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ABSTRACT 

Detection and identification of military and civilian targets from airborne platforms 
using hyperspectral sensors is of great interest. Relative to multispectral sensing, hyperspec- 
tral sensing can increase the detectability of pixel and subpixel size targets by exploiting finer 
detail in the spectral signatures of targets and natural backgrounds. A multitude of adaptive 
detection algorithms for resolved and subpixel targets, with known or unknown spectral 
characterization, in a background with known or unknown statistics, theoretically justified 
or ad hoc, with low or high computational complexity, have appeared in the literature or have 
found their way into software packages and end-user systems. The purpose of this report is 
twofold. First, we present a unified mathematical treatment of most adaptive matched filter 
detectors using common notation, and we state clearly the underlying theoretical assump- 
tions. Whenever possible, we express existing ad hoc algorithms as computationally simpler 
versions of optimal methods. Second, we present a comparative performance analysis of 
the basic algorithms using theoretically obtained performance characteristics. We focus on 

algorithms characterized by theoretically desirable properties, practically desired features, 
or implementation simplicity. Sufficient detail is provided for others to verify and expand 
this evaluation and framework. A primary goal is to identify best-of-class algorithms for 
detailed performance evaluation. Finally, we provide a taxonomy of the key algorithms and 
introduce a preliminary experimental framework for evaluating their performance. 
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1.    INTRODUCTION 

Remote sensing is defined as the acquisition of information about a distant object without coming into 
physical contact with it. This is made possible by exploiting the fact that the materials making the various 
objects reflect, absorb, and emit electromagnetic radiation (photons) in ways characteristic of their chemical 
composition. If we measure the energy of this radiation as a function of the wavelength, we can obtain a 
spectral signature or simply spectrum which can be used to uniquely characterize any given material. The 
measurement, analysis, and interpretation of such spectra is the subject of spectroscopy. The combination 

of spectroscopy and imaging technologies and methods to acquire spectral information over large areas is 
known as imaging spectroscopy. The principle underlying imaging spectroscopy is illustrated in Figure 1. 

Hyperspectral sensor 

Wavelength 

Each pixel contains 

a continuous spectrum 

that is used to identify 

the materials present in 

the pixel by their 

reflectance or emissivity 

Wavelength 

Wavelength 

Spectral images 

taken simultaneously 

Figure 1. Principle of imaging spectroscopy 

There are four sampling operations involved in this process: spectral, spatial, radiometric, and temporal. 

Hyperspectral sensors sample the portion of the electromagnetic spectrum that extends form the visible part 
(0.4-0.7 p.m) to near-infrared (about 2.4/zm) in hundreds of narrow contiguous bands about lOnm wide. 

Figure 2 shows the evolution of the technology from the past low resolution multispectra sensors to the future 
high resolution ultraspectra ones. Such high spectral resolution preserves important aspects of the spectrum 



(e.g., shape of narrow absorption bands) and makes possible to differentiate between different materials on 
the ground. The spatial resolution or ground pixel size varies from meters to tens of meters and basically 
is a function of flight altitude, which in turn depends on the kind of platform (spaceborn versus airborn). 

Radiometric resolution is determined by the number of bits used to describe the radiance measured by the 
sensor at each spectral channel. Finally, the time interval between successive passes from the same location 

detrmines the temporal sampling rate. 
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Figure 2. Evolution of remote sensing spectroscopy with respect to spectral resolution (Adapted from Multispectral 

Imagery Reference Guide). 

As a result of spatial and spectral sampling, the fundamental hyperspectral data structure is a data cube, 
whose face is a function of the spatial coordinates and its depth is a function of spectral band (or wavelength). 
For every band, we have an image of the surface covered by the field of view of the sensor, whereas for each 
image pixel we have,a spectrum characterizing the materials within the pixel. The nature and organization 
of the collected data is illustrated in Figure 3. 

As a result of their fine spectral resolution, HSI sensors provide a significant amount of information 
about the physical and chemical composition of the materials occupying the pixel surface, as well as the 

characteristics of the atmosphere between the sensor and the surface during the data collection. Figure 4 
summarizes various applications of hyperspectral imaging sensors in terms of the information which can be 



c 
g 

c 

E 
-a 

en 
o. 

en 

Spatial dimension 

Figure 3. Imaging spectrometry data cube illustrating the simultaneous spatial and spectral character of the data. 

extracted from different spectral bands. In this report, we focus on the detection of materials using their 
spectral signatures. 

1.1 ATMOSPHERIC COMPENSATION 

Due to the effects of the illumination source and the atmosphere, the "raw" radiance spectra obtained 
by an HSI sensor cannot be directly compared to either laboratory spectra or "raw" spectra collected at other 
times or places. 

To overcome this obstacle, we work with the reflectance spectrum, which indicates the portion of 
incident energy which is reflected as a function of wavelength. Hence, the properties of the illuminating 
source and the effects of the propagating atmosphere are removed, and the shape of the reflectance curve is 
characteristic of the materials in the observed pixel. Once the data have been corrected for the effects of the 
atmospheric absorption and scattering, the resulting reflectance spectrum for every pixel, can be compared 
to spectra of known materials available in "spectral libraries". 

1.2 SPECTRAL VARIABILITY AND MIXED PIXELS 

The basic task underlying many HSI applications is to identify different materials based on their 
reflectance spectrum. In this respect, the concept of a spectral signature, which uniquely characterizes any 

given material, is highly attractive and widely used. However, spectra observed in the natural world do not 
exhibit a deterministic signature. The spectra observed from samples of the same material will never be 
identical, even in laboratory experiments, due to variations in the material surface. The amount of variability 
is more profound in remote sensing applications due to variations in atmospheric conditions, sensor noise, 
material composition, location, surrounding materials, and other factors. To make matters worse, totally 
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Figure 4. Applications ofhyperspectral image exploitation according to the utility of different spectral bands (Courtesy 

ofSITAC). 

different material types can have very similar spectra. 

Despite these difficulties, practical experience has shown that many materials of interest can be identi- 
fied on the basis of their spectral characteristics. However, the ambiguity introduced by inherent variability of 
spectral signatures has important implications into the exploitation of HSI data for both civilian and military 
applications. 

Despite the intrinsic spectral variability and the occasional lack of identifiability, the concept of spectral 
signature is widely used in remote sensing spectroscopy. In this paper, we assume that different materials are 
spectrally separable and focus on the problems introduced by the inherent variability of spectral signatures. 

Another significant complication arises from the interplay between the spatial resolution of the sensor 
and the spatial variability present in the ground scene. The sensor integrates the radiance from all materials 
within the ground surface "seen" by the sensor as an image pixel. Therefore, depending on the spatial 
resolution of the sensor and the spatial distribution of surface materials within each ground pixel, the result is 
a HSI data set comprised of "pure" and "mixed" pixels. Mixed pixels present an additional challenge to HSI 



data exploitation because their spectral signatures do not correspond to any single well-defined material. 

Dealing with spectral signature variability and spectral compositions in mixed pixels, are among the 
most challenging problems in HSI data exploitation, both theoretically and practically. 

1.3    BACKGROUND CLASSIFICATION AND TARGET DETECTION 

There are two major applications that rely upon the ability to separate materials based on their spectral 
signatures: background classification and target detection. 

The main objective of background classification is to automatically assign all pixels in an HSI data 
cube into land cover classes or themes, which has led to the term thematic mapping. The user has the task 

to up-front determine the number and type of classes as well as to quantitatively characterize these classes 
using spectral libraries or training data and ground truth information. Practical experience has shown that, the 
design of a good classifier requires a sufficient amount of training data for each background class. Clearly, 
for background classification, the natural criterion of performance is the minimization of the probability of 
missclassification errors. 

In target detection applications, the main objective is to search the pixels of an HSI data cube for the 
presence of a specific material (target). Conceptually, at least at a theoretical level, target detection can be 
viewed as a two-class classification problem. However, there are some fundamental practical differences, 
that have a great impact upon the development and evaluation of practical algorithms for detection versus 
classification applications. In surveillance applications, the size of the objects (targets) we are searching for 
constitutes a very small fraction of the total search area. Therefore, the target class will be either empty or 
sparsely populated. On the other hand, the general "no-target" class includes almost all pixels in the cube 
and is the union of the different specific background classes. We shall use the term "background" to refer 
to all non-target pixels of a scene. Usually, targets are man-made objects with spectra that differ from the 
spectra of natural background pixels. 

To summarize, the key aspects of detection applications are: 

1. the target class is either empty or sparsely populated 

2. the amount of available a priori information, for the spectral characterization of target class, varies 

depending upon the application from complete to none 

3. the background class is densely populated 

4. there is insufficient a priori information for adequate spectral characterization of the background class. 

The sparseness of the target class implies that there are not sufficient data to train a statistical classifier 
or statistically evaluate the performance of a target detector. On the other hand, the heavy population of the 
background class, in conjunction with the emptiness of the target class, allows the use of the "unclassified" 
HSI cube to statistically characterize the background. In detection applications, where the target probability 
is very small, minimization of the error probability is not a good criterion of performance, because it can 

be minimized by classifying every pixel as background.  For this reason, we typically seek to maximize 



the probability of detection while keeping the probability of false alarm under a certain predefined value 

(Neyman-Pearson criterion). 

The amount of a priori information about the spectral signature of the target, depends on the require- 

ments of the specific application. A priori information about spectral signatures is available in libraries as 
reflectance spectra. Therefore, to look for targets with known spectral signatures, the data must first be 

converted into reflectance, a procedure that may lead to spectral distortions since it generally depends upon 

assumptions and measurements about atmospheric conditions. If we have no a priori information about the 
target or we are constrained to work with radiance, the most reasonable approach is to look for pixels whose 
spectral content is "significantly" different from the spectral content of the local background. The detection 
of targets with unknown anomalous spectra is known in the hyperspectral literature as anomaly detection and 

is discussed in a companion paper. 

From an applications point of view, there are different types of spectral searches that can be imple- 
mented: 

• determine whether a reflectance spectrum from the HSI cube exists in the spectral library (material 
identification) 

• determine whether a spectrum from a library is present in the HSI cube (target detection) 

• identify groups of spectrally similar pixels from the same cube (spectral classification) 

• identify pixels with anomalous spectra compared to their local background (anomaly detection) 

In this paper, we discuss algorithms for target detection, for the case where there is a priori knowledge 
available about the target spectral signature. In the radar and communication areas, detection algorithms 
are used to decide whether the received waveform consists of "noise only" or "signal masked by noise". 
Typically, there is sufficient a priori information about the transmitted signal and the performance of the 
system is limited by additive noise. In contrast, data obtained by HSI sensors exhibit a high signal-to-noise 
ratio (SNR) and the performance of detection algorithms is limited by target variability rather than noise. 
In mixed pixels, the target spectrum can be severely masked by dominating background spectra. In this 
case, detection performance is significantly limited by "background interference." This intuitively obvious 
observation leads to a fundamental partitioning of detection algorithms into two classes: 

• Detection algorithms for full-pixel targets: in this case detection performance is mainly determined 
by target and background variability. 

• Detection algorithms for sub-pixel targets: in this case, besides the variability of target and background 
spectra, detection performance is affected by background interference. 

1.4   DESIGN AND EVALUATION OF TARGET DETECTORS 

The mathematical framework for the design and evaluation of detection algorithms is provided by the 
area of statistics known as (binary) hypothesis testing. There are several approaches for the systematic design 



of detection algorithms. However, it is well known that detectors based on the likelihood ratio (LR) test have 
certain advantages. First, in some sense, LR tests minimize the risk associated with incorrect decisions. 
Second, the LR leads to detectors which are optimum for a wide range of performance criteria, including the 
maximization of separation between target and background pixels. 

Most HSI data processing techniques start with the idea that an observed spectrum can be considered 
as a vector in a multidimensional space, where the number of dimensions equals the numberof spectral 
bands, L . Taking into consideration spectral variability and receiver noise, the observations provided by the 
sensor can be modelled, for the purpose of theoretical analysis, as random vectors with specific probability 
distributions. Given an observed spectrum, x, the LR is given by the ratio of the conditional probability 
density functions 

^ p(x\ signal present) 

p(x | signal absent) 

If A(x) exceeds a certain threshold n, then the "signal present" hypothesis is selected as true. If A(x) is 

larger than the threshold, the "signal present" hypothesis is accepted. Basically, the LR test accepts as "true" 
the most "likely" hypothesis. 

A practical question of paramount importance to a system designer is where to set the threshold to keep 
the number of detection errors (target misses and false alarms) small. Indeed, there is always a compromise 
between choosing a low threshold to increase the probability of (target) detection PQ and a high threshold 
to keep the probability of false alarm PFA low. For any given detector, the trade-off between ffc> and PFA 

is described by the Receiver Operating Characteristic (ROC) curves, which plot PD(T]) versus -PFA(T?) as a 
function of threshold — oo < 77 < 00. Clearly, any systematic procedure to determine ROC curves or the 
threshold requires specifying the distribution of the observed spectra x under each of the two hypotheses. 

If the conditional densities in (1) are completely known (simple hypotheses), the detector specified 
by the LR has the highest possible PD for any value of PFA 5 a (Neyman-Pearson Lemma). Hence, the 
ROC curve of the optimum Neyman-Pearson detector provides an upper bound for the ROC of any other 
detector. It is also possible to choose the threshold in a way that leads to the minimization of the probability 

of detection errors (both misses and false alarms). This leads to the well known Bayes detector or classifier, 
which is widely used in pattern classification applications. It should be emphasized that the Bayes and 
Neyman-Pearson detectors are specified by the same LR function; they only differ in the selection of the 

threshold. 

In most practical situations, the conditional probability densities in (1) depend on some unknown target 

and background parameters (composite hypotheses). Therefore, the ROC curves of any detector depend on 
the unknown parameters. In this case, is almost impossible to find a detector whose ROC curves remain an 
upper bound for the whole range of the unknown parameters (uniformly most powerful (UMP) detector). 

An intuitively appealing and widely used approach, in the case of unknown density parameters, is to 
replace the unknown parameters in the LR (1) with their maximum likelihood estimates. In general, there are 

no optimallity properties associated with the resulting Generalized LR (GLR), AG(X). However, in practice, 

the GLR leads to detectors that seem to work well in several applications. 

Practical target detection systems should function automatically, that is, without operator intervention. 
This requires an automatic strategy to set a "proper" detection threshold. A high false alarm rate wastes 



processing and reporting resources and may result to system overloading. Therefore is critical to keep the 
false alarm rate constant at a desirable level by using a Constant False Alarm Rate (CFAR) processor. The task 

of a CFAR algorithm is to provide detection thresholds that are relatively immune to noise and background 
variation and allow target detection with a constant false alarm rate. 

1.5    FRAMEWORK FOR DETECTION ALGORITHM TAXONOMY 

The key factors that determine the taxonomy of hyperspectral target detection algorithms are: the type 
of models used for spectral (target or background) variability . the composition of the pixel under test (pure 
or mixed), and the model used to describe mixed pixels. 

Probability 
density model 

Band 3 

Band 1 

Band 3 

Band 2 Band 2 

Band 1 

Figure 5. Pictorial illustration of subspace and probabilistic models for the description of spectral variability in the 

spectral space. 

The observed spectral radiance data, or derived apparent surface reflectance data, can be viewed as 
scattering of points in an L—dimensional Euclidean space, where L is the number of spectral bands. Each 
spectral band is assigned to one axis of the space, all axes being mutually orthogonal. Therefore, the spectrum 
of each pixel can be viewed as a vector. The tip od this vector corresponds to a point, whose Cartesian 
coordinates are the values at each spectral band (see Figure 5). Spectra without variability correspond to a 
single fixed point, whereas the tip of vector corresponding to spectra with variability can be anywhere within 
a certain volume of the spectral space. Depending on how we specify thsi space, there are two widely used 
ways to describe spectral variability. 

The geometric approach restricts the spectrum vector to vary in an M-dimensional subspace of the 
data space (M < L). The observed spectrum is described by 

u 

}J CtkSk Sa (2) 

*=] 

The vectors S* or equivalently the matrix S. which define the variability subspace. can be (a) endmembers 
determined from spectral libraries or the data, or (b) vectors obtained with statistical techniques (for example. 



the eigenvectors of the data correlation matrix). Clearly, the variability increases as M increases from one 
toL. 

The statistical approach provides a probability distribution model for the description of the spectral 
variability. Usually, first- and second-order moments (mean vector and covariance matrix) are employed 
under a multivariate normal distribution assumption. Clearly, variability is related to the spread of the 
distribution, and the highest variability is obtained for a uniform distribution over the data space. 

For full pixel targets, there is no significant interaction between target and background other than 
secondary illumination, shading, etc. Hence, the spectrum observed by the sensor is produced either by the 
target spectrum or the background spectrum. In both cases, the observed spectrum is corrupted by additive 

sensor noise. The sensor noise is assumed insignificant or accounted for by the target and background 
distributions. 

For subpixel targets, both the spectrum of the target and the spectrum or spectra of the background 
contribute to the observed mixed pixel spectrum. There are two widely used models for modelling subpixel 
targets. 

The most widely used spectral mixing model is the linear mixing model [1] (LMM), which assumes 
that the observed pixel spectrum is generated by a linear combination of a small number of unique constituent 
deterministic spectral signatures known as "endmembers". The mathematical formulation of the LMM is 
given by 

M 

x = \] QkSk +v = Sa + w (3) 
t=i 

where s\,S2,... ,sM, are the M endmember spectra, assumed linearly independent, a\, 02,...,aM are the 
corresponding abundances, and w is an additive noise vector. Endmembers may be obtained from spectral 
libraries, in-scene spectra, or using geometrical techniques. We point out that the enforcement of positivity 

(aic > 0) and additivity (a\ + 02 -\ h aM = 1) constraints makes the LMM a replacement model. Spectra 
satisfying the LMM with both sets of constraints are confined in an L-dimensional simplex [1] studied by 
the mathematical theory of convex sets. 

If the endmember spectra are randomly and independently drawn from multivariate normal distribu- 

tions, we have the stochastic mixing model [53,60]. 

The choice of a pixel composition assumption (pure or mixed pixel), the selection of a model to account 

for spectral variability (subspace or probability distribution), and the selection of a mixing procedure leads 
to different types of target detection algorithms. The detection problem is typically formulated as a binary 

hypothesis test with two competing hypotheses: background only (Ho) or target and background (H\). Since 
the two hypotheses contain unknown parameters (for example, covariance matrix of the background) that 
have to be estimated from the data, the detector has to be adaptive, and it is usually designed using the 
generalized likelihood ratio test (GLRT) approach. 

Most detection algorithms for full pixel and subpixel targets have been obtained by describing spectral 
variability using the multivariate normal distribution or a subspace model. Mixed pixels are usually modelled 
using the LMM. A target detection algorithm based on the stochastic mixing model, known as finite target 
matched filter, is discussed in [53,60]. 



Finally, we note that, in several practical applications we do not have adequate a priori information 

about the desired target. In such cases, it is possible to design algorithms that look for spectra which deviate 

from the local background (anomaly detection). The type of the statistical model used for the background 
leads to different anomaly detection algorithms. Use of a multivariate normal distribution model leads to the 

RX algorithm [45,63] which is one of the most widely used algorithms for anomaly detection. Recently, 
a new algorithm [58] has been developed, which fuses the local statistics used by the RX algorithm and 
the clustering statistics obtained using stochastic expectation maximization (SEM) to improve detection 
performance. More details about anomaly detection algorithms can be found in [57]. 

Table 1 provides a conceptual taxonomy of target detection algorithms according to the adopted signal 
model and the available a-priori information. We note that both target and background variability may be 

modelled using either a multivariate normal distribution or a subspace model. However, most practical 

algorithms for target detection use subspace models to account for target variability. 

TABLE 1. Taxonomy of algorithms for target detection. 

A-priori information Quantity Matched filter Clairvoyant Adaptive Anomaly detection 

Target subspace S Known Known Known Unknown 

Target abundance a Known Unknown Unknown Unknown 

Background and noise r Known Known Unknown Unknown 
covariance 

Background subspace B,al Known Known Unknown Unknown 

and noise variance 

The rest of the report is organized as follows. Section 2 provides a brief description of the HSI data 
sets used for the experimental investigations and the various practical issues regarding the implementation 
and evaluation of target detection algorithms. The mathematical modelling of spectral variability for target 
and background pixels is the subject of Section 3. In Section 4, we discuss detection algorithms for full-pixel 
(or resolved) targets. Detection of sub-pixel targets is presented in Section 5. The linear mixing model and 
the estimation of its parameters using the principle of least squares is discussed in Section 6. The application 
of the linear mixing model to sub-pixel target detection is the subject of Section 7. Finally, we present a 
taxonomy of target detection algorithms in Section 8 and a brief conclusion in Section 9. 
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2.    DATA DESCRIPTION AND PRACTICAL CONSIDERATIONS 

Airborne hyperspectral imagery data collected by the HYDICE [48] sensor at the U.S. Army Aberdeen 
Proving Grounds on 24 August 1995 will be used to illustrate various issues and algorithms discussed in this 
report. HYDICE collects calibrated (after processing) spectral radiance data in 210 wavelengths spanning 
0.4 to 2.5 /zm in nominally 10 nm wide bands. Figure 6 shows a single band (A = 0.565 fim) image of the 
Run 07 data collected at 9:27 AM local time under clear conditions from an altitude of 3 km. The spatial 

resolution of the imagery is approximately 1.5 meters. 

Figure 6. Run 07 data and three regions used for statistical analysis and detection algorithm evaluation. 

The implementation of hyperspectral target detection algorithms in a real-world environment involves 
confrontation with many "practical details" and challenges that result from the violation of the theoretical 
assumptions used for the derivation of the various algorithms. 

To illustrate various issues regarding detection algorithms, we shall use the Forest Radiance I data 
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(see Figure 6) collected with the HYDICE sensor. We have selected the three areas outlined in Figure 6 to 
investigate three different types of background: grass (G), trees (T), and mixed grass-road (GR). The first 
two scenes are relatively homogeneous, whereas the third scene consists of a non-homogeneous background 

including different types of grass and roads. Also considered were classes resulting from a supervised 
classification process performed to isolate spectrally similar (not necessarily spatially adjacent) pixels. Data 
from two classes selected from this analysis were labelled "Class 2 Grass" and "Class 9 Tree". Table 2 

summarizes the classes analyzed and their sample sizes (number of pixels). 

TABLE 2. Classes selected for statistical analysis. 

Class name Selection Technique Sample Size 

Grass Spatially adjacent 7,760 
Tree Spatially adjacent 8,232 

Mixed Spatially adjacent 7,590 
Class 2 Grass Supervised classification 27,351 
Class 9 Tree Supervised classification 25,872 

The data were analyzed in units of calibrated spectral radiance for the characterization of joint statistics 
(Section 3.3) and surface reflectance for the modelling of target detection statistics (Section 4.4). While 

hyperspectral data is often transformed to apparent surface reflectance through an atmospheric compensation 

algorithm, such transformations are usually linear, and as such, do not affect the statistical distributions. 

Also, for the multivariate analyses examples, only 144 of the 210 channels were used to avoid regions of 
low signal-to-noise ratio (water vapor bands). While it is known that data artifacts exist in the calibrated 
spectral radiance due to an interpolation process used to replace "dead" pixels, only the data selected by the 

supervised classification technique had any type of screening applied for anomalous pixels. The other classes 
represent typical data as it would be processed by an unsupervised automated algorithm. 

Regarding the characterization of in-scene targets, single-pixel or multi-pixel, we can identify pure 
or mixed pixel with a certain level of confidence, only. Therefore, it is useful to label the pixels in the 
vicinity of a target as full, mixed, shaded, and guard pixels, and distinguish among such pixels when we 
compare different detectors. This concern, has lead to the development of target masks (see Figure 7) by an 
elaborate manual process. Target masks are part of the HYDICE "Canonical Data Sets" developed at Lincoln 
Laboratory. 

Figure 8 shows the reflectance spectra of the pixels specified by the target mask in Figure 7. The mean 
value of the full pixel spectra, which is used as the target template by detection algorithms, is shown by a 
thick line in all plots. 

A target detector maps the multidimensional test pixel spectrum x into a scalar detection statistic 
y = D(x) (see Figure 9a). The detection threshold is determined by the user or a CFAR processor. The 
distribution of the detection statistics of the background and target classes (see Figure 9b) determine the 
performance of the detector using ROC curves. The ability to properly determine a threshold or achieve CFAR 
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Figure 7. Example of a target mask, illustrating the various types of pixels identified in the canonical data sets. 

operation depends upon the accurate modelling of the background detection statistics. The performance 
evaluation of detection algorithms in practice is challenging due to the limitations imposed by the limited 
amount of target data. As a result the establishment of accurate ROC curves is quite difficult. Indeed, it is 
well known, that as a rule of thumb, the minimum number N of pixels used to estimate a probability P should 
be 10/ P or more preferable 100/P. In this report, we shall compare the various algorithms in terms of their 
ability to operate in CFAR mode and the enhancement of the separation between targets and background 

they provide. Sensor and environmental noise do not seem to be significant factors. 

The CFAR property depends on the capability to accurately model the detection statistics of the 

background pixels for a given algorithm. In this respect, we use a quantile-quantile (Q-Q) plot [17] to 
compare the empirical distribution of the background detection statistics to the theoretically expected one. 

Taking into consideration that the number of target pixels is much smaller than the number of back- 
ground pixels, a useful way to represent the output of any target detector is shown in Figure 11. The key 
idea is to represent the background response by its histogram and the response of the various "target" pixels 
by stems, whose location indicates the magnitude of the detector output and the type of the pixel. The 
enhancement of target visibility is characterized by the separation between the upper limit of the background 
histogram and the full target pixel with the smallest detection statistics response. 
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3.    MODELING SPECTRAL VARIABILITY 

In examining the statistical properties of the data, several groupings, or classes, were considered. Three 

regions are identified in the white boxes in Figure 6 describing three classes that were selected by their spatial 
proximity. In the lower right is a "Grass" region, the middle top is a "Tree" region, and on the left is a "mixed" 
region. These regions define the pixels selected for three of the classes considered. Also considered were 

two classes resulting from a supervised classification process performed to isolate spectrally similar (not 
necessarily spatially adjacent) pixels. 

3.1    SINGLE WAVEBAND STATISTICS 

Before discussing the joint, or multivariate. statistics, it is worthwhile to examine some of the scalar, or 
marginal, statistics. Figure 12 presents Q-Q plots for two of the classes and one spectral channel, showing the 
cumulative probability distribution as a function of the data value, overlaid with straight lines representing 
Gaussian data. As one can see. neither class would be well represented by the Gaussian assumption, although 
the class selected through the supervised classification process is slightly better matched to the Gaussian 
assumption. Additional insight into single waveband statistics can be found in [62]. Since, detection and 
classification applications mainly depend upon the joint distribution of the data.we are not going to further 
investigate single waveband statistics in this report. 
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Figure 12. Quantile-Quantile (Q-Q) plots ofH\'DICE data from band 39 (A. = 0.565\im) for (a) Class 2 Grass and 
(b) Mixed background data. Also shown are straight lines corresponding to the normal distributions. 
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3.2   RANDOM VECTORS WITH ELLIPTICALLY CONTOURED (EC) DISTRIBUTIONS 

The class of elliptically contoured (EC) distributions contains distributions that have similar features 

to the multivariate normal distribution, but which exhibit either longer or shorter tails than the normal. In 

this section, we consider the class of scale or compound mixtures of normal distributions, which is a subclass 

[10] of EC distributions. 

A random real vector x = [x\X2 ... xp]rwith mean fi and covariance matrix T has an EC distribution 
if and only if its PDF has the form [10] 

fp(x) = {2n)-P'2\r\-x'2hp{d) (4) 

where d is a quadratic form (Mahalanobis distance) defined by 

d = (x - fif r~\x - n) (5) 

and hp(d) is a positive, monotonically decreasing function for all p. We shall denote such a distribution 
using the shorthand notation EC(fi, T,h). 

The multivariate normal distribution (MVN) is a special case with 

hp(d) = exp(-ij) (6) 

In addition, the EC class includes the multivariate t, the multivariate Cauchy, and the double exponential 

distributions. The discrete normal (Gaussian) mixture, which is widely used in supervised or unsupervised 

pattern recognition algorithms, is a special case of EC distributions. The normal mixture PDF is a simple 
finite weighted sum of normal PDFs and can be used for the approximation of many other ECDs. The 
common feature of all ECDs that they all have elliptical contours of equiprobability. Many of the properties 
of the multivariate normal distribution extend also to the class of EC distributions. Thus, all the marginals 
of an EC distribution, and the conditional distributions of some variables, given the values of the others, are 

also EC. 

Any ECD, x, can be represented by 

x = rl/2(vz) + H (7) 

where 

Z ~ N(fi, I) (8) 

and v is a non-negative random variable independent of z. The type of an ECD is uniquely determined by 
the PDF fv{v) of v, which is known as the characteristic PDF of x. The random variable v is normalized 
so the E{v2} = 1, that is, to unit mean squared error. Clearly, fv(v) and T can be specified independently. 

If we have an analytical expression for fv(v), the class of admissible hp{d) functions is obtained by 

f°° /   1 d \ 
hp(d) = J    v-"exp(---jfv(v)dv (9) 
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The PDF of Mahalanobis distance d is given by 

f'W-W?W2)iP""h'W <10) 

and can be used to uniquely reduce the multidimensional PDF modeling problem to an equivalent one- 
dimensional one. If x(n),..., x(N) form a random sample from a N(fi, J~) population, then 

d(n) = [x(n) - nfr-l[x(n) - /t] (11) 

for n — 1,..., N correspondingly form a random sample from a y} distribution with p degrees of freedom. 

If the PDF fv(v) is not available in closed form, we can generate SIRV's and determine hp(d) by 

expressing x in spherical coordinates r, 6, and <f>\, fa,... , <$>P-i • The PDF of r is given by 

f"ir) = ip^ripm^2^ (12) 

The angles 6 and fa are independent of the radius r and they do not affect the type of the SERV. 

One of the most important implications of (10) is that the multivariate PDF for any ECD is uniquely 
determined by the univariate PDF of the Mahalanobis distance (5). As a result, the multivariate PDF identifica- 

tion problem is reduced to a simpler univariate one. This result provides the cornerstone for our investigations 
in the statistical characterization of HSI data. Several researchers [43,44] have developed libraries and gener- 
ation techniques for ECDs specified by their characteristic PDF or hp(d) that can be applied to our objective 
of modelling unknown hyperspectral backgrounds. 

33    MULTIPLE (JOINT) WAVEBAND STATISTICS 

Since the distribution of multivariate data in the observation space is inherently "sparse", it is impractical 
to use goodness-of-fit tests to evaluate the capacity of the multivariate normal distribution or ECDs to 

characterize HSI data. In practice, we can assess multivariate normality using techniques from the following 
categories [17]: (a) Univariate techniques for evaluating marginal normality, (b) Multivariate techniques for 
evaluating joint normality, and (c) Techniques that use unidimensional views (projections) of multivariate 

data. These techniques can be extended for the characterization of elliptical [10,43,44] distributions. 

If we know the mean and covariance of a multivariate random sample, we can check for normality by 
comparing the distribution of the Mahalanobis distance (11) against a chi-squared distribution. However, in 
practice, we have to estimate [21,29] the mean and covariance from the available data. To this end, we use 
the maximum likelihood estimates of the mean 

1   N 

and the covariance matrix 

N 

*=#!><") (13> 

f = ±-Y,[x(n)-ji)[x(n)-ji]T
 (14) 

N 
n=l 
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to compute the Mahalanobis distance 

d(n) = 
c-l. 

N - 1 
[x{n)-JL\'r   [x(/i)-£] (15) 

for all pixels 1 < n < N. If x(n) ~ jVOt, T), it can be shown that d(n) is distributed according to the beta 
distribution 

pAd) = 
l 

B(a, b) 
da-\\-df-\    Q<d<\ 

where the parameters 

a = —    and 
2 

N - p-\ 

(16) 

(17) 

When the sample size, N, is greater than about 10/?, the difference between the true beta distribution and 
the chi-squared approximation, x^, is negligible for our purposes. Therefore, x2 probability plots provides 
a good graphical method for testing multivariate normality. 

For EC random vectors, the distribution of the Mahalanobis distance completely characterizes their 
joint PDF. Therefore, to test whether an EC(fL, r, h) fits the data, we follow three steps: (a) compute 
the Mahalanobis distances (15), (b) compute the expected PDF (10), and (c) compare the two distributions 
using a probability plot. However, for detection applications, where the key goal is accurate prediction of 

the probability of false alarm, it is more interesting to compare the empirical and theoretically predicted 

probabilities of false alarms. It is interesting to note that the Mahalanobis distance (15) is the statistic used 
by the popular RX algorithm [45,58] for anomaly detection. 

From the multitude of ECDs discussed in statistics literature, the EC r-distribution [ 10] has been shown 
to provide a good model for many HSI data sets [40]. This distribution is defined by 

tL{x;iL, C,v) = 
r[(I + v)/2] 

T{v/2){vL)L'2\C\^2 \ + l(X-IL)TC-\x-IL) 
V 

(18) 

where 

E{x} = n (19) 

Cov{x} = 
v-2 

(20) 

where v is the number of degrees of freedom and C the scale matrix. The Mahalanobis distance is distributed 
as 

L(x-f0TC-\x-ii)~FL.v (21) 

where FL,V is the F-distribution with L and v degrees of freedom. The integer v controls the tails of the 
distribution: v = 1 leads to the multivariate Cauchy distribution (heavier tails), whereas as v —• oo the EC 

/-distribution approaches the multivariate normal distribution (lighter tails). 
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When the covariance matrix is estimated from the data, the distribution of the Mahalanobis distance 

can be approximated by (21) when the number N of pixels used to estimate the covariance matrix is much 

larger than the number of bands L. 

To study the joint (among bands) distribution of HSI data sets, we compute the probabi lity of exceedance 
of Mahalanobis distance for various HYDICE data sets. The obtained empirical distributions are compared 
to the theoretical chi-squared and F distributions corresponding to the multivariate normal and t distributions. 

To reduce the effects of spatial inhomogeneity, we divide the data cube into rectangular blocks as shown in 
Figure 13. The distribution of the Mahalanobis distance is shown in Figure 14 for all blocks plus the three 

spatially determined classes. 

HYDICE   (HYperspectral    Digital Imagery 

Collection   Experiment) 

- Airborne   sensor 

210 spectral   bands 

- 399-2501   nm 

- Channel   widths~3-1lnm 

- Spatial   resolution,    1 m x 1 m 

Classes   Selected   for Statistical  Analysis 

Class   Name Selection   Technique Sample  Size 

Grass Spatially Adjacent 7,760 

Trees Spatially Adjacent 8,232 

Mixed Spatially Adjacent 7,590 

Blocks   1-8 Spatially  Adjacent 25,000 

II 

Figure 13. Division of data cube into rectangular blocks to reduce spatial inhomogeneity. 

Another way to reduce spatial inhomogeneity is to model each class obtained by supervised or un- 
supervised classification separately. To this end, we use the classes shown in Figure 15, which have been 
derived by elaborate processing techniques by a group at the Remote Sensing Laboratory, Purdue University. 
The distribution of the Mahalanobis distance for the five most populated classes is shown in Figure 16. 

The results in Figures 14 and 16 indicate that, typically, the joint distribution of HYDICE data cubes 
cannot be accurately modelled by the multivariate normal distribution. However, the elliptically contoured 

multivariate /-distribution provides a promising model. We note that the r-distribution tends to the normal 
distribution when the number of degrees of freedom increases. 
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Figure 14. Modelling the distribution of the Mahalanobis distance for the HSI data blocks shown in Figure 13. 

3.4    SUBSPACE OR LOW-RANK DATA MODELLING 

To understand the nature of target variability, we compute the angle between all possible pairs of target 
spectra for the targets shown in Figure 17. The resulting matrix is displayed pictorially as an image, which 
show the angular variability of the target spectrum. Furthermore, we show the histogram of the angle between 

each target pixel spectrum and the mean spectrum. The clustering of the spectra about the mean indicates 
that target spectra populate a lower dimensional subspace of the L-dimensional data space. To investigate 
the nature of this subspace, we can use the singular value decomposition technique. 

The background subspace matrix S\> can be estimated from the HSI cube using statistical or geometrical 
techniques [28]. To describe the ideas behind some of these methods, consider a matrix XT of size L x N, 
where each column contains the spectrum of an HSI pixel x{n), that is 

XT ±[x(\)x(2)...x(N)] (22) 

where N is the total number of pixels. Background characterization for the detection of low-probability 
targets can be done using the eigenvectors [11,56] of the HSI cube correlation matrix Rx = X1X/N or 
equivalently the singular vectors [61] of the data matrix XT. In the first case, matrix Sb is formed by the 
first Q significant eigenvectors of Rx. In the second case, Sb is formed by the first Q significant left-singular 
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Supervised    classification Classificat 

resulted   in 12 background 
classes 

|     | Unlabelled 

| Grass 1 
Class              ttSamoles 
Grass   1 57,274 
Grass   2 96,359 | Grass 2 
Grass   3 

Tree 1 
59,438 
16,732 

Grass 3 

Tree 2 16,668 1 Treel 

Bushes 1,816 1 Tree 2 
Shaded Trees 25,496 ^^ 

Shaded Road 7,448 | Bushes 

Road 1 575 | Shaded Trees 
Road 2 8,049 
Road 3 4,066 | Shaded Road 

Road 4 5,648 | Road 1 

Classes    were screened   to | Road 2 

be unimodal 
1 Road 3 

Fine class   distinctions ^^^ 

apparent 
| Road 4 

Natural Color 

Figure 15. Classes, classification results, and natural color image for the analyzed HYDICE data cube. 

vectors of X1'. The SVD decomposition implies the following approximation 

Q 

XT = VLVT = ^dkUkvl =>• XT = Y2okukv 

k=\ k=\ 

which is optimum in the sense of least squares error. It can be shown that 

(23) 

N 

Y^\xin) - x{n)\   =   ]P -2 
a. k > (24) 

n=\ k=Q+\ 

where ok are the singular values of X. To obtain a good estimate of the background, the spectrum of interest 
should not be included among the significant eigenvectors or singular vectors. It should be stressed at this 
point that there is no one-to-one correspondence between the estimated S^ and spectral properties. This 
is not a problem for detection applications as long as Sb provides a good statistical approximation of the 
background and there is no leakage from the target subspace to the background subspace. The rarity of the 
target is a very important requirement in this respect; however, it is helpful to remove target-like pixels (that is 
pixels with large projections |Sjx(n) || onto the target subspace) before computing the eigendecomposition 
or the SVD. Target leakage can be also reduced by excluding eigenvectors or singular vectors with large 
projections ||Sfil*|| onto the target subspace [61]. 

Figure 18 illustrates that a three dimensional subspace can be used to accurately model the spectral 
variability of the selected target. Indeed, Q — 3 singular vectors can be used to reconstruct 45 target spectra 
with a squared error of the order of 10-3 percent. 
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Figure 16. Modelling the distribution of the Mahalanobis distance of the HSI data classes shown in Figure 15. 
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Figure 17. Illustration of the angular distribution of target pixel spectra. 
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Figure IH. Illustration of target subspace approximation using the singular value decomposition. 
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4.    DETECTION ALGORITHMS FOR FULL-PIXEL TARGETS 

In this section, we assume that target pixels are completely filled by the material-of-interest, that is, 
we focus attention to full-pixel or resolved targets. In this case, the detection process is complicated by 
the spectral variabilities of the target and background classes. We can think of the totality of target spectra 
as constituting a target class and those from the background as being the background class. Let R be the 

entire L-dimensional space in which the point of L-band spectrum x falls. In order to make a decision, 
we should divide the region R into two regions, /?t and Rb, by some optimum method. A pixel is assigned 

to the target class if its spectrum x falls in region /?t or to the background class if x falls in /?,. We shall 
pictorially illustrate the various concepts and algorithms using a hypothetical sensor with two spectral bands. 
However, due to the geometrical framework, the results and their interpretation hold for spectra produced 
by HSI sensors with a much larger number of bands. This process is illustrated in Figure 19 for L = 2 
bands. Clearly, meaningful decision making is possible if the observed target spectra differ to some extent 
from the observed background spectra. Usually, the two classes overlap and even the best detector will result 
in misclassification errors. In general, the decision boundary will be a curve corresponding to a nonlinear 
detector. We can also make a decision by processing the spectrum vector JC by a system which calculates a 
scalar y = D{x) and then comparing y to a scalar threshold. Usually, the function D(x) is obtained using the 
LR or GLR approaches. This system, which can be linear or nonlinear, is known as classifier, discriminant 
function, statistic, filter, or detector. We shall interchangeably use the terms filter or detector since they are 
widely used in the engineering literature. 

Decision 
Boundary 

Figure 19. Illustration of the feature space for two-class classification using two spectral bands. 

We discuss two approaches. First, we shall use the LR to obtain detectors without any structural 
constraints, that is, detectors with arbitrary decision surfaces in RL. Second, we focus on the design of 
detectors with hyperplane decision surfaces. These linear detectors project the data onto a line specified by 
their coefficient vector with the objective to increase class separation. 
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4.1    LIKELIHOOD RATIO DETECTORS 

Since statistical decision procedures, based on normal probability models, are simple and often lead 
to good performance, we shall model the target and background spectra as multivariate normal vectors. A 
random vector x follows a multivariate normal distribution with mean vector //. = E{x} and covariance 
matrix T = E{(x — fi)T(x — fi)}, denoted by x ~ N(fi, F), if its probability density function is given by 

n(X) =  ! e-{(x-^fr-\x-„) (25) 

where \r\ represents the determinant of matrix f. 

Consider the detection problem specified by the following hypotheses 

H0 : x ~ N(fib, Tb)    (Target absent) 
H\ : x ~ N(fit, rt)    (Target present) 

where the target and background classes follow multivariate normal distributions with different mean vectors 
and covariance matrices. Since the probability densities are completely specified under each hypothesis, we 
can design a Neyman-Pearson detector. Indeed, computing the natural logarithm of the LR (1) leads to the 
quadratic detector 

y = D(x) = X-(x - /tb)
rrb-'(x - Mb) ~ \(x - Htfr-\x - II,) (27) 

which compares the Mahalanobis distances of the observed spectrum from the centers of the two classes. 
The required threshold r\ is determined from 

/•OO 

^FA = /     p(y\H0)dy - a (28) 
Jr, 

where a is the desired probability of false alarm. As a result of the quadratic mapping, the distribution of the 
random variable y (detector output) is not normal, which makes the performance evaluation of the detector 
difficult. 

If the target and background classes have the same covariance matrix, that is, T, = Tb = f\ the 
quadratic terms in (27) disappear, and the likelihood ratio detector (27) becomes 

y = D(x) = (jit - fibfr-lx (29) 

In this case, we have a linear detector 

L 

y = cT x = J2ckxk (30) 

which is specified by the coefficient vector 

c = r-'(Ait-Atb) (3i) 
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The output y is now normally distributed because it is a linear combination of normal random variables. This 

result simplifies the evaluation of the detector and the computation of detection thresholds using (28). 

A further simplification occurs when the observed spectra have uncorrelated components with equal 
variances, that is, r = a21. In this case, we have 

y = D(x) = -^ (\\x - nx\\
2 - \\x - nb\\2) (32) 

which is the well known Euclidean distance classifier. Equivalently, this can be expressed as 

y = —(/it-/ib)r x = — (fit
Tx-/Lb

Tx) (33) 
a1
 ol 

which compares the correlation of the input spectrum with the mean of target and background spectra. 

4.2    LINEAR (MATCHED FILTER) DETECTORS 

When r, 9^ Tb, the resulting Neyman-Pearson detector is nonlinear. However, many times, either for 
simplicity or necessity, the design of a linear detector is the only available option. Optimum linear detectors 
can be formed by 

c = («-, rb + K2rty
l (/*t - tib) (34) 

where K\rb + K^TX should be positive definite. It has been shown (see [3], Section 6.10) that the constants 
K\ and K2 can be chosen to (a) minimize the total error rate, (b) minimize one error rate with the level of the 
other error rate specified, or minimizing the maximum of the two error rates. 

Since the output of the detector is normally distributed when x is multivariate normal, detection 

performance is determined by the means (/zb, /*t) and variances (ab
2, a2) of y, under the two hypotheses. It 

can be shown [14] that minimization or maximization of any criterion J(Hb, \iu <Tb, a
2) yields 

c = [8rb + (1 - <5)rt]-' (ji, - |ib) (35) 

where 

dJ/dag+dJ/da2 

is a weighting factor 0 < 8 < 1. We note that the functional form of / affects the matched filter only through 

8. The criterion J = (fix — /xb)2/(o,2 + o-b
2) leads to 8 = 1/2, J = (/it - ^b)

2/a^ leads to 8 = 1, whereas if 
J = (Ft/x

2 + Pbii
2)/{Pxo

2 + Pba
2) we obtain 8 = Pb. 

The most important implication of (27) and (34) is that, when r, = Tb = Z\ both lead to the same 

linear detector 

cMF = Kr~l(fLt- nb) (37) 

where K is a normalization constant. Furthermore, for K = 1 this is identical with the LR detector (31) for 
equal covariance matrices. This detector, which is known as Fisher Linear Discriminant  [13], is widely 
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used in pattern recognition applications. We shall use the term matched filter (MF), which is more widely 

used in the communications and signal processing literature. There, the matched filter (37) is usually derived 

by maximizing the cost function 

A [EjylH,} - E{y\HQ}]2      [cT(^ - nb)f 
J(c) =   = =r=  (38) 

vai{y\H0} cTTc 

which measures the distance between the means of two normal distributions in units of the common variance. 
The maximum, which is obtained by substituting (37) into (38), is 

/max = A2 ^ (/it - Hb)Tr-\^ - flb) (39) 

which is the Mahalanobis squared distance [23] between the means of the target and background distributions. 
The filter (37) with K = 1/A2 minimizes the output variance cTTc subject to the linear constraint cTfit — 1. 

Geometrical interpretation The output of a linear detector is the projection of the observation x 

along the direction of the parameter vector c. We wish to determine the direction which provides the "best" 

separability between the two classes. The direction of the optimum matched filter for a white or spherical 
background distribution is along the direction of ft, — fib. For elliptical backgrounds this direction is modified 

by the transformation T-1. If we use the square-root decomposition r = T1/2rr/2 and we remove the mean 
of the background from the observed spectrum, the output of the matched filter is given by 

y = K [|-
1/2(/it - Mb)] [r-1/2(x - fib)] ± *(A/l)r(Ax) (40) 

The transformation Ax = JT~1/2(x — fib), known as whitening or spherizing, creates a random vector with 

identity covariance matrix. The output of the matched filter is the projection of the whitened difference Ax 
along the direction of A/l = r_1/2(/t, — /ib). The operation of the matched filter in the original spectral 

space and the whitened space are illustrated in Figure 20. If we choose K = 1/ | A/l || = 1 /A2, the output 
of the detector is normalized so that y = D(/it) = 1. If we set K = l/(||A/l| | Ax |), we obtain a nonlinear 
processor which provides the cosine of the angle between the vectors A/l and Ax. In the original space, 
this is the Mahalanobis angle between the vectors A/t and Ax. The length of a "spectral" vector increases 
or decreases when the overall illumination increases or decreases, but its angular orientation remains fixed. 
Equivalently, the shape of the spectrum remains the same but its amplitude changes proportionally to the 
illumination. For this reason, angle distances play an important role in HSI data processing. 

Detection Statistic The properties of a given detector are specified by the distribution of its output, 
y = D(x). In the first case, we assume that the observation x is the only random quantity used to compute 
the output of the detector. This is the case, when we know the required mean vectors and covariance matrices. 
It is known, that if x ~ N(fi, T), then y = cTx ~ N(cTfi, cTTc) for any non-null vector c. Therefore, 
when the mean and covariance matrices of the target and background classes are known, the output of the 
detector follows [3] the univariate normal distributions N(cTfLv cTTtc) and N(cTfib, c1Tbc) for the target 

and background classes, respectively. These distributions can be used to determine the probabilities of 
detection and false alarm for any threshold r). We note that, the normalization constant K — 1/A implies 
y ~ A^(0, 1), which simplifies the selection of the threshold. For deterministic targets Tt = 0 and fit = s, 

which implies x = s with probability one. 
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c = *<V(/i,-/O Background 

Figure 20. Illustration of matched filter operation (a) Projection in the 

followed by projection onto the A/L vector. 

'best" direction (b) Background whitening 

4.3    ADAPTIVE MATCHED FILTERS 

The matched filter detector (37) requires the mean vector and the covariance matrix of the target and 
background distributions. Furthermore, the resulting detector is optimum (in the Bayes or Neyman-Pearson 

sense) only when the target and background classes follow multivariate normal distributions with the same 
covariance matrix, an unlikely situation for real-world HSI data. In practical applications, these quantities 
are unavailable and have to be estimated from the available data. Under the assumption of low-probability 

targets, we can use the available data x(n), n = 1,2,..., iV, to determine the maximum likelihood estimates 

£ = ]vX><n) Pb (41) 

n=i 
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1 
r = - £[jr(n) - fi][x(n) - JL]

T
 ~ f b (42) 

n=l 

of the mean vector and covariance matrix of the background. Unfortunately, there is usually not sufficient 

training data to determine the mean and covariance of the target. Typically, we use a target spectral signature 
st from a library or the mean of a small number of known target pixels observed under the same conditions. 
The resulting adaptive matched filter (AMF) is given by 

where usually the data cube mean is removed from the target and test pixel spectra. 

If we know the "true" covariance matrix TV the output y is distributed as y ~ N(y0, (s
TT^'s)-1), 

where y0 = E{y). When the required means and covariances are estimated from the data, the resulting 

estimates are random quantities. If we treat them as constant, we can determine the class-conditional 
distribution of the detector output as in the known statistics case. However, the correct approach is to treat 
the estimated means and covariances as random and determine the unconditional distribution of y = D(x). 

Unfortunately, the derivation of unconditional distributions is a very difficult problem, even under the most 

simplified assumptions. An extremely complicated expression for Fisher's linear discriminant has been 
obtained by Sitgreaves [55]. 

The distribution py(y), when we use the sample covariance matrix tb, has been determined in a paper 
by Richmond [46] to be 

Jr-i. sTr?sNb-L + 2   r/M,-L + 3   Nb + 2      1 ,2 r_., \ 
(44) 

where 

f rcfl + ffr^ 
\F\(a;b; x) = >     (45) 

f^r(a)r(b + PW 

is the confluent hypergeometric function and r(v) denotes the Gamma function. Recall that L is the number 
of spectral bands and Nb is the number of pixels used to estimate the covariance matrix of the background. 
The background pixels are assumed to come from a multivariate normal distribution x ~ N(/ib, /*b). Figure 
shows py(y) for L = 64 and L — 144 spectral bands for various values of A^b- We see that, as the number 
of pixels used to estimate the covariance matrix of the background increases, the distribution approaches the 
normal distribution curve (see [34] for more details). This is expected because as iVb —• 00, the sample 
covariance matrix tb -*• rb, the true covariance matrix of the background. However, as the number of bands 

increases, the tails of the distribution deviate more from the tails of the normal distribution. This differs from 
what we would expect by invoking the central limit theorem. 

Constrained Energy Minimization (CEM) A similar detector, termed the constrained energy mini- 
mization (CEM) algorithm [19], can be obtained by minimizing the total energy of the filter output 

.   N r     N 

n=\ 
N 

n=l 

c = c' Rc (46) 
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Figure 21. Probability density function of py{y) for various values of the number Nj, of the background pixels. The 

threshold is measured from the ideal value y0 in units of(sj r^ st)    ' . 

subject to the constrain c' s = 1. The matrix R is the sample correlation matrix of the data cube. The solution 
is 

ccm 
it's 

sTR   s 
(47) 

assuming that the sample correlation matrix is invertible. The minimum of the cost function is given by 

ECEM =  \/srR     S. 

Spectral similarity measures The widely used spectral angle mapper [54] (SAM) algorithm is given 

by 

DS\M(X) - 

T 
S   X 

(sTs)^2{xTx)i/2 
(48) 

Clearly. SAM is the cosine of the angle between the test and target spectra and is always between zero and 
one because all spectra vectors have positive components. We note that SAM is usually defined in the remote 

sensing community as the angle between two vectors, instead of the cosine of the angle. 

4.4    DISTRIBUTION OF UNIVARIATE MATCHED FILTER DETECTION STATISTICS 

The heavy tails in the univariate distribution of the Mahalanobis distance imply heavy tails in the 
multivariate distribution of the data. Therefore, heavy tails may appear not only in the quadratic Mahalanobis 

distance, but in other linear and quadratic statistics employed in several widely used [35.36] target detection 
techniques. In this section, for illustration purposes, we shall investigate the statistic of the popular matched 
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Figure 22. Matched filter output statistic (a) histogram and fitted normal density curve and (b) normal probability plot 
for the tree data set. 

filter [36] algorithm termed Constrained Energy Minimization [12] (CEM). The algorithm is given by 

D(x) 
(x - p.)' r  (x   p) 

(s-ji)Tr    (x - (i) 
(49) 

where x is the desired target spectral signature and x is the test pixel. If x ~ J\f(fi. D. and N is large 
compared to the number of bands L. T(x) should be normally distributed. Figure 22 shows the histogram 
of the matched filter output for the tree data set and the corresponding normal probability plot. Clearly, the 
normal probability plot indicates the existence of heavy tails. Similar plots, with smaller or larger deviations 
from normality, have been produced using the other data sets. Hence, using a normal distribution to predict 
the probability of false alarm will provide optimistic estimates. 

The family of symmetric a-stable (SaS) distributions provides a good model for data with impulsive 
behavior. They are characterized by a parameter a (characteristic exponent) that takes values in the range 
0 < a < 2. The value a = 1 leads to the Cauchy distribution and the value a = 2 to the Gaussian. The stable 
distributions result from the central limit theorem if we remove the finite variance constraint. The only stable 
distribution with finite second-order moments is the normal distribution. Since a-stable distributions follow 
from the central limit theorem they are invariant under linear transformations. Since there is no closed-form 
expression for their probability density function. SaS random variables are specified [2. 39. 50] by their 
characteristic function (that is. the Fourier transform of the PDF) 

4>($) =exp[jnt;-\crt;\a) (50) 

where a is the characteristic exponent, a is a scale parameter, and // is a location parameter. The heaviness 
of the tails increases as a increases from 1 (Cauchy) to 2 (Gaussian). The estimation of the parameters of a 

1                   1 i i 

*+ 

• 

+-r 
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stable distribution from data is a challenging due to the presence of "spikes". The published compilation [2] 

provides a comprehensive review of statistical techniques for stable distributions from a practical perspective. 
The estimation method used in this paper [30] is based on the use of the characteristic function. 

Figure 23 shows the probability of false alarm when the matched filter detector is used for different 
scenes as well as superimposed theoretical curves obtained using the family of SaS distributions for various 
values of a. It can be seen that the tails of the empirical PpA curves can be modelled by the heavier tails of 
the stable distribution. 

0.01      0.02     0.03     0.04     0.05     0.06     0.07     0.08     0.09      0.1 
Threshold 

Figure 23. Matched filter output statistics and their modelling using stable distributions. 
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5.   DETECTION ALGORITHMS FOR SUB-PIXEL TARGETS 

By definition, subpixel targets occupy only part of the pixel area. The remaining part is filled with 
one or more materials, which will be collectively referred to as background. In this section, we discuss the 
detection of compact and isolated subpixel size objects characterized by a known spectral signature with or 
without variability. As a result of this area mixing, the observed spectral signature can be modelled reasonably 

well as a linear combination of the target and background spectra. Furthermore, there is always an additive 
amount of noise from various sources (sensor, atmosphere, etc). 

The choice of the mathematical model used to describe the variability of target and background spectra 
(subspace versus statistical), leads to different families of subpixel target detection algorithms. The variability 
of the target spectral signature is always described using a subspace model Sa. If the columns of 5 are 
endmembers, the vector a provides their abundances and should satisfy the constraints of the linear mixing 
model. Otherwise, a simply determines the position of a target in the column space of S. 

The variability of the background can be described using either a subspace model (structured back- 
ground) or a statistical distribution (unstructured background). Therefore, the type of the background model 
drives the development of subpixel detection algorithms. 

Any matched filter-based target detection algorithm requires the specification of a spectral signature 
of interest, which can be obtained from within the HSI cube or from a spectral library. Usually, targets are 
modelled using a single spectrum. However, due to changes in atmospheric conditions, sensor geometry, 
surface defects and films, a target spectral signature can exhibit significant variability. If we have available 
a multitude of target spectrum observations, say Sk, k = 1, 2,..., Aft, we can model target variability and 
use it in the detection algorithm to improve robustness. We can account for this variability statistically or 
geometrically. A statistical description could use the mean and covariance of the available target signatures 
S\,S2,... , S\t. A geometrical description involves finding an orthogonal base that spans, with sufficient 
accuracy, the subspace spanned by the set of vectors S\,$2,.. • »*#,. These basis vectors constitute the 
columns of the target subspace matrix St. It has been shown [61 ] that the target subspace for a material can 

be described by a small number of basis vectors under a variety of scenes and illumination conditions. 

5.1    UNSTRUCTURED BACKGROUND MODELS 

Unstructured background models assume that the additive noise has been included in the background b, 

which in turn is modelled by a multivariate normal distribution with mean ftb and covariance matrix Tb, that 
is b ~ N(0, T) (for simplicity, we drop the subscript b from this point forward). The competing hypotheses 

are 

Ho :   x=b, Target absent s 

H\ :   x = Sa + b,   Target present 

Hence,x ~ N(0, F) under Ho andx ~ N(Sa, r) under H\. In addition, we assume that we have access to a 
set of training background pixels x{n), n = 1,2,... , N, which are independently and identically distributed 

(ED). The test pixel x and the training pixels are assumed statistically independent. Since, x(n) ~ N(0, T), 
we can use these pixels to obtain the maximum likelihood estimate of the covariance matrix. Since HSI data 
have a non zero mean, we usually remove the estimated mean to comply with this model. 
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Using the generalized likelihood ratio approach, Kelly [25,26] obtained the following detector 

xTf-ls{sTr~ls)-1sTt~ix 5 .... 
DK(x) = ^  ^ r?K (52) 

where t is the MLE of the covariance matrix (42). Although there is no optimallity test associated with 

the GLR approach [24], it leads to the design of useful, practical detectors. The threshold parameter r?K 

determines both the probability of detection, P^, and the probability of false alarm, /VA- 

The matrix S contains the available a-priori variability information about the target. This information 

decreases as we increase the number of columns P (dimensionality of the target subspace) of 5 and becomes 
minimum when P — L. In this case, we simply know that we are looking for deterministic targets that lie 

in the data subspace. Since the matrix 5 has full rank and therefore is invertible, (52) leads to the following 
detector 

DA(x) =xTT   x ^   r,A (53) 

Ho 

which was derived by Kelly [27] using the approach presented here and by Reed and Yu [45] using a 

multivariate analysis of variance formulation. Basically, DA(X) estimates the Mahalanobis distance of the 

test pixel from the mean of the background, which is zero for demeaned data. Algorithm (53), which has the 
CFAR property, is used extensively for anomaly detection in multispectra and hyperspectral data [57]. 

A key assumption in the derivation of (52) was that the covariance matrix of the background is the 

same under the two hypotheses. However, for subpixel targets the amount of background covered area is 
different under the two hypotheses. Therefore, it is more appropriate to use the following hypotheses 

HQ :   x = b. Target absent 

H\ :   x = Sa + ob,   Target present 

which implies that x ~ N(0, T) under HQ andx ~ N(Sa, <?2r) under H\. In other words, the background 
has the same covariance structure but different variance. This variance is directly related to the fill factor of 
the target, that is, the percentage of the pixel area occupied by the target object. The GLR approach leads to 

the following Adaptive Coherence/Cosine Estimator (ACE) detector [31], [32] 

„     , x     x
Tf-lS(STf~]S)-lSTt~]x Hi 

DACE(X) = s~  ^ TJACE (55) 
xTrlx "o 

which can be obtained from (52) by removing the number N of background training pixels from the denom- 
inator. 

A   « -1/2 - * 1/2 * 1/2 
If we use the adaptive whitening transformation x = T x, where r = T r is the square-root 

decomposition of the estimated covariance matrix, the ACE can be expressed as 

^     , x     i
TS(STS)-lSTx     xTPsi 

DACE(X) = -TYZ = -zf&- (56) 
XX XX 
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where S = T      S and Pj = S(S S)~[S   is the orthogonal projection operator onto the column space of 

5. Since P2- = Pg, we can write (55) as 

DACE(X) = 
Hill2 

= cos (57) 

which shows that DACE(*) is equal to the cosine of the angle between the test pixel and the target subspace 
into the whitened coordinate space. This is illustrated in Figure 24. 
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Figure 24. Illustration of GLRT detectors. 

~T: Using the whitening transformation, the anomaly detector (53) can be expressed as D\(x) = x x 

which is the Euclidean distance of the test pixel from the background mean in the whitened space (see Figure 
25). We note that, in the absence of a target direction, the detector uses the distance from the center of the 
background distribution. 
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Figure 25. Illustration of detection of targets with unknown spectral signatures (anomaly detection). 

For targets without variability, we have P — 1 and the target subspace S is specified by the direction 
of a single vector s. Then, the formulas for the previous GLR detectors are simplified to 

»-i 

D(x) 
(sTr x) 

c-1 %n (58) 
(sTr  sMi + xif2x

Tr'xx) "o 

where (t/^i = N, fo = 0 for tne Kelly detector and {iff\ =Q,\jf2 — 1) for the ACE. Kelly's algorithm was 
derived for real-valued signals and was applied to multispectral target detection in [63]. The one-dimensional 

39 



version of ACE, has been derived in [9], [52]. Finally, we note that, if (xfr\ = N,xl/2 = 0), we obtain the 

adaptive matched filter (AMF) detector [49], [7]. 

Determining the distribution of the various GLRT detectors is an elaborate process [25], [27], [45], [47], 
[32]. It turns out that the distribution of the different detector outputs involves a non-central F-distribution. 

The non-centrality parameter is the theoretical signal-to-interference plus noise ratio 

SINR0 = (Saf T~] (Sa) (59) 

The performance of all GLRT detectors depends only on the dimensional integer numbers L, P, N and the 
optimum SENR0 parameter. Under the Ho hypothesis (target absent) SINR0 = 0, the output distribution 
becomes central , and the probability of false alarm depends only on the parameters L, P, N. Therefore, 
all GLRT detectors discussed in this section have the CFAR property. For a remote sensing system with 
high SNR, the detection performance depends on the fraction of the target occupying a pixel, since this 

determines the SINR. Figure 26 illustrates the effects of target dimensionality on detection performance for 

Kelly's GLRT detector. We see that as P increases (that is as a-priori information about the target decreases), 
detection performance deteriorates. The worst performance is obtained when P = L, which corresponds 
to the anomaly detector (53). Figure 27 illustrates performance as a function of the number of training 
pixels. Clearly, performance improves as N increases, that is as the estimate of the interference covariance 

matrix becomes more accurate. In both figures, we have included the curve indicating the performance of 
the optimum matched filter [24] (known target in noise with known covariance matrix) for comparison. 
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Figure 26. Probability of detection as a function of SINR illustrating the effect of target subspace dimensionality. 
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Figure 27. Probability of detection as a function of SINR illustrating the effect of the number of training pixels. 

The key assumptions used for the detectors using the covariance matrix of the background are (a) the 
background is homogeneous and can be modelled by a multivariate normal distribution, (b) the background 
spectrum interfering with the test pixel spectrum has the same covariance matrix with the background training 
pixels, (c) the test and training pixels are independent, and (d) the target and background spectra interact in 
an additive manner (additive instead of replacement model). 

5.2    BACKGROUNDS WITH LOW-RANK COVARIANCE MATRICES 

The linear mixing model (3) provides a quite accurate model of the background with w ~ /V(0. a*I) 

and M = Q (number of background endmembers). This leads to the following structured covariance matrix 

T = ^24sksT
k + all = BABr + a~J 

k=l 

where A = diag{ap a\ a2^}. By performing the eigendecomposition of f\ we get 

r = UAUT = \ubun\ 

(60) 

Ah     0 

0     A„ ul (61) 

where Ah contains the Q largest eigenvalues of T in descending order and Ub = \u\, ui My | the 
corresponding orthonormal eigenvectors. An = a}rI and Un contains the remaining orthogonal eigenvectors 



corresponding to the eigenvalue a2. Clearly, the eigenvectors in Uy, are different from the endmembers in 
B; however, they span the same linear space. The range space of U^ is called the background subspace and 

its orthogonal complement, known as the noise subspace, is spanned by the columns of Un. 

The practical implication of (60) is that the estimated background covariance matrix has low numerical 
rank, that is, there are only a few large eigenvalues and a large number of much smaller ones. However, there 
is no clear cut transition to help the separation between background and noise subspaces. When the number 

N of background pixels used to estimate the covariance matrix is much larger than the number of bands L, the 

obtained matrix is usually invertible. However, as N becomes equal to or less than L, invertibility is a concern 

and various techniques have been proposed to mitigate the problem. This situation arises when we process a 
small local window at a time to assure that a statistically homogeneous area is used to estimate the background 

covariance matrix. The widely used method of diagonal loading [5], uses the estimate rd = f+SI where the 

scalar 8 is known as the loading factor. It is suggested in [8] that A.min < S < <r2, where A,• is the minimum 

background eigenvalue. If f = U\U , other approaches include: (a) the low-rank approximation [15] 

rQ = UAQU , \Q = diag{Xi, A-2,... , XQ, 0,... ,0}, (b) the fast maximum likelihood approach [4], [59] 

JFML = ^AFML^ » AFML — diag{i], A.2,.. • , AQ, S2,... , 82} with Amm < <5 < a2, and the cross-spectral 
metric approach [18], which chooses the Q «; L eigenvectors so as to maximize the quantity 

k=\    ^ 

which is related to the theoretical SINRo (59). More details regarding the effects of these approximations to 

hyperspectral target detection are given in [33]. 

To understand the effect the low-rank of the background covariance matrix has upon the operation of 
a detector, assume that T = UAUT + o2I, where A contains the eigenvalues of T in decreasing order and 
U the corresponding orthonormal eigenvectors. The inverse T_I can be expressed as 

r-1 = \(i - P) (63) 
•2 

where 

'-Erra-rf <M) 
fcsl 

h + ol 

If Xk » a2 for it < Q, we obtain P ~ £f=i "*"[ - U
QUQ- Hence, T"1 ~ (/ - UQUT

Q)/a
2. Since 

the columns of UQ are orthonormal, Py = I — UQUQ is the orthogonal subspace projector onto the 
background subspace spanned by the columns of B or UQ. This result provides a connection between the 
unstructured and structured background detection algorithms discussed in Section 7. 
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6.   THE LINEAR MIXING MODEL 

The basic premises of linear mixture modeling are that within a given scene : (a) the surface is 
dominated by a small number of materials with relatively constant spectra (end members), (b) most of the 
spectral variability within the scene results from varying proportions of the end members, and (c) the mixing 
relationship is linear if the end members are arranged in spatially distinct patterns [1]. 

In the linear mixing model (LMM), the spectrum of a mixed pixel is represented [1] as a linear 
combination of component spectra (end members). The weight of each end member spectrum (abundance) 
is proportional to the fraction of the pixel area covered by the end member. If there are L spectral bands, 
the spectrum of the pixel and the spectra of the end members can be represented by L-dimensional vectors. 
Therefore, the general equation for mixing by area is given by 

M 

x = ^ a-kSk + w = Sa + w (65) 

S&[$1S2...SM] (66) 

a = [axa1...aM]T (67) 

where x is the spectrum of the mixed pixel, st are the spectra of the end members, ak are their abundances, 
M is the number of the end members, and w is an L-dimensional error vector accounting for lack-of-fit and 
noise effects. Physical considerations dictate the following constrains 

a>c > 0   (non-negativity constraint) (68) 

M 

y^a* = 1    (additivity constraint) (69) 
M 

which can be enforced, if necessary, to guarantee meaningful parameter values. If we wish to allow for 
unmode led end members, we can replace the (=) sign with the (<) sign. Fitting a linear mixing model involves 
two steps: (a) end member identification and (b) abundance estimation. Although there are algorithms where 
the two steps are interwoven, the objectives of this discussion are better served by keeping the two steps 
distinct. 

If we know the end members S*, unmixing can be viewed either as a linear estimation problem or as 
a linear model fitting problem. Furthermore, in detection and classification applications we do not need to 
determine explicitly estimates of a; we can use a measure of the quality of the estimator or a measure of the 
model "goodness-of-fit" to make decisions. This is the approach used in this report. 

6.1    ESTIMATION OF THE UNCONSTRAINED MODEL PARAMETERS 

Suppose that we know the end members S*, and we wish to estimate the abundance, a, given the 
observed pixel x.  If a is an estimate of a, then x = Sa is an estimate of x with a corresponding error 
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Figure 28. Geometrical illustration of US estimation of linear mixing model. 

e=x—x=x— Sa. The unconstrained least squares estimate (LSE) x of x is uniquely determined by the 
foot of the perpendicular from the tip of x to the hyperplane specified by the columns of 5 (see Figure 28). 

Thus 

STe = ST(x-i) = 0 

which is known as the orthogonality principle. 

(70) 

If the columns of S, that is the end members St, are linearly independent (this is possible when M < L) 

there exists a unique vector a such that x = Sa. Therefore, we have ST(x — Sa) = 0 or 

(STS)a = STx (71) 

which are known as normal equations. In this case, the inverse of (STS) exists and the LSE estimate of x is 
given by 

x = Sa = S(S' Sy'S'x = Psx 

where 

£.  C/QT<r\-lcT Ps = S(S'S)-lS 

is known as the projection matrix. The error or residual vector isobtained by 

where 

e = x — x = PTX 

Pj^l-Ps 

(72) 

(73) 

(74) 

(75) 

is the orthogonal projection error matrix. The model goodness-of-fit is assessed by the length of e, using the 
sum-of-squared errors (SSE) 

SSE(a) = \\e\\z = xTx-xTx 

= xT(I - Ps)x=xTPjx (76) 
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obtained by using the Pythagorean theorem. These ideas are pictorially illustrated in Figure 28. 

If we assume that w has mean E{w} = 0 and covariance Tw = a* I, it can be shown that a is the best 
linear unbiased estimator (BLUE) of a and o2 = SSE(a)/(L — M) is the best quadratic unbiased estimator 
(BQUE)offf2 [22]. 

If we further assume that ID ~ A/"(0, cr^I), that is the error is normally distributed with zero mean and 
covariance Tw = cr^I, we can determine the maximum likelihood estimates (MLEs) of a and cr„, and their 
sampling distributions. The likelihood function is 

which is a function of a and a^ with the data vector x playing the role of a parameter. The probability 
density function p(x; a, a2) is also given by (31), but now x is the variable and a and a2 are considered as 
parameters. Maximizing the monotonic log-likelihood function 

l{a,ol;x) = \nC(a,o2
w,x) 

gives 

(STS)a = STx (78) 

ff2 = 1 SSE(O) (79) 

and 
L/2 

C(a,a%;x) = 
L/2JT 

exp(--) (80) 
SSE(a) 

which show that for w ~ M(0, o^I) the LSE and MLE are the same (hence the use of the same symbol). 

The statistical properties of the unconstrained LMM parameter estimates are summarized in the fol- 
lowing proposition (see [22,24,42]). 

Proposition 1 Consider the LMM x = Sa + w, where w ~ 7V(0, o^I) and S is an L x M matrix of rank 

M. 

1. The minimum variance unbiased estimators of a and cr2 are given by 

a = (STS)-lSTx   and   a* = SSE(a) (81) 
L — M 

2. The estimates a and a* are independently distributed as 

a~N(a,al{STS)-') (82) 

and 

*» ~ I~M
X2L

-
M(0)
 

(83) 

where XK (0) denotes a central chi-square distribution with K degrees of freedom. 
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3. The estimates x and e are independently distributed as 

x~N(Sa,olPs)   and   e ~M(0,a*PJ) (84) 

6.2    ESTIMATION OF THE LINEARLY CONSTRAINED MODEL PARAMETERS 

The additivity constraint £i=1 a* = 1 is a special case of a more general linear constraint that can be 
expressed in matrix form by a consistent set of linear equations 

Ga = g (85) 

where G is a P x M matrix (P < M) of rank P and g is a P x 1 vector. For example, we notice that 

G = [1 1 ... 1]   and   g = 1 =£•   Additivity constraint , 
(so) 

G = [//»|0]        and   g = 0 =*   a* = 0,1 < it < P 

which will be useful in estimation and detection applications. The properties of the linearly constrained 
LMM are summarized in the following proposition [22,24]. 

Proposition 2 Consider the linearly constrained LMM x = Sa + w, where w ~ A^(0. cr^I), and Ga = g 

is a set of P linear constraints. S is an L x M matrix of rank M and G is an P x M matrix of rank P. 

1. The constrained minimum variance unbiased estimators of a and o* are 

aG = Aa + Bg   and   o2
wG = - -SSE(ac) (87) 

L — M 

where 

A±I - BG (88) 

and 

B £ (SrSyiGT [G(STSylGT]~l
 (89) 

2. The estimates he and a* G are independently distributed as 

aG ~ M{a. olA(SrS)-lAT) (90) 

and 

where Q = M — P is the rank of matrix A. 
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Since a minimizes SSE(a), it is obvious that SSE(flc) > SSE(a). Also, it can be shown that for 
any vector c we have vai{cTac} < vai{cTa], that is the variance of the estimate of any component of a is 
decreased by enforcing constraints [22]. 

The results in Propositions 1 and 2, which can be used to derive confidence intervals and hypothesis 
tests for the estimates of a and a2

w, will be used to derive detection algorithms in the sequel. We note that, 
the enforcement of the positivity constraint (68) leads to a nonlinear optimization problem [16]. 

6.3   MODEL VALIDATION 

In the previous discussion we have assumed the a-priori availability of the end member spectral matrix S. 

However, in practice end members should be determined from the image data. Brute force exhaustive search 
methods use geometrical techniques to check whether each pixel can be described as a mixture of spectra from 
previously tested pixels or whether it is another end member. However, for detection applications statistical 
end member identification methods are more appropriate (see Section 3.4). Experienced spectroscopists 

can identify end members using reference spectral libraries; however, this approach requires calibrated data. 
Note that end member spectra may or may not correspond to "pure" materials. In practice less than 10 end 
members [1] are usually adequate to model any given area (local modeling) of an image at a given spatial 

resolution. 

The key requirements for "good" end members are: (a) Mixtures of end members should reproduce 
the spectra of other pixels, and (b) End members must be spectrally distinct from one another (collinear end 
members lead to numerically unstable unmixing methods). 

There are several ways to validate a LMM in practice [1]: 

1. Compute and display the "error-fit" image; it should have "small" values and no visible structure. 

2. Compute, display, and analyze "fraction" images using topographical and other information. 

3. Compute and display "fraction overflow" images. For inadequate models a*(n) may fall outside the 

range 0 < ak{n) < 1 of the data volume. 

There are several reasons when a model does not fit the data or does not account for the spectral 

variation in the data (model inadequacy): 

1. Some important part of the image, for example another end member, has been missed. 

2. One or more of the used end members are inappropriate. 

3. Part of the spectral variation in the image is caused by atmospheric, instrumental, or other effects that 

are extrinsic to the surface of the earth. 

We can improve the model by changing the image end members or selecting one or more additional 

end members. 
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To evaluate the capacity of LMM to capture the spectral variability of the data across the scene, we 

fitted the LMM to each scene and computed the norm of the spectral residual vector for each pixel (see 
Section 6). The low energy of the residuals and the lack of significant structure at the resulting residual 
images are indications of good performance. The capacity of the LMM to reduce the correlation between 
different spectral bands is assessed using the correlation matrix of the original data and the corresponding 

residuals. Finally, the normality of the data and the resulting residuals is assessed using the beta Q-Q plot 
test described in Section 3.3. Figure 29 shows the results obtained for the mixed GR scene, which are quite 

representative of the results obtained for several other scenes. Careful examination of these and other results 
suggests that the LMM captures accurately the statistical variability of the background with the exception of 

the probability distribution. The Q-Q plots clearly indicate that both the original data and the corresponding 
residuals cannot be adequately described by a multivariate normal distribution. This analysis was intended 
to provide statistical support for this statement which is widely adopted by researchers in the area. 
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Figure 29. Statistical analysis of the mixed scene background to evaluate model fit. hand decorrelation, and normality. 

48 



7.   SUBPIXEL TARGET DETECTION USING SUBSPACE BACKGROUND MODELS 

In Section 5 we discussed algorithms for the detection of subpixel targets with or without variability. 
The variability of the background was modeled statistically using the mean and covariance matrix of target- 
free data. In this section, we discuss subpixel target detection algorithms which model background variability 
using a subspace model or the linear mixing model. Both approaches lead to the same mathematical detection 
algorithms. However, the specification of the background subspace matrix and the interpretation of algo- 

rithmic quantities are different. The algorithms discussed here are most useful when endmember spectra are 
available for both the target and background classes. Otherwise, the covariance-based detection algorithms 
provide the best practical approach to hyperspectral target detection. 

When the background variability is modelled using a subspace model, the target detection problem 
involves choosing between the following competing hypotheses 

H0 :   x = Bab + w,   w ~ #(0, all)   (Target absent) 

H\ :   x = S^ 4- Bab + w (Target present) 

where S (L x P) has to be specified by the user and B (L x Q) has to be determined from the data (see 
Section ?). 

If we wish to determine whether a pixel x contains some material (target) characterized by either a 
single spectral signature or a linear combination of spectral signatures, we should use of the LMM. 

When the target is present, the spectrum of an observed pixel can be decomposed into two components 
as 

M P M 

x = Y^aksk + w = ^2aksk+  J2 akSk + w (92) 
k=] k=l k=P+\ 

Target s, Background ib 

If St and 5b are the matrices formed by the first P and the last Q columns of S (M = P + Q) we can write 
(92) in matrix form as 

x = Sa + w = St«t + Sbab + w (93) 

where a( and ab consist of the first P and the last Q components of a, respectively. Since st = Stat we 

say that the target lies in an P-dimensional subspace (S,) of B.L specified by the columns of St (target 
subspace). Similarly, the ^-dimensional subspace {SD) of RL, specified by the columns of Sb, is known as 

the background subspace. 

When the target is absent, the spectrum of the observed pixel is adequately described by 

x = Sbab + w (94) 

which is a reduced order model. Therefore, to decide whether a given target is present or not, we can fit the 
full model (40) or the reduced model (94) to the test pixel spectrum and check which model provides a better 
fit according to a given criterion. 
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The LMM can handle both subpixel and resolved targets and assumes that the target and background 

subspace matricesSt and 5b do not depend on the pixel location. There are two extreme special cases of 
interest: (a) If P = 1 we have st = a\S\ which corresponds to a target having a spectral signature with 
known shape, (b) If P = L the vectors at and st = Stal have the same number of components. Therefore, 

we can think of s as a deterministic L x 1 target with unknown shape [35]. The information about the target 
decreases as P increases from one to L. Therefore, we expect the detection performance to deteriorate with 
increasing P. 

Given the target and background subspaces, the target detection problem involves choosing between 

the hypotheses 

HQ :   x = Sbab + lu,   IB ~ A/"(0, or* J)   (Target absent) 

Hi :   x = Sxat + Sbab + w = Sa + w    (Target present) 

which is equivalent to choosing between the "full" LMM x = Sa+w and the "reduced" LMM x = Sbab + w. 

Simple inspection shows that (91) and (95) have the same mathematical form; only the meaning of 

the involved quantities is different. Clearly, the quantities at and ab can be interpretted as abundances only 
in the LMM formulation in (95). We next derive detection algorithms for the binary hypotheses in (95). 
However, the same algorithms can be used for the detection problem defined by (91) with an obvious change 

in notation. More details and experimental results regarding the performance of detection algorithms based 
on the LMM can be found in [38]. 

If we know a, and cr^, we can design a Neyman-Pearson detector that maximizes the probability of 
detection Pp for a given probability of false alarm PFA using the likelihood ratio [24,42] 

LR(x) 4 ££> =   Cia>fX)
 (96) 

£o(0      C(ab, o£b; x) 

which will be larger than one whenever a target is present because the full model provides better fit than the 
reduced model. 

When the parameters at and a* are unavailable, they should be estimated from the data. If we replace, 
in (96), the unknown parameters by their ML estimates, the result is known as generalized likelihood ratio. 
Since there is not any optimality associated with GLR detectors, we should determine their distribution and 
then use it to evaluate their performance. 

7.1    CLAIRVOYANT DETECTOR (KNOWN NOISE VARIANCE) 

If the variance cr^ °f me noise is known, we only need to determine the MLE of the abundance a 

under the two hypotheses. However, due to the nature of the noise, the MLE is equivalent to the LSE (78). 
The full model for a test pixel x is determined by the foot S of the perpendicular PS to the combined target 
and background subspace (hypothesis //]), whereas the reduced model is specified by the foot B of the 
perpendicular PB from the pixel to the background subspace (hypothesis Ho) (see Figure 30). 

Since PSJ.SB we have PB>PS or SSE(a) < SSE(ab)- Intuitively, we should accept hypothesis Ho 

when SSE(a) « SSE(at,)> that is when the length SB or the angle <f> are close to zero. 

50 



Band 3 

e = lfx 

^(K2) 

Band 1 

 • 

(SBf^SSE^-SSE^) 

St(R
p) 

Figure 30. Geometrical illustration of the operation ofsubspace matched filter detection. 

The GLR, obtained using (29), (31), and (96) is 

fSSE(ab)-SSE(a)) 
xPf —2 J 2a2 

For convenience, we use the logarithmic test 

D(x) = 21nGLR(x) = 
SSE(ab) - SSE(a) 

(97) 

(98) 

or equivalently 

D(x) = 
xT(P±-P±)x     xTPtPzPtx 

(99) 

where we have used the property P^ — Pj = PzPt with Z = Pb St (see Appendix 9). 

To make a decision we need to compare D(x) to a given threshold 7j0 and decide H\ (target present) 
when D(x) > r}0 and Ho (target absent) otherwise. Since the threshold determines both PD and PFA. we 
need to determine the probability distribution of 7*(x). 

The random vector PzP^x is distributed as 

PzPt* 
M^,alPz), H0 

M{PiStat,alPz),    Hx 
(100) 
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under the two hypotheses. In general, if x ~ N(fL, T) then xTT~lx ~ /r
2(/trr~ V)» where the noncentral 

chi-square distribution has noncentrality parameter /iTT~lfi and r = rank(PzPb) degrees of freedom [24]. 
Using this result, we can easily show that 

jPz^xf __ j x|(0), «„ 
2 2/riTKTT.      \ » 

a2 x?(SINRo),   #i 

where 

smR^^yj^ jfj^f (102) 
a1
 a1 

w w 

is the noncentrality parameter of the chi-squared distribution. Since the term P^(Stat) is the component of 
the target which is orthogonal to the background subspace, SINR0 can be interpreted as the theoretical SINR. 

The false alarm and detection probabilities are 

/>
FA = Pr[x^(0)>7?0] (103) 

^>D = Pr[xp(SINR0)>7jo] (104) 

where 770 is the detection threshold. The obtained detector has the constant false alarm rate (CFAR) operation 
property, because T?O depends only on P. The probability of detection P& cannot be maximized for a given 

PFA because it depends on at, which is unavailable. 

7.2   ADAPTIVE DETECTOR (UNKNOWN NOISE VARIANCE) 

When cr2 is unknown it has to be estimated from the available data. In this case we determine the GLR 
by replacing at and CT

2
 by their ML estimates under each hypothesis. Therefore, using (33) we obtain 

rTTVrxA   m,al;x)      rsSE(ab)-|
L/2 

GLR(X) - £<ab. *>.„;*) - L SSEWJ 

/xTPxx\L/2 

•tern) =(cos*ri <|05) 

which can be used to obtain a target detection algorithm. Since SSE(a) < SSE(tfb). we have GLR(JC) > 1. 

To make a decision we need to compare GLR(x) to a given threshold £0 and decide Hi when GLR(x) > 
to and Ho otherwise. Since the threshold determines both PD and fyA, we need to determine the probability 
distribution of GLR(x). Since PS±SB, the random vectors e = Pjx and B§ = eb - e = (P£ - Pj)x 

are orthogonal (that is uncorrelated). Furthermore, since e and BS are normal (as linear transformations of 
normal vector x) they are also independent. Therefore, in practice we use the ratio 

£>(*) = 
k JCT(Pb

x - Pj)x      (BS)2 

xTPU (PS)2 
s- 

= (tan</>)2 = [GLR(x)]2/L-l (106) 
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whose distribution can be more easily determined due to the independence of numerator and denominator 

terms. Indeed, it can be shown [24,51] thatxT(P£-PJ)x/(alP) ~ x2
P(SJNR0)andxT Pjx/[a2(L - P - Q)] 

X
2

L_P_Q(0). Note that (BS)2 = ||eb||
2- \\e\\2 and (PS)2 = ||<?||2. Since the two quadratic forms are indepen- 

dent 

(BS)2 L-P - Q 
D(x) = ^j —¥• ~ f>.w_e(SINR0) (107) 

where Fp./,_f>_G(SD>JR0) is noncentral F distribution with P numerator degrees of freedom, L — P — Q 

denominator degrees of freedom, and noncentrality parameter SINR0, see (102), which depends on the 
unknown variance a2. Notice that o2 is not required for the computation of the detection statistics because 
it cancels out. In the statistical literature T(x) is denoted by F(x) and is known as the F-test1. The detection 

test is given by 

(BS)2 L-P - Q Hx 

DiX)=(^ P*   n° 008) 

where the threshold rjo is specified2 by the required probability of false alarm 

FFA = 1 - F/>.L_P_e(0, no) (109) 

because SINRo = 0 under Ho. Since the distribution of T{x) under HQ is known, we can set the threshold 
r)o to attain CFAR operation. The probability of detection 

PD = 1 ~ F/..L_p_e(SINR0, T)0) (110) 

depends on the unknown at, cr2 and therefore it cannot be maximized to obtain an optimum Neyman-Pearson 

detector. 

It can be shown that, independently of the normality assumption, the detectors maximize the signal 

to interference ratio [24,39]. Furthermore, it has been proved that "within the class of invariant detectors 
which have the same invariances as the GLR test, the GLR test is uniformly most powerful (UMP) invariant. 

This is the strongest statement of optimality one could hope to make for a detector" [51]. 

7.3   THEORETICAL PERFORMANCE 

To get some insight into the performance of the adaptive GLRT subspace detector we consider a 
background with Q = 5 end members. The number of bands is L = 144 and the probability of false alarm 
is fixed at P?A = 10-6. The dimension of the target subspace is varied from P = 1 to P = 9 in steps 
of 2. Figure 31 shows plots of the probability of detection as a function of the SINR for fixed values of 

FFA> Q, i°> and L. The family of curves, which is parameterized with respect to P, shows that performance 

'The GLRT(x) and D(x) tests are monotonically related and the distribution of the GLR can be expressed in terms of the beta 
distribution by exploiting its relationship with the F distribution [22,23]. 

2With a slight abuse of notation, we use FP,L-P- J2(SINR0. TO)t0 denote the cumulative distribution function of the non-central 
F random variable. 
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deteriorates as the dimensionality of the target subspace increases (that is as the a-priori information about 

the target decreases) as is expected. The figure also includes curves illustrating the performance of the 

Neyman-Pearson and clairvoyant detectors. We see that for a given probability of detection, there is a loss in 
SINR due to the need to estimate the target abundance (clairvoyant detector) plus the noise variance (adaptive 
detector). Figure 32 shows a similar family of curves parameterized with respect to the number of spectral 

14 16 

SINR (dB) 

20 

Figure 31. Probability of detection as a function of SINR illustratini> the effect of target subspace dimensionality. 

bands L. all other parameters being held fixed. As it is intuitively expected, performance improves as the 
number of band increases, that is as we supply more information into the detector. Clearly, the improvement 
is more dramatic when we start adding more bands and becomes less significant after a certain point. The 
performance of the Neyman-Pearson and clairvoyant detectors does not depend on the number of bands. 

7.4    IMPLEMENTATION 

An interesting geometrical interpretation can be obtained by considering the part Z = P^ S, of the target 
subspace that is orthogonal to the background subspace [51]. Indeed, using the identities PS

L = P^PyP^. 

p£ - Pj = P//»jJ-. and (105). we have 

TAMSU(X) 
xrPJPzPJx      jPzPJxj 
x'P^P/Pix ' Pi P±r\ 

(IN) 
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Figure 32. Probability of detection as a function of SINR illustrating the effect of number of spectral bands 

which suggests the computational structure shown in Figure 33. 

7.5    ONE DIMENSIONAL TARGET SUBSPACES (P = \) 

When P = 1 the full model parameter vector takes the form a = \at a
l

b \'. where «t is the abundance 
of the target signature vector st. If we use the inversion lemma for partitioned matrices we can show that 
[23.39] 

(112) 
>,  r b»l 

The detection test takes the form 

D(x) = 
SSE(a)/(L- 1 - Q •»?>b*. (113) 

and it is distributed according to Fi,{_i-e(SINR0) which is the square of the tL-i-Q Student's t-distribution. 
Therefore, we can use the quantity 

t(x) = a{ 
tfPb't 

SSE(a)/(L- 1 - Q) 

1/2 

(114) 
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Figure 33. Computational structure for the implementation of the adaptive subspace detector for structured background. 

to develop a bidirectional test that takes into consideration the sign of at. Clearly, detection algorithms based 

on a, are not CFAR because a* is unknown. Furthermore, because the distribution under H\ depends on a, and 
a\, which are both unavailable the probability of detection cannot be maximized to attain Neyman-Pearson 

optimally. 

7.6    ORTHOGONAL SUBSPACE PROJECTION (OSP) AND RELATED ALGORITHMS 

The numerator of the abundance estimator (112) given by has been proposed in [20] as a detection 

statistic under the OSP name. However, it is better to use the normalized statistic 

A»P(*) = 
»,J 

sJPU, 
(115) 

because it corresponds to the abundance estimate for the wanted target. The resulting algorithm is not 
CFAR because the abundance of the target and the variance of the sensor noise are unknown. Clearly, the 
theoretically predicted Gaussian distribution of the target abundance contradicts with the physical constraint 

0 < <h < 1. 

The operation eD = ^b"* removes from x the part which belongs to the background St,. The decision 
is based on the correlation y = sfeb between the residual "target plus noise" and the target template st, 
which is proportional to the angle between those two vectors. Alternatively, we can write v = clmfx where 

Cbmf — P^Si is the background-based matched filter. If S\, = 0 (no background), we have cbmf = st, that is 
the typical matched filter for white noise. Some additional subspace projection algorithms can be expressed 
as functions of v = s( P^x and some other quantities [6]. However, if we adopt the signal model (95), the 

GLRT detector given by (113) follows naturally. This detector maximizes the SINR for any noise distribution 
and is CFAR in the case of Gaussian noise. Thinking of the optimum detector as a whitening filter followed 
by a matched filter for white noise and trying to separately design these two filters for the scenario described 
by (95) does not always lead to the GLRT or some other detector with theoretically desired properties (e.g., 
CFAR). 
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If there is no background or we choose to ignore its existence, i.e., we set 5b = 0, the statistic (106) 
reduces to 

DMF(X) = D(x)|Sb=o = ^—Y- (116) 

which is the well-known matched filter for signals in white noise. 

7.7    GENERAL LINEARLY CONSTRAINED DETECTORS 

As we saw in Section 6 the reduced LMM can be formulated as a special case of the linearly constrained 
LMM. In general, the two competing hypotheses are 

x = Sa + w,   »~JV(0,ff2/) (117) 

with 

HQ :   Ga = g   (Target absent) 

H\ :    Ga 56 g   (Target present) 
(118) 

and the test statistics is given by (108) with the following changes 

(BS)2 = (Ga - g)T [G(STSylGT]~l (Ga - g) (119) 

SINR0 = T^(Ga - g)T [G(STS)-lGT]~i (Ga - g) (120) 

where a is the true parameter vector and a its LSE estimate under hypothesis H\   [24]. Algorithm (108) 
follows from the present algorithm using the special values of G and g given in (86). 

Since the additivity constraint is important in hyperspectral signal modelling, we propose a new sub- 
space detection algorithm that takes this restriction into consideration. This can be done by imposing the 
additional additivity constraint uTa = 1 (u is a column vector with unit components) into both hypotheses 
in (118). This issue is further investigated in [41]. 
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8.    ALGORITHM TAXONOMY AND PRACTICAL CONSIDERATIONS 

Table 3 provides a taxonomy of the most fundamental target detection algorithms discussed in this 
report. We have focused on algorithms derived using well established statistical models and procedures. A 
number of additional algorithms reported in the literature can be obtained from this table through mathemat- 
ical approximations or simplifications. For example, low-rank approximations or diagonal loading of the 

estimated background covariance matrix, lead to algorithms which may provide improved performance under 
certain practical circumstances. Also, use of clustering algorithms to derive more homogeneous background 
segments has been shown to improve detection performance in many cases [40]. 

The implementation of hyperspectral target detection algorithms in a real-world environment involves 
confrontation with many "practical details" and challenges that result from the violation of the theoretical 
assumptions used for the derivation of the various algorithms. 

The main processing steps for the subspace-based and covariance-based families of target detection 
algorithms are shown in Figure 34. We notice that we use the correlation matrix to determine the background 
subspace and the covariance matrix for the matched filter type detectors. 
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Figure 34. Block diagram illustrating the major processing steps used by covariance and subspace based target 

detection algorithms. 

The key assumptions used for the detectors using the background subspace model are (a) the spectrum 
of every pixel can be adequately modelled by the LMM. (b) the modelling error has uncorrelated components 

with the same variance, (c) the distribution of the modelling error is multivariate normal, (d) the background 
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subspace B is perfectly known, and (e) the target subspace template S is known. 

The key assumptions used for the detectors using the covariance matrix of the background are (a) the 
background is homogeneous and can be modelled by a multivariate normal distribution, (b) the background 

spectrum interfering with the test pixel spectrum has the same covariance matrix with the background training 
pixels, (c) the test and training pixels are independent, and (d) the target and background spectra interact in 

an additive manner (additive instead of replacement model). 

The performance evaluation of detection algorithms in practice is challenging due to the limitations 

imposed by the limited amount of target data. As a result the establishment of accurate ROC curves is quite 

difficult. Since the number of background pixels is much larger than the number of target pixels, we use 

the plot illustrated in Figure 11. Such plots give an informative pictorial summary of the performance of 
each detector. Figures 35 and 36 show an example of such plots for various covariance and subspace based 

detectors. 

We shall compare the various algorithms in terms of their ability to operate in CFAR mode and the 
enhancement of the separation between targets and background they provide (see Figure 37). The CFAR 
property depends on the capability to accurately model the detection statistics D^)(x) of the background 

pixels for a given algorithm. The enhancement of target visibility will be illustrated visually by plotting the 
detection statistics for every pixel in the scene. 

To investigate the performance of the various detectors, we assess their capacity (a) to enhance the 

"visibility" of the desired target (background-target separation) and (b) to accurately model the background 

statistics. 

To illustrate various issues regarding the discussed algorithms, we shall use the Forest Radiance I data 
(see Figure 6) collected with the HYDICE sensor. We have selected the three outlined areas to investigate 
three different types of background: grass (G), trees (T), and mixed grass-road (GR). The first two scenes 
are relatively homogeneous, whereas the third scene consists of a non-homogeneous background including 
different types of grass and roads. Also considered were classes resulting from a supervised classification 
process performed to isolate spectrally similar (not necessarily spatially adjacent) pixels. Data from classes 
selected from this analysis were labelled using a number after the class label, for example "grass2". 

With regard to targets we have chosen a target with 37 pixels from a certain vehicle. The mean value 
of the set is used as the target template st required for the implementation of each detection algorithm. 

The estimate of the background subspace B for each scene was obtained using the first Q significant 
eigenvectors of the estimated correlation matrix of the background pixels (the "known" target pixels were 
excluded). We have used the first Q = 10 eigenvectors for the scenes G, T, and GR, respectively. These 
eigenvectors capture more than 99 percent of the data cube energy in each case. 

The bar charts in Figure 38 provide the range of the detection statistic of the target and the maximum 
value of the background detection statistics for various backgrounds. The target-background separation or 
overlap is the quantity used to evaluate target visibility enhancement. For example, it can be seen that the 
ACE detector performs better than the OSP algorithm for the six data sets shown. 

The Q-Q plots in Figure 39 illustrate the comparison between the experimental detection statistics 
to the theoretically predicted ones for various detection algorithms.  We notice that the CEM (matched 
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filter) and OSP statistics is compared to the theoretically expected normal distribution, whereas the ACE 
and ASD statistics are compared to the theoretically expected F-distribution. Clearly, there is a deviation 
between postulated and observed statistics. This deviation varies for different combinations of targets and 
backgrounds. 

The previous results dealt with full-pixel or resolved targets. To evaluate detection performance for 
subpixel targets, we have simulated subpixel targets using formula (3). Subpixel targets were simulated 
by adding a randomly chosen target pixel from the target pixel set to each of the background pixels at a 
constant fraction. This simulation process is illustrated in Figure 40. The results shown in Figure 41, show 
target-background separability as a function of the target fill factor a for the ACE and OSP detectors. Clearly, 
target visibility improves with the size of the target. A more detailed comparison of a large set of detection 
algorithms is provided in [36]. It has been shown that taking into consideration target variability using a 
subspace model can increase detection performance [37]. 
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TABLE 3. Taxonomy ofHSI target detection algorithms. 
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Covariance Detectors using covdet w/Background =grass Targe t =[v1 v2 v3 v4 
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Figure 35. Illustration of covariance-based detectors performance using canonical data sets. 
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Subspace Detectors using subdet w/Background =grass Target =[v1 v2 v3 v4 
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Figure 36. Illustration of subspace detector performance using canonical data sets. 
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Figure 37. Illustration of target visibility concept. 
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Figure 38. Illustration of target visibility enhancement for different target detection algorithms. 
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Figure 39. Evaluation of the matched filter CFAR property for two different backgrounds. 
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Figure 41. Target-background separability as a function of the target fill factor. 

67 



9.   CONCLUSIONS 

This report provided a tutorial review of the state of the art of target detection algorithms for hyper- 
spectral imaging applications. The main obstacles in the development of effective detection algorithms are 
the inherent variability target and background spectra. The use of adaptive algorithms deals quite effectively 
with the problem of unknown background; however, the lack of sufficient target data makes the development 

and estimation of target variability models challenging. Hyperspectral target detection is a multidisciplinary 
problem that draws upon different scientific and engineering areas. However, there is a significant signal 
processing component where expertise from the areas of array processing, radar, and detection theory will 
provide crucial contributions to future progress. 
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APPENDIX A 

USEFUL PROJECTION MATRIX IDENTITIES 

Using the following matrix inversion formula for partitioned matrices [24,42] 

-i-i 
A   B 

C   D 

E-1 -AXBH~X 

where 

E = A-BDlC 

we can easily obtain the recursion 

A   B 

C   D 

0     0 
0   D~l + 

I 

-D'C 

Using the partitioning 

we have 

• E~l [ /    -BD1 

S - [ S,   S2] 

STS = 
S{ S\   S, S2 

&2 S\     02 ^2 

and 

Substitution into (3) gives 

E = S| Sj — Sj SiiSj S2)   S2 S\ = Sj P2 ^1 

(S'S)-1 = 
0   0 

0   (S^Sz)-1 + 

_ -(S^S2)-
1S^Si 

•(SfP^Si)-^/   -5[S2(52
rS2)-' " 

Using this recursion and the definition of the projection matrix, we have 

P = S(STS)'lST = P$ + PfSi(S\P$Si)-lSlP£ 

(1) 

(2) 

(3) 

(4, 

(5) 

(6) 
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or 

P = P2 + PP,Si (7) 

which provides a decomposition of the observation space into two orthogonal subspaces. 

If we define Z = PjS\, we can easily see that 

pz = z(zTzylzT = p^sdsJpfSi)-xs\p^ 

= P$PZ = PzPk = H*z*k (8) 

because P2P2 — ?2- Using the previous two identities, we can also show that 

P$ - P± = P^PZP\ (9) 

and 

P± = P$-P$PZP$ 

= P$(I-Pz)P2
L = P2

LPJP2
i
 (10) 

which are used for the implementation of the subspace detector. 
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GLOSSARY 

ACE Adaptive Cosine/Coherence Estimator 

AMF Adaptive Matched Filter 

CFAR Constant False Alarm Rate 

ECD Elliptically Contoured Distribution 

GLRT Generalized Likelihood Ratio Test 

LMM Linear Mixing Model 

MLE Maximum Likelihood Estimator 

OSP Orthogonal Subspace Projector 

Q-Q Quantile-Quantile 

ROC Receiver Operating Characteristic 

SINR Signal to Interference plus Noise Ratio 

SSE Sum of Squared Errors 
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