGA field-programmable gate array

GMSK Gaussian minimum-shift keying

GPRS General Packet Radio Service

GPU graphics processing unit

GS Gram–Schmidt

GSM Global System for Mobile Communications

HDL hardware description language

HLS high-level synthesis

HSDPA High Speed Downlink Packet Access

HSPA High Speed Packet Access

HSPA+ Evolved High Speed Packet Access

HSUPA High Speed Uplink Packet Access

HW hardware

IAI inter-antenna interference

IDFT inverse direct Fourier transform

IEEE Institute of Electrical and Electronics Engineers

IFFT inverse fast Fourier transform

IMT-2000 International Mobile Telecommunications 2000

IMT-A International Mobile Telecommunications Advanced

IMT-MC International Mobile Telecommunications Multi-Carrier

I/O input/output

12

IoT Internet of Things

IP Internet Protocol

IR-SD increasing-radius sphere detector

IS-54 Interim Standard 54

IS-95 Interim Standard 95

IS-136 Interim Standard 136

ISI inter-symbol interference

ITU International Telecommunication Union

kGE kilo-gate equivalent

LLR log-likelihood ratio

LMMSE linear minimum mean-square error

LORD layered orthogonal lattice detector

LP linearly precoded

LPWAN Low-Power Wide-Area Network

LSD list sphere detector

LTE Long-Term Evolution

LTE-A Long-Term Evolution Advanced

LTE-M Long-Term Evolution Advanced for machine-type communication

LUT lookup table

MAP maximum a posteriori

MGS modified Gram–Schmidt

MIMO multiple-input, multiple-output

MISO multiple-input, single-output

ML maximum likelihood

MMS Multimedia Message Service

MMSE minimum mean-square error

MNO mobile network operator

MS mobile station

MSE mean-square error

NMT Nordic Mobile Telephony

NTT Nippon Telegraph and Telephone

OFDM orthogonal frequency-division multiplexing

OFDMA orthogonal frequency-division multiple access

OSIC ordered successive interference cancellation

PAPR peak-to-average-power ratio

13

PDC Personal Digital Cellular

PED partial Euclidean distance

PSK phase-shift keying

QAM quadrature amplitude modulation

QoS quality of service

QPSK quadrature phase-shift keying

QRD QR decomposition

RAM random-access memory

RTL register-transfer level

RX receiver

SC-FDMA single-carrier frequency-division multiple access

SD sphere detector

SEE Schnorr–Euchner enumeration

SIC successive interference cancellation

SIMO single-input, multiple-output

SINR signal-to-interference-plus-noise ratio

SIR signal-to-interference ratio

SISO single-input, single-output

SM spatial multiplexing

SNR signal-to-noise ratio

SoC system on a chip

SSFE selective spanning with fast enumeration

STC space-time code

TD time domain

TDD time-division duplex

TDMA time-division multiple access

TTA transport-triggered architecture

TU typical urban

TX transmitter

UE user equipment

UL uplink

UMTS Universal Mobile Telecommunications System

V-BLAST Vertical Bell Laboratories Layered Space-Time

VB Viterbo–Boutros

VHDL Very High Speed Integrated Circuit Hardware Description Lan-

14

guage

VLSI very-large-scale integration

W-CDMA Wideband Code Division Multiple Access

WiMAX Worldwide Interoperability for Microwave Access

WLAN wireless local area network

ZF zero-forcing

|·| absolute value

‖·‖2 Euclidean norm

(·)H Hermitian transpose

(·)−1 inverse

(·)1/2 square root

Im(·) imaginary part of the argument

ln(·) natural logarithm

Re(·) real part of the argument

p(·) likelihood function

chol(·) Cholesky factorisation

E{·} expectation

⊗ Kronecker product

diag(·) diagonal values of matrix

tr{·} matrix trace operator

bk kth transmitted bit

C0 sphere radius

C complex plane

e mean-square error

FR block diagonal DFT matrix IR ⊗ FK

FK DFT matrix

H channel matrix

Hr,t subchannel matrix between tth transmit and rth receive antenna

H̃ target channel matrix

IR identity matrix

K DFT size

K list size of the tree-search detector

L length of the channel impulse response

15

L list of candidate symbol vectors

Q matrix with orthogonal columns

R upper triangular matrix with positive diagonal elements

R number of receive antennas

r received signal vector

R real plane

s transmitted symbol vector candidate

si set of closest constellation points

T number of transmit antennas

U eigenvectors of Σw

v complex Gaussian noise

x transmitted signal

z equalised signal

zw[n]
whitened symbol vector

zw whitened vector

z′w[n]
whitened symbol vector multiplied by matrix Q

Γ frequency-domain channel matrix

Λ eigenvalues of Σw

λ wavelength

Σw residual interference

σ2 noise variance

Φ channel matrix (equivalent channel)

Ω MMSE filter coefficients

cc clock cycle

dB decibel

o degrees

Gbps gigabits per second

GHz gigahertz

GOPS giga-operations per second

Hz hertz

k thousand

kbit kilobit

kHz kilohertz

16

km/h kilometres per hour

Mbps megabits per second

MHz megahertz

ms microsecond

mW milliwatt

nJ nanojoule

ns nanosecond

µs microsecond

s second

17

18

Contents

Abstract

Tiivistelmä

Preface 9

Abbreviations 11

Contents 19

1 Introduction 21

1.1 Evolution of mobile networks . 21

1.2 Multiple-antenna communications . 24

1.3 SC-FDMA technology . 27

1.4 Aims, outline and contributions of this thesis . 29

2 Literature review 33

2.1 MIMO detection. .33

2.1.1 Optimal detection . 33

2.1.2 Suboptimal linear and non-linear detection 34

2.1.3 Tree-search algorithms . 35

2.2 Implementation aspects .36

2.2.1 QR decomposition . 36

2.2.2 Sorting. .37

2.2.3 Technology. .37

2.2.4 High-level synthesis . 38

3 System model and receiver structures 41

3.1 System model . 41

3.2 SC-FDMA MIMO receiver structures . 42

3.3 MMSE filter . 43

3.4 Sphere detector . 45

3.5 Possible receiver modifications . 49

3.5.1 Antenna grouping . 50

3.5.2 LLR iteration . 50

4 Simulation results 53

4.1 4× 4 MIMO system . 54

4.2 2× 2 MIMO system . 56

19

4.3 1× 4 MIMO system . 59

4.4 LLR iteration . 62

4.5 Turbo receiver . 65

4.6 Complexity estimation . 68

4.7 Conclusions . 68

5 MIMO detector implementations 71

5.1 Development environment . 71

5.2 Implementation requirements . 74

5.3 Macro-architecture specification . 74

5.3.1 Architecture with a sorter . 74

5.3.2 Sort-free architecture .76

5.4 Examples of design optimisation . 77

5.4.1 C-code parametrisation . 77

5.4.2 Embedded DSP usage . 78

6 Implementation results 81

6.1 Architecture comparison . 81

6.2 HLS tool evaluation . 82

6.2.1 Catapult C 2010 vs AutoPilot 2011 . 83

6.2.2 AutoPilot 2011 vs Vivado HLS 2017. .86

6.3 Hand-written RTL language vs HLS tools . 87

6.4 FPGA technology evaluation . 88

6.5 Conclusions .91

7 Discussion and future work 95

References 101

20

1 Introduction

Use of mobile broadband communication has risen dramatically over the last

decade. Increased processing power and screen size of smartphones have

enabled heavy consumption of media (e.g., video content). In addition to

smartphones, several other devices with mobile broadband connectivity have

been introduced, with tablets and external laptop modems having made wireless

mobile connectivity into a competitor to fixed-line home Internet access. It has

been estimated that 1000 times more mobile-network capacity will be needed

within the next 10 years [1]. A thousandfold increase could be achieved with, for

example, an increase to tenfold the capacity in each of three areas: amount of

spectrum, spectrum-efficiency, and base station (BS) density. The thesis focuses

on increasing spectrum-efficiency, via efficient multiple-input, multiple-output

(MIMO) configuration that uses multiple antennas at both the user equipment

(UE) and the BS. This constitutes motivation for the study of advanced receivers

for combating inter-antenna interference (IAI) and inter-symbol interference

(ISI). Several receiver structures have been extensively considered for MIMO

receivers, but the emphasis has been on those operating in downlink orthogonal

frequency-division multiple access (OFDMA) systems, wherein ISI is not a

problem. The focus in this thesis, in contrast, is on equalisation in single-carrier

frequency-division multiple access (SC-FDMA) uplink BS receivers.

1.1 Evolution of mobile networks

Wireless telephone technology, nowadays referred to as mobile communications,

is one of the few technologies to have adopted and retained classification

terminology that refers to standard generations of technology. A new generation

has been standardised approximately once each decade. The first-generation

(1G) standards were introduced in the early 1980s. These were for analogue

systems delivering voice services, with communication based on single-carrier

transmission and with frequency-division multiple access (FDMA) being used as

a method for multiple access. The first 1G communication system was launched

in 1979 in Japan by Nippon Telegraph and Telephone (NTT) [2]. This was soon

followed by a Nordic Mobile Telephony (NMT) system in the Nordic region, in

21

1981, and the Advanced Mobile Phone Service (AMPS) system in the USA, in

1983 [3].

Second-generation (2G) digital cellular systems were commercially launched

in the early 1990s. Additional to voice services, new features such as text

messages and the Multimedia Message Service (MMS) were supported. Both

the phone conversation and messaging were digitally encrypted. Also, the 2G

technologies were far more spectrum-efficient than the previous generation’s

analogue systems. The 2G systems applied either time-division multiple access

(TDMA) or code-division multiple access (CDMA). In some TDMA-based 2G

cellular systems, the users are divided into groups, with each group having

its own channel while users in the same group share the resources via TDMA

[3]. Accordingly, these systems are actually hybrid TDMA-FDMA systems.

Launched in 1991 by Finland’s Radiolinja, the TDMA-based Global System for

Mobile Communications (GSM) was the first commercial 2G network. This

system spread rapidly across Europe and eventually entered use all over the

world, with the exception of North America. Another TDMA-based standard,

Digital AMPS (D-AMPS), also known as IS-54 or IS-136, was deployed in 1993

in the USA and Canada. A third example of a TDMA-based 2G standard is the

Personal Digital Cellular (PDC) system, familiar also as the Japanese Digital

Cellular. It was commercially launched in 1993 and used exclusively in Japan. A

CDMA variant of 2G technology can be found in cdmaOne, also known as IS-95.

This was the first-ever CDMA-based cellular standard and came to be used in

America and Asia. The cdmaOne standard was released in 1995.

The original circuit-switched 2G systems were not optimal for bursty data

traffic. With the General Packet Radio Service (GPRS), a packet-oriented mobile

data service for GSM was introduced. Originally standardised by the European

Telecommunications Standards Institute (ETSI), GPRS is currently maintained

by the 3rd Generation Partnership Project (3GPP). It provides data rates of up

to 114 kbps. Enhanced Data Rates for GSM Evolution (EDGE) represented an

evolution of GPRS networks, often referred to as 2.5G technology. Following

on from the Gaussian minimum-shift keying (GMSK) of GPRS, higher-order

phase-shift keying (8-PSK) was introduced. This enabled bit rates of up to 236.8

kbps. The first commercial EDGE network was deployed in 2003 by Cingular

Wireless, now part of AT&T, in the USA.

Third-generation (3G) mobile networks enabled broadband wireless data

22

services. The first 3G networks were deployed in 2000–2001, in Korea and

Japan. While 3G was often marketed as an enabler for such applications

as video calls, video calls never became popular. However, this was still an

important step in the evolution of mobile communications that would enable

mobile Internet access. The 3G standards comply with the International Mobile

Telecommunications-2000 (IMT-2000) specifications issued by the International

Telecommunication Union (ITU). To fulfil these requirements, 3GPP and Third

Generation Partnership Project 2 (3GPP2) standardised the Universal Mobile

Telecommunications System (UMTS) and CDMA2000, respectively [4]. The

UMTS approach entered use primarily in Europe, Japan, and China, while

CDMA2000 was deployed mainly in North America and South Korea. The most

widespread radio interface for UMTS is called Wideband Code Division Multiple

Access (W-CDMA). This later evolved into High Speed Packet Access (HSPA)

and Evolved High Speed Packet Access (HSPA+) [5], with the latter providing

data rates as high as 42.2 Mbps in the downlink direction and 22 Mbps for

uplink with 5 MHz bandwidth, a 2× 2 MIMO antenna configuration, and up to

64-level quadrature amplitude modulation (QAM). Both HSPA and HSPA+

technology are often denoted as 3.5G technologies.

International Mobile Telecommunications–Advanced (IMT-Advanced or

IMT-A) is a set of requirements issued by the ITU to define fourth-generation

(4G) mobile communications systems. Among the IMT-Advanced requirements

are wireless services based on Internet Protocol (IP), a data rate of 100 Mbps

while one is moving and 1 Gbps in stationary use, scalable bandwidth of 1.4

MHz to 20 MHz, high spectrum-efficiency, and global roaming [6]. Two examples

of the 4G standards are Long-Term Evolution (LTE), by 3GPP, and Worldwide

Interoperability for Microwave Access (WiMAX), by the WiMAX Forum. The

first commercial mobile WiMAX service was deployed by Korea Telecom in

Seoul, South Korea, in June 2006, and the first commercial LTE service was

launched in Sweden and Norway in 2009. Actually, neither of these technologies

fulfilled the peak data transmission requirements of IMT-Advanced, but both

were marketed as 4G technology although the technology community often

referred to them as 3.9G at the time. In 2010, the ITU announced that, while

these beyond-3G technologies do not meet the IMT-Advanced peak data rate

requirements, they still can be considered 4G technology. The LTE standard

includes both frequency-division duplex (FDD) and time-division duplex (TDD)

23

operation modes. The difference between LTE-FDD and LTE-TDD lies in how

the data get uploaded and downloaded: the former has fixed paired frequency

bands for the uplink and downlink, whereas LTE-TDD uses a single band for

both. The LTE-TDD band resources can be adjusted in accordance with the

estimated ratio between uplink and downlink traffic in the network. In LTE

systems, downlink operations use OFDMA, while uplink uses SC-FDMA. A

single-carrier transmission enables a lower peak-to-average-power ratio (PAPR)

at the UE power amplifier and therefore better energy-efficiency.

The evolved version of LTE is LTE-Advanced (LTE-A). The LTE-A approach

introduces additional features such as carrier aggregation and higher-level

multiple-antenna configuration (i.e., eight antennas at the base station and four

at the UE). These improvements enable a downlink peak date rate of up to 1

Gbps and in uplink up to 500 Mbps [7]. In other words, LTE-A was the first

3GPP standard to truly meet the original 4G requirements.

As we move toward next-generation mobile communications, the fifth genera-

tion (5G), it is important to remember that there are many smaller ‘generations’

and releases between the major ones in the 1G, 2G, 3G, 4G, 5G classification.

An alternative way to list and compare mobile-communication technologies is

to focus on the standard versions. Each of the standard releases introduces

new features and improvements. Determining which specific release marks

one mobile-communication generation giving way to a new one is sometimes

difficult. This is especially true in the case of 5G: 3GPP standard release 8

(LTE) provided the launch for 4G. Release 10 (LTE-A), bringing such elements

as carrier aggregation, is sometimes referred to as 4.5G technology. Specification

is in progress for release 15, which could be the first 3GPP standard to bear the

‘5G’ name. That said, mobile network operator (MNO) marketing, politics, etc.

could mean that, before that, release 13 or 14 networks might begin to carry this

title. Finally, as discussed above, definitions may be changed in retrospect as

processes continue.

1.2 Multiple-antenna communications

Multiple-antenna communication refers to a set of techniques wherein the

transmitter, receiver, or both have several antennas. Advanced signal processing

is required if benefit is to be gained from multi-antenna techniques. An MIMO

24

technique can be used to increase the reliability of the transmission or to increase

the data rate. Multiple antennas can be utilised to provide additional diversity

against fading, shape the overall antenna beam in a certain direction, and/or

create multiple parallel communication channels with spatial multiplexing [7]. A

traditional single-antenna set-up, shown in Figure 1, can be considered to be a

single-input, single-output (SISO) system.

Transmitter Receiver

Fig 1. A wireless SISO transmission system.

Single-input, multiple-output (SIMO), illustrated in Figure 2, is an antenna

configuration with multiple receive antennas. This has historically been the most

straightforward multi-antenna technology. It can be utilised for enhancing the

signal at the receiver by combining the signals (in what is called array gain) or

to obtain diversity at reception. The maximum achievable diversity order in the

SIMO antenna configuration case is equal to the number of receive antennas [8].

Transmitter Receiver

Fig 2. A wireless SIMO transmission system.

Multiple-input, single-output (MISO), illustrated in Figure 3, refers to antenna

configuration with multiple transmit antennas. The transmitter diversity order

in a MISO system is equal to the number of transmit antennas if independently

faded streams can be assumed. Diversity can be achieved with space–time codes

25

(STCs) [9]. In addition to diversity, multiple transmit antennas can be exploited

also for beamforming. Beamforming can increase the signal strength at the

receiver or minimise the interference at the receiver [10].

Transmitter Receiver

Fig 3. A wireless MISO transmission system.

MIMO antenna configurations (as shown in Figure 4) – that is, having multiple

receive and transmit antennas – can be used to obtain a diversity gain or an array

gain. However, in the case of multiple receive and multiple transmit antennas

there is also the possibility of spatial multiplexing [11]. In environments with

a high signal-to-noise ratio (SNR), spatial multiplexing can increase the data

rates significantly. Diversity and beamforming techniques can raise the SNR in

proportion to the number of antennas, and a higher SNR enables higher data rates.

However, this is true only for operation within a power-limited regime. If the

system is bandwidth-limited, data rates will saturate with these techniques. In

such a case, spatial multiplexing can increase the data rate. In optimal conditions,

the capacity can be made to grow linearly with the number of antennas and

without data rate saturation [7]. Diversity/beamforming and spatial multiplexing

gain can be achieved simultaneously in MIMO communications; however, there

is always a trade-off between lower error probability and higher data rates [12].

Spatial multiplexing gain can be better exploited in good channel conditions and

diversity/beamforming schemes in poor channel conditions.

The Bell Laboratories Layered Space-Time (BLAST) architecture [13] provides

an efficient transmission structure for utilising the multiplexing gain of MIMO

channels. The approach originally proposed, known as Diagonal BLAST (D-

BLAST) [13], suffers from high implementation complexity. There is also a

simplified version of BLAST, known as Vertical BLAST (V-BLAST) [14].

26

Transmitter Receiver

Fig 4. A wireless MIMO transmission system.

1.3 SC-FDMA technology

A MIMO scheme is used in, for example, wideband systems that experience

frequency-selective fading and therefore ISI [11, 15]. A multi-carrier transmission

scheme such as orthogonal frequency-division multiplexing (OFDM) can be used

to avoid ISI. Instead of employing a single wide frequency-selective channel,

OFDM divides the channel into a set of parallel frequency-flat fading subchannels.

Two adjacent subcarriers cause no interference to each other if the orthogonality

between the subcarriers is preserved. To avoid loss of inter-subcarrier orthogo-

nality, a cyclic prefix (CP) is typically used in frequency-selective channels. The

CP should be long enough to accommodate the delay spread of the channel.

One can implement OFDM-based modulation and demodulation with an inverse

fast Fourier transform (IFFT) and fast Fourier transform (FFT), respectively.

A MIMO-OFDM transmission scheme has been adopted for several wideband

systems and has also been incorporated into many upcoming wireless standards.

The OFDMA approach is a multi-user version of OFDM.

The key drawbacks of OFDM are its sensitivity to synchronisation errors and

high PAPR [16]. Power signal variations are huge, and highly linear amplifiers

with a large dynamic range are needed. Single-carrier FDMA, also called linearly

precoded OFDMA (LP-OFDMA), offers an alternative to OFDMA, especially in

the uplink communications where a lower PAPR improves the UE transmitter’s

power-efficiency and reduces the cost of the power amplifier. One can consider

SC-FDMA to be a linearly precoded OFDMA scheme with an additional direct

Fourier transform (DFT) processing step. The SC-FDMA approach has been

adopted as the uplink multiple access scheme in LTE/LTE-A [17, 18].

27

Subcarrier
mapping P/S

Channel

M-point
IDFT
(IFFT)

Add
CP/PS

DAC/
RF

N-point
DFT
(FFT)

P/S

Subcarrier
demapping/
Equalisation

S/P
M-point

DFT
(FFT)

Remove
CP

RF/
ADC

N-point
IDFT
(IFFT)

P/SDetect

+SC-FDMA

OFDMA

Fig 5. The differences between OFDMA and SC-FDMA systems.

The use of an additional DFT mapper, highlighted in Figure 5, is the main

difference between an OFDM and SC-FDMA transmitter. The sequence of

information bits for each user is mapped to complex modulation symbols by

such means as binary phase-shift keying (BPSK), quadrature phase-shift keying

(QPSK), or QAM. The modulated symbols are then grouped into a block of

N symbols. The N -point DFT is used to translate these symbols into the

frequency domain. The frequency-domain samples are mapped to a subset of M

subcarriers, where M is typically greater than N . An M -point inverse direct

Fourier transform (IDFT) generates time-domain samples of these subcarriers,

and a CP is added before digital-to-analogue conversion (DAC).

In SC-FDMA, each data symbol is DFT transformed before subcarrier

mapping. Therefore, SC-FDMA is often described as DFT-precoded OFDM.

In OFDM, each data symbol is carried on a separate subcarrier. With SC-

FDMA, instead the frequency-domain samples of the subcarriers are mapped

to subcarriers. Therefore, each symbol is carried by multiple subcarriers. The

difference between OFDMA and SC-FDMA symbol structure is illustrated in

Figure 6.

28

Time

Amplitude

Frequency

OFDMA

symbol

SC-FDMA

symbol

OFDMA

symbol

SC-FDMA

symbol

CP

OFDMA SC-FDMA

CP

Fig 6. Subcarriers in OFDMA and SC-FDMA systems.

1.4 Aims, outline and contributions of this thesis

New data services and applications on mobile devices are becoming more and

more popular, and demand in the mobile broadband communications domain is

growing dramatically. This thesis focuses on increasing the spectrum-efficiency

of mobile broadband uplink transmission. The need for MIMO configuration to

improve spectrum-efficiency gives impetus to the study of advanced receivers

for combating IAI and ISI. Although various receiver structures have been

extensively considered with regard to MIMO receivers, the emphasis has been

on the ones operating in OFDM systems (i.e., downlink), wherein ISI is not a

problem [19–23]. The objective in the thesis project, in contrast, was to analyse,

propose, and implement various structures for SC-FDMA systems – i.e., for

uplink. The proposed receiver structure separates the mitigation of ISI and of

IAI into their own stages.

In this thesis, several uplink receivers are compared via MATLAB simulations,

with the objective being to achieve good understanding of how these receivers

perform in various channel environments. One receiver structure has been

chosen for closer examination. Several possible MIMO detector algorithms are

considered for this receiver. Furthermore, one MIMO detector is selected, and

29

optimal detector parameters suitable for a real-world urban mobile broadband

channel environment are proposed. The second objective for the research involved

the implementation issues with MIMO detectors. With the goal of a good

understanding of the complexity of these algorithms, field-programmable gate

array (FPGA) implementations using high-level synthesis (HLS) tools were

developed for the selected MIMO detector. In the thesis, several architectures are

considered and compared. With HLS tools, C code is converted automatically

into register-transfer level (RTL) language. These tools might come to challenge

hand-written RTL language. Accordingly, the evolution of HLS tools, along

with the effect of FPGA technology’s evolution from 28 nm to 16 nm silicon

technology, is examined also. The thesis is organised as outlined below.

The next chapter provides brief description of the technologies selected for

purposes of this thesis. Optimal MIMO detection is introduced, along with

its suboptimal approximations. Implementation aspects are discussed, and

the challenging computation operations are outlined. In addition, HLS design

methods are introduced.

Chapter 3 presents the MIMO SC-FDMA system model applied in the

thesis project. It introduces the conventional MIMO receiver structure but

also alternative receiver structures aimed at improving frame error rate (FER)

performance. A novel two-stage frequency-domain minimum mean-square error

(MMSE) filter with sphere-detection receiver is described in more detail. The

chapter also lists a few optional receiver-structure modifications.

Then, in Chapter 4, the SC-FDMA receiver structures are compared via

computer simulations in various channel conditions and antenna configurations.

Additionally, several MIMO detector tree-search algorithms and their optimal

parameters are evaluated. For a reference, the benefit of iterative feedback

from the decoder and also full turbo receiver structure are simulated. Finally,

complexity estimations for the MIMO detector algorithms are calculated and the

performance–complexity characteristics of these detectors are discussed.

Chapter 5 addresses the HLS development environment and the implementa-

tion requirements, and it specifies the architectures for the FPGA implementa-

tions. Additionally, examples of the FPGA parametrisation and optimisation

used in the implementations are offered.

Then, Chapter 6 describes the implementation results. Firstly, the different

architectures for the selected MIMO detector are compared. Discussion then

30

turns to the evolution of HLS tools, with comparison of implementation results

across three separate HLS tools (Mentor Graphics Catapult C 2010, AutoESL

AutoPilot 2011, and Xilinx Vivado HLS 2017). Thirdly, the evolution of FPGA

technology is discussed via comparison of implementation results between FPGAs

ranging from 28 nm to 16 nm technology.

The final chapter summarises the results and presents discussion of directions

for future research and open problems.

Some of the research results have been submitted to or published in journals,

three in all [24–26], and in conference papers [27, 28]. The author had the

majority of the responsibility for developing the original ideas and for writing

the papers. The author also participated in the fundamental work for [29].

The simulation software was developed by Dr Juha Karjalainen and Dr

Jouko Leinonen, and the channel model used in the simulator was written by

Dr Esa Kunnari. The detection algorithms applied by the simulation software

were original work by Dr Markus Myllylä and Dr Johanna Ketonen. The novel

two-stage receiver concept was developed in collaboration with Dr Ketonen and

Dr Karjalainen. The author made significant changes to the simulator in order

to generate the results presented in this thesis. In addition to being responsible

for all the computer simulations, the author carried out all of the hardware (HW)

syntheses for the 40 nm FPGA technology. The latest synthesis results for the

28–16 nm FPGA technology were generated in co-operation with Muhammad

Saad Saud and Hamid Yadegar Amin. In summary, the main contributions

represented by the thesis are the following:

– A proposal to improve the FER performance of a traditional SC-FDMA

MIMO MMSE receiver [25, 29]

– Evaluation of the selected detection algorithms and their parameters for the

proposed receiver in 4× 4, 2× 2, and 1× 4 MIMO scenarios and in several,

quite different sets of channel conditions [25, 29]

– Performance–complexity comparisons for the MIMO detector algorithms

considered herein [25, 29]

– 8-best list sphere detector (LSD) MIMO detector architecture comparison

involving two separate HW FPGA implementations to evaluate the feasibility

of a sort-free architecture [24, 27]

– Analysis of HLS tools’ evolution, employing three HLS tools, representing

31

three distinct generations [28]

– Efficiency comparisons between the HLS implementations and hand-written

RTL language [26]

– Analysis of FPGA technology’s evolution on the basis of several hardware

implementations, ranging from 28 nm to 16 nm FPGA technology [28]

32

2 Literature review

This chapter introduces and reviews the relevant background and parallel research.

The discussion begins with MIMO detection, presented in Section 2.1, and the

implementation aspects of MIMO detectors, in Section 2.2. Subsection 2.1.1

expands on the optimal MIMO detection method, and the suboptimal linear

and non-linear detection methods are described in Subsection 2.1.2. The third

subsection addresses the tree-search structures for MIMO detection. As for

implementation, the computations that impose challenges for implementation,

QR decomposition (QRD) and sorting, are described in subsections 2.2.1 and

2.2.2, respectively. Application-specific integrated circuit (ASIC), FPGA, and

digital signal processor (DSP) technology are reviewed in Subsection 2.2.3, before

the final subsection introduces the high-level synthesis design method exploited

in this thesis.

2.1 MIMO detection

2.1.1 Optimal detection

The optimal hard-output detector in MIMO systems is the maximum-likelihood

(ML) detector [30, 31]. The ML detector solves the closest lattice point problem

by calculating the Euclidean distances between the received signal vector y and

lattice points Hx, where lattice points are formed by multiplication between

the channel matrix H and received vector x. The detector goes through all the

lattice points and selects the single closest one. Therefore, the ML detector is

considered a hard-output detector. The complexity of the ML detector grows

exponentially with the number of antennas and modulation order. Hence, it is

simply too complex for practical implementation.

Most of the modern broadband communication systems apply forward error

control (FEC) together with spatial multiplexing to reach the channel capacity

limit. The detection and decoding are performed separately, but the information

is exchanged between the soft-output detector and decoder. The optimal soft-

output detector is the maximum a posteriori probability (MAP) detector [32].

The soft-output a posteriori probabilities (APPs) of the transmitted symbol are

33

expressed with log-likelihood ratio (LLR) values. Yet the MAP detector is even

more complex than the ML detector.

As indicated above, the optimal ML and MAP detection methods are not

feasible for practical implementations. This is especially true with a high number

of antennas and high-order modulations. The literature gives a few examples

of ML very-large-scale integration (VLSI) implementations [33–35], but these

are limited to QPSK modulation in a 4 × 4 MIMO antenna configuration.

Approximations for the ML and MAP detectors are needed for creation of

efficient hardware implementations.

2.1.2 Suboptimal linear and non-linear detection

Suboptimal linear detectors have low complexity when compared to the optimal

ML and MAP detectors. However, the performance of these detectors is low to

average with correlated fading channels and in environments with a low SNR

[13, 36–38]. A linear detector can be implemented with, for instance, zero-forcing

(ZF) or a linear minimum mean-square error (LMMSE) equaliser [39]. Though

ZF removes the ISI, it often increases the noise level significantly. The LMMSE

approach constitutes an attempt to find a balance between ISI mitigation and

noise cancellation.

Successive interference cancellation (SIC) is a non-linear improvement to

the linear detector. The algorithm uses ZF or MMSE equalisation to cancel

the first-MIMO-layer interference that is caused by the other layers. The

procedure continues by repeating this procedure for all the other layers. The

error propagation is easily offset by the successfulness of the first-layer detection.

Therefore, the strongest layer should be detected first if one is to achieve the best

possible performance with regard to error rate. Ordered successive interference

cancellation (OSIC) [14, 40, 41] or V-BLAST improves this detection method by

detecting the layer with the highest signal-to-interference-plus-noise ratio (SINR)

first. The procedure continues by detecting the second-strongest layer next and

so on.

34

2.1.3 Tree-search algorithms

Also, a tree-search structure can be used for MIMO detection. The sphere

detector (SD) is a well-known tree-search algorithm in common use. The sphere

detector approximates the ML solution with a reduced number of candidate

symbols; i.e., only the lattice points that are inside a sphere of a given radius

are considered [42]. A preprocessing phase of QR decomposition of the channel

matrix is required for enabling the tree-based search over the lattice points. The

trade-off between performance and complexity results can be adjusted via the

radius of the sphere. The tree-search algorithms can be divided into depth-first,

breadth-first, and metric-first algorithms [43, 44].

The depth-first tree search is performed one branch at a time. Examples

of depth-first algorithms are the Viterbo–Boutros (VB) algorithm [45] and

Schnorr–Euchner enumeration (SEE) [46]. The search is performed branch by

branch from the first level of the tree to the last or until a threshold value is

reached. The challenge in the depth-first strategy is in finding a good value

for the threshold. The depth-first algorithm finds the exact ML solution if the

threshold approaches infinity, although the complexity in this case would be

massive.

In the second option, the breadth-first tree search is performed by expanding

the nodes of each level in the tree before moving to the next level. The most

well-known breadth-first algorithm is the K-best algorithm [47], based on the

M -algorithm [48]. The K-best algorithm proceeds one layer at a time, and

after each layer the number of paths included is determined by a constant, K.

Sorting after each layer is applied to include only the paths with the shortest

Euclidean distances. Since the K-best method discards some of the paths before

the bottom of the tree is reached, algorithms in this class do not guarantee the

ML solution. However, with carefully selected parameters the solution is close to

optimal.

Finally, the metric-first tree search [49] represents the optimal number of

nodes visited. One example algorithm is the ever-increasing-radius sphere

detector (IR-SD) [50], which increases the sphere radius as the tree search

progresses. The algorithm can find the optimal ML solution but requires a large

amount of memory.

In addition to tree-search algorithms approximating the hard-output ML

35

solution, several algorithms that approximate the soft-output MAP detector’s

performance have been proposed. A layered orthogonal lattice detector (LORD)

[51] exploits the channel orthogonalisation process. It achieves performance very

close to the MAP detector’s if there are no more than two transmit antennas.

Selective spanning with fast enumeration (SSFE) [52] uses the enumeration from

the SEE algorithm. It does not guarantee the MAP solution. On the other hand,

no sorting is required. This reduces the complexity. Third example is the K-best

LSD algorithm, a modification of the popular K-best algorithm [19].

2.2 Implementation aspects

2.2.1 QR decomposition

There are some challenging computations involved in real-time MIMO detector

implementations. The first one is a matrix-inversion or equivalent operation.

There exist two classes of method for the matrix inversion: iterative and direct

methods. Iterative matrix inversion can be performed by means of the Jacobian

method, the Gauss–Seidels method, or Newton’s iteration [53]. These cannot

be accelerated with parallel processing and therefore are not recommended for

ASIC or FPGA implementation [54]. The direct methods can exploit Gaussian

elimination, Cholesky factorisation, or QR decomposition [55]. The Gaussian

elimination and Cholesky factorisation approaches are less accurate than QRD

[56, 57]. While certain methods can be applied to improve the performance of

either, these cannot be applied in all conditions.

The QRD can be implemented via Givens rotations [58], Householder

transformations [59], or Gram–Schmidt (GS) orthogonalisations [60]. A larger

amount of parallel processing can be exploited for the Givens rotations than

for the Householder transformation [60]. The GS process can be implemented

in the form of the modified Gram–Schmidt (MGS) process, which enables

maintaining orthogonality between the vectors irrespective of rounding error.

This is important for reason of finite-bit precision. In light of the literature

review performed, QRD using the MGS was exploited in the work described in

this thesis without further performance/complexity comparisons.

36

2.2.2 Sorting

The second challenging computation process from the MIMO detector implemen-

tation point of view is the sorting operation. Sorting is a complex operation

and proves challenging for real-time implementations. Yet sorting is needed

for almost all tree-search-based MIMO detectors, to sort the partial Euclidean

distance values before moving to the next level. On account of the real-time

requirements, a low-latency sorter is required. Even a relatively moderate list

size of 8 is computationally complex and usually one of the bottlenecks of the

implementation. These limitations are even more acute with larger list sizes,

such as 64.

The sorting can be implemented via, for instance, a bubble sort [47], insertion

sort [61, 62], or heap sort [63, 64] process. The bubble sort is simple but

inefficient, while the insertion sort and heap sort are both efficient algorithms. In

the insertion sort, the incoming element is compared with all the elements in the

list, one by one. If the new element is smaller than the element it is compared

with, the new element is inserted into the list. Those elements larger than the

new one are shifted upward.

On the basis of the literature review, the choice was made to apply only the

insertion sort in the thesis project. However, a Schnorr–Euchner strategy was

applied also, as an alternative solution. This can be used to eliminate the need

for sorting, by employing a threshold for a candidate’s selection [52, 65–67]. The

tree-search-based MIMO detectors can be modified to exploit this strategy.

2.2.3 Technology

Implementations of various types of LSD and other tree-search algorithms

have been considered in earlier work, mostly in the downlink MIMO-OFDM

context [20–22, 68]. An ASIC has been the preferred technology for the most

demanding wireless communication applications. It is always customised for

a particular use, instead of being a general-purpose programmable platform.

The literature provides example ASIC implementations of MIMO detectors

that can be considered as references [19, 23, 47]. An approach for reducing

sorting-operation complexity has been proposed [69], and sort-free K-best

algorithms have been implemented also [70, 71]. An ASIC implementation of

37

a LORD algorithm has been presented in addition [72], as have several SSFE

algorithm implementations [52, 73, 74].

Significantly fewer programmable MIMO detector implementations have been

reported upon. The FPGA implementations can achieve close to ASIC-level

performance, and wireless communication algorithm implementations for FPGAs

are found increasingly in the literature. An FPGA implementation of K-best

(or, rather, a K-best and SSFE mixed algorithm) is presented in prior work [75].

Digital signal processor implementations exist too, but their performance is

usually somewhat limited. The DSP platforms can already support communica-

tion standards such as WCDMA and GSM/GPRS [76]. The literature describes

one of the first lattice detector implementations in DSP context [77].

Additionally, there have been a few graphics processing unit (GPU) [78–

80] and transport-triggered architecture (TTA) implementations [61, 81] of

MIMO detectors. The possibilities for future use of GPU implementations are

particularly interesting. Several TTA implementations are addressed in the

previously mentioned publications [24, 27]. However, this thesis considers only

FPGA implementations; TTA results are beyond its scope.

2.2.4 High-level synthesis

HLS refers to automated design methodology wherein RTL language is generated

automatically from higher-level source code. The languages accepted as input by

the recently released versions of HLS tools in most cases are ANSI C, C/C++,

and SystemC.

While HLS tools have been available for quite a long time, only the latest

releases have gained widespread interest. The Behavioral Compiler, introduced

in 1994 by Synopsys, can be considered to be the first HLS product, though

‘behavioral synthesis’ and ‘algorithmic synthesis’ were more commonly used

terms at the time. The real emergence of HLS tools started in 2004 with the

next generation of HLS products. Those tools accepted the popular C language

as input and enabled the required flexibility and ease of use. Mentor Graphics

Catapult C and AutoESL AutoPilot are examples of the HLS tools of that

generation. In January 2011, Xilinx acquired HLS solution vendor AutoESL

Design Technologies, Inc. and the AutoPilot tool changed name, to ‘Vivado HLS’.

Likewise, in August 2011, the Catapult C product was acquired by Calypto

38

Design Systems, which, in turn, was acquired in 2015 by Mentor Graphics. Thus,

Mentor Graphics regained control of Catapult C before being sold to Siemens in

2017. Catapult C was the first tool used in the thesis project. However, it was

later discarded because of the long synthesis time required for large designs. In

its place, various versions of AutoESL AutoPilot and later Xilinx Vivado HLS

were used to create the MIMO detector implementations described in Chapter 4.

The latest versions of Catapult C were not evaluated.

The functions of the logic are developed by means of source code written

with integer and fixed-point bit-accurate data types. The HLS tool generates

device-specific RTL language – Verilog or Very High Speed Integrated Circuit

Hardware Description Language (VHDL) – description targeting either an FPGA

or an ASIC. The RTL language generated is based on the source code and

honours the constraints and parameters set by the user also. The main benefit

of HLS is in the reduced time to create the hardware and the decrease in errors

relative to manually generated register-transfer language.

The HLS tool providers have employed two strategies for marketing their

products. The first focuses on stating that they increase the productivity of

research and development. An evaluation by Berkeley Design Technology [82]

states that the HLS tools can achieve results close to those of manually written

RTL language. Although optimal design demands many iterations and a lot of

time also with HLS tools, those tools provide the possibility of balance with

regard to the time used for the implementation and the quality of the design. In

addition, HLS tools enable creating multiple architectures, in accordance with

different performance–complexity specifications; comparing these; and choosing

the one desired. In the second marketing strategy that is frequently applied, it is

stressed that FPGAs could challenge DSPs by introducing an FPGA design

process similar to the DSP approach [82]. This could make it appealing for DSP

experts to consider FPGAs for certain algorithm implementations. Although

ASICs are always more efficient than FPGAs in high volumes, FPGAs could

compete with DSP applications, which typically require programmability. It is

noteworthy that HLS tools have already been used for MIMO detector FPGA

implementations [83, 84] and in the ASIC domain [85].

39

40

3 System model and receiver structures

3.1 System model

The system model assumed in this thesis is presented in Figure 7. It is a vertically

encoded single-carrier MIMO system with T transmit and R receive antennas.

At the transmitter, the data get encoded, interleaved, and modulated into

symbols. A cyclic prefix is added after the parallel-to-serial conversion. At the

receiver, the cyclic prefix is removed and a K-point DFT is performed. Symbols

from the allocated carriers are selected, and frequency-domain equalisation is

performed. The symbols are translated back into the time domain, and bit LLRs

are calculated at the detector. Finally, the LLRs are passed to the decoder.

Encoder Modulation

K-point
IDFT

K-point
DFTDecoder EqualiserDetector

Channel

π S/P
CP

CP

CP

CP
π-1

...
...

T

R

Fig 7. The vertically encoded single-carrier MIMO system model.

After removal of the cyclic prefix, received signal vector r ∈ C
RK can be expressed

as

r = Hx+ v, (1)

where H is the channel matrix, x ∈ C
TK is the transmitted signal, and v ∈ C

RK

is a complex Gaussian noise element with variance σ2 and zero mean. Channel

matrix H can be denoted as

41







H1,1 · · · H1,T

... · · ·
...

HR,1 · · · HR,T






,

where Hr,t ∈ C
K×K is the subchannel matrix between the tth transmit and the

rth receive antenna.

3.2 SC-FDMA MIMO receiver structures

The most conventional MIMO receiver structure consists of the frequency-domain

linear MMSE equaliser with soft demodulator. The ISI and the IAI term are

counteracted by the same linear MMSE filter [35]. This structure is illustrated

in Figure 8. The soft demodulator is used to calculate the LLRs for the decoder.

No further IAI suppression is performed in the soft demodulator, as the LLRs

are calculated separately for each stream. This receiver, which performs well but

not optimally, was used as a reference for the simulations.

Remove

CP
DFT IDFT

Soft

demod.

P/S Decoder

Remove

CP
DFT

MMSE

IDFT

De-int..
.

..
.

Soft

demod.

R
R

zr

Fig 8. Linear MMSE equalisation and soft demodulation, c© 2011 EURASIP [29].

The first option considered in the thesis project for improving the FER perfor-

mance of the conventional MMSE-based MIMO receiver was a time-domain

sphere detector with combined mitigation of ISI and IAI as illustrated in Figure

9. The time-domain channel matrix for the QRD would have dimensions of

R× T × L, where L is the length of the channel and R and T are the number of

receive and of transmit antennas, respectively. This means that the complexity

increases dramatically, with an additional factor of L, as the number of antennas

and the channel length increase. The time-domain sphere detector would in

principle yield good communication performance, but it was considered too

complex for practical implementation in the 4× 4 MIMO case. Therefore, this

42

receiver was ultimately rejected.

Remove

CP
DFT

Subcarrier
de-map

IDFT

Remove

CP
DFT

Subcarrier
de-map

IDFT

Sphere

detector
DecoderDe-intP/S..

.R

..
.R

..
.T

Fig 9. Time-domain sphere detection.

Another option for improving the FER performance of a MIMO receiver concept

was developed and proposed [29]. This can be referred to as the frequency-domain

MMSE filter with sphere detection. Therein, the ISI and IAI mitigation are

performed in separate stages and the complexity level is much lower than that

with time-domain SD processing. The MMSE filter is applied initially to suppress

the ISI, as is done in conventional single-antenna SC-FDMA communications.

Its operation can be interpreted also as a channel-shortening filter, producing

a shortened channel matrix for the sphere detector. The sphere detector is

subsequently used for MIMO detection – i.e., for removing the IAI between the

spatial streams. Several distinct tree-search algorithms could be used to perform

the MIMO detection in this receiver structure. The structure of the receiver

for vertically encoded R× T MIMO is illustrated in Figure 10. In the sections

below, the MMSE filter and two individual tree-search algorithms are described

in more detail.

Remove

CP
DFT

Sphere

detector
Decoder

IDFT

Remove

CP
DFT

MMSE

IDFT

De-intP/S

zr

White

ning

zw

..
.R

..
.T ..
.T

Fig 10. Frequency-domain MMSE with sphere detection, c© 2011 EURASIP [29].

3.3 MMSE filter

The linear MMSE filter of the proposed receiver [29] is used to suppress only

ISI. Coefficients Ω ∈ C
RK×RK for the filter can be calculated by means of the

43

MMSE criterion [29, 86]:

Ω = argmin
Ω

tr{Ex,v{(F
−1

R Ω
H
FRr− H̃x)(F−1

R Ω
H
FRr− H̃x)H}}

︸ ︷︷ ︸

e

, (2)

where the expectation E{·} is with respect to x and v, FR ∈ C
RK×RK is a block

diagonal DFT matrix IR ⊗ FK (IR is the identity matrix, ⊗ is the Kronecker

product and FK is the DFT matrix), H̃ ∈ C
RK×TK is the target channel matrix

(it consists of submatrices diag(Hr,t), or the diagonal elements (first-channel

taps) from Hr,t), tr{·} is the matrix trace operator, and e is the mean-square

error (MSE). The MMSE filter can be expressed as [29]:

Ω = Σ−1
r ΓΓ̃H, (3)

with

Σr = ΓΓH + σ2I ∈ C
RK×RK , (4)

where I ∈ R
RK×RK is an identity matrix and the frequency-domain channel

matrix Γ = FRHF−1
T ∈ C

RK×TK . The (i, j) term of the equivalent channel

Φ ∈ C
R×T can be calculated as

ϕi,j =
1

K
tr((Γ̃ΓHΣ−1

r Γ)i,j), (5)

where i = 1, ..., R and j = 1, ..., T and where the (i, j) term of the covariance of

residual interference Σw ∈ C
R×T is

σ2
i,j =

1

K
tr((Γ̃ΓHΩ)i,j)−

1

K
tr((ΩHΓΓHΩ)i,j). (6)

Equalised signal z ∈ C
RK after the IDFT can be expressed as

z = F−1
R ΩHFRr. (7)

The noise is no longer white after the frequency-domain filtering. It has a

covariance matrix Σw obtained via Equation 6. The likelihood-function term

1/σ2||z−Φs||22 becomes Σ
−1/2
w ||z−Φs||22, where s refers to a transmitted symbol

vector candidate. One can take the covariance of residual interference into

account either by including it in the distance calculations or by whitening the

noise. For purposes of this thesis, noise whitening is exploited. The whitening

44

can be performed via multiplication of z and Φ by the inverse square root of

covariance matrix Σw; i.e.,

zw = Σ−1/2
w z (8)

and

Φw = Σ−1/2
w Φ. (9)

The square root can be obtained from

Σ1/2
w = chol(Σw) (10)

or

Σ1/2
w = UΛ1/2, (11)

where Σw = UΛUH and Λ contains the eigenvalues and U the eigenvectors of

Σw.

3.4 Sphere detector

The structure of the sphere detector of the proposed receiver [29] is presented

in Figure 11. The QR decomposition Φw = QR for the whitened channel

matrix is performed in the QRD block, with Q ∈ C
R×R and R ∈ C

T×R. The

channel matrix Φ is common to all symbol vectors in z. Hence, the QRD is

performed only once. Each symbol vector zw[n]
∈ C

T from the whitened vector

zw is multiplied by the matrix Q, leading to z′w[n]
= Qzw[n]

. The actual tree

search is performed separately for each whitened symbol vector.

LLR

calc.

QRD

Tree

search
De-map

Q

R

L

d²(L)

Lb

Matrix

mult.

Φw

z w[n]
zw[n]

Fig 11. The sphere-detector structure, c© 2011 EURASIP [29].

The square of the distance between the partial candidate symbol vector and the

partial received vector is referred to as the squared partial Euclidean distance

45

(PED) of sTi . It can be calculated in the sphere-detector block as

d(sTi) =

T∑

j=i

∣
∣
∣
∣
∣
∣

z
′

w[n]j
−

T∑

l=j

Rj,lsl

∣
∣
∣
∣
∣
∣

2

, (12)

where i = T . . . , 1 and sTi denotes the last T − i+ 1 components of vector s [87].

The resulting list of candidate symbol vectors L is de-mapped into binary

form, and the LLR for transmitted bit k is calculated as

LD(bk) = ln
p(zw[n]

|bk = +1)

p(zw[n]
|bk = −1)

, (13)

where

p(zw[n]
|bk = +1) =

∑

s∈Θ,bk=+1

e
−d(s)

2 (14)

(in which Θ is the set of possible transmitted symbol vectors).

The number of tree-search algorithms considered for the receiver case examined

in this thesis has been limited to 2 to keep the quantity of simulation scenarios

moderate. Of the algorithms listed in Subsection 2.1.3, the K-best LSD and

SSFE algorithms are considered for the receiver. The popular K-best algorithm

[19] represents an efficient algorithm achieving solutions close to the MAP

optimum with carefully selected parameters. The SSFE algorithm does not

require sorting and potentially reduces complexity [52].

The K-best LSD algorithm [88] is a breadth-first tree-search algorithm and a

modification of the popular K-best SD algorithm [47]. At each level, it continues

with the K nodes that have the smallest accumulated Euclidean distances. If the

PED is larger than the squared sphere radius C0, the corresponding node does

not get expanded. However, for this thesis C0 is set to ∞ and a value for the list

size of K is used, as is common with K-best algorithms. Figure 12 illustrates

the K-best tree-search structure for a real-valued 4× 4 antenna system using

64-QAM and a list size of 4. In a complex-valued system, there would be only

four levels but on each level the parent node would be expanded into 64 nodes.

The K-best approach requires sorting of the nodes after each level so that the

tree search can continue with a limited number of candidates as dictated by

the K value. The sorting shown in Figure 12 has to be done for 32 candidates,

resulting in eight survivors for the next level. Similarly, in a real-valued 4× 4

64-QAM system with a list size of 8, there are eight levels and at each level

46

the parent node is expanded into eight nodes. However, the sorting has to be

done for 64 candidates, yielding eight survivors. After the final level in the

tree search, the sorted list of Euclidean distances is the final candidate list for

possibly transmitted symbols.

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

Level 8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Sorting

32  4

Sorting

8  4

Sorting

32  4

Sorting

32  4

Sorting

32  4

Sorting

32  4

Sorting

32  4

Fig 12. 4-best algorithm (4× 4, 64-QAM, real-valued system model).

47

Selective spanning with a fast enumeration algorithm [89] was another approach

used for executing tree search in the thesis project. Here, the spanning vector

m = [m1, ...,mM] determines the number of spans for each node on level i and

also the length of the final candidate list. For example, in a real 2× 2 antenna

and 16-QAM system, the node spanning vector m = [4, 4, 4, 4] would lead to

an optimal tree search and a length of 256 candidates for the final list. This

would be extremely complex, however. The spanned nodes are never deleted,

and the number of nodes in the search tree can be determined via the vector m

(i.e.,
∏T

j=i mj). Figure 13 presents the SSFE tree search with node spanning

vector m = [8, 8, 1, 1, 1, 1, 1, 1] for the real-valued 4× 4 antenna 64-QAM system

illustrated in Figure 12. Here, the first two levels are fully expanded. For the

next levels, a slicing unit is used to select the closest node. This results in a final

candidate list of 64 items.

The slicing unit is used for selecting the set of closest constellation points si

such that the PED increment is minimised at each level, as in this example:

∥
∥ei(s

i)
∥
∥
2
=

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

z
′

w[n]i
−

T∑

j=i+1

Ri,jsj

︸ ︷︷ ︸

bi+1(si+1)

−Ri,isi

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

2

. (15)

Minimising
∥
∥ei(s

i)
∥
∥
2
is equivalent to the minimisation of ‖ei(s

i)/Rii‖
2:

∥
∥
∥
∥

ei(s
i)

Rii

∥
∥
∥
∥

2

=

∥
∥
∥
∥
∥
∥

bi+1(s
i+1)/Rii

︸ ︷︷ ︸

ε

−si

∥
∥
∥
∥
∥
∥

2

. (16)

48

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

Level 8

1 2 3 4 5 6 7 8 57 58 59 60 61 62 63 64

Full expansion

Full expansion

Slicing to the closest node

Slicing to the closest node

Slicing to the closest node

Slicing to the closest node

Slicing to the closest node

Slicing to the closest node

Fig 13. SSFE[8,8,1,1,1,1,1,1] algorithm (4× 4, 64-QAM, real-valued system model).

3.5 Possible receiver modifications

The structure of the frequency-domain MMSE with sphere-detection receiver

could be further modified. Two separate modifications for the proposed receiver

are presented here. These enable fine tuning of the performance–complexity

ratio of the receiver. Antenna grouping can be exploited to lower the complexity,

49

with the trade-off decreasing the FER performance also, whereas LLR iteration

can be exploited to increase FER performance at the cost of adding to the

scheduling complexity.

3.5.1 Antenna grouping

There is a possibility of dividing the antennas into groups and performing

groupwise MMSE – i.e., removing IAI between antenna groups. In that case, the

sphere detector would involve division into groups and would have lower overall

complexity. However, this would incur a performance–complexity trade-off.

Although the possibility of antenna grouping is worth mentioning, for this

thesis all the antennas form one group and no IAI is removed in the MMSE

equalisation.

3.5.2 LLR iteration

Another possible modification is the iterative LLR calculation illustrated in

Figure 14. The LLRs could be updated from the decoder feedback iteratively.

No modifications are required for the tree search algorithm; they are needed only

for LLR and decoder scheduling.

Deint. Decoder

Inter-

leaver

LLR

calc.

QRD

Tree

search
De-map

Q

R

L

d²(L)

Lb

Matrix

mult.

LA

Φw

z w[n]
zw[n]

Fig 14. The iterative sphere-detector structure.

In the iterative LLR approach, the LLRs are updated from decoder feedback LA

50

as

L̂D(bk|zw[n]
) = LA(bk) + ln

∑

b∈Lk,+1
exp(Λ(b,b[k], lA,[k]|zw[n]

,Φw))
∑

b∈Lk,−1
exp(Λ(b,b[k], lA,[k]|zw[n]

,Φw))
,

where

Λ(b,b[k], lA,[k]|zw[n]
,Φw) = −

1

2
||zw[n]

−Φws||2 +
1

2
bT
[k]lA,[k], (17)

with lA,[k] being a vector of LA and b[k] being a vector corresponding to k from

transmitted binary vector b.

The approach of LLR iteration has been exploited in the thesis project, and

simulation of the resulting performance gain is presented in the next chapter.

51

52

4 Simulation results

FER performance figures for the conventional MMSE receiver and the frequency-

domain MMSE filter with two different tree-search algorithms were compared in

MATLAB simulations. The K-best LSD algorithm was simulated with list sizes

of 8 and 16. A list size of 4 would be relatively small for a 4× 4 64-QAM system;

on the other hand, a size of 16 is still somewhat practical for implementation.

The SSFE algorithm was simulated with node spanning vectors [8,8,1,1,1,1,1,1]

and [4,3,2,2,1,1,1,1]. These represent different node spanning strategies: the

former spans all the nodes on the first two levels and uses slicing for the rest of

the levels, while the latter does not span any of the levels fully but exploits the

node spanning on several levels. The simulation parameters are presented in

Table 1. Pedestrian A, Vehicular A, and Pedestrian B channel models were

used in the simulations [90]. They represent three, considerably different sets of

channel conditions for the simulations. The channel parameters are described

in Table 2. As can be seen from the multipath profile values, the Pedestrian

A channel is the least frequency-selective and the Pedestrian B channel the

most, creating a powerful ISI term. The chosen azimuth spread values result

in spatially correlated channels that render the case both realistic and very

challenging for the MIMO equaliser. The 4× 4 antenna configuration illustrates

the most challenging case, with a high data rate and significant IAI. The 1× 4

one does not serve as a real multi-user MIMO scenario. Instead, it simulates the

impact of uncorrelated streams.

Table 1. Simulation parameters.

Parameter Value

Coding 3GPP turbo code

Code rate 1/2, 2/3

Modulation scheme 64-QAM

Symbol duration 71.4 µs

Channel model Pedestrian A and B; Vehicular A

Antenna configuration 4× 4, 2× 2, 1× 4

53

Table 2. Channel model parameters.

ITU channel model Pedestrian A Vehicular A Pedestrian B

Number of paths 4 6 6

Path delay [ns] [0...410] [0...2510] [0...3700]

Path power [dB] [0...−22.8] [0...−20] [0...−23.9]

BS/UE antenna spacing 4 λ / 0.5 λ 4 λ / 0.5 λ 4 λ / 0.5 λ

BS average angle of arrival 50◦ 50◦ 50◦

BS/UE azimuth spread 2◦ / 35◦ 2◦ / 35◦ 2◦ / variable

4.1 4× 4 MIMO system

4× 4 performance figures for the individual receivers with a correlated Pedestrian

A channel are presented in Figure 15, with a correlated Vehicular A channel

in Figure 16, and with a correlated Pedestrian B channel in Figure 17. All

the simulations were performed also with a code rate of 1/2. The results were

generally in line with the code rate 2/3 ones, but the performance differences

were slightly smaller.

For the Pedestrian A channel, all of the two-stage SD receivers perform

better than the MMSE receiver. Performance improves step by step from the

MMSE to SSFE[8,8,1,1,1,1,1,1], 8-best, SSFE[4,3,2,2,1,1,1,1], and 16-best receiver.

With the Vehicular A channel, all the two-stage SD receivers perform better

than the MMSE receiver, apart from the one using the SSFE[8,8,1,1,1,1,1,1]

tree-search algorithm. The 16-best algorithm shows the highest, 8-best the second-

highest, and SSFE[4,3,2,2,1,1,1,1] the third-highest gain over the MMSE receiver.

However, the differences between the receivers are smaller than in the case of the

Pedestrian A channel. For the Pedestrian B channel, the SSFE[8,8,1,1,1,1,1,1]

receiver again exhibits poor performance. The other two-stage SD receivers show

the same performance as the MMSE receiver.

The simulation results show that with the Pedestrian A channel a two-stage

receiver outperforms the MMSE receiver no matter which sphere-detector

algorithm is used for that receiver. A time-domain sphere detector using either

of the two K-best algorithms or the SSFE[4,3,2,2,1,1,1,1] algorithm outperforms

the conventional MMSE receiver (frequency-domain MMSE equalisation with

soft demodulator) for the Vehicular A channel. With a large delay spread, as

seen with the Pedestrian B channel, the performance of these algorithms is equal

to that of the linear MMSE receiver. The reason is that ISI dominates relative

to IAI, and the proposed MIMO search algorithms cannot perform better than

54

the linear receiver does.

10 12 14 16 18 20 22 24 26 28
Eb/N0 [dB]

10-3

10-2

10-1

100
F

E
R

4x4 64-QAM, Pedestrian A, az.2, 2/3 code rate, 10 MHz

MMSE
8-best
16-best
SSFE [4,3,2,2,1,1,1,1]
SSFE [8,8,1,1,1,1,1,1]

Fig 15. 4× 4 performance for a correlated Pedestrian A channel, c© 2018 Springer [25].

10 15 20 25 30
Eb/N0 [dB]

10-3

10-2

10-1

100

F
E

R

4x4 64-QAM, Vehicular A channel, 50 km/h, 2/3 code rate, 10 MHz

MMSE
8-best
16-best
SSFE [4,3,2,2,1,1,1,1]
SSFE [8,8,1,1,1,1,1,1]

Fig 16. 4× 4 performance for a correlated Vehicular A channel, c© 2018 Springer [25].

55

10 12 14 16 18 20 22 24 26 28
Eb/N0 [dB]

10-3

10-2

10-1

100

F
E

R

4x4 64-QAM, Pedestrian B, az.2, 2/3 code rate, 10 MHz

MMSE
8-best
16-best
SSFE [8,8,1,1,1,1,1,1]

Fig 17. 4× 4 performance for a correlated Pedestrian B channel, c© 2018 Springer [25].

4.2 2× 2 MIMO system

The 2× 2 performance results for the various receivers in the case of a correlated

Pedestrian A channel are presented in Figure 18, a correlated Vehicular A

channel in Figure 19, and a correlated Pedestrian B channel in Figure 20. In a

similarity to the 4× 4 scenario, all simulations were performed with a code rate

of 1/2 also. The results were roughly in line with these (code rate 2/3) results,

but the performance differences were slightly smaller.

For the Pedestrian A channel, all of the two-stage SD receivers show a

clear gain over the MMSE receiver. However, the SD algorithms all perform

equally well, and almost no gain is achieved with a higher-order tree-search

algorithm. With the Vehicular A channel, the SD receivers display clearly less

gain relative to the MMSE option than with the Pedestrian A channel. The

SSFE[8,8,1,1,1,1,1,1] receiver shows even lower performance than the MMSE

receiver, a finding that holds true also for the 4× 4 Vehicular A and Pedestrian

B scenarios. With the Pedestrian B channel, none of the two-stage SD receivers

produces a performance level better than that of the MMSE receiver. Finally,

the SSFE[8,8,1,1,1,1,1,1] receiver exhibits poor performance while K-best with

56

list sizes 8 and 16 and SSFE with node spanning vector [4,3,2,2,1,1,1,1] perform

slightly worse than the MMSE baseline. Again, with a large delay spread for the

Pedestrian B channel, ISI dominates over IAI and the proposed MIMO detector

algorithms cannot perform better than the linear receiver does.

10 12 14 16 18 20 22 24 26 28
Eb/N0 [dB]

10-3

10-2

10-1

100

F
E

R

2x2 64-QAM, Pedestrian A, az.2, 2/3 code rate, 10 MHz

MMSE
8-best
16-best
SSFE [4,3,2,2,1,1,1,1]
SSFE [8,8,1,1,1,1,1,1]

Fig 18. 2× 2 performance for a correlated Pedestrian A channel.

57

10 12 14 16 18 20 22 24 26
Eb/N0 [dB]

10-3

10-2

10-1

100

F
E

R

2x2 64-QAM, Vehicular A channel, 1/2 code rate, 10 MHz

MMSE
8-best
16-best
SSFE [8,8,1,1,1,1,1,1]

Fig 19. 2× 2 performance for a correlated Vehicular A channel.

10 12 14 16 18 20 22 24 26 28
Eb/N0 [dB]

10-3

10-2

10-1

100

F
E

R

2x2 64-QAM, Pedestrian B channel, 2/3 code rate, 10 MHz

MMSE
8-best
16-best
SSFE [8,8,1,1,1,1,1,1]

Fig 20. 2× 2 performance for a correlated Pedestrian B channel.

58

4.3 1× 4 MIMO system

In addition, the virtual multi-user scenario with four separate 1 × 4 MIMO

channels was simulated. The 1× 4 performance results for the various receivers

in the case of a Pedestrian A channel are presented in Figure 21, of a Vehicular

A channel in Figure 22, and of a Pedestrian B channel in Figure 23. These

simulations too were performed with a 1/2 code rate also. The results were in

line with those shown here for a code rate of 2/3 except for showing slightly less

variation.

For the Pedestrian A channel, all of the two-stage SD receivers perform better

than the MMSE receiver, and the differences are significant. There is a clear

gain in each step from MMSE to SSFE[8,8,1,1,1,1,1,1], then SSFE[4,3,2,2,1,1,1,1],

to 8-best, and finally to 16-best. The difference between the 8-best and 16-best

SD algorithms is relatively small.

With the Vehicular A channel, only the K-best algorithms produce gains

over the MMSE receiver. Both SSFE algorithms perform worse than the MMSE

receiver does. The case of the Pedestrian B channel is again challenging for the

SD receivers. Accordingly, no gain relative to the MMSE receiver is achieved.

The SD receiver with the SSFE[8,8,1,1,1,1,1,1] tree-search algorithm displays

clearly worse performance than the MMSE receiver. With other tree-search

algorithms, the performance of the SD receiver is close to that of the MMSE one.

59

10 12 14 16 18 20 22 24 26 28

Eb/N0 [dB]

10-3

10-2

10-1

100

F
E

R

1x4, 64-QAM, Pedestrian A, 2/3 code rate, 10 MHz, 50 km/h

MMSE
8-best
16-best
SSFE [4,3,2,2,1,1,1,1]
SSFE [8,8,1,1,1,1,1,1]

Fig 21. 1× 4 performance for a Pedestrian A channel.

10 12 14 16 18 20 22 24 26 28 30

Eb/N0 [dB]

10-3

10-2

10-1

100

F
E

R

4 users with 1 tx antenna, 4 rx antennas, Vehicular A channel, 2/3 code rate, 10 MHz, 50 km/h

MMSE
8-best
16-best
SSFE [4,3,2,2,1,1,1,1]
SSFE [8,8,1,1,1,1,1,1]

Fig 22. 1× 4 performance for a Vehicular A channel.

60

10 12 14 16 18 20 22 24 26 28

Eb/N0 [dB]

10-3

10-2

10-1

100

F
E

R

1x4, Pedestrian B channel, 2/3 code rate

MMSE
8-best
16-best
SSFE [8,8,1,1,1,1,1,1]

Fig 23. 1× 4 performance for a Pedestrian B channel.

61

4.4 LLR iteration

As explained in Subsection 3.5.2, the performance of the list sphere detector

could be further improved with feedback from the decoder. The performance

gain represented by an iterative 8-best LSD in the 4× 4 case for a Vehicular A

channel is presented in Figure 24. It can be seen that the 8-best LSD using

feedback information from the decoder matches the performance of the normal

16-best LSD. Figure 25 presents a 4× 4 scenario for the Pedestrian A channel

with a different code rate. The LLR iteration increases the performance of the

8-best LSD, but it does not quite reach the performance level of the 16-best LSD.

Virtual multi-user MIMO scenarios for the 1× 4 Pedestrian A and Vehicular A

cases are presented in figures 26 and 27, respectively. In these scenarios, 8-best

and 16-best are equivalent in performance. However, the LLR iteration still

improves the 8-best LSD’s performance.

From several distinct simulation scenarios, the conclusion is that the LLR

iteration always increases performance in the case of the 8-best LSD. In most of

the scenarios, it matches the performance of the 16-best LSD and in performance

terms can be considered a viable alternative to it.

15 20 25 30
Eb/N0 [dB]

10-3

10-2

10-1

100

F
E

R

4x4 64-QAM, Vehicular A channel, 50 km/h, 2/3 code rate, 10 MHz

8-best
16-best
8-best, 2 it.
MMSE

Fig 24. LLR iteration performance 1.

62

10 12 14 16 18 20 22 24
Eb/N0 [dB]

10-3

10-2

10-1

100

F
E

R

4x4 64-QAM, Pedestrian A channel, 3 km/h, 1/2 code rate, 10 MHz

MMSE
8-best
16-best
8-best, 2 iter.

Fig 25. LLR iteration performance 2.

8 10 12 14 16 18 20 22
Eb/N0 [dB]

10-3

10-2

10-1

100

F
E

R

64-QAM, 4 users with 1 tx antenna, 4 rx antennas, pedestrian A, 1/2 code rate, 20 MHz

MMSE
8-best
16-best
8-best, 2 it.

Fig 26. LLR iteration performance 3.

63

16 18 20 22 24 26 28 30

Eb/N0 [dB]

10-4

10-3

10-2

10-1

100

F
E

R

4 users with 1 tx antenna, 4 rx antennas, Vehicular A channel, 2/3 code rate, 10 MHz, 50 km/h

MMSE
8-best
16-best
8-best, 2 it.

Fig 27. LLR iteration performance 4.

64

4.5 Turbo receiver

This thesis does not address turbo structure as an option for improved SC-FDMA

receiver performance, on account of the significant latency created, which could

potentially be too high for real-time processing. These more complex receivers

have been considered in basic research [86, 91–93], and indeed their complexity

has typically been too great for most commercial products. Nonetheless, for

benchmarking, the MMSE receiver and the K-best receivers considered in

this thesis were compared also to a turbo receiver structure. A performance

comparison for a 4× 4 64-QAM scenario with a Vehicular A channel with code

rate 2/3 and for a Pedestrian A channel with code rate 1/2 are presented in

Figure 28 and Figure 29 respectively.

Along similar lines, a performance comparison for a 1× 4 64-QAM scenario

with a Vehicular A channel with code rate 2/3 and Pedestrian A channel with

code rate 2/3 are presented in Figure 30 and in Figure 31, respectively. The

turbo receiver improves performance especially when there is no IAI. However,

the turbo receiver did not converge in all scenarios tested; results depended

on the code rate, ISI, and IAI. Increasing the number of iterations did not

change how successful the convergence was. On the basis of these results, the

non-turbo approach was considered a more stable choice for a wide range of

system parameters and channel conditions.

65

16 18 20 22 24 26 28 30 32
Eb/N0 [dB]

10-3

10-2

10-1

100

F
E

R

4x4 64-QAM, Vehicular A channel, 50 km/h, 2/3 code rate, 10 MHz

MMSE
8-best
16-best
Turbo receiver, 2 iter.

Fig 28. Turbo receiver performance 1.

10 12 14 16 18 20 22 24 26
Eb/N0 [dB]

10-3

10-2

10-1

100

F
E

R

4x4 64-QAM, Pedestrian A channel, 3 km/h, 1/2 code rate, 10 MHz

MMSE
8-best
16-best
Turbo receiver, 2 iter.

Fig 29. Turbo receiver performance 2.

66

16 18 20 22 24 26 28 30

Eb/N0 [dB]

10-3

10-2

10-1

100

F
E

R

4 users with 1 tx antenna, 4 rx antennas, Vehicular A channel, 2/3 code rate, 10 MHz, 50 km/h

MMSE
8-best
16-best
Turbo receiver, 2 iter.

Fig 30. Turbo receiver performance 3.

12 14 16 18 20 22 24 26 28 30

Eb/N0 [dB]

10-3

10-2

10-1

100

F
E

R

4 users with 1 tx antenna, 4 rx antennas, 64-QAM, Pedestrian A, 2/3 code rate, 10 MHz, 50 km/h

MMSE
8-best
16-best
Turbo receiver, 2 iter.

Fig 31. Turbo receiver performance 4.

67

4.6 Complexity estimation

The complexity of the K-best and SSFE detectors as expressed by the number

of multiplications per symbol vector and calculated from the MATLAB model is

presented in Table 3, and their complexity in giga-operations per second (GOPS)

is given in Table 4, where the GOPS figures cover the multiplication, comparison,

and addition operations performed in an 83.3 µs time slot. A point of reference

is QR decomposition, which requires no more than 0.02 GOPS since it need only

be performed once for all 1200 subcarriers.

Table 3. The number of multiplications in the detectors, c© 2011 EURASIP [29].

Algorithm Multiplications

8-best 1200

16-best 2184

SSFE[8,8,1,1,1,1,1,1] 3105

SSFE[4,3,2,2,1,1,1,1] 2013

Table 4. Complexity estimates for the time-domain processing, in GOPS, c© 2011 EURASIP

[29].

Algorithm Tree search De-mapper LLR Total

8-best 92.8 7.4 5.9 106.1

16-best 170.6 14.8 11.4 196.8

8-best, 2 iter. 92.8 7.4 69.5 169.7

SSFE[8,8,1,1,1,1,1,1] 122.8 59 44.7 226.5

SSFE[4,3,2,2,1,1,1,1] 81.6 44.3 33.65 159.5

4.7 Conclusions

Several receiver algorithms and structures for SC-FDMA uplink transmission

were compared. Two-stage frequency-domain MMSE equalisation with a sphere-

detection receiver represents a remarkable improvement over the conventional

linear MMSE receiver. The K-best LSD and SSFE algorithms were considered

as possible tree-search algorithms for this receiver, with two list sizes being

used for the K-best algorithm and two distinct node spanning vectors for the

SSFE algorithm. The performance of the SSFE algorithm is not optimal with

68

node spanning vector [8,8,1,1,1,1,1,1]. With a vector [4,3,2,2,1,1,1,1], which

exploits the node spanning on more than two levels, the SSFE algorithm performs

better than the MMSE algorithm does. The simulations point to 8-best, 16-

best, and SSFE[4,3,2,2,1,1,1,1] all being suitable detectors for the two-stage

receiver implementation. However, the complexity estimation results for these

detectors show that the 16-best algorithm would be twice as complex and the

SSFE[4,3,2,2,1,1,1,1] algorithm 50% more complex than the 8-best algorithm.

The performance of the 8-best LSD could be further improved with LLR

iteration. This does not require any modification for the tree-search algorithm.

However, the LLR would be more complex and re-scheduling between the

LLR and detector is required. The iterative 8-best LSD displays almost the

same performance as the normal 16-best LSD approach while, according to

the complexity estimations, likely to be 14% less complex notwithstanding the

significantly more complex LLR unit.

In consequence, the K-best LSD with a list size of 8 was chosen for FPGA

implementation. This solution offers the best performance–complexity ratio for

practical implementation in the channel conditions examined here. A summary

of the performance gains (relative to the MMSE receiver) yielded by this receiver

without additional LLR-iteration-based improvement is presented in Table 5.

Table 5. 8-best gain over MMSE for various channels, @FER=10-2, code rate 2/3.

Pedestrian A Vehicular A Pedestrian B

4× 4 5.5 dB 2 dB 0 dB

2× 2 7.5 dB 2 dB -0.5 dB

1× 4 7 dB 2.5 dB 0.5 dB

69

70

5 MIMO detector implementations

Implementation aspects of the 8-best MIMO detector for the frequency-domain

MMSE equalisation with sphere-detection receiver were studied by means of

HLS tools and for various FPGAs. In this chapter, firstly, the architecture

options are examined. So-called sort-free architectures have been proposed for

the K-best algorithm implementation [94, 95]. In this connection, a sort-free

architecture is compared to architectures that include a sorter. Secondly, three

separate HLS tools are compared. Because HLS tools are gaining popularity

and developing rapidly, the evolution of these tools is considered too. Next,

the HLS implementations are compared to hand-written RTL implementations,

before, finally, the importance of FPGA technology selection is addressed.

The implementations incorporate FPGA technologies ranging from 28 nm to

16 nm. Both the maximum throughput and power-consumption factors are

discussed. This chapter describes the development environment, implementation

requirements, architecture definition, and examples of the FPGA optimisation

methods used in the implementations. The implementation results are reported

in Chapter 6.

5.1 Development environment

The implementation tool flow is depicted in Figure 32. Algorithm testing and

simulations were performed by means of an SC-FDMA simulator in MATLAB.

Both the MATLAB and the C-code versions of the algorithm were tested in the

MATLAB simulation environment. The C-code invocation from MATLAB was

enabled by MEX files.

The HLS tool was used for generating the RTL language. As HLS tools grow

in popularity, they are starting to challenge the traditional design approach.

There are studies showing that these tools increase design productivity and

reduce development time while producing results that are competitive in quality

to hand-written RTL language [82, 96]. The Xilinx Vivado HLS tool was used

for converting the C code to RTL (in this case, VHDL). The tool provides a new

abstraction level, and it hides some of the complexity of the implementation.

The HLS tool generates a high-performance pipelined architecture based on the

71

constraints, directives, and implementation C/C++ code. Among the constraints

are, for example, specification of the target FPGA family and target clock

frequency. The directives guide the HLS tool to, for example, unroll loops or

partition arrays. The input is not the original reference C/C++ code. Instead,

the reference code is restructured such that it represents the architecture targeted

by the designer. Figure 33 illustrates the iterative code-restructuring phase in

the design flow. The HLS tool generates RTL output based on these inputs and

reports the throughput performance and estimated complexity of the architecture.

Then, the designer can iteratively adjust the directives and the C/C++ source

code so long as the implementation requirements have been satisfied. With an

HLS tool it is possible to generate a valid highly complex solution in a relatively

short time, but a highly optimised low-complexity solution still requires many

iterations. The iterative design approach enables tuning the trade-off between

higher-quality results and savings on development time.

In the next phase, the output RTL language is used as input for the FPGA

implementation tool (Xilinx ISE/EDK). The final achievable clock frequency

and resource usage are reported after logic synthesis and place-and-route. If the

results do not satisfy the designer, the directives or implementation C/C++

code may be modified further.

SC-FDMA simulator (MATLAB)

Xilinx Vivado HLS

Xilinx ISE/EDK

Reference
MATLAB code

Implementation
C/C++ code

RTL

Bitstream, Netlist

Reference
C/C++ code

Constraints Directives Code
restructuring

Reference
C/C++ code

Fig 32. Tool flow, c© 2018 Springer [25].

72

Code restructuring

Macro-architecture

Parametrisation

FPGA optimisationC
-le

ve
l v

er
ifi

ca
tio

n

Reference
C/C++ code

Implementation
C/C++ code

Fig 33. Code restructuring, c© 2018 Springer [25].

For architecture comparison purposes, theK-best LSD approach was implemented

for a Xilinx Virtex 6 FPGA by means of the Vivado HLS 2011 tool. The

implementation of different architectures enabled evaluation of a sort-free K-best

scheme. Additionally, one of these architectures was re-implemented via three

separate tools, from different generations, for analysis of the evolution of HLS

tools. Furthermore, to enable evaluation of FPGA technology’s influence on

throughput performance and power consumption, the K-best MIMO detector

was implemented for 28 nm, 20 nm, and 16 nm FPGAs.

The implementations started with requirement specification and input/output

(I/O) specification. After that, an initial architecture was planned. A MATLAB

model of the 8-best LSD algorithm was prepared again, in C code with fixed-point

arithmetic. The selected fixed-point precision was deemed sufficient to correspond

to the performance of double-precision floating-point point MATLAB simulations.

The C code was verified anew after each modification. The HLS tool presented

the possibility of generating several solutions and choosing the best of them.

73

5.2 Implementation requirements

An SC-FDMA 64-QAM 4× 4 single-user MIMO system was assumed, with 20

MHz bandwidth and 1200 subcarriers. A slot (0.5 ms) consists of six or seven

symbols, depending on cyclic prefix length, providing a maximum of 83 µs for

receiving the symbol. One symbol consists of 1200 subcarriers. There are four

transmit antennas and 6 bits/symbol. Therefore, the minimum throughput

needed is

1/83 µs× 1200× 4× 6 = 347 Mbps. (18)

The K-best LSD can then use

83 µs/1200 = 69.4 ns (19)

to process one received symbol vector y. A real-valued 4× 4 tree search can

feasibly be scheduled in N × 8 (N = 1, 2, 3, ...) cycles. Hence, the minimum clock

frequency for various numbers of available clock cycles can be calculated as

f(min) =
num cycles

69.4 ns
, num cycles = 8, 16, 32, ... (20)

For example, throughput of 347 Mbps can be achieved with the following

parameter combinations: 115 MHz and eight cycles, 230 MHz and 16 cycles,

and 460 MHz and 32 cycles. As for ranges, 460 MHz is somewhat too high a

frequency target for FPGA implementation and 115 MHz is a relatively loose one.

Scheduling the design for eight clock cycles wastes resources, because a higher

frequency could be achieved. Both an architecture that includes a challenging

sorting operation and a sort-free architecture were targeted at 347 Mbps. Both

architectures were implemented with a large amount of optimisation.

5.3 Macro-architecture specification

5.3.1 Architecture with a sorter

The first architecture was designed for the K-best algorithm implementation

without attempts to avoid a sorting operation. Here, eight PEDs are calculated

on the first level. On levels 2–8, eight more distances are calculated, resulting in

64 PEDs. These PEDs need to be sorted, a process that produces eight surviving

PEDs. Sorting N samples requires N operations if there is no pre-existing

74

information about the samples. With synchronous logic, this means that a level

that includes a sorter cannot be scheduled for anything less than 64 cycles; i.e.,

the pipeline initiation interval has to be ≥ 64.

The targeted macro-architecture inclusive of the sorting operation is shown

in Figure 34. There are three inputs: y is a real-valued received symbol vector,

QH is a transposed matrix from the QRD of the real-valued channel matrix H,

and R is a matrix from the same QRD. As for outputs, L is the list of candidate

symbol vectors and d2(L) represents the Euclidean distances (EDs) of these

candidates. The PED 1 calculation covers eight distances and does not require

sorting, while PEDs 2–8 cover 64 distances and include an insertion sorter. The

sorter is required to select the eight shortest distances from among the 64. An

insertion sorter algorithm was selected for the implementation on the basis of

the literature review outlined in Subsection 2.2.2.

Matrix
mult.

PED

1

y

Q

y'(8)

R(8)

d²(L)

L

H
PED

3

PED

4

L L L L

d²(L) d²(L) d²(L) d²(L)

R(7) R(6) R(5)

y'(7) y'(6) y'(5)

PED

2

PED

5

PED

6

PED

7

PED

8

d²(L)d²(L)d²(L)

L L L

y'(4) y'(3) y'(2) y'(1)

R(4) R(3) R(2) R(1)

+ - +x Insert

y PED(i)

PED_list

R(j)

+R

x

j

i

x

x
x

Fig 34. Macro-architecture for the 8-best LSD, incl. sorter, c© 2014 Springer [24].

75

5.3.2 Sort-free architecture

An alternative architecture was implemented also, for which the goal was to

avoid the sorting operation. In the architecture described above, all 64 PEDs

were sorted and then the eight smallest ones were selected. In contrast, in the

sort-free architecture the eight smallest PEDs are selected directly. It is possible

to find the K smallest PEDs in under K cycles if regularities of constellation

points and presorted PEDs are exploited. This method has been used in prior

work [97]. A slicing operation, as used in Schnorr–Euchner enumeration and

illustrated in Figure 35, was exploited to find the smallest child from a parent

node. In the next phase, min-search is used to find the closest node from among

the various parents’ pre-ordered children [94]. A similar sort-free architecture

has been implemented for ASIC use [95] but not in an FPGA scenario. Figure

36 [95] presents the principle of the proposed architecture [94] for the K-best

algorithm.

The key idea in the distributed K-best scheme is to find the first child of

each node in Kl + 1. Among these first children, the one with the lowest PED

is definitely one of the K best candidates in Kl. That child is selected and is

replaced by its next-best sibling. The process is repeated K times to find the

K best candidates on level l (Kl). This structure finds the K best candidates

in just K clock cycles. Figure 37 illustrates the architecture for replacing the

insertion sorter for PEDs 2–8. Both architectures were optimised via the methods

described in the sections below, and the implementation results were compared.

-8 -6 -4 -2 2 4 6 8
1.

2.

3.

4.

5.

6.

7.

8.

Received

symbol

Fig 35. A slicing scheme for a real-valued 64-QAM system.

76

0.8 0.7

0.5

0.2

-3

-1

1

3

5.0

0.9

1.3

2.0

0.4

-3

-1

1

3

0.5

1.3

0.7

1.5

0.1

-3

-1

1

3

1.2

2.2

2.7

0.2

0.8

-3

-1

1

3

0.9

1.3

2.0

0.4

-3

-1

1

3

0.5

1.3

0.7

1.5

0.1

-3

-1

1

3

1.2

2.2

2.7

0.2

0.8

-3

-1

1

3

0.9

1.3

2.0

0.4

-3

-1

1

3

0.5

1.3

0.7

1.5

0.1

-3

-1

1

3

1.2

2.2

2.7

0.2

min min min

Kl+1 Kl

5.0 5.0

x x

x

Fig 36. The distributed K-best scheme, c© 2012 IEEE [95].

PED

1

PED

3

PED

4

PED

2

PED

5

PED

6

PED

7

PED

8

REG
Calc. node with

next smallest RD
in the min branch

Calc. node with
next smallest RD

in the min branch
MINMIN

Final REG

Calc. node with
smallest ED for

each of 8 brances
MINREG ...

Fig 37. Macro-architecture updates to replace the sorter in the 8-best LSD, c© 2014 Springer

[24].

5.4 Examples of design optimisation

5.4.1 C-code parametrisation

Parametrisation was used in rewriting of the C code. The example in Listing 5.1

shows the C++ template function for levels PED 2–8. Here, PED 1 has its

77

own function. The function K-best LSD 8 takes the level of the tree search as a

template parameter. Parametrisation provides the ability for HLS tools to use

more resource-sharing and reduces the requirement for FPGA resources.

Listing 5.1. PED levels 2–8 of the tree search (PEDs 2–8)

template<i n t l e v e l> void Kbest LSD 8 (

ap f ixed <10,2> x [8] ,

ap uf ixed <3,3> c and f i n a l 8 1 2 [l e v e l ∗8] ,

ap uf ixed <16,6> ED l i s t88 [8] ,

ap f ixed <16,6> r2 ,

ap f ixed <16,5> R8 [l e v e l] ,

ap uf ixed <3,3> c and f i n a l 2 1 [(l e v e l −1) ∗8] ,

ap uf ixed <16,6> cand temp PED3 [8])

{

<f unc t i on body>

}

5.4.2 Embedded DSP usage

The designer can rewrite the C/C++ code to more efficiently utilise specific

FPGA resources and, hence, improve timing and reduce area. An example of

this type of optimisation is efficient use of embedded DSP blocks.

A specific example of efficient use of embedded Virtex 6 DSP blocks is visible

in the DSP48 usage. The use of DSP48s improves timing and FPGA resource

utilisation. Regrettably, the Vivado HLS 2011 tool was not able to maximise

the DSP48 usage automatically. The structure of the DSP48 block is shown in

Figure 38.

+
-

X
+
-

25

25

25

18
43

48

48

Fig 38. Xilinx Virtex 6 DSP48 block structure.

Listing 5.2 gives an example of a multiplication followed by an addition for

which there was no automatic DSP48 mapping.

78

Listing 5.2. Multiplying the candidate symbol with index ind8 from level k by R

temp ed8 2 = temp ed8 2 + R8 [k+1]∗x [ind8] ;

Accordingly, these two operations were manually forced into a single DSP48

block. The modified function call for this procedure is shown in Listing 5.3.

Here, the template function macc25x18 is called.

Listing 5.3. The modified function call for the multiplication

temp ed8 2 = macc25x18<5 ,2 , true>(R8 [k+1] ,x [ind8] , temp ed8 2) ;

The template function macc25x18, shown in Listing 5.4, converts the fixed-point

values into integer values. As input it takes the values of three variables (R8, x,

and temp ed8 2), integer part widths of the variables, and a true/false parameter

that specifies the desired operation (addition or subtraction, respectively).

Listing 5.4. macc25x18

template<i n t iwidth a , i n t iwidth b , bool ADDSUB>

ap f ixed <48, iw idth a+iwidth b+5> macc25x18 (ap f ixed <25, iwidth a> A,

ap f ixed <18, iwidth b> B, ap f ixed <48, iw idth a+iwidth b+5> C) {

ap int<25> i a = (ap int <25>)A. range (24 ,0) ;

ap int<18> ib = (ap int <18>)B. range (17 ,0) ;

ap int<48> i c = (ap int <48>)C. range (47 ,0) ;

ap int<48> id = multadd25x18<ADDSUB>(ia , ib , i c) ;

ap f ixed <48, iw idth a+iwidth b+5> r ;

r . range (47 ,0)=id . range (47 ,0) ;

r e turn r ;

}

Next, the template function macc25x18 calls multadd25x18, shown in Listing 5.5,

to perform the actual calculation. Two directives in multadd25x18 instruct the

HLS tool to use a maximum of two cycles in scheduling of these operations and

to use a register for the output return value. A simple line of the original C

code was modified into several template functions. Thereby, the DSP48 usage

was maximised and the timing and FPGA resource utilisation were improved

significantly.

79

Listing 5.5. multadd25x18

template<bool ADDSUB>

ap int<48> multadd25x18 (ap int<25> A, ap int<18> B, ap int<48> C) {

#pragma AP INTERFACE ap none port=return r e g i s t e r

#pragma AP LATENCY max=2

i f (ADDSUB)

return C + A ∗ B;

e l s e

re turn C − A ∗ B;

}

80

6 Implementation results

6.1 Architecture comparison

The 8-best LSD algorithm was implemented for a Xilinx Virtex 6 FPGA by

means of the AutoPilot / Vivado HLS 2011 tool with several optimisation

methods. The target throughput was 347 Mbps. The architecture including

insertion sorter schedules into 64 cycles, which means that in every 64th cycle a

new input vector y is taken as input, where y includes one symbol from each of

four antennas and each symbol consists of six bits (64-QAM). The 8-best LSD

implementation including sorter achieves a 247 MHz clock frequency, which

means that the throughput achieved with a single processing block is

247 MHz× 4 antennas× 6 bits/symbol

64
= 93 Mbps, (21)

20 MHz SC-FDMA transmission consists of 1200 subcarriers, and the channel

matrix remains the same for all subcarriers. To achieve the required 347 Mbps,

four parallel processing blocks were exploited. This led to an overall 372 Mbps

detection rate. The sort-free architecture schedules into 16 cycles and achieves a

231 MHz clock frequency. Therefore, a single sort-free architecture processing

block is enough to reach the throughput target of 347 Mbps.

The two architectures are compared in Table 6. With four parallel blocks,

the architecture including sorter reaches the target throughput with less resource

use than the sort-free architecture. Wenk and colleagues [97] have noted that the

architecture without a conventional sorter for the K-best algorithm is sufficient

only when K is smaller than the number of constellation points. Here, K=8

and the number of constellation points in the real-valued 64-QAM system is

also eight. Accordingly, the system parameters used in the implementation

create somewhat of a borderline case for the comparison. The MIMO detector

and both of its realisations for an FPGA fulfil the performance requirements of

LTE/LTE-A base stations with a 64-QAM and 4× 4 MIMO set-up. Yet the

less complex conventional K-best architecture is exploited in the remaining

implementations.

81

Table 6. Architecture comparison, c© 2014 Springer [24].

4× architecture with sorter Sort-free architecture

FPGA Virtex 6 Virtex 6

Technology 40 nm 40 nm

LUT 34476 69383

FF 50044 97676

DSP48 216 228

BRAM 28 287

Frequency [MHz] 247 231

Throughput [Mbps] 372 347

6.2 HLS tool evaluation

The tool used for the initial MIMO detector architecture comparison was the

2010 version of Mentor Graphics Catapult C. However, for reason of the very long

synthesis time with large designs, the iterative design process was not efficient.

In a case involving a few dozen iterations, the development would take more than

a month, as compared to a few days. The second tool evaluated was AutoESL

AutoPilot. It immediately impressed with its remarkably fast synthesis. A

disadvantage, on the other hand, was evident in its large number of bugs. In late

2010, AutoESL Design Technologies, Inc. was a small, independent California-

based company with only 25 employees. In January 2011, Xilinx acquired

AutoESL, and AutoPilot soon became Vivado HLS. The first Xilinx release of

the tool displayed improved usability. The drawback was that other vendors’

FPGAs were not supported anymore. The MIMO detector implementations and

architecture comparison described in Chapter 5 were done with either the last

version of AutoPilot or the ‘early version’ of Vivado HLS, the version from 2011.

The rest of the MIMO detector implementations presented in this thesis were

carried out by means of the latest (2017) version of the Vivado HLS tool. The

average synthesis times for 8-best LSD MIMO detector implementation with

these three tools are shown in Table 7. It should be noted that the desktop PCs

on which the tools were run were not identical in performance. However, the

results still offer a good overview of the user experience of the various HLS tools

used in this project.

82

Table 7. 8-best LSD synthesis time, c© 2017 IEEE [28].

Min. Max.

Catapult C 2010 4 hours 48 hours

AutoPilot 2011 20 min 2 h 15 min

Vivado HLS 2017 20 min 40 min

6.2.1 Catapult C 2010 vs AutoPilot 2011

As is reported in the preceding section, the 8-best tree-search algorithm was

too complex for the Catapult C 2010 tool version. Therefore, the comparison

of synthesis performance between HLS tools (Catapult C 2010 and AutoPilot

2011) was carried out with a smaller design: the non-iterative version of the

LLR calculation block of the 8-best LSD shown in Figure 11. The structure

of the LLR calculation implemented is described in Algorithm 1, below. The

development time is characterised in terms of the number of iterations plotted

against resource usage and processing time for 1200 subcarriers below, for

Catapult C and AutoPilot in Figure 39 and Figure 40, respectively. No directives

were imposed in the first iteration. In the second implementation round with

Catapult C, the inner loop was unrolled, the outer loop was partially unrolled

(24/3=8), and the function pipeline was set to II=2. In the second iteration’s

implementation with AutoPilot, the function pipeline was set to II=16. Finally,

in the third iteratation with Catapult C, the inner loop was fully unrolled, the

outer one partially unrolled (24/2=12), and the pipeline set to II=1, while for

AutoPilot the outer loop was set to II=1.

Tables 8 and 9 show the target latencies, the latencies achieved, and the

actual resource usage for Catapult C and AutoPilot, respectively. It can be seen

that the scheduling differs between these tools. It is easier to achieve the target

latency with Catapult C. From the user experience standpoint, Catapult C 2010

had a better schedule viewer, and it showed an architecture-level view of all

the loops and directives. Hence, tracing back to the C code was easier. With

moderate-sized FPGA designs and ASIC designs of any size, Catapult C proved

to be a more intuitive and mature HLS tool than AutoPilot.

83

Algorithm 1 LLR calculation for 4× 4 64-QAM with list size 8

Inputs: Euclidean distances, binary candidate (BC) list

Outputs: LLR

Loop 1:24

Loop 1:8

a = -ED/2

If BC=1

C1=max(C1,a)

else

C0=max(C0,a)

LLR=C1-C0

Table 8. Target latency vs achieved latency for Catapult C 2010, c© 2017 IEEE [28].

Iteration 1 Iteration 2 Iteration 3

Target latency - 16 12

Achieved latency 625 16 1

FF 939 1728 1733

LUT 783 2335 1655

Table 9. Target latency vs achieved latency for AutoPilot 2011, c© 2017 IEEE [28].

Iteration 1 Iteration 2 Iteration 3

Target latency - 16 24

Achieved latency 625 8 34

FF 72 5584 562

LUT 120 8348 630

84

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

3000

1 2 3

FF
 /

LU
T

Pr
oc

es
sin

g
tim

e
(u

s)

Iterations

Catapult C

Target execution time Execution time FF LUT

Fig 39. LLR implementation using Catapult C 2010, c© 2017 IEEE [28].

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3

F
F

 /
 L

U
T

P
ro

ce
ss

in
g

 t
im

e
 (

u
s)

Iterations

Autopilot

Target execution time Execution time FF LUT

Fig 40. LLR implementation using AutoPilot 2011, c© 2017 IEEE [28].

85

6.2.2 AutoPilot 2011 vs Vivado HLS 2017

The Catapult C 2010 tool was accurate in reaching the target latency when

the design was relatively small. However, the very long synthesis time with the

8-best tree-search algorithm meant that the design process was not efficient for

larger designs. Therefore, the original MIMO detector implementations of the

K-best LSD algorithms were completed with AutoPilot 2011 (later Vivado HLS

2011) as described earlier. Later, the same C-language source code was used in

MIMO detector implementation with the Vivado HLS 2017 tool. The original,

Virtex 6 FPGA was no longer supported by the tool; therefore, the target of the

implementation with the new tool version was the Virtex 7 FPGA. Initially,

the same macro-architecture, parametrisation, and FPGA optimisations (e.g.

efficient use of embedded DSP blocks) were used for the new implementation.

The complexity and throughput results with maximal throughput are compared

in Table 10.

With AutoPilot 2011, a single 8-best LSD MIMO detector processing block

with sorting operation did not achieve scheduling of above 93 Mbps. A single

sort-free architecture block achieved 347 Mbps. With the 2017 version of the

Vivado HLS tool, the target throughput was exceeded by 44% without the

work exploiting the sort-free architecture or manually combining four 93 Mbps

architectures. Most importantly, the 2017 version of the tool could automatically

maximise the embedded DSP48 usage. In contrast, with the 2011 version of the

tool, manual forcing, described in Subsection 5.4.2, had to be employed. Hence,

less time was needed for the 2017 version to meet the performance requirements.

Table 10. Maximum throughput – single 8-best LSD processing block, c© 2017 IEEE [28].

HLS tool version 2011 2011 2017

FPGA Virtex 6 Virtex 6 Virtex 7

Technology 40 nm 40 nm 28 nm

Architecture Conventional Sort-free Conventional

LUT 8619 69383 81445

FF 12511 97676 80742

DSP 54 228 565

BRAM 7 287 0

Frequency [MHz] 247 231 167

Throughput[Mbps] 93 347 501

86

6.3 Hand-written RTL language vs HLS tools

The main benefit of the HLS design method lies in the reduced time to create the

hardware in comparison to manually generated RTL language. Two additional

LLR implementation comparisons were carried out for study of this implementa-

tion aspect. It should be emphasised that the results can be compared only with

regard to the same technology. In the first comparison, the design effort put

into the hand-written RTL language was not limited. Significantly more time

was used for creating an optimal manual reference design as compared to the

HLS implementation. The implementations were, exceptionally, targeted for an

ASIC that does not require any vendor-specific DSP usage optimisation. The

synthesis results for the LLR processing block are summarised in Table 11. The

HLS tool implementation of the LLR block is approximately 9% larger than the

hand-written one, and the power consumption is 22% higher. These results are

somewhat to be expected for a large design case, wherein the compiler is not

able to extract all the necessary information from the high-level language. The

design of both implementations required several iterations before sufficiently

good performance was achieved. However, the workload per iteration differed

significantly between the hand-written RTL language and the HLS tools, in

favour of the HLS tool. In addition, finding an optimal trade-off with regard to

complexity and latency by changing the pipelining structure and the level of

parallelism was much faster with the HLS tool. The same is true for changing

the design frequency.

In the second comparison, the design effort for the C source code and

hand-written RTL language were more comparable. Here, the hand-written RTL

language was technology-independent behavioral VHDL and the implementations

were synthesised for a Virtex 7 FPGA. In target-independent RTL design

methodology, the RTL language does not describe all the architecture details.

Instead it lets the synthesis tool interfere with the implementation. This enables

migration from one FPGA family/vendor to another. The synthesis results for

the LLR processing block are summarised in Table 12. The three individual HLS

implementations display scheduling with much higher frequency. With the same

throughput, the HLS implementation has approximately 51% lower complexity

and 90% lower power consumption than the hand-written implementation. The

RTL implementation was not able to exploit the FPGA-family-specific DSP

87

blocks. This led to a result that is significantly less optimal than the HLS

implementation.

Table 11. LLR implementation – optimised hand-written RTL language vs HLS tools.

Design method Optimised VHDL Catapult C

Technology CMOS CMOS

Complexity [kGE] 15.5 16.9

Frequency [MHz] 150 150

Throughput [Mbps] 121 121

Power [mW] 27 33

Table 12. LLR implementation – target-independent hand-written RTL language vs HLS tools.

Design method Behav. VHDL Vivado HLS

I II III

Technology Virtex 7 FPGA Virtex 7 FPGA Virtex 7 FPGA Virtex 7 FPGA

Complexity [slices] 608 490 360 297

Frequency [MHz] 76 217 230 320

Throughput [Mbps] 76 217 115 80

Power [mW] 30 12 3 2

6.4 FPGA technology evaluation

Thanks to the latest FPGA-technology-related updates, the portfolio of FPGAs

currently supported by HLS tools is relatively large. In addition to 40 nm

and 28 nm FPGA implementations, the K-best LSD MIMO detector was

implemented also for 20 nm and 16 nm FPGAs, to provide good understanding of

the technology’s influence on the results. Table 13 presents the implementation

results for the Xilinx high-end Virtex FPGA family. Figure 41 highlights the

throughput gains.

Each of the implementations achieve the target throughput for LTE SC-FDMA

4× 4 64-QAM uplink with a conventional K-best architecture. As is visible in

Table 13 and Figure 41, the latest FPGAs schedule with higher throughput and

less resource use. For instance, the latest 16 nm implementation achieved a 13%

increase in throughput in addition to approximately 19% savings in lookup table

(LUT) usage and 58% savings in flip-flop (FF) usage in comparison to one with

a 28 nm process.

88

Table 13. FPGA technology comparison – maximum throughput, c© 2017 IEEE [28].

Virtex 7 Virtex UltraSCALE Virtex UltraSCALE+

Technology 28 nm 20 nm 16 nm

LUT 81445 71960 65554

FF 80742 52930 34138

DSP 565 565 565

Frequency [MHz] 167 172 208

Throughput [Mbps] 501 516 576

Dynamic power [W] 1.755 0.84 0.84

Energy [nJ/bit] 3.5 1.6 1.45

501 516

576

0

100

200

300

400

500

600

700

28 nm 20 nm 16 nm

[Mbps]

Fig 41. Max. throughput for the 8-best LSD, c© 2017 IEEE [28].

In order to improve the throughput of the implementation, Vivado HLS 2017

provides several implementation strategies [98]. Considering the requirements

given, the software tries various optimisations in its placing and routing. However,

they all differ in performance in terms of power. Table 14 shows the results of four

distinct implementation strategies for Virtex 7, which all achieve the maximum

throughput of 501 Mbps. The first strategy (Performance RefinePlacement)

increases the placer effort in the post-placement optimisation phase and disables

timing relaxation in the router. The second strategy (Performance NetDelay low)

compensates for the optimistic delay estimation and adds further delay cost to

distance and high fanout connections. The Area Explore strategy, in turn, uses

multiple optimisation algorithms in pursuit of potentially fewer LUTs. The

final strategy (Flow RunPostRoutePhysOpt) enables physical optimisations in

the post-implementation phase, including routing. The results show that, in

addition to achieving the highest throughput, the fourth strategy is able to yield

89

better performance in terms of power.

A similar iterative approach was exploited to find the lowest power consump-

tion for Virtex UltraSCALE and UltraSCALE+ FPGAs. Table 15 illustrates the

power consumption of Virtex-family FPGAs with the throughputs normalised to

501 Mbps. In addition to a capability of achieving higher throughput, the more

advanced FPGAs have shown better power performance. Figure 42 highlights

the significantly greater improvement in dynamic power consumption in moving

from a 28 nm to 20 nm FPGA as compared to the step from a 20 nm to 16 nm

one.

Table 14. Vivado HLS 2017 implementation strategies – Virtex 7, c© 2017 IEEE [28].

Strategy 1 2 3 4

Technology 28 nm 28 nm 28 nm 28 nm

LUT 81450 81446 83105 81445

FF 80742 80742 80742 80742

DSP 565 565 565 565

Frequency [MHz] 167 167 167 167

Throughput [Mbps] 501 501 501 501

Dynamic power [W] 1.77 1.80 2.27 1.76

Energy [nJ/bit] 3.53 3.60 4.50 3.5

Table 15. FPGA technology comparison – power consumption with normalised throughput,

c© 2017 IEEE [28].

Virtex 7 Virtex UltraSCALE Virtex UltraSCALE+

Technology 28 nm 20 nm 16 nm

LUT 81445 71922 64369

FF 80742 52930 34138

DSP 565 565 565

Frequency [MHz] 167 167 167

Throughput [Mbps] 501 501 501

Dynamic power [W] 1.76 0.848 0.745

Energy [nJ/bit] 3.5 1.70 1.48

90

Fig 42. Dynamic power for the 8-best LSD, c© 2017 IEEE [28].

6.5 Conclusions

The 8-best LSD algorithm was implemented for an FPGA by means of HLS

tools to create a solid understanding of its complexity and aid in identifying the

preferred architecture for practical implementation. The results confirmed that

avoiding the sorting operation is not always recommended. The benefit yielded

by a sort-free architecture depends on the system parameters. Since the sort-free

architecture was more complex than the architecture including a sorter with

the chosen system parameters, the K-best tree-search architecture including

sorting operation was exploited in the other implementations. The sort-free

architecture would be efficient only if K is less than the number of constellation

points. This is often the case in operation with complex-valued constellation

points, as illustrated in Table 16. Correspondingly, Table 17 lists the preferred

tree-search architectures for a real-valued system, which is often preferred for

HW implementations. Here, only the 4-best MIMO detector algorithm in a

64-QAM system would benefit from use of a sort-free architecture.

The evolution of HLS tools and FPGA technology was studied with several

MIMO detector implementations. The evolution from the early version of

Catapult C to AutoPilot enabled significantly shorter synthesis time with large

91

designs, which is crucial for the iterative HLS design approach.

Table 16. Preferred K-best tree-search architecture in a complex-valued system.

QPSK 16-QAM 64-QAM

Number of constellation points 4 16 64

4-best Conventional Sort-free Sort-free

8-best Conventional Sort-free Sort-free

16-best Conventional Conventional Sort-free

Table 17. Preferred K-best tree-search architecture in a real-valued system.

QPSK 16-QAM 64-QAM

Number of constellation points 2 4 8

4-best Conventional Conventional Sort-free

8-best Conventional Conventional Conventional

16-best Conventional Conventional Conventional

The evolution from AutoPilot to the latest version of Vivado HLS has enabled even

shorter maximum synthesis time and higher maximum throughput. Additionally,

exploiting embedded DSPs efficiently is much easier with the latest HLS tool

version. However, this selection is somewhat irrelevant for the designer – choosing

an old tool is not reasonable. Moving from 28 nm to 16 nm FPGA technology

afforded a 15% increase in throughput performance and a 57% decrease in power

consumption. With equal throughput, the 16 nm implementation achieved 38%

lower resource usage than the 28 nm implementation did.

Additionally, the HLS implementations of the LLR processing block were

compared to hand-written RTL language implementations. The HLS imple-

mentation had only 9% more complexity and 22% higher power consumption

relative to the fully optimised hand-written implementation. In comparison to

target-independent generic RTL implementation, HLS implementation achieved

42% lower complexity and 90% less power consumption. The implementation

efficiency aspects are summarised in Table 18. In conclusion, HLS method

should be seriously considered as an alternative to the conventional, more

time-consuming design methods. This is especially true if design portability is

preferred, as could be the case if FPGAs are used for prototyping and ASICs

are exploited later. The RTL implementation must be fully optimised for the

92

target technology if it is to match the performance of the corresponding HLS

implementation. Even in this case, the possible loss in implementation efficiency

with the HLS method is only minor. Moreover, it could be counteracted through

selection of a higher category of FPGA.

Table 18. A summary of the implementation efficiency – average achievable gain.

Complexity Power consumption

Fully optimised RTL language vs HLS -8% -18%

HLS vs behavioral RTL -42% -90%

16 nm vs 28 nm technology (HLS) -38% -57%

93

94

7 Discussion and future work

The aim for the thesis project was to study LTE/LTE-A base station receiver

structures and propose a practical improvement over the conventional MMSE

receiver. Additionally, comprehensive analysis of the possible MIMO detector

algorithms for this receiver and their implementation aspects was carried out.

As a result of this work, an efficient combination of IAI and ISI equalisation for

real-world SC-FDMA-based uplink base station receivers was proposed. The

new receiver architecture employs separate stages for IAI and ISI mitigation.

The MMSE filter is applied firstly, to suppress the ISI, as would be done in

conventional SISO SC-FDMA communications. Then, a non-linear SD equaliser

stage is used for MIMO detection – i.e., for equalising the IAI across the spatial

streams.

The FER performance of this receiver for 3GPP-compliant channels was

analysed in MATLAB simulations. The focus in these simulations was on

comparing the two-stage receiver to a conventional MMSE receiver. Additionally,

turbo receiver performance was simulated, for a reference. Two, quite different

tree-search algorithms were considered for the MIMO detector – namely, the

K-best LSD algorithm and the SSFE algorithm. Two list sizes were used for

the K-best algorithm and two distinct node spanning vectors for the SSFE

algorithm. The performance of the latter algorithm was not sufficient with node

spanning vector [8,8,1,1,1,1,1,1], but with a different vector ([4,3,2,2,1,1,1,1]), the

algorithm performed better than the conventional MMSE algorithm, though

adding to the computational complexity. From the simulations, one can conclude

that the 8-best, 16-best, and SSFE[4,3,2,2,1,1,1,1] options would all be suitable

for the two-stage receiver implementation. However, the complexity estimation

results for these receivers showed that the 16-best approach would be twice as

complex and the SSFE[4,3,2,2,1,1,1,1] one would be 50% more complex than the

8-best one. Accordingly, a K-best LSD with a list size of 8 was chosen for FPGA

implementation. This was considered to offer the best performance–complexity

ratio for practical implementation in the channel conditions considered in the

thesis. Also, the performance of the 8-best detector could be further improved

by means of LLR iteration. Accordingly, the performance gains offered by LLR

95

iteration were simulated.

The 8-best LSD algorithm was implemented for an FPGA via HLS tools, for

a good understanding of its complexity and to inform evaluation of the preferred

architecture for practical implementation. The AutoPilot / Vivado HLS 2011

tool was used for the architecture comparison. Two distinct architectures were

considered for application of the K-best LSD algorithm. Both MIMO detector

algorithms and their FPGA realisations met the throughput requirements of

LTE/LTE-A base stations with a 64-QAM and 4×4 MIMO set-up. However, the

results confirmed that avoiding the sorting operation is not always advantageous.

With the system parameters used, the sort-free architecture actually proved more

complex than the architecture including a sorter. Hence, the more conventional

K-best tree-search architecture including sorting operation was exploited in the

remaining implementations.

The traditional design approach with hand-written, manually created RTL

language has been mature for a long time. Now, HLS design is starting to

challenge the manual approach, and HLS tools can already produce results

that are comparable to hand-written designs in terms of complexity and power

consumption. The initial implementations presented in this thesis were carried

out with early-generation HLS tools. Therefore, the implementations were

repeated later, with the latest Xilinx Vivado HLS tool. In all, three distinct HLS

tools – namely, Mentor Graphics Catapult C 2010, AutoESL AutoPilot 2011,

and Xilinx Vivado HLS 2017 – were evaluated in connection with producing

the implementation results. The evolution of HLS was considered in terms of

synthesis time, user-experience factors, and result quality. The results showed

that the user experience of the tools has improved remarkably and that synthesis

times are at a decent level, suitable for enabling a smooth iterative-design

approach.

The scheduling capabilities and resource usage of these tools were evaluated

with small and large designs alike. While the 8-best tree-search algorithm was too

complex for the Catapult C 2010 version, the less complex LLR implementations

still revealed fundamental differences in scheduling and resource usage between

individual tools when the same amount of manual optimisation was carried

out. Initially, the same scheduling was achieved, but Catapult C was found

to be a more mature HLS tool than AutoPilot. However, the evolution from

Catapult C 2010 to AutoPilot 2011 was still considered to have been vital for

96

enabling an efficient HLS design approach with large designs. As for AutoPilot,

the latter part of the HLS tool evaluation presented in the thesis focused on the

evolution from AutoPilot / Vivado HLS 2011 to Vivado HLS 2017 (the branding

changed to Vivado HLS). With the complex K-best implementation, the target

throughput was exceeded by 44% via the latest HLS tool version. Throughput of

501 Mbps was achieved with less implementation effort than required for the 347

Mbps and 372 Mbps implementations produced with AutoPilot 2011.

Additionally, the HLS implementations were compared to hand-written RTL

implementations. The HLS implementation had only 9% higher complexity

and 22% greater power consumption than a fully optimised hand-written

RTL implementation. However, the hand-written RTL language has to be

fully optimised for the target technology if this relatively minor gain is to be

achieved. When target-independent generic RTL language was used, the HLS

implementation was more efficient, achieving significantly lower complexity and

power consumption both.

The evaluation of practical implementation aspects of the 8-best LSD was

further extended by comparison of the MIMO detector implementations across

28 nm, 20 nm, and 16 nm FPGAs. The influence of silicon technology was

considered. The 8-best LSD implementation produced with the latest Vivado

HLS tool achieved throughput values of 501, 516, and 576 Mbps for 28, 20, and

16 nm FPGAs, respectively. Use of recently developed 16 nm FPGA technology

increased the throughput performance of the detector by 13%. Additionally,

the power consumptions of these implementations was evaluated both with

the maximum throughput of each and with throughput normalised to 501

Mbps. Power consumption decreased significantly as the compactness of the

technology increased, with the 16 nm implementation decreasing the dynamic

power consumption by 42% from that of the 28 nm implementation.

With the massive MIMO antenna configurations introduced for the 5G

New Radio (5G NR) millimetre wave systems, one might think that moderate

multi-antenna configuration signal processing optimisation is going to be less

important in the future. To some extent, this is true. However, the 5G system

encompasses three distinct categories of radio-access technology. Low-Power

Wide-Area Network (LPWAN) technologies such as Narrowband IoT (NB-IoT)

and LTE-M are required to support Internet of Things (IoT) services. The

LPWAN technologies offer an energy-efficient air interface with relatively low

97

throughput. At the other extreme of 5G are the massive MIMO systems operating

in the millimetre wave bands (>28 GHz). The massive MIMO transceivers

might exploit hundreds of antennas and extremely high bandwidth (BW). This

solution offers extremely high capacity but limited coverage. In the midst

of these technologies, the evolution of LTE mobile broadband will continue.

The main leaps in performance improvements may already have been made,

which means that further performance enhancements have to come from a set

of several more modest improvements. This thesis has shown the potential

of both optimising the receiver signal processing algorithms and exploiting

signal processing technology’s evolution with regard to an existing wireless

communication standard.

The proposed two-stage frequency-domain MMSE equalisation with sphere-

detection receiver is a remarkable improvement over the conventional linear

MMSE receiver for an SC-FDMA uplink system, and the K-best algorithm with a

list size of 8 is a very good option for practical MIMO detector implementation of

this receiver in a 4× 4 64-QAM scenario. The 4× 4 MIMO antenna configuration

is somewhat near the maximum practical spatial multiplexing configuration for

mobile LTE systems, especially with respect to the maximum number of UE

antennas. However, 4× 4 256-QAM transmission mode for uplink will most

likely be part of 3GPP Release 15. Therefore, extending the simulations and BS

receiver optimisation to cover the 256-QAM case would be interesting. Another

interesting improvement for the proposed receiver would be to include the MMSE

outputs for the sphere detector to ensure that the detector does not perform

worse than the MMSE in any case. At present, this issue potentially could arise

with channels that have exceptionally large delay spread.

The sort-free implementation architecture for the K-best LSD tree-search

algorithm is not recommended in the 4× 4 64-QAM scenario. There are, in

essence, two options for gaining from the sort-free architecture in this scenario.

Either the value of K should be lowered to, for example, 4 or a complex-valued

tree search should be applied. However, the simulation results suggest that the

minimum value of K for efficiency in common 4× 4 64-QAM systems is roughly

8. Exploiting the complex-valued tree search in 64-QAM system would change

the number of constellation points from 8 to 64. That said, complex-valued

processing would create other implementation challenges. The performance

trade-off from reducing the value of K or applying the complex-valued tree

98

search, along with determination of how much smaller K should be for producing

a significant difference in complexity, would require further study.

HLS tools are still evolving, but significant improvement has already occurred.

In particular, the user experience and ease of meeting the scheduling target have

improved. The HLS tools are an especially favorable option for prototyping of

large designs. Fast prototyping is easier than ever with the modern HLS tools.

That said, optimal design, meeting the scheduling target with minimal resource

usage, still requires a considerable amount of manual work.

The effects of evolution are clear for FPGAs too. The latest FPGA technology

has potential to support higher-order MIMO configuration or higher-order

modulation of the next 3GPP mobile broadband releases with conventional

algorithms and without further optimisation on algorithm level. Additionally,

smaller silicon technology should be exploited if the BS baseband processing

power consumption accounts for a significant proportion of the total BS power

consumption. While this is not often the case, it is expected to become a more

important consideration as the years unfold. The smaller technology does have a

static leakage power problem when no processing is carried out in the FPGA.

However, there are advanced, modern dynamic power-optimisation technologies

designed to avoid this phenomenon and negate the disadvantages.

Finally, the potential performance- or complexity-related gains with the

recent advances in FPGAs should be taken into account when one is comparing

performance–complexity ratios between algorithms. Differences of a few tens of

per cent in estimated complexity or performance between two algorithms often

equate to less than what can be gained or lost in the practical implementation

process. Similarly, the relatively small loss in implementation efficiency with

the HLS method could be counteracted with a higher-category FPGA. These

FPGAs are more expensive, but the HLS design method represents potential to

save a huge amount of time and also money.

99

100

References

1. Nokia (2015) Technology Vision 2020 – Executive Summary. Technical report,
C401-011898-ES-201506-1-EN.

2. Chandran N & Valenti M (2001) Three generations of cellular wireless systems

potentials. IEEE Potentials 20(1): 32–35.

3. Kucari A (1991) Mobile radio: An overview. IEEE Communications Magazine

29(11): 72–85.

4. Holma H & Toskala A (2009) WCDMA for UMTS Radio Access For Third

Generation Mobile Communications, 3rd edition. John Wiley & Sons, New York,
USA.

5. Dahlman E, Parkvall S, Sköld J & Beming P (2008) 3G Evolution HSPA and LTE

for Mobile Broadband, 2nd edition. Academic Press, Orlando, USA.
6. Parkvall S, Furuskar A & Dahlman E (2011) Evolution of LTE toward IMT-

Advanced. IEEE Communications Magazine 49(2): 84–91.
7. Dahlman E, Parkvall S, Sköld J & Beming P (2011) 4G: LTE/LTE-Advanced for

Mobile Broadband. Academic Press, Orlando, USA.
8. Proakis J (1995) Digital Communications, 3rd edition. McGraw-Hill, New York,

USA.
9. Gesbert D, Shafi M, Shiu D, Smith P & Naguib A (2003) From theory to practice:

an overview of MIMO space-time coded wireless systems. IEEE Journal on Selected
Areas in Communications 21(3): 281–302.

10. Winters J, Salz J & Gitlin R (1994) The impact of antenna diversity on the capacity

of wireless communication systems. IEEE Transactions on Communications 42(234):
1740–1751.

11. Bolcskei H (2006) MIMO-OFDM wireless systems: basics, perspectives, and

challenges. IEEE Wireless Communications 13(4): 31–37.
12. Zheng L & Tse D (2003) Diversity and multiplexing: a fundamental tradeoff

in multiple-antenna channels. IEEE Transactions on Information Theory 49(5):
1073–1096.

13. Foschini G (1996) Layered space-time architecture for wireless communication in

a fading environment when using multi-element antennas. Bell Labs Technical

Journal 1(2): 41–59.
14. Wolniansky P, Foschini G, Golden G & Valenzuela R (1998) V-BLAST: an

architecture for realizing very high data rates over the rich-scattering wireless
channel. In: Proceedings of the URSI International Symposium on Signals, Systems,

and Electronics, Pisa, Italy, pp. 295–300.
15. Mietzner J, Schober R, Lampe L, Gerstacker W & Hoeher P (2009) Multiple-

antenna techniques for wireless communications - a comprehensive literature survey.

IEEE Communications Surveys Tutorials 11(2): 87–105.

16. Hwang T, Yang C, Wu G, Li S & Li GY (2009) OFDM and its wireless applications:

A survey. IEEE Transactions on Vehicular Technology 58(4): 1673–1694.

17. 3rd Generation Partnership Project (3GPP) (2012) Physical layer procedures.

Technical report, 3GPP TS 36.213 V11.0.0.

101

18. 3rd Generation Partnership Project (3GPP) (2010) Further advancements for

E-UTRA physical layer aspects. Technical report, 3GPP TR 36.814 V9.0.0.
19. Guo Z & Nilsson P (2006) Algorithm and implementation of the K-best sphere

decoding for MIMO detection. IEEE Journal on Selected Areas in Communications

24(3): 491–503.
20. Chen S, Zhang T & Xin Y (2007) Relaxed K-best MIMO signal detector design

and VLSI implementation. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems 15(3): 328–337.

21. Studer C, Burg A & Bolcskei H (2008) Soft-output sphere decoding: algorithms

and VLSI implementation. IEEE Journal on Selected Areas in Communications
26(2): 290–300.

22. Myllylä M, Juntti M & Cavallaro J (2010) Implementation aspects of list sphere

decoder algorithms for MIMO-OFDM systems. Elsevier Signal Processing 90(10):

2863–2876.

23. Ketonen J, Juntti M & Cavallaro J (2010) Performance-complexity comparison of

receivers for a LTE MIMO-OFDM system. IEEE Transactions on Signal Processing

58(6): 3360–3372.
24. Hänninen T, Janhunen J & Juntti M (2014) Novel detector implementations for

3G LTE downlink and uplink. Analog Integrated Circuits and Signal Processing

78(0): 645–655.

25. Hänninen T, Ketonen J & Juntti M (2018) MIMO detector for LTE/LTE-A uplink

receiver. Journal of Signal Processing Systems. doi:10.1007/s11265-018-1329-z

26. Hänninen T, Amin HY & Juntti M (2018) SC-FDMA MIMO detector implemen-

tations – Impact of HLS tool and technology evolution. EURASIP Journal on
Embedded Systems, submitted.

27. Hänninen T, Janhunen J & Juntti M (2013) Novel detector implementations

achieving 3G LTE downlink and uplink requirements. In: Proceedings of the
Wireless Innovation Forum Conference on Wireless Communications Technologies
and Software Radio (SDR-WInnComm). Washington DC, USA.

28. Hänninen T, Saud M, Amin HY & Juntti M (2017) MIMO detector implementations

using high-level synthesis tools from different generations. In: Proceedings of the
51st Asilomar Conference on Signals, Systems, and Computers. Pacific Grove,

USA, pp. 489–493.

29. Ketonen J, Karjalainen J, Juntti M & Hänninen T (2011) MIMO detection in

single carrier systems. In: Proceedings of the 19th European Signal Processing
Conference, Barcelona, Spain, pp. 654–658.

30. Damen M, Gamal HE & Caire G (2003) On maximum-likelihood detection and the

search for the closest lattice point. IEEE Transactions on Information Theory

49(10): 2389–2402.
31. Hassibi B & Vikalo H (2005) On the sphere-decoding algorithm I. Expected

complexity. IEEE Transactions on Signal Processing 53(8): 2806–2818.
32. Bahl L, Cocke J, Jelinek F & Raviv J (1974) Optimal decoding of linear codes for

minimizing symbol error rate. IEEE Transactions on Information Theory 20(2):

284–287.

33. Garrett D, Davis L & Woodward G (2003) 19.2 mbit/s 4x4 BLAST/MIMO detector

with soft ML outputs. IEEE Electronics Letters 39(2): 233–235.

102

34. Garrett D, Woodward G, Davis L & Nicol C (2005) A 28.8 mb/s 4x4 MIMO 3G

CDMA receiver for frequency selective channels. IEEE Journal of Solid-State
Circuits 40(1): 320–330.

35. Wenk M, Zellweger M, Burg A, Felber N & Fichtner W (2006) K-best mimo

detection vlsi architectures achieving up to 424 mbps. In: Proceedings of the IEEE

International Symposium on Circuits and Systems.

36. Lupas R & Verdú S (1989) Linear multiuser detectors for synchronous code-division
multiple-access channels. IEEE Transactions on Information Theory 35(1): 123–136.

37. Xie Z, Short RT & Rushforth CK (1990) A family of suboptimum detectors
for coherent multiuser communications. IEEE Journal on Selected Areas in

Communications 8(4): 683–690.
38. Artes H, Seethaler D & Hlawatsch F (2003) Efficient detection algorithms for

MIMO channels: A geometrical approach to approximate ML detection. IEEE

Transactions on Signal Processing 51(11): 2808–2820.

39. Wang J & Daneshrad B (2008) A universal systolic array for linear MIMO detections.
In: Proceedings of the IEEE Wireless Communications and Networking Conference.

Las Vegas, USA, pp. 147–152.
40. Foschini G & Gans M (1998) On limits of wireless communications in a fading

environment when using multiple antennas. Wireless Personal Communications

6(3): 311–335.

41. Golden G, Foschini C, Valenzuela R & Wolniansky P (1999) Detection algorithm and

initial laboratory results using V-BLAST space-time communication architecture.

Electronics Letters 35(1): 14–16.
42. Fincke U & Pohst M (1985) Improved methods for calculating vectors of short

length in a lattice, including a complexity analysis. Mathematics of Computation

44(170): 463–471.

43. Mohan S & Anderson J (1984) Computationally optimal metric-first code tree

search algorithms. IEEE Transactions on Communications 32(6): 710–717.

44. Murugan A, Gamal HE, Damen M & Caire G (2006) A unified framework for tree

search decoding: Rediscovering the sequential decoder. IEEE Transactions on

Information Theory 52(3): 933–953.

45. Viterbo E & Bouros J (1999) A universal lattice code decoder for fading channels.

IEEE Transactions on Information Theory 45(5): 1639–1642.

46. Schnorr CP (1994) Lattice basis reduction: Improved practical algorithms and

solving subset sum problems. Mathematical Programming 66(1): 181–199.

47. Wong K, Tsui C, Cheng R & Mow W (2002) A VLSI architecture of a K-best
lattice decoding algorithm for MIMO channels. In: Proceedings of the IEEE

International Symposium on Circuits and Systems, volume 3, pp. 273–276.

48. Anderson J & Mohan S (1984) Sequential coding algorithms: A survey and cost
analysis. IEEE Transactions on Communications 32(2): 169–176.

49. Mohan S & Anderson J (1984) Computationally optimal metric-first code tree

search algorithms. IEEE Transactions on Communications 32(6): 710–717.

50. Xu W, Wang Y, Zhou Z & Wang J (2004) A computationally efficient exact ML

sphere decoder. In: Proceedings of the IEEE Global Telecommunication Conference.

Dallas, USA, volume 4, pp. 2594–2598.
51. Siti M & Fitz M (2006) A novel soft-output layered orthogonal lattice detector for

103

multiple antenna communications. In: Proceedings of the IEEE International

Conference on Communications. Istanbul, Turkey, volume 4, pp. 1686–1691.
52. Li M, Bougart B, Lopez E, Bourdoux A, Novo D, Perre LVD & Catthoor F

(2008) Selective spanning with fast enumeration: A near maximum-likelihood

MIMO detector designed for parallel programmable baseband architectures. In:

Proceedings of the IEEE International Conference on Communications. Beijing,

China., pp. 737–741.
53. Barrett R, Berry M, Chan T, Demmel J, Donato J, Eijkhout J, Pozo R, Romine C

& der Vorst H (1994) Templates for Solution of Linear Systems: Building Blocks

for Iterative Methods. Society for Industrial and Applied Mathematics.

54. Ylinen M, Burien A & Takala J (2003) Updating matrix inverse in fixed-point
representation: Direct versus iterative methods. In: Proceedings of the IEEE

International Symposium on System-on-Chip. Tampere, Finland, pp. 45–48.
55. Higham N (1996) Accuracy and Stability of Numerical Algorithms. Society for

Industrial and Applied Mathematics, Philadelphia, USA.
56. Press W, Teukolsky S, Vetterling W & Flannery BP (2007) Numerical Recipes 3rd

Edition: The Art of Scientific Computing. Cambridge University Press, New York,
USA.

57. Leung H & Haykin S (1989) Stability of recursive QRD-LS algorithms using

finite-precision systolic array implementation. IEEE Transactions on Acoustics,
Speech, and Signal Processing 37(5): 760–763.

58. Givens W (1958) Computation of plane unitary rotations transforming a general

matrix to triangular form. SIAM Journal of the Society and Industrial and Applied

Mathematics 6(1): 26–50.

59. Golub G (1965) Numerical methods for solving linear least squares problems.

Numerische Mathematik 7(3): 206–216.

60. Golub G & Loan C (1989) Matrix Computations, 2nd edition. The Johns Hopkins

University Press, Baltimore, USA.

61. Antikainen J, Salmela P, Silvén O, Juntti M, Takala J & Myllylä M (2008)

Finegrained application-specific instruction set processor design for the K-best list

sphere detector algorithm. In: Proceedings of the IEEE International Conference
on Embedded Computer Systems: Architectures, Modeling and Simulation. Samos,

Greece, 108-115.

62. Bengough P & Simmons S (1995) Sorting-based VLSI architectures for the M-

algorithm and T-algorithm trellis decoders. IEEE Transactions on Communications
43(234): 514–522.

63. Wiesel A, Mestre X, Pages A & Fonollosa J (2003) Efficient implementation of

sphere demodulation. In: Proceedings of the IEEE Workshop on Signal Processing

Advances in Wireless Communications. Rome, Italy, pp. 36–40.
64. Widdup B, Woodward G & Knagge G (2004) A highly-parallel VLSI architecture

for a list sphere detector. In: Proceedings of the IEEE International Conference on

Communications. Sydney, Australia, volume 5, pp. 2720–2725.

65. Milliner D, Zimmermann E, Barry J & Fettweis G (2009) A fixed-complexity smart

candidate adding algorithm for soft-output MIMO detection. IEEE Journal of

Selected Topics in Signal Processing 3(6): 1016–1025.
66. Zimmermann E & Fettweis G (2007) Generalized smart candidate adding for tree

104

search based MIMO detection. In: Proceedings of the ITG Workshop on Smart

Antennas. Vienna, Austria.
67. Zimmermann E, Fettweis G, Milliner D & Barry J (2008) A parallel smart candidate

adding algorithm for soft-output MIMO detection. In: Proceedings of the ITG

Conference on Source and Channel Coding. Ulm, Germany.
68. Myllylä M, Cavallaro J & Juntti M (2011) Architecture design and implementation

of the metric first list sphere detector algorithm. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 19(5): 895–899.

69. Chen S, Sun F & Zhang T (2006) Nonlinear soft-output signal detector design and

implementation for MIMO communication systems with high spectral efficiency. In:
Proceedings of the IEEE Custom Integrated Circuits. Seoul, Korea, pp. 321–324.

70. Mondal S SCSK Eltawil A (2010) Design and implementation of a sort-free K-best

sphere decoder. IEEE Transactions on Very Large Scale Integration (VLSI) Systems

18(10): 1497–1501.

71. Shen C & Eltawil A (2010) A radius adaptive K-best decoder with early termination:

Algorithm and VLSI architecture. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems 57(9): 2476–2486.
72. Cupaiuolo T, Siti M & Fitz M (2010) Low-complexity high throughput VLSI

architecture of soft-output ML MIMO detector. In: Proceedings of the Conference

on Design, Automation and Test in Europe, pp. 1396–1401.

73. Li M, Bougart B, Novo D, Thillo W, Perre L & Catthoor F (2008) Adaptive
SSFE near-ML MIMO detector with dynamic search range and 80103 Mbps

flexible implementation. In: Proceedings of the IEEE Global Telecommunication

Conference. New Orleans, USA, pp. 737–741.

74. Fasthuber R, Novo D, Raghavan P, Perre L & Catthoor F (2009) Novel energy-

efficient scalable soft-output SSFE MIMO detector architectures. In: Proceedings of

the IEEE International Conference on Embedded Computer Systems: Architectures,
Modeling and Simulation. Samos, Greece, pp. 165–171.

75. Amiri K, Cavallaro JR, Dick C & Rao RM (2009) A high throughput configurable

SDR detector for multi-user MIMO wireless systems. Journal of Signal Processing

Systems 62(2): 233–245.

76. Glossner J, Moudgill M, Iancu D, Nacer G, Jinturkar S, Stanley S, Samori M,

Raja TR & Schulte M (2005) The sandbridge sandblaster convergence platforms.

Technical report, Sandbridge.
77. Yoo B, Lee K & Lee C (2007) Implementation of IEEE 802.16e MIMO-OFDMA

systems with K-best lattice decoding algorithm. In: Proceedings of the IEEE
International Conference on Consumer Electronics. Seoul, Korea, pp. 6–73.

78. Wu M, Gupta S, Sun Y & Cavallaro J (2009) A GPU implementation of a real-time

MIMO detector. In: Proceedings of the IEEE Workshop on Signal Processing
Systems. Tampere, Finland, pp. 303–308.

79. Wu M, Sun Y & Cavallaro J (2009) Reconfigurable real-time MIMO detector on

GPU. In: Proceedings of the Annual Asilomar Conference on Signals, Systems and

Computers. Pacific Grove, USA, pp. 690–694.
80. Wu M, Sun Y, Gupta S & Cavallaro J (2010) Implementation of a high throughput

soft MIMO detector on GPU. Journal of Signal Processing Systems 64(1): 123–136.
81. Antikainen J, Salmela P, Silvén O, Juntti M, Takala J & Myllylä M (2007) Transport

105

triggered architecture implementation of list sphere detector. In: Proceedings of

the Finnish Signal Processing Symposium. Oulu, Finland.
82. Berkeley design technology Inc (2010) An independent evaluation of: High-level

synthesis tools for Xilinx FPGAs. Technical report, BDTi.

83. Myllylä M, Juntti M & Cavallaro J (2009) Architecture design and implementation

of the increasing radius - list sphere detector algorithm. In: Proceedings of the

IEEE International Conference on Acoustics, Speech and Signal Processing. Taipei,

Taiwan, pp. 553–556.

84. Cong J, Liu B, Neuendorffer S, Noguera J, Vissers K & Zhang Z (2011) High-level

synthesis for FPGAs: From prototyping to deployment. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 30(4): 473–491.

85. Myllylä M (2011) Detection algorithms and architectures for wireless spatial

multiplexing in MIMO-OFDM systems. C380 of Acta Universitatis Ouluensis,
Doctoral thesis, Centre for Wireless Communications, University of Oulu.

86. Karjalainen J, Veselinovic N, Kansanen K &Matsumoto T (2007) Iterative frequency

domain joint-over-antenna detection in multiuser MIMO. IEEE Transactions on

Wireless Communications 6(10): 3620–3631.
87. Damen MO, Gamal HE & Caire G (2003) On maximum-likelihood detection and

the search for the closest lattice point. IEEE Transactions on Information Theory

49(10): 2389–2402.

88. Wong K, Tsui C, Cheng RK & Mow W (2002) A VLSI architecture of a K-best

lattice decoding algorithm for MIMO channels. In: Proceedings of the IEEE

International Symposium on Circuits and Systems. Scottsdale, USA, volume 3, pp.

273–276.

89. Li M, Bougart B, Lopez E & Bourdoux A (2008) Selective spanning with fast

enumeration: A near maximum-likelihood MIMO detector designed for parallel

programmable baseband architectures. In: Proceedings of the IEEE International

Conference on Communications. Beijing, China, pp. 737–741.

90. 3rd Generation Partnership Project (3GPP) (2007) Spatial channel model for

multiple input multiple output (MIMO) simulations. Technical report, 3GPP TR
25.996 V7.0.0.

91. Koetter R, Singer A & Tüchler M (2003) Turbo equalisation. IEEE Signal

Processing Magazine 21(1): 67–80.

92. Abe T & Matsumoto T (2003) Space-time turbo equalization in frequency-selective

MIMO channels. IEEE Transactions on Vehicular Technology 52(3): 469–475.

93. Kansanen K & Matsumoto T (2007) An analytical method for MMSE MIMO turbo
equalizer EXIT chart computation. IEEE Transactions on Wireless Communications

6(1): 59–63.

94. Shabany M, Su K & Gulak P (2008) A pipelined scalable high-throughput
implementation of a near-ML K-best complex lattice decoder. In: Proceedings of

the IEEE International Conference on Acoustics, Speech, and Signal Processing.

Las Vegas, USA.

95. Shabany M & Gulak P (2012) A 675 mbps, 4x4 64-QAM K-Best MIMO Detector

in 0.13 µm cmos. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems 20(1): 135–147.
96. Noguera J, Neuendorffer S, Haastregt S, Barba J, Vissers K & Dick C (2011)

106

Implementation of sphere decoder for MIMO-OFDM on FPGAs using high-level

synthesis tools. Analog Integrated Circuits and Signal Processing 69(2): 119–129.
97. Wenk M, Zellweger M, Burg A, Felber N & Fichtner W (2006) K-best MIMO

detection VLSI architectures achieving up to 424 mbps. In: Proceedings of the

IEEE International Symposium on Circuits and Systems. Island of Kos, Greece.
98. Xilinx (2013) Vivado design suite user guide: Implementation. Technical report,

UG904 v2013.4.

107

108

A C T A U N I V E R S I T A T I S O U L U E N S I S

Book orders:
Granum: Virtual book store
http://granum.uta.fi/granum/

S E R I E S C T E C H N I C A

651. Nyländen, Teemu (2018) Application specific programmable processors for
reconfigurable self-powered devices

652. Asres, Georgies Alene (2018) Synthesis, characterization and application of WS?
nanowire-nanoflake hybrid nanostructures

653. Hajimammadov, Rashad (2018) Plasmonic, electrical and catalytic properties of
one-dimensional copper nanowires : effect of native oxides

654. Barua, Bidushi (2018) Incentivizing user participation in cooperative content
delivery for wireless networks

655. Pallaspuro, Sakari (2018) On the factors affecting the ductile-brittle transition in
as-quenched fully and partially martensitic low-carbon steels

656. Kyösti, Pekka (2018) Radio channel modelling for 5G telecommunication system
evaluation and over the air testing

657. Petäjäjärvi, Juha (2018) Low-power wireless communications in the Internet of
Things : solutions and evaluations

658. Boulkenafet, Zinelabidine (2018) Face presentation attack detection using texture
analysis

659. Kaikkonen, Harri (2018) Supporting rapid product development with agile
development methodologies

660. Tervo, Oskari (2018) Transceiver optimization for energy-efficient multiantenna
cellular networks

661. Menberu, Meseret Walle (2018) Hydrology of peat-dominated headwater
catchments : theories and empirical analysis of the impacts of anthropogenic
disturbance

662. Hietava, Anne (2018) Electrical behaviour of submerged arc furnace’s charge
materials

663. Lappalainen, K. Matti (2018) Itämeren rehevöitymisen uudistettu diagnoosi ja
paradigma

664. Ahmad, Ijaz (2018) Improving software defined cognitive and secure networking

665. Laiyemo, Ayotunde Oluwaseun (2018) High speed moving networks in future
wireless systems

666. Kaleva, Jarkko (2018) Decentralized multiantenna transceiver optimization for
heterogeneous networks

C667etukansi.fm Page 2 Thursday, June 7, 2018 1:52 PM

UNIVERSITY OF OULU P .O. Box 8000 F I -90014 UNIVERSITY OF OULU FINLAND

A C T A U N I V E R S I T A T I S O U L U E N S I S

University Lecturer Tuomo Glumoff

University Lecturer Santeri Palviainen

Postdoctoral research fellow Sanna Taskila

Professor Olli Vuolteenaho

University Lecturer Veli-Matti Ulvinen

Planning Director Pertti Tikkanen

Professor Jari Juga

University Lecturer Anu Soikkeli

Professor Olli Vuolteenaho

Publications Editor Kirsti Nurkkala

ISBN 978-952-62-1968-4 (Paperback)
ISBN 978-952-62-1969-1 (PDF)
ISSN 0355-3213 (Print)
ISSN 1796-2226 (Online)

C667etukansi.fm Page 1 Thursday, June 7, 2018 1:52 PM

	Abstract
	Tiivistelmä
	Preface
	Abbreviations
	Contents
	1 Introduction
	1.1 Evolution of mobile networks
	1.2 Multiple-antenna communications
	1.3 SC-FDMA technology
	1.4 Aims, outline and contributions of this thesis

	2 Literature review
	2.1 MIMO detection
	2.1.1 Optimal detection
	2.1.2 Suboptimal linear and non-linear detection
	2.1.3 Tree-search algorithms

	2.2 Implementation aspects
	2.2.1 QR decomposition
	2.2.2 Sorting
	2.2.3 Technology
	2.2.4 High-level synthesis

	3 System model and receiver structures
	3.1 System model
	3.2 SC-FDMA MIMO receiver structures
	3.3 MMSE filter
	3.4 Sphere detector
	3.5 Possible receiver modifications
	3.5.1 Antenna grouping
	3.5.2 LLR iteration

	4 Simulation results
	4.1 4 x 4 MIMO system
	4.2 2 x 2 MIMO system
	4.3 1 x 4 MIMO system
	4.4 LLR iteration
	4.5 Turbo receiver
	4.6 Complexity estimation
	4.7 Conclusions

	5 MIMO detector implementations
	5.1 Development environment
	5.2 Implementation requirements
	5.3 Macro-architecture specification
	5.3.1 Architecture with a sorter
	5.3.2 Sort-free architecture

	5.4 Examples of design optimisation
	5.4.1 C-code parametrisation
	5.4.2 Embedded DSP usage

	6 Implementation results
	6.1 Architecture comparison
	6.2 HLS tool evaluation
	6.2.1 Catapult C 2010 vs AutoPilot 2011
	6.2.2 AutoPilot 2011 vs Vivado HLS 2017

	6.3 Hand-written RTL language vs HLS tools
	6.4 FPGA technology evaluation
	6.5 Conclusions

	7 Discussion and future work
	References

