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In the automatic detection of epileptic seizures, the monitoring of critically ill patients with

time varying EEG signals is an essential procedure in intensive care units. There is an

increasing interest in using EEG analysis to detect seizure, and in this study we aim to

get a better understanding of how to visualize the information in the EEG time-frequency

feature, and design and train a novel random forest algorithm for EEG decoding,

especially for multiple-levels of illness. Here, we propose an automatic detection

framework for epileptic seizure based on multiple time-frequency analysis approaches;

it involves a novel random forest model combined with grid search optimization. The

short-time Fourier transformation visualizes seizure features after normalization. The

dimensionality of features is reduced through principal component analysis before

feeding them into the classification model. The training parameters are optimized using

grid search optimization to improve detection performance and diagnostic accuracy

by in the recognition of three different levels epileptic of conditions (healthy subjects,

seizure-free intervals, seizure activity). Our proposed model was used to classify 500

samples of raw EEG data, and multiple cross-validations were adopted to boost the

modeling accuracy. Experimental results were evaluated by an accuracy, a confusion

matrix, a receiver operating characteristic curve, and an area under the curve. The

evaluations indicated that our model achieved the more effective classification than some

previous typical methods. Such a scheme for computer-assisted clinical diagnosis of

seizures has a potential guiding significance, which not only relieves the suffering of

patient with epilepsy to improve quality of life, but also helps neurologists reduce their

workload.

Keywords: continuous electroencephalography, grid search optimization, random forest, epileptic seizure

detection, simulation model

INTRODUCTION

Epilepsy is the clinical manifestation of hyperpolarizing electrical activity in paroxysmal neurons in
the brain, which has recurrent, sudden, and transient characteristics (Patidar and Panigrahi, 2017).
Electroencephalography (EEG) was introduced by Berger (1929) to measure electrical activity in
the brain. One of the main applications of EEG in clinical diagnostics is the automatic detection
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of epileptic seizures (Navarro et al., 2003; Loui et al., 2014).
Continuous electroencephalography (cEEG) (Wang et al., 2018)
is a monitoring tool for epileptic seizures in the intensive
care unit (ICU). Other physiological detection methods cannot
reflect seizure information in real time in the manner of cEEG.
However, epileptic seizure signals cannot be interpreted in
the short term, and it is therefore essential to record EEG
signals continuously over a long period, which typically involves
many hours of recording the patient’s brain waves (Kennedy
and Gerard, 2002; Gavvala et al., 2015). Clinically, due to
the subtle signs of seizure of epileptic patients, only 35%
of non-convulsive seizures (NCS) and non-convulsive status
epilepticus (NCSE) can be diagnosed by neuro-medical doctors
although 52% of patients have disease episode in the ICU ward
(Claassen et al., 2004; Scheuer, 2010). The probability of detecting
morbidity is so low. It is still necessary to perform manual
visual detection and identification by experienced neurologists
or neuro-electrophysiologists. Since the introduction of cEEG
detection technology into the monitoring of the ICU ward, the
recognized results have significantly improved the diagnostic
rate of doctors while assisting doctors to make decisions
(Abend et al., 2011).

Therefore, there is an urgent requirement for an automated
framework to detect and recognize seizures, to enable efficient
treatment to be administered quickly. This requires is a highly
classified accurate (ACC) and efficient automatic detection
algorithm including time domain, frequency domain, time-
frequency domain and non-linearity analysis, to allow long term
monitoring, and seizure detection. In general, seizure detection
involves two steps in feature extraction and feature classification
with important attributes of the cEEG being extracted in the
feature extraction step and provided to the recognizer as inputs.

In recent years, several studies solved automatic monitoring
and recognizing problem to non-stationary EEG at the onset
of epilepsy. A classic example is the Welch spectral analysis
method introduced into the feature analysis of epileptic seizure
detection. Tzallas et al. used the time domain method through
computerized EEG analysis during epileptic seizures (Liu et al.,
1992). Additionally, a popular Fourier-based technique for
spectral analysis has commonly been to analyze EEG signals
in the frequency domain. Polat et al. proposed a hybrid model
for seizure detection using a fast Fourier transformation and
decision tree for feature extraction and classification, respectively
(Polat and Güne, 2007). A flexible wavelet transformation and
the fractal dimension of the time-frequency method also have
been used for seizure segment detection in long-term EEG
(Li et al., 2016; Satapathy et al., 2016; Swami et al., 2016; Sharma
et al., 2017).

Independent components analysis (ICA) (Whitmer et al.,
2010) and linear discriminant analysis have been reported for
EEG signal extraction and classification (Subasi and Ismail
Gursoy, 2010). Lately, a multiscale radial basis function
algorithm showed promising results in the decoding of EEG
of epileptic seizures (Li et al., 2017). The following content
briefly discusses the widely used time-frequency methods of
fast Fourier transform (FFT), wavelet transform (WT), ICA
and power spectral density (PSD), which have all been applied

to the time frequency domain for the detection of epileptic
activity (Qinghua et al., 2003; Tzallas et al., 2009; Boashash et al.,
2012; Wang et al., 2018).

After considering the above literature, we considered the
FFT transform to have several disadvantages for time-frequency
analysis. First, the FFT transform cannot do a good job
of solving the EEG analysis problem using a fixed window
function. Second, it is very time-consuming. In this study, we
adopted a short time Fourier transform (STFT) to conduct
the time-frequency analysis of non-stationary EEG signals by
adjusting different time windows to avoid the disadvantages
of the FFT transform. The mean energy, standard deviation,
and high amplitude gamma frequency of signals processed by
the STFT approach are formed the feature vectors for the
recognition model.

After obtaining appropriate features, the final step is to feed
these features into a suitable classifier. Numerous machining
learning models have been developed for seizure detection
(Guerrero-Mosquera et al., 2010; Parvez and Paul, 2014;
Jaiswal and Banka, 2018; Sharma and Pachori, 2018), with the
classification methods of empirical mode decomposition (EMD),
principle component analysis (PCA), and genetic algorithms
(GA) having been proposed. Support vector machine (SVM) of
learning was adopted by Boser et al. (1992) and Kai Fu et al.
(2015), while He et al.’s neural network (NN) classified technique
were used in the early days of machine learning applied to the
field of brain science (He et al., 2004, 2006). Zhang et al.’s artificial
neural network (ANN) technique achieve 89% classification
accuracy (Zhang et al., 2007). Brabanter et al. proposed a least
squares support vector machine (LS-SVM) of the best pattern
classification approach. Their LS-SVM technique was used for
the classification of two-level of seizure and non-seizure EEG
signals from the small seizure dataset of Bonn University. They
obtained 98.0–99.5% accuracy using a radial basis function (RBF)
kernel, and 99.5–100% accuracy using aMorlet kernel (Brabanter
et al., 2010). Yang Li’s analysis technique used a K-Nearest
Neighbors (K-NN) algorithm for epileptic seizure detection with
classification based on the EEG signals. The classification results
indicated that it can achieve a high classification accuracy of
99.1% (Wang et al., 2017).

In the above-mentioned literature, the algorithms classify two
types, which are EEG data into two types, seizure EEG epochs
and non-seizure EEG epochs. Such a two-way classification of the
EEG is unfavorable in practical applications, as in reality there
are multiple degrees of epileptic seizure. Therefore, our random
forest-grid search optimization (RF-GSO) model classifies the
cEEG dataset work to build classification model of three
categories to cEEG dataset into three categories representing
non-epilepsy, severe epilepsy, and intermittent epilepsy. This
classification not only saves the time for the two-two classification
between three datasets but also effectively avoids themisdiagnosis
or missed diagnosis caused by manual analysis and recognition.
Our model can classify three levels of epilepsy in one go. At
the same time, we can also classify the dataset by classifying
the model.

Therefore, we believe our RF-GSO classification algorithm has
the following advantages for training on epilepsy EEG:
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a) The random forest classification algorithm has a high degree
of parallelization, which improves operational efficiency. This
is advantages for training on large quantities of EEG data.
However, it does generate a large number of hyper-parameters
during the training process, and it may be difficult to
determine the optimal parameters. This is where the GSO
optimization algorithm is useful, as it can accelerate the search
for the optimal combination of parameters by filtering them
repeatedly with a variable step size, thus generating an optimal
RF model.

b) As the decision tree node-partitioning features can be selected
randomly, the model can still be effectively trained when the
sample feature dimension is high. By using GSO and 10-fold
cross validation (CV), the situation where an excessively high
penalty function causes an over-learned state to occur can be
avoided. The implementation of 10-fold CV on the training
set increases the robustness and adaptability of the trained
RF classifier.

c) The trained optimized RF classifier can predict the three types
of conditions for different degrees of patients. At the same
time, the classifier is malleable and can be used to solve
the multiple degrees of disease prediction in patients with
epilepsy by modifying the model, which doesn’t limited to the
classification of the two conditions.

d) In this study, the time-frequency analysis method is used to
extract the time-frequency characteristics of EEG signals. At
the same time, the statistical characteristics of EEG signals are
extracted by statistical techniques, thus the best combination
of feature extraction and feature classification is realized.

e) The RF model is not sensitive to partial feature deletions.
Therefore, the classification results are robust to dimension
reduction processing by PCA, which is especially relevant for
cEEG. Our model can predict several thousand explanatory
variables effectively.

The automatic detection framework for epileptic seizure EEG
studied in this paper is illustrated in Figure 1. First, we preprocess
the collectedmedical cEEG data, then we perform T-F analysis on
the simulated and real data. The frequency features of frequency
and statistics of the EEG signals are extracted by STFT, and
the reduced features are fed into the random forest model. We
use the GSO optimization algorithm to optimize the RF hyper-
parameters to achieve a better model. Finally, we conduct multi-
indexes assessment of our model’s ability to detect the three levels
of seizure status.

The remainder of the paper is organized as follows. In
section Dataset and Feature Extraction Methods, we apply the
different T-F analysis methods to real EEG data after first
preprocessing it. Comparisons of the results of the different
approaches revealed that STFT attained the best effects. The
study adopts the PCA method to reduce the dimensionality of
the cEEG features. In section Random Forest Algorithm Based
Grid Search Optimization, we feed the extracted features into our
novel automatic detection model using 10-fold CV to obtain the
three classification categories of seizure, light-seizure and non-
seizure. In section Experimental Results and Discussions, the
experimental results are analyzed using ACC, confusion matrix,

receiver operating characteristic curve (ROC), and area under
curve (AUC) generated by sensitivity, and specificity. Finally, our
contributions are summarized and our future work is discussed
in section References.

DATASET AND FEATURE EXTRACTION
METHODS

We establish a mathematical simulation model of perfect EEG
signals, and use different feature extraction methods to analyze
the EEG signals while ensuring the credibility of the simulation.
The obtained results are consistent with the conditions of the
modeling hypothesis indicating that the method has applicability
to the processing of real clinical EEG data.

Simulated EEG Data Model
First, the four frequency sub-bands including theta (4–8Hz),
alpha (8–16Hz), beta (16–32Hz), and gamma (32–60Hz)
(Trenado, 2015; Amiri et al., 2016) were created for the simulated
EEG model. These signals were created with a sampling
frequency of 100Hz, and corrupted by the addition of Gaussian
white noise with a sequence of variance of 0.04, as shown in
Figure 2 (1-1). The simulation modeling is defined as follows:

y (t) =























2|t|ω sin
(

2π fθ t
)

, t ∈ [0, 2) ;
2|t|ω sin

(

2π fβ t
)

, t ∈ [2, 4) ;

2|t|σ sin
(

2π fαt
)

, t ∈ [4, 6) ;

2|t|σ sin
(

2π fγ t
)

, t ∈ [6, 8) ;
0, otherwise

(1)

Using the simulated EEG expression, we can clearly see four
peaks and lines on the spectrum representing the four frequency
components of 7, 15, 25, and 40Hz when analyzing it with
the time-frequency approaches of FFT, multitaper spectrum and
STFT, as shown in the first row of Figure 2. These results confirm
that the original time domain signals mainly contained these four
different frequency signals. They are also the point of energy
concentration, which is consistent with the simulating signals.
Some small peaks other than these four peaks are present when
using the FFT, these are due to spectral leakage, which may
cause the spectrum to be blurred and distorted. However, the
STFT algorithm clearly shows four red lines representing the four
artificial EEG signals, which verifies that this technique captures
the most detailed frequency information of the model.

Real Clinical EEG Data Analysis
Non-invasive EEG data was obtained at Bonn University from
25 patients with medically intractable partial epilepsy. These
consecutive patients were selected according to the following
inclusion criteria.

The datasets were divided into five groups of ictal scalp EEG
signals: O, Z, F, N, and S. Each group of data contained a total
of 100 samples from 5 subjects. The raw EEG data was recorded
using a standard 10–20 system with a sampling frequency of 173.
61Hz. The age of the subjects ranged from 19 to 60 years, they
were all right-handed, and the locations of the epileptogenic foci
for each subject were identified by experienced epileptologists.
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FIGURE 1 | Automatic detection framework for seizure EEG.

More detailed information on the five cEEG datasets is provided
in Table 1.

This paper uses the O/Z, F/N, and S datasets to classify the

EEG signals. TheO/Z datasets were from healthy subjects under a
state of alert and only used EEG signals acquired from the surface
of the scalp. The F/N datasets were from epilepsy patients who

did not suffer a seizure within the area covered by the intracranial
EEG signals during the data acquisition period. The S dataset was

from patients with seizure activity that caused lesions within the
area of the intracranial EEG. The raw EEG are expressed in the

first column of the matrix in Figure 2.

EEG Preprocessing and Time-Frequency
Analysis
EEG Preprocessing
EEGLAB toolbox of Matlab was used to preprocess the cEEG.
This software allows preprocessing of the raw EEG signals,
including adding electrode channel positions, digital filtering,
removing artifacts, re-referencing, and baseline corrections.

EEG is mainly distributed in the frequency range of 0–40Hz.
Therefore, a Butterworth digital low-pass filter (Yan and Yuan,
2017) with a cut off frequency of 40Hz was used to extract
the effective frequency band. The absolute value of the data is

Frontiers in Human Neuroscience | www.frontiersin.org 4 February 2019 | Volume 13 | Article 52

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Wang et al. Detection Epileptic Model Optimization

FIGURE 2 | T-F analysis of simulated and actual clinical EEG data.

TABLE 1 | Description of real EEG data.

Dataset Subject condition Epileptogenic foci Electrode collection area Subject status Samples Number

O/Z health Scalp surface All brain areas All areas 200

F/N seizure-free intervals Intracranial Lesion outside/inside area intermission 200

S seizure activity Intracranial Intralesional area Attack period 100

taken in the experiment to avoid negative energy. To ensure the
credibility of the test results, the arithmetic average processing
was performed for the above three groups of data and they
were compressed into single column matrices. The energy mean,
number of cases, and variance of the F/N, O/Z, and S datasets
are shown in the Table 2. It can be observe that the S set had the
largest standard deviation and the highest mean energy.

Time-Frequency Analysis
Fourier transform, multitaper spectral analysis, PACF, and STFT
were then used to describe the time-frequency features of the
signals. Figure 2 (2-2, 3-2, 4-2) illustrates that the Fourier
transform is an analysis of the frequency of the entire cEEG
signals; to a certain degree, it reflects the frequency characteristics
of the entire signals. Therefore, the non-stationary signals or
frequency change slowly with time. It is possible to smooth
signals using an FFT; however, for EEG signals, whose frequency
changes rapidly with time, the fast changing frequency is
effectively “averaged” with the FFT, and it can only give the
overall effect of the signals, it cannot reflect the frequency
variation characteristics of the signals themselves.With the STFT,
a window is added to the signals and this window function is
moved. Assuming that the windowed signals represent stationary
signals in different finite time widths, the power spectrum at
different moments can be calculated. STFT treats non-stationary
brain signals as stationary signals and superimposes a series of
short signals. It performs windowing to obtain a two-dimensional

function of three types of brain electrical signals: Z/O, F/N, and
S. Their corresponding time–frequency energy distributions are
shown in Figure 2. Compared with the FFT results, the spectra
of the three data sets Z/O, F/N, and S are significantly different,
and the analysis results using the STFT are clearer. Compared
with the Z/O and F/N data sets Figure 2 (2-5, 3-5), the EEG
signals in the S dataset have much higher energy, as shown in
Figure 2 (4-5). Wave peaks are present in the alpha and theta
bands, especially in the S dataset, with high energy near 0–3
and 7Hz frequencies. The overall energy in the F/N datasets was
lower, with mainly slow wave activity with low amplitude and
wave peaks that were not particularly obvious. The brain power
of the Z/O subjects was the lowest of the datasets. Therefore, it
can be inferred that the brain power of the S datasets represents
severe and persistent epileptic episodes, as seen in Figure 2

(4-5). The brain power of the F/N datasets represents mildly
epileptic patients with latent epilepsy. In the Z/O dataset, the
EEG spectrum showed a little energy concentration, and the Z/O
datasets are the EEG data of healthy people, as in Figure 2 (2-6).

Analysis Features for the Epilepsy
Monitoring Model
The cEEG scalp signals at time t can be defined as a vector:

S (t) = (s (t1) , s (t2) , · · · , s (tn)) =







s11 · · · s1n
...

. . .
...

sp1 · · · spn






(2)
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TABLE 2 | Statistic feature of real EEG data.

FN OZ S

Mean −5.94 −6.31 −4.74

Number of cases 4,097 4,097 4,097

Standard deviation 13.10 4.56 38.55

S(t) (n = 1, 2, · · · , 4097) represents the cEEG signals. For each
segment of the EEG signals, an MVARmodel with p order can be
built as follows:

S (t) =
∑p

i= 1
ωiS(t − i)+ ε(t) (3)

ωi is a matrix of coefficients and ε(t)is the estimation error which
is a time sequence of Gaussian white noise (Wei and Yan, 2017).
The order p can be depended by the Schwarz’s Bayesian Criterion.
The 4 order of the MVAR model can describe the features of
the cEEG signals. Therefore, the STFT of coefficient ωi can be
calculated by:

ω

(

f
)

=
∑p

i= 1
ωie
−2πirf (4)

The leaf transformation then moves the window function
to repeat the above calculations for different moments. The
expression is as follows:

Ts

(

t, f
)

=

∫ +∞

−∞

s (τ ) k∗(τ − t)e−jf τdτ (5)

To optimize the performance of the algorithm and improve the
accuracy of the classification, standardized transformation of
the data was performed. At the same time, PCA was used for
feature extraction and dimension reduction, to allow the relevant
important features in the original data to be more easily revealed.

S′i∗S
′
j = 0, (i 6= j) (6)

The average frequency, standard deviation, and average
amplitude of the EEG signal are extracted as features for
identification, to form a three-dimensional observation vector.
Among them, the average frequency is:

P =

∑

fjMj
∑

Mj
(7)

whereMj is the power spectrum value of the frequency. It is very
important to choose the right model type and order for power
spectrum estimation based on the parametric model; otherwise,
it may cause large errors in the results.

The time-frequency analysis reveals the frequency distribution
of the signal and the regularity of each frequency component over
time. The principle of STFT is to use a window function k(τ − t)
to extract a section of EEG centered on a certain moment and to
then perform a Fourier transform on the section.

In the PCA algorithm (Frances and Robert, 2013), the EEG
signal data is converted from the original coordinate system to a
new coordinate system, and the selection of this new coordinate
system is determined by the data itself, because the maximum

variance of the data provides the most important information.
When converting the coordinate system, the direction with the
largest variance is used as the coordinate axis direction. The
first new coordinate axis selects the method with the largest
variance S′i in the original data, and the second new coordinate
axis selects the orthogonality with the first new coordinate axis
and the direction of the second largest variances S′j. This process

is repeated, a number of times, and is the feature dimension of
the original data.

In the new coordinate system obtained in this way, most of the
variances are contained in the first few axes, with the subsequent
axes containing a variance of almost zero. This method retains
dimensional features that contain most of the variance and
ignores feature dimensions that contain variances of almost zero,
thereby achieving dimensionality reduction of the data features.

The PCA Algorithm 1 is described below:

Algorithm 1: Principal component analysis (PCA)

Input: Sample set S (t) = (s (t1) , s (t2) , · · · , s (tn))
T Low

dimensional dimension n,
Process:

1: Centralize all samples:

S (ti)← S (ti)−
1

n

∑n

i=1
S(ti)

2: Calculate the covariance matrix of sample: SST

3: Solving the correlation coefficient matrix

R =
(

rij
)

n×n
(rij = rji, rii = 1)

4: Solving the eigenvalues of the correlation coefficient
matrix:

λ1 ≥ λ2 · · · ≥ λn ≥ 0

5: Determine the number of principal components: m

m
∑

i= 1

λi

/ p
∑

i= 1

λi ≥ α, α = 80%

6: Calculate the corresponding eigenvector:

x1 =











x11
x21
...

xp1











, x2 =











x12
x22
...

xp2











, . . . , xm =











x1m
x2m
...

xpm











7: Calculate principal components:

Zi = x1iS1 + x2iS2 + · · · + xpiSp

i = (1, 2, · · · , m)
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RANDOM FOREST ALGORITHM BASED
GRID SEARCH OPTIMIZATION

RF-GSO for the Machine Learning Model
The Random forest (RF) (Archer and Kimes, 2008) is an effective
integrated machine learning method combined by decision trees.
The RF identification method is suitable for high-dimensional
data and runs fast. However, a large number of hyper-parameters
are generated during the operation, and in order to obtain a
higher accuracy of recognizing the epileptic EEG signal, the
model parameters need to be optimized. At present, there are
relatively few methods for optimizing the parameters in the
random forest method, and it is usually based on experience to
select manual parameters. In particular, the number of decision
trees in the random forest method has a large influence on
the performance of the model, and for different categories
of data, the number of decision trees is different when the
performance of the model is optimal. The parameters of the
random forest method are selected only by experience, and the
random forest identification model with the best performance
is usually not obtained. This paper uses the improved GSO to
identify RF by computer. The parameters are optimized, and the
cross-validation method in machine learning is used to more
effectively avoid the over-fitting problem of the trained random
forest model.

Data distribution was performed on the data set, including test
set, training set, and verification set. At present, the literature was
divided into two groups for this dataset. In this study, the dataset
was directly divided into the three categories of healthy people,
intermittent epilepsy patients, and continuous epilepsy patients,
which were labeled by “−1,” “1,” “0.”

The RF is an extended variant of Bagging. First, a bootstrap
sample Z∗ was randomly selected from the training set in a
returning way. Taking the randomly selected data in the above
steps as the training data, decision trees Tb were established.
Second, a subset of M features is randomly selected from the
feature set of each node of the decision tree. The RF tree is grown
to enhance the binding data by recursively repeating the above
steps for each terminal node of the decision tree until the decision
tree can accurately identify the training data set while achieving
the minimum node size. In the process of model training, this
paper uses the recognition regression tree CART algorithm to
split the nodes, and the Gini value of the Gini index is used as the
basis of the splitting node. The sample training set Z∗ contains
different characteristics, and the Gini index of this training set is:

GINI(k) = 1−

k
∑

i=1

pi (8)

where, pi is the probability of a category i feature. The number
of features corresponding to the sample training set were
{n1, n2, · · · , nk}, n = n1 + n2 + n3, the split Gini index is:

GINI(M∗) =
n1

n
GINI(M1)+

n2

n
GINI(M2)+

n3

n
GINI(M3) (9)

Third, all decision trees {Tb}
m
1 are aggregated. For an input

sample, the decision trees of m have recognition results of m,

and the RF model inherits all the recognition voting results.
Forecasting is performed on the new node, and the most

recognized number of votes is the output {
∧

C b(x)}
m
1 . Pseudo code

for the RF-GSO is shown in Algorithm 2.

Algorithm 2: Random Forest for Classification. (RF,Zi),
GSO

1: For i = 1 to m:
(a) Draw a bootstrap sample Z∗of size Pfrom the training

data.
(b) Grow a random forest tree Tbto the boost strapped

data, by recursively repeating the following steps for each
terminal node of the tree, until the minimum node size
nminis reached.

2: Output ensemble of tree {Tb}
m
1

To make a prediction at a new point x

Classification: Let
∧

C b(x) be the class prediction of the

random forest tree. Then
∧

Cm
rf
(x) =majority vote {

∧

C b(x)}
m
1

3: First coarse search hyper-parameters: penalty parameter,
min_sample_leaf, max_features, n_estimators. step size:10
Second accurate search: reduce step size, st. min (penalty
parameter) is the best group of parameters, step size:0.1.

The random forest identification algorithm generates a
large number of hyper-parameters during the training process.
It is difficult to calculate the optimal parameters of the
recognition model by relying on experienced programmers
to manually debug these generated parameters. In order to
improve the classification performance of the random forest
algorithm, this paper proposes an improved grid search
algorithm to optimize and configure the parameters of the
RF model.

The GSO algorithm refers to meshing the variable regions,
then traversing all the grid points, solving the objective function
values satisfying the constraints, and selecting the optimal values.
It takes a lot of training time to traverse all the parameters on the
grid. In this paper, the improved GSO algorithm is to improve the
training speed. Specific steps are as follows:

First, we used a long distance step size for a rough search
over a large range. Second, the mesh was built on the coordinate
system, and its mesh nodes were the corresponding parameters
pair of penalty parameters, the number of decision trees, the
number of split features, min_sample_leaf, max_features, and
n_estimators. The optimal parameters and recognition accuracy
were output when there was a set of parameters that meet
the requirements; we select the parameter with the smallest
penalty parameter as a more selective object when multiple sets
of parameters meet the requirements. Next, a second accurate
search is performed in small steps on the set of parameters; repeat
the above steps with the step set to 0.1 to find the global optimal
hyper-parameters. The above parameter optimization flowchart
of RF model based on the improved grid search algorithm is
shown in Figure 3.
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FIGURE 3 | Parameters optimization flow to GSO.

K-fold Cross Validation
To reduce the influence of the selected training data and
test data on the model evaluation, k-fold cross validation was
used. This involves the training data being divided into subsets
without repetition.

{V1,V2, · · · ,Vk}, (Vi ∩ Vj = ∅) (10)

k-1 subsets were used for training, and the remaining subset was
used for testing. This process was repeated k times to obtain k
accuracy values, which were averaged to provide a mean value
for the evaluation. In past literatures, automatic seizure detection
of L. Guo et al. Nicolaou et al. and Samiee et al. have no use
the CV as seen from the following Table 3. Jianfeng Qu et
al used the default 5-fold CV. In this study, 10-fold CV was
used to obtain more reliable and robust performance results.
The training set were randomly divided into ten subsets, with
only one subset being used as the verification set. The other
residual subsets were used to train the cEEG classifier on data
corresponding to different levels of epileptic seizure. The use of
10-fold CV reduces the over-fitting phenomenon and increases
the credibility of the data classification. The pseudo code for the
10-fold cross-validation is shown in Algorithm 3.

EXPERIMENTAL RESULTS AND
DISCUSSIONS

The experiments were performed on an Acer PC with a 2.8 GHz
Intel Core i5-6200U CPU, 8 GB low voltage memory, 1 TB of
storage, and a 64-bit operating system.

Algorithm 3: 10-Fold Cross-validation(S, RF, L, 10)

Input: S (t), S (ti) ∈ S (t) : Sample set
Random forest (RF): Decision algorithm
L : Loss function
10: Fold number
Process:

1: Define: V1 ⊕ V2 ⊕ · · · S

⇔
V1 + V2 + · · · S

Vi
⋂

· · · · · ·

2: for i from 1 to 10 do
3: fi = RF(S/Vi)
4: for S (ti)in Vi do

5: ej = L(fi, S(ti))
6: end for

7: end for

8: Return e

Effects of RF Algorithm With Grid Search
Optimization
The classification performance of the proposed RF algorithm
should be determined on the statistical results of all patients, to
avoid possible deviations from the detection results for epileptic
seizures from a single patient. The identification and decision-
making problem in the classification of epilepsy EEG data is also
an unbalanced classification problem. The average and standard
deviation of the performance per patient allow for statistical
testing, to determine differences between the three categories,
including healthy people and intermittent epilepsy patients. The
data from the 25 patients with seizures in our ICU dataset were
used to evaluate the seizure detection performance using the fixed
baseline feature normalization method (Ray et al., 2015).

This method is defined as shown in Equation.

ACC =
TP + TN

TN + FP + TP + FN
· 100 (11)

where the true positive (TP) rate signifies the total number of true
normal events recognized correctly, the true negative (TN) rate
denotes the total number of true events of epileptic seizure period
correctly identified, and the false positive (FP) and false negative
(FN) rates are respectively the total number of false normal
events and false events of epileptic seizure period incorrectly
identified by the neuro-electrophysiologist or physician (Ktonas
and Ventouras, 2014). The accuracy for correct classifications is
shown in Figure 4.

The original RF algorithm of machine learning achieved a best
performance of 88% for the 3-class. In summary, the penalty
parameters min_sample_leaf, max_features, and n_estimators
were the key parameters affecting the performance of the
RF classifier. Therefore, the grid search algorithm divides the
parameters to be searched into a grid with a certain spatial range,
and searches the optimal parameters by traversing all the points
in the grid to obtain the global optimal solution. The improved
GSO not only increases the ACC of the RF model from 88 to
96.7%, but also increases the operating speed of the model. The
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TABLE 3 | Comparison of the main relevant previous research studies.

References Techniques 10-fold CV Dataset ACC%

Guo et al., 2010 DWT and line length, ANN no {Z}-{S} 100

{FNOZ}-{S} 97.7

Gandhi et al., 2011 DWT, energy and std, SVM, NN yes {FNOZ}-{S} 95.4

Nicolaou and Georgiou, 2012
Permutation entropy, SVM no {Z}-{S} 93.5

{O}-{S} 82.8

{N}-{S} 88.0

{F}-{S} 79.94

{FNOZ}-{S} 86.1

Alam and Bhuiyan, 2013 EMD, higher order moments, ANN no {O}-{S} 100

{F}-{S} 100

{FN}-{OZ}-{S} 80

Samiee et al., 2015 Rational short time Fourier no {Z}-{S} 99.8

{O}-{S} 99.3

{N}-{S} 98.5

{F}-{S} 94.9

{FNOZ}-{S} 98.1

Swami et al., 2016 DTCWT, energy an std, Shannon entropy

features, RNN

yes {Z}-{S} 100

{O}-{S} 98.89

{N}-{S} 98.72

{F}-{S} 93.3

{ZO}-{S} 99.1

{NF}-{S} 95.1

{FNOZ}-{S} 95.2

Sharma et al., 2017 ATFFWT and FD, LS-SVM yes {Z}-{S} 100

{O}-{S} 100

{N}-{S} 99

{F}-{S} 98.5

{ZO}-{S} 100

{NF}-{S} 98.6

{ZO}-{NF} 92.5

{FNOZ}-{S} 99.2

Yuanfa Wang et al., 2018 DWT, SVM no {FN}-{OZ}-{S} 93.9

This work STFT, mean energy std and PCA, RF and GSO yes {Z}-{S} 100

{O}-{S} 100

{N}-{S} 98.5

{F}-{S} 98.1

{ZO}-{S} 100

{NF}-{S} 98.2

{ZO}-{NF} 93.2

{FNOZ}-{S} 98.5

{FN}-{OZ}-{S} 96.7

success of the proposed model increased by nearly 10% points
compared with the RF algorithm alone. Simultaneously, the RF-
GSOmodel is trained using 10-fold CV, and its accuracy is shown
in Figure 5. We can observe that the ACC of the training model
is gradually increasing.

Related studies on automatic epilepsy detection systems are
listed in Table 3. Most of the studies divided Bonn dataset into

two-class: they can only distinguish between healthy subjects
{OZ} and seizure-free intervals {FN}, seizure-free intervals
{FN}, and seizure activity{S}, healthy subjects {OZ}, and seizure
activity {S} for three time. This classification is so complicated
for neuroscientists to re-manually control one by one. We
adopted a combination of RF-GSO classification algorithm for
machine learning to achieve high accuracy for the three-class,

Frontiers in Human Neuroscience | www.frontiersin.org 9 February 2019 | Volume 13 | Article 52

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Wang et al. Detection Epileptic Model Optimization

FIGURE 4 | Comparison of execution accuracy between RF and RF-GSO.

FIGURE 5 | The accuracy of RF-GSO model under 10-fold CV.

differentiating healthy subjects {OZ}, seizure-free intervals {FN},
and seizure activity {S} with a high ACC of 96.7% for one time.
Simutanously, the excellent ACC is higher than Shafiul Alam’s
80% (Alam and Bhuiyan, 2013) and Yuanfa Wang 93.9% (Wang
et al., 2018) of bold values in Table 3. The integrative processing
method reduces the complicated operation mode two types of
classifications in the detection system. It should help neurologists
to make clinic diagnosis decisions more conveniently and
quickly.

Performance Evaluation of Classification
Model
After building the classification model, we tried to validate the
model with more evaluation indicators of machine learning, not
limited to the accuracy of the model. Furthermore, the model
can be adjusted so that the model can achieve higher accuracy.
Evaluation indicators mainly include a confusion matrix, a
receiver operating characteristic, and an area under the curve.
These indicators are deeper analysis of Alam and Bhuiyan (2013)
the performance of a classification model from the perspective
of classification errors, which is more important in medical
diagnosis detection.

FIGURE 6 | Three types classification confusion matrix.

A confusionmatrix for assessing the three-category diagnostic
classification problem of decision-making in epilepsy EEG is
presented in Figure 6.

Horizontal and vertical direction of the confusion matrix are
real targets and prediction results, respectively. True probability
of serious epilepsy 98% as seen from the Figure 6. The fault
classification mainly includes two state. The first state is the
probability that the serious disease of S dataset is divided into
O/Z datasets by 1%. The second state is the probability that the
serious disease of S dataset is divided into F/N datasets by 1%. The
classified probability of other types EEG can be similarly derived.

For different neurologists to make a diagnosis, they will
have different considerations, which produce different confusion
matrices. It is very difficult to evaluate a model by choosing a
useful one from many confusion matrices.

This paper draws out different confusion matrices in a
visual way. This makes it possible to objectively evaluate the
classification effect of the classification model. The receiver
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FIGURE 7 | ROC curve and AUC value.

operating characteristic (ROC) (Plöchl et al., 2012) curves of
each EEG registration were obtained by drawing all possible true
positive and false positive rates for the detection threshold, which
are defined as shown in the following Equations (12, 13).

TPR =
TP

TP + FN
· 100 (12)

False positive rate: this evaluation indicator is used to reject false
detections of ictal.

FPR =
FP

TN + FP
· 100 (13)

To allow a ROC curve to be drawn, the classifier must provide
a confidence value that is judged as positive or negative for each
sample. The ROC curve is drawn in Figure 7. If the ROC curve
falls above the diagonal indicate the classification model has
predictive ability, and conversely, there is no predictive ability.
The ideal situation is that the ROC curve coincides with the
y-axis, that is, the prediction ability is 100%. The proposed RF-
GSO classificationmodel has excellent classification performance
as shown in Fig 10. The area under the curve (AUC) (Plöchl
et al., 2012), which defines the average performance of the value
classifier, is also used as a measure of the performance. In general,
the AUC value ranges between 0.5 for a random performance
to 1 for accurate classification. The AUC value of each patient
is calculated, and the final performance measurement value is

obtained as the mean of these 25 AUC values. Figure 6 shows
an AUC 99.0% with the RF-GSO classification, indicating near
perfect performance.

CONCLUSION

The use of cEEG monitoring has changed the standard of care
in the ICU; however, the long-term testing and monitoring
of epilepsy patients is time consuming and laborious, and
doctor time is limited. Therefore, we developed a novel RF-GSO
automatic seizure detection of machine learning technique based
on time–frequency analysis and PCA analysis. The experimental
data demonstrate that it is very suitable for the classification
task of epilepsy cEEG, especially into three or more types.
However, the proposed novel model using RF with a GSO
optimizer also has its limitations. If the noise in the EEG signals
is too high, it will affect the detection of epilepsy. In practical
clinical applications, it is essential to pre-process the EEG to
eliminate various artifacts and noise before using the model.
Our automatic detection framework of using RF algorithms
and a GSO optimizer can auxiliary clinical diagnosis to detect
epileptic episodes and make decisions more quickly, accurately,
and effectively.

In the future, we intend to further optimize our model to
achieve the classification and recognition of multiple-levels of
epileptic seizure. It should also be applicable to other medical
investigations, such as sport science application (Stone et al.,
2018), detection of disorders of consciousness (Risetti et al.,
2013), modulation of brain activity (Lapenta et al., 2013) brain
computer interface (Li et al., 2010; Wang et al., 2016), and
detection of EEG generated by different styles of music (Yan et al.,
2014)assisting neurologists in their neuroscience field.
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