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SUMMARY

With recent advances in sequencing technology, it is now feasible to measure DNA methylation at tens

of millions of sites across the entire genome. In most applications, biologists are interested in detecting

differentially methylated regions, composed of multiple sites with differing methylation levels among

populations. However, current computational approaches for detecting such regions do not provide accu-

rate statistical inference. A major challenge in reporting uncertainty is that a genome-wide scan is involved

in detecting these regions, which needs to be accounted for. A further challenge is that sample sizes are

limited due to the costs associated with the technology. We have developed a new approach that over-

comes these challenges and assesses uncertainty for differentially methylated regions in a rigorous manner.

Region-level statistics are obtained by fitting a generalized least squares regression model with a nested

autoregressive correlated error structure for the effect of interest on transformed methylation proportions.

We develop an inferential approach, based on a pooled null distribution, that can be implemented even

when as few as two samples per population are available. Here, we demonstrate the advantages of our

method using both experimental data and Monte Carlo simulation. We find that the new method improves

the specificity and sensitivity of lists of regions and accurately controls the false discovery rate.
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1. INTRODUCTION

DNA methylation is an important epigenetic modification that plays a role in a wide variety of biological

processes. Numerous studies have been carried out to locate CpG loci where DNA methylation may be

involved in gene regulation, differentiation, and cancer. With recent advances in sequencing technology

such as whole genome bisulfite sequencing (WGBS), it is now possible to measure DNA methylation at

single base resolution across all CpGs in the genome. Even though the most common application of the

technology is to detect differentially methylated regions (DMRs) between populations, most methods for

analysis of WGBS experiments focus on statistical differences for CpG loci one at a time (Akalin and

others, 2012; Dolzhenko and Smith, 2014; Lee and Morris, 2016; Park and others, 2014; Park and Wu,

2016). While useful, approaches for identification of differentially methylated loci (DML) have many

practical limitations in both implementation and interpretation. Here, we discuss these limitations as well

as outline the challenges of performing inference at the region level. Finally, we introduce a rigorous

statistical approach that overcomes these challenges to construct de novo DMRs with accurate false

discovery rare (FDR) control.

Methods to identify DMLs in WGBS experiments are greatly hindered by the high-dimensionality

and low sample size setting that is common in high-throughput genomics studies. The number of tests

performed is equal to the number of loci analyzed, which is very large in typical WGBS studies. In the

human genome, for example, there are close to 30 million CpG loci (Smith and Meissner, 2013). Further,

DML methods generally do not account for the well-known fact that measurements are spatially correlated

across the genome (Leek and others, 2010) and instead treat measurements from all loci as independent.

Correcting for multiple comparisons without taking into account these correlations can result in a loss of

power.

Additionally, methods for assessing the significance of DMLs typically require large sample sizes

due to reliance on large sample approximations (Dolzhenko and Smith, 2014; Hansen and others, 2012;

Hebestreit and others, 2013; Lee and Morris, 2016). Although WGBS is the current gold standard for

estimating whole genome methylation profiles (Marx, 2016), cost limitations are still a barrier to acquiring

more than a few individuals per biological condition (Ziller and others, 2015). This is reflected in the

study design of major consortia that aim to characterize the epigenome. For example, WGBS experiments

in murine embryos carried out as part of the ENCODE project are limited to two biological replicates per

tissue type and developmental time point combination (He and others, 2017). In addition, the number of

biological replicates measured with WGBS in the UCSD Human Reference Epigenome Mapping Project

(Schultz and others, 2015) is also limited to 2–3 per tissue type. As such, we aim to maximize power

while controlling the FDR even with sample sizes as small as two samples per condition.

Methods for identifying DMLs also need to properly account for the statistical properties of count

data that do not conform to standard Gaussian models. This is in contrast to methylation array analysis,

where Gaussian models performed well (Jaffe and others, 2012). One option is to assume that methylation

proportions, defined as the number of methylated reads divided by the number of total reads covering a

given CpG locus, follow a normal distribution (Hansen and others, 2012). However this assumption clearly

does not hold when the total reads covering the CpG, referred to as the coverage, is small, a common

occurrence in these data sets. The approach also ignores that variance of this proportion depends on the

coverage. To overcome these limitations, DML approaches have also modeled WGBS count data using

Binomial models (Saito and others, 2014). However, Binomial models on their own cannot account for

biological variability within sample groups. In order to account for biological variability in count data,

Beta-Binomial models (Park and others, 2014; Sun and others, 2014) are a natural extension. However,

they come at the cost of increased computational burden when testing millions of loci.

Beyond implementation challenges, DML approaches also suffer from limited interpretability. In gen-

eral, identifying DMRs is more biologically relevant than reporting DMLs. Apart from the so-called CpG
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Fig. 1. False discovery rate (FDR) control at the region level. (A) Illustration of why FDR at the loci level is not the same
as FDR at the region level. This schematic shows a plot of genomic location versus methylation difference estimates at
several neighboring loci. The individual CpGs (points) are shaded by whether they are a true or false positive. Regions
are denoted by lines. The loci FDR is FDRloci = (#False Positive Loci)/(Total # of Significant Loci), which is equal
to 0.25 in this example. The region FDR is FDRregion = (#False Positive Regions)/(Total # of Significant Regions),
which is equal to 0.50 in this example. (B) dmrseq provides accurate FDR control of regions. Specified versus
observed region-level FDR level is plotted for two different sample size settings from simulated data for dmrseq. Note
that region-level FDR cannot be specified for BSmooth or DSS, and results for metilene are shown in Figure S3 of
supplementary material available at Biostatistics online.

traffic lights (Khamis and others, 2017), most individual CpG loci likely do not have a large impact on

epigenetic function on their own, but rather through a biochemical modification that involves several loci.

Most notably, regional DNA methylation levels are correlated with the expression levels of nearby genes.

Specifically, methylation gain is associated with stable transcriptional silencing of nearby genes (Bird,

2002). In the context of differential methylation analysis, Aryee and others (2014) found that differentially

expressed genes were consistently more likely to be located near DMRs than DMLs.

While DML approaches may construct DMRs by chaining together neighboring significant loci, this

type of approach will not yield a proper assessment of the statistical significance of the constructed

regions, nor will the FDR be properly controlled (Robinson and others, 2014). This is because controlling

the FDR at the level of individual loci is not the same as controlling FDR of regions, as has been noted in

the context of peak calling in ChIP-seq experiments (Lun and Smyth, 2014; Siegmund and others, 2011).

FDR correction at the level of individual loci means that the proportion of expected false positive (FP)

loci is controlled, not the proportion of FP regions. Statistically, this is a critical point since FDR control

of DMR detection is not guaranteed under the DML setting. In fact, many discoveries at the loci level

may constitute only a single discovery. This means that a large number of correct rejections at the loci

level can inflate the denominator in the FDR calculation, which will artificially lower the FDR of loci as

compared to regions (Figure 1A). We were motivated to develop a procedure to control FDR at the region

level and provide an accurate measure of statistical significance for each region.

Many recent computational approaches have been developed with the goal of identifying DMRs,

but most do not provide formal inference for regions (Hansen and others, 2012; Saito and others, 2014;

Wu and others, 2015;Yu and Sun, 2016) and instead join together significant DMLs. This type of procedure

will suffer from the problems outlined above. Other approaches can perform inference at the region level,

but only for predefined regions of interest or fixed sliding windows (Hebestreit and others, 2013; Sun and

others, 2014; Mayo and others, 2015). Though useful in targeted settings such as reduced representation

bisulfite sequencing (RRBS), or when we have prior knowledge of the DMR size, they are not applicable

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy007#supplementary-data
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to identifying DMRs of arbitrary size from WGBS. Those methods that scan the genome for DMRs and

provide inference at the region level do not properly control FDR (Juhling and others, 2016; Wen and

others, 2016). This is evidenced, for example, by the FDRs reported in the simulation studies of Wen and

others (2016), which were as high as 0.85 and widely varied across scenarios. Juhling and others (2016)

also do not achieve accurate FDR control in simulation studies (see Section 4.1).

The challenge of performing inference at the region level is complicated by several factors in addition

to the challenges already discussed in the context of DML analysis. The first challenge is in defining

the region boundaries themselves. Without prior knowledge or predefined regions, we need to construct

data-driven regions. Calculating a test statistic for these data-driven regions of varying sizes with a known

null distribution is not straightforward. In addition, challenges are presented by the complex statistical

dependencies observed in measurements from nearby loci (Benjamini and others, 2016), as well as

different within group variability across loci (Hansen and others, 2012). Some methods ignore correlation

across loci (Wen and others, 2016) or biological variability from sample to sample (Saito and others,

2014; Wu and others, 2015). Not properly accounting for both of these sources of variability in DNA

methylation data; however, results in misleading conclusions or loss of power. For a full review of DML

and DMR methods, see Shafi and others (2018).

To overcome the limitations and challenges detailed above, we propose a two-stage approach that first

detects candidate regions and then explicitly evaluates statistical significance at the region level while

accounting for known sources of variability. Candidate DMRs are defined by segmenting the genome

into groups of CpGs that show consistent evidence of differential methylation. Because the methylation

levels of neighboring CpGs are highly correlated, we first smooth the signal to combat loss of power

due to low coverage as done by Hansen and others (2012). In the second stage, we compute a statistic

for each candidate DMR that takes into account variability between biological replicates and spatial

correlation among neighboring loci. Significance of each region is assessed via a permutation procedure

which uses a pooled null distribution that can be generated from as few as two biological replicates,

and FDR is controlled using the procedure of Benjamini and Hochberg (1995). Code to reproduce the

analyses presented in this article is provided in supplementary material available at Biostatistics online

and the open-source R package dmrseq that implements the approach is available on GitHub.

In Section 2, we provide a detailed description of the data sets used. We describe the methodological

details of the approach and detail the data processing and analysis procedure in Section 3. In Section 4,

we present our findings using both experimental data and simulations. We demonstrate that the proposed

approach assigns greater statistical significance to regions that have greater biological significance in

terms of potential functional roles in the regulation of gene expression. We also evaluate sensitivity and

specificity of the approach by analyzing null comparisons of samples from the same biological condition,

with and without adding simulated DMRs. We demonstrate that dmrseq has higher sensitivity than existing

approaches and accurately assesses statistical significance of regions through FDR estimation.A discussion

of the advantages and limitations of the method are given in Section 5.

2. DATA DESCRIPTION

dmrseq is generally applicable to WGBS data which contains the counts for both methylated and unmethy-

lated reads mapping to each CpG loci. This information can be obtained from raw sequencing reads using

mapping software such as Bismark (Krueger and Andrews, 2011), as described in the supplementary

material available at Biostatistics online. In this study, we include all CpG loci that are covered by at least

one read in every sample. Other methods for analysis of WGBS data recommend only including CpG sites

that have several reads in every sample, and while processed data of this form may be analyzed by our

approach, it is important to note that this may result in a loss of power to detect regions in low-coverage

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy007#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy007#supplementary-data
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areas of the genome (see Section 4.3 of supplementary material available at Biostatistics online). In gen-

eral, all CpG loci that are covered by at least one read in at least one sample per biological group can be

analyzed by dmrseq.

In this study, we use our approach to identify DMRs using publicly available WGBS data from two

different case studies, as described below. We also evaluate sensitivity and specificity of DMR methods by

applying them to simulated data. Summary of coverage and methylation values for all data sets used can

be found in Table S1 and Figure S2 of supplementary material available at Biostatistics online. For more

details on data processing, see Section 1 of the supplementary material available at Biostatistics online.

2.1. Simulated data

Two sets of simulated data were constructed: one representing a null comparison (with no DMRs) and

another containing simulated DMRs. To ensure that the simulated data sets closely match the characteristics

of the observed experimental data, they were generated based on WGBS data from a study of human

dendritic cells (Pacis and others, 2015). This study estimated methylation profiles of human dendritic

cells from six donors before and after infection with a pathogen. The null comparison was constructed by

randomly partitioning the six control samples (before infection) into two groups of three samples each,

denoted Simulation N3. The same is done for a subset of four of the samples to evaluate performance

when there are only two samples in each population, denoted Simulation N2.

Starting with the null comparisons, 3000 simulated DMRs were added to each data set in order to

evaluate specificity and sensitivity. These are denoted Simulations D2 and D3 for two and three samples

per population, respectively. Briefly, a DMR is constructed by sampling a cluster of neighboring CpGs and

simulating the number of methylated reads, conditional on observed coverage, for the samples from one

population from a binomial distribution. The binomial probabilities are equal to the observed methylation

proportions plus or minus an effect size that is randomly sampled from a distribution that represents

small to moderate effect sizes (ranging from approximately 0.1 to 0.5). In order to mimic the shape of

DMRs detected in the case studies (Figure 2A), this difference is allowed to vary smoothly over the

region according to a function similar to the tricube kernel (Cleveland, 1979) (see Section 2.4 of the

supplementary material available at Biostatistics online).

2.2. UCSD Human Reference Epigenome Mapping Project

Data from several human tissue samples from the UCSD Human Reference Epigenome Mapping Project

(Schultz and others, 2015) was used to identify DMRs related to tissue type. Specifically, four tissues

were selected for performing pairwise comparisons: (1) heart, left ventricle, (2) heart, right ventricle,

(3) sigmoid colon, and (4) small intestine.

2.3. Murine models of leukemia

In this study, marrow or thymus cells from two biological replicates of each of three different murine lines

were extracted and genome-wide methylation levels measured with WGBS. One condition consisted of a

wild-type control mouse. The other two had alterations in one or both of the DNMT3a or FLT3 loci, both

of which have previously demonstrated implications in the development of leukemia (Yang and others,

2016). The mouse model with a wild-type DNMT3a locus and a duplication of the FLT3 locus has been

shown to induce ALL. The mouse model with the same duplication of the FLT3 locus as well as a knock

out of DNMT3a has been shown to induce the more lethal and aggressive AML. The DNMT3a also

plays a role in promoting DNA methylation, so it is of interest to characterize the resulting differences in

methylated regions among the control and two different leukemia models.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy007#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy007#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy007#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy007#supplementary-data
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Fig. 2. dmrseq ranks regions by statistical significance. Example regions from the human tissue case studies are
displayed for three cases that illustrate the increased variability of regions that are highly ranked by area or mean
difference statistics of BSmooth and DSS but not dmrseq. For each case, the q-value is shown for dmrseq and
metiline, and the rank percentile by the area statistic and mean difference statistics are both shown for BSmooth and
DSS (see Section 2.8 of supplementary material available at Biostatistics online for details). (A) All methods assign a
consistently high rank. (B) dmrseq assigns a low rank, but the mean difference statistic of BSmooth and DSS assign a
high rank. (C) dmrseq assigns a low rank, but the area statistic of BSmooth and DSS assign a high rank. The condition
comparison is indicated by the labels to the right of each plot.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy007#supplementary-data
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3. ANALYSIS FRAMEWORK

A two-step procedure is carried out to (i) construct de novo candidate regions and (ii) quantify and evaluate

the statistical significance of the effect of the covariate of interest on methylation level. Here, we detail

each stage of the approach.

3.1. Construction of candidate regions

In Step 1, we detect candidate regions that contain multiple loci showing evidence of a difference in the

smoothed pooled methylation proportion between biological conditions. For simplicity of presentation, we

assume there are two biological conditions s ∈ {1, 2} with sample indices indices j ∈ Cs (see Section 2.7

of supplementary material available at Biostatistics online for the case of more than two conditions).

Let Mij be the number of methylated reads and Uij the number of unmethylated reads for locus i of

sample j from condition s. The coverage is denoted Nij, where Nij = Mij + Uij. The estimate of the mean

methylation proportion π̂is for loci i in condition s is taken to be the sum of methylated reads from all

samples in that condition divided by the sum of all reads (i.e. the coverage) from all samples in condition

s: π̂is =
∑

j∈Cs
Mij/

∑

j∈Cs
Nij. This leads to the following estimate of methylation proportion difference

β̂i between condition s and s′ at loci i: β̂i = π̂is − π̂is′ .

In order to give more weight to measurements with higher coverage, this estimate pools together samples

within the same condition. To account for biological variability between samples and further reduce

influence of observations with low coverage, smoothed individual loci estimates β̂Smooth
i are obtained using

a local-likelihood smoother (Loader, 1999) with smoothing weights wi equal to the median coverage at loci

i scaled by the average median absolute deviation (MAD) within the sample groups δ̄i: wi = medj(Nij)/δ̄i,

where δ̄i = 1

2

∑

s medj∈Cs

∣

∣

∣

Mij

Nij
−medk∈Cs(

Mik
Nik

)

∣

∣

∣

and medj(xj) is the median of xj over all j. This places more

emphasis on observations with high coverage and low variability within sample group (see Section 2.1 of

the supplementary material available at Biostatistics online for more details).

Candidate regions are defined by segmenting the genome into groups of loci with a smoothed pooled

proportion difference β̂Smooth
i in the same direction that is greater than some threshold in absolute value

(refer to Section 2.2 of supplementary material available at Biostatistics online for more details). Maximum

spacing between loci within a candidate region is controlled by a predetermined value, and loci at the

start and end of the region with low difference values are trimmed (refer to Section 2.3 of supplementary

material available at Biostatistics online for more details). The threshold can be thought of as the minimum

difference in methylation proportion that is considered biologically significant without regard to FP, as

significance of the candidate regions is assessed in the next step. We find that a value of 0.10 works well in

practice and choose this for the default value, but this choice can be informed by the specific application

at hand. For example, if interest lies primarily in detecting large magnitude differences, the threshold may

need to be raised. Additionally, the threshold may need to be lowered when large magnitude differences

are not expected.

3.2. Assessing significance of regions

In the second step, we assess the significance of candidate regions. This task is complicated by the fact that

the null statistics are calculated on an enriched set of regions. In general, the null distribution generated

by the type of selection procedure described in the previous section is not known. A natural approach

would be to carry out a permutation test to control family-wise error rate (FWER), which is done by Jaffe

and others (2012) to infer DMRs from array data. However, this is not feasible when we have only a few

samples per population as is most often the case with WGBS. Thus, we set out to construct a statistic

that can be comparable across the genome so that the signal can be compared among regions. Such an

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy007#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy007#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy007#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy007#supplementary-data
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exchangeable statistic allows us to generate an approximate null distribution by pooling genome-wide

candidate regions detected from permutations.

To generate an approximately exchangeable region statistic that measures the strength of methylation

difference, we need to account for sources of variation that are known to vary across the genome, including

biological variability from sample to sample (Hansen and others, 2012), as well as covariance of nearby

loci (Benjamini and others, 2016). Failing to do so may result in large test statistics just by chance for

regions with high variability, leading to increased FDR or decreased power. For example, if we use an

area-based statistic (Hansen and others, 2012) or a mean difference statistic averaged across loci, power

to detect DMRs is greatly reduced in simulation studies (Figure S5 and Section 4.1 of supplementary

material available at Biostatistics online).

Since we need to compute the statistic over potentially hundreds of thousands of candidate regions,

we also favor an approach that provides efficient and stable estimation procedures. For these reasons, we

make use of generalized least squares (GLS) regression model with a nested autoregressive correlated

error structure for the effect of interest on transformed methylation proportions, the advantages of which

are described in detail in the next subsections.

3.2.1. Estimation of region statistics with generalized least squares models To account for sampling

variability, we assume that methylation counts for region r are Binomially distributed with probability

pijr , where Mijr|Nijr , pijr ∼ Binomial(Nijr , pijr). To model biological variability, we allow the binomial

proportion for samples in condition s ∈ {1, 2} to vary according to a beta distribution with shape parameters

αirs and βirs, where pijr ∼ Beta(αirs, βirs). Let πirs = αirs/(αirs + βirs) denote the mean of this Beta

distribution. We are interested in estimating and assessing the significance of the difference in mean

methylation levels across a region r for two biological conditions.

Our approach models transformed methylation proportions using GLS to obtain an approximation of

the effect of interest. While directly modeling counts with either a Beta-Binomial Generalized Linear

Model (GLM) or a Generalized Linear Mixed Model (GLMM) would allow us to accommodate complex

covariance structures across samples and loci, it also results in complex likelihoods that require iterative

maximization for each candidate region. Further, these procedures are subject to instability of estimation

for methylation levels near the boundaries (zero and one) or non-identifiability in the case of separation as

they occur in GLM (Gelman and others, 2008) and GLMM (Abrahantes and Aerts, 2012) estimation. GLS

models, in contrast, are efficient and stable to estimate due to the availability of approximate closed-form

parameter estimates. Though GLS does not model counts directly, we incorporate information lost after

transformation of methylation proportions through specification of a variance estimate that depends on

coverage.

We choose the arcsine link function Zijr = arcsin(2Mijr/Nijr − 1) to obtain transformed methylation

proportions, as proposed by Park and Wu (2016) for DML analysis, for its desirable ability to stabilize the

dependence of the variance on the mean methylation level. While the variance of methylation proportions

Mijr/Nijr depends on the mean parameter πijr , the variance of Zijr only depends on coverage Nijr and the

dispersion of the Beta-Binomial distribution (refer to Section 2.6 of supplementary material available at

Biostatistics online for more details). This helps us to form a statistic involving the transformed proportions

that is exchangeable across regions that have different mean methylation values.

We assume a linear effect on the arcsine link-transformed methylation proportion parameters:

arcsin(2πijr − 1) =
Lr

∑

l=1

β0lr1[i=l] + β1rXj = Xβ
r
. (3.1)

Here β0lr are loci-specific intercept terms that account for variation on overall methylation levels across

the region, where l = 1, ..., Lr and Lr denotes the number of loci in region r. The coefficient for the effect

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy007#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy007#supplementary-data
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of interest (e.g. biological group) is β1r . We denote the design matrix as X and the (Lr + 1)-length vector

of all coefficients (β01r , β02r , ..., β0Lrr , β1r) as βr . This leads to the following model for the transformed

response Zr = (Z11r , ..., ZLrJr) in region r

Zr = Xβ
r
+ ǫ

r
, (3.2)

where we assume that E[ǫr] = 0 and Var[ǫr] = Vr, which can be fit by GLS given an estimate of

the covariance matrix Vr. Since GLS allows arbitrary covariance structures, we use an autoregressive

correlation structure to account for the correlation of methylation levels among nearby loci. To account

for the dependence of the variance on coverage as mentioned above, we use variance weights. More details

on the specific structure and estimation of Vr are given in the next section.

With the above model, we assess the strength of the effect of the covariate of interest on methylation

level within region r using the t-statistic tr from the Wald test of the null hypothesis that β1r = 0. Parameter

estimates and their standard errors are obtained with the gls function in the nlme package (Pinheiro

and others, 2017). Significance is evaluated by permutation using a pooled null distribution as described

in detail in Section 3.2.3.

3.2.2. Covariance of methylation levels within regions In the estimation of the covariance matrix Vr,

we take into account biological variability through variance weighting, and correlation of nearby loci

through an autocorrelation structure. The variance weighting is done to account for the dependence of the

variance of transformed values Zijr on coverage. This variance depends non-linearly on Nijr (Section 2.6

of supplementary material available at Biostatistics online), but in order to enable efficient closed-form

estimation with GLS, we further approximate it by Var(Zijr) ≈ σ 2
r /Nijr . In addition, in order to con-

struct a valid permutation test where the variance conditional on the effect of interest is invariant to

permutation, we assume this variance is identical for all samples at a given loci by approximating Nijr by

medj(Nijr) = Ni.r .

To model correlation of nearby loci, we use the flexible continuous autoregressive correlation structure

of order 1, abbreviated CAR(1). Under CAR(1), the correlation parameter depends on the length of

the interval between the two observations considered through the equation ρr(τ ) = e−φr |τ |, where τ

is the length of the interval between two observations and φr is the positive positive continuous-time

autoregressive coefficient (following the notation of Jones and Boadi-Boateng 1991) for region r. Thus,

for subject j, the predicted methylation value for loci i at location tijr in region r given the methylation

value at loci i−1 is Ẑijr = Ẑi−1,jre
−φr |tijr−ti−1,jr |. If the error variance of the CAR(1) process is σ 2

ir = σ 2
r /Ni.r ,

and we let the correlation structure be nested within subject (i.e. such that observations from two subjects

are independent), it follows that the covariance matrix for a given sample can be written

Cov(Zr) = Vjr = σ 2
r Rjr , where the mnth element of Rjr is

e−φr |tmjr−tnjr |
√

Nm.rNn.r

(3.3)

and for two subjects j and j′, Cov(Zijr, Zij′r) = 0.

The estimation of φr is computationally efficient to carry out on small to moderately sized regions.

However, for larger regions with more than 40 loci we use the slightly simpler AR(1) correlation structure

since it is many times faster to compute. This discrete formulation assumes that observations are equally

spaced, and that observations that are separated by lag 1 are correlated with region-specific correlation

parameter ρr . In addition, observations that are separated by m positions are correlated by ρm
r . Under this

discrete formulation, the mnth element of Rjr from 3.3 becomes ρ |m−n|
r /

√
Nm.rNn.r .

The CAR(1) structure simplifies to the AR(1) process under certain conditions when observations

are equally spaced (Jones and Boadi-Boateng, 1991). Thus the discrete AR(1) can be viewed as an

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy007#supplementary-data
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approximation of the CAR(1) when correlations are positive and the two provide increasingly more

similar estimates as observations approach constant spacing. Indeed, when comparing model fits under

both correlation structures in simulated data, the t-statistics for the coefficient of interest under CAR(1)

generally converge to the estimates under AR(1) as the number of loci increases (Figure S1 and Section 2.5

of supplementary material available at Biostatistics online).

3.2.3. Permutation to generate a null set of regions The values of the covariate of interest (e.g. biological

group) are permuted and the previous steps repeated in order to generate a set of statistics under the null

hypothesis. Since the statistics account for known sources of variation that would otherwise prevent

to comparison of regions across the genome, we can pool them together to form an approximate null

distribution with as few as two samples per population. The empirical p-value is calculated by comparing

the observed test statistics to the entire null set of statistics from all permutations. Control of FDR is

carried out by adjusting the p-values using the procedure of Benjamini and Hochberg (1995).

4. RESULTS

For each of the data sets described in Section 2, we applied dmrseq, as well as three widely used meth-

ods for DMR detection: BSmooth (Hansen and others, 2012), DSS (Park and Wu, 2016), and metilene

(Juhling and others, 2016). Each approach was evaluated based on the criteria detailed in the next sub-

sections. For specific details on software implementation, refer to the supplementary material available at

Biostatistics online (Section 3).

4.1. Simulation using dendritic cell data

Specificity was evaluated by identifying DMRs in null comparisons of two (N2) and three (N3) samples

per group. Sensitivity was evaluated by identifying simulated DMRs in comparisons of two (D2) and three

(D3) samples per group. Performance of each method is assessed by its ability to identify as many of the

simulated DMRs as possible, while identifying as few DMRs as possible in the null comparison.

dmrseq did not identify any DMRs at the 0.05 level for the null comparisons N2 or N3 (Table 1). This

remains true even when increasing the FDR threshold to 0.5 in both settings. In contrast, metilene identified

a small number of DMRs, DSS identified many hundreds, and BSmooth tens of thousands using default

settings (specific parameter specifications provided in Section 3 of supplementary material available at

Biostatistics online). When applied to the data sets with simulated DMRs (D2 and D3), dmrseq is able to

accurately control the FDR (Figure 1B), whereas metilene cannot (Figure S3 of supplementary material

available at Biostatistics online). Note that analogous results cannot be obtained from DSS or BSmooth,

as there is no way to specify FDR level.

BSmooth and DSS identify similar numbers of FP regions in D2 and D3 compared to the null setting

of N2 and N3, and far more than dmrseq and metilene (Table 1). Although both BSmooth and DSS have

favorable numbers of TPs, it is clear that this comes at the expense of lack of control of FDR (Figure 3).

Similarly, metilene has favorable numbers of FPs, but this comes at the expense of low power. Further,

dmrseq achieves higher power than the alternative methods at similar observed FDR levels, regardless of

the effect size, CpG density, or coverage levels of the true regions (Figures S12–S14 of supplementary

material available at Biostatistics online).

Although FDR thresholds are not available for BSmooth or DSS, we also investigated the sensitivity

and specificity of other settings beyond defaults of the thresholds at the single-loci level (the loci t-statistic

cutoff for BSmooth, and the loci p-value for DSS). Making these thresholds more conservative generally

reduced the numbers of FP, but once again dmrseq was consistently able to identify more true positives at

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy007#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy007#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy007#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy007#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy007#supplementary-data
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Table 1. Null comparison and simulated DMR results for two sample size settings. Null comparison results

for sample size 2 (N2) and sample size 3 (N3) are shown in the top two rows; simulated DMR results for

sample size 2 (D2) and sample size 3 (D3) are shown in the bottom two rows. Numbers of DMRs identified

by dmrseq and metilene are shown at the 0.05 FDR level. Default settings were used for BSmooth and

DSS. True positives (TPs) is the number of simulated DMRs that are overlapped by at least one identified

DMR. False positives (FPs) are DMRs that do not overlap any of the simulated DMRs. Note that all DMRs

detected in N2 and N3 are FPs, since there are no true DMRs in the null setting

Comparison Method DMRs detected TPs (unique) FPs

Null

N2

dmrseq 0 — 0

BSmooth 76 563 — 76 563

DSS 661 — 661

metilene 31 — 31

N3

dmrseq 0 — 0

BSmooth 76 319 — 76 319

DSS 770 — 770

metilene 27 — 27

Simulation

D2

dmrseq 914 816 42

BSmooth 73 252 2466 70 688

DSS 2086 762 655

metilene 329 210 30

D3

dmrseq 1620 1455 78

BSmooth 72 764 2646 69 999

DSS 2858 1257 763

metilene 652 441 27

similar numbers of FP (see Section 4 and Figure S4 of supplementary material available at Biostatistics

online).

We also stress that although lower FP rates could be achieved in this simulation study for BSmooth

and DSS, individual loci thresholds do not correspond directly to specific FDRs at the region level. As a

result, in practice, one must choose a threshold either by default settings, or by trial and error.

4.2. Human tissue and murine leukemia experimental data

To assess functional relevance of the results, the human tissue and murine leukemia studies were evaluated

empirically based on the observed association of DMRs with differential expression by RNA-seq. Differ-

entially expressed (DE) genes were identified using DESeq2 version 1.14.1 (Love and others, 2014). The

association between expression level and methylation level was assessed for DMRs and DE genes using

three measures of overlap: the gene body, promoter region, and island shore of a DE gene (see Section 1.5

of supplementary material available at Biostatistics online for more details). Methylation levels in each

of these region types has been shown to be associated with the expression level of nearby genes (Irizarry

and others, 2009; Lou and others, 2014). Specifically, a DMR–DE gene pair is expected to have higher

methylation values in the sample group with lower expression. The odds that the DMR and DE statistics

are in opposing directions are calculated at various FDR cutoffs for dmrseq and metilene to assess whether

top-ranked DMRs are more likely to be biologically relevant. The same is done for various cutoffs for the

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy007#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy007#supplementary-data


378 K. KORTHAUER AND OTHERS

A B

Fig. 3. dmrseq is more powerful than other methods. FDR and power results for (A) Simulation D2 and (B) Simulation
D3, with method denoted by shading. dmrseq and metilene results are displayed for several different FDR cutoffs.
Since region level FDR control is not possible for BSmooth and DSS, results using default settings are displayed.
Power is calculated as the proportion of simulated DMRs overlapped by at least one identified DMR. FDR is calculated
as the proportion of DMRs identified that do not overlap with any of the simulated DMRs.

numbers of top-ranking regions by effect size. Additionally, for each cutoff we calculate the number of

CpGs covered and the proportion of detected DMRs that overlap the island shore of a DE gene.

To qualitatively assess the ability of the dmrseq region-level summary statistic to rank DMRs as

compared to other methods, we display example regions from the case studies. These examples illustrate

the increased variability of regions that are highly ranked by naive statistics but not dmrseq (Figures 2 and

S15 for the human and murine case studies, respectively). We include DMRs with concordant rankings

that exhibit clear differences between two sample groups (Figures 2A and S15A). In contrast, the regions

with discordant rankings between dmrseq q-value and mean difference (Figures 2B and S15B) and area

statistics (Figure 2C and S15C) exhibit considerable variability between samples or loci (See Section 2.8

of supplementary material available at Biostatistics online for more details).

4.2.1. Tissue specificity in human samples For DSS, metiline, and dmrseq, the number of DMRs found

(Table S2 of supplementary material available at Biostatistics online) parallels the numbers of DE genes

found by DESeq2 (Table S4 of supplementary material available at Biostatistics online), but DSS generally

found far more DMRs and metline far fewer. For BSmooth, however, the number of DMRs identified was

similar for all comparisons. This happens because the cutoff for the individual loci statistics is set by default

at a quantile of the observed statistics, resulting in a similar number of loci being deemed significant.

The tissue-specific DMRs found by dmrseq are enriched for inverse associations with DE genes, and

this enrichment is stronger for DMRs with lower FDRs (Figure 4, Figures S10–S11 of supplementary

material available at Biostatistics online). Additionally, enrichment of dmrseq DMRs is generally

stronger than that of alternative methods. While metiline also provides an FDR estimate, there is no

consistent association between the FDR ranking and strength of association with expression. DMRs

identified by BSmooth and DSS cannot be ranked by FDR and the default settings may not be ideal,

so we also rank DMRs by effect size (raw methylation difference) with optimized parameter settings

(see Section 3.2 of supplementary material available at Biostatistics online). The BSmooth and DSS DMRs

with highest effect sizes exhibit comparable enrichment to dmrseq, with metilene considerably lower

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy007#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy007#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy007#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy007#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy007#supplementary-data
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A

B

Fig. 4. dmrseq achieves stronger inverse association of methylation and differential expression at lower FDR thresh-
olds. Odds of inverse association between methylation difference of (A) tissue-specific DMRs and (B) murine leukemia
DMRs with differential expression of nearby DE genes (log2 scale) is displayed on the y-axis. For dmrseq and meti-
lene, the x-axis represents the FDR threshold (square-root scaled) for which the odds calculation (cumulative) is
performed. Since FDR cannot be specified for BSmooth or DSS, the odds are calculated over all DMRs identified
and displayed as a horizontal line. Note that the comparison between left and right ventricles is not shown, since no
DE genes were identified. A DMR is considered to overlap a gene if it includes any part of the 2 kb region upstream
of the TSS.
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(Figures S6 and S7 of supplementary material available at Biostatistics online). However, arbitrary cutoffs

of effect size do not directly correspond to significance level.

4.2.2. DNMT3a loss in murine leukemia models In the murine leukemia models, dmrseq finds the

most DMRs in the comparison of AML and the control (Table S5 of supplementary material available

at Biostatistics online), which is also the comparison for which the most DE genes were identified (see

Table S7 of supplementary material available at Biostatistics online). In contrast, DSS and metline both

find the most DMRs in the comparison with the fewest DE genes identified, and BSmooth identified

similar numbers of DMRs in each comparison, each with far more DMRs than the other methods.

The murine leukemia DMRs found by dmrseq are enriched for inverse associations with DE genes,

and this enrichment is stronger for DMRs with lower FDRs (Figure 4, Figures S10–S11 of supplementary

material available at Biostatistics online). Additionally, enrichment is generally stronger than that of

BSmooth, DSS, and metline. While metiline also provides an FDR estimate, there is no consistent associ-

ation between the FDR ranking and strength of association with expression. Similar to the tissue specificity

analysis, BSmooth and DSS DMRs with highest effect sizes exhibit comparable enrichment to dmrseq,

with metilene considerably lower, and the enrichment when including all DMRs often drops lower for

BSmooth, DSS, or metline than for dmrseq (Figures S8 and S9 of supplementary material available at

Biostatistics online).

5. DISCUSSION

We have described dmrseq, a method useful for discovering and prioritizing DMRs from WGBS data. The

approach is based on rigorous statistical reasoning and is the first method that permits accurate inference

on DMRs that are found by scanning the genome. By developing a transformation that results in summary

statistics from candidate regions being exchangeable, we are able to borrow strength across the genome to

build a null distribution that permits inference with a sample size as small as two. We have demonstrated

how the method clearly outperforms currently used tools with several experimental data examples and

Monte Carlo simulation. The method is implemented as open source software in the form of an R package.

6. SOFTWARE

The R package dmrseq is available on GitHub at https://github.com/kdkorthauer/dmrseq.

SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org. The simulated bench-

mark data is freely available for download via FigShare (https://figshare.com/projects/Whole_Genome_

Bisulfite_Sequencing_WGBS_Benchmark_Data/27532). Annotated scripts for the simulation and

case study analyses are available in the GitHub repository https://github.com/kdkorthauer/

dmrseqPaper.

ACKNOWLEDGMENTS

The authors thank two anonymous reviewers for providing comments and suggestions that helped us to

improve quality and clarity of the manuscript. Conflict of Interest: None declared.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy007#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy007#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy007#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy007#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy007#supplementary-data
https://github.com/kdkorthauer/dmrseq
http://biostatistics.oxfordjournals.org
https://figshare.com/projects/Whole_Genome_Bisulfite_Sequencing_WGBS_Benchmark_Data/27532
https://figshare.com/projects/Whole_Genome_Bisulfite_Sequencing_WGBS_Benchmark_Data/27532
https://github.com/kdkorthauer/dmrseqPaper
https://github.com/kdkorthauer/dmrseqPaper


Detection and accurate FDR control of differentially methylated regions 381

FUNDING

National Institutes of Health (NIH) (R01 grants R01HG005220, R01GM083084, and U41HG007000),

in part.

REFERENCES

ABRAHANTES, J. C. AND AERTS, M. (2012). A solution to separation for clustered binary data. Statistical Modelling

12, 3–27.

AKALIN, A., KORMAKSSON, M., LI, S., GARRETT-BAKELMAN, F. E., FIGUEROA, M. E., MELNICK, A. AND MASON,

C. E. (2012). methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles.

Genome Biology 13, R87.

ARYEE, M. J., JAFFE, A. E., CORRADA-BRAVO, H., LADD-ACOSTA, C., FEINBERG, A. P., HANSEN, K. D. AND IRIZARRY,

R. A. (2014). Minfi: a flexible and comprehensive Bioconductor package for the analysis of infinium DNA

methylation microarrays. Bioinformatics 30, 1363–1369.

BENJAMINI, Y. AND HOCHBERG, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to

multiple testing. Journal of the Royal Statistical Society Series B 57, 289–300.

BENJAMINI, Y., TAYLOR, J. AND IRIZARRY, R. A. (2016). Selection corrected statistical inference for region detection

with high-throughput assays. bioRxiv, doi:10.1101/082321.

BIRD, A. (2002). DNA methylation patterns and epigenetic memory. Genes & Development 16, 6–21.

CLEVELAND, W. S. (1979). Robust locally weighted regression and smoothing scatterplots. Journal of the American

Statistical Association 74, 829–836.

DOLZHENKO, E. AND SMITH, A. D. (2014). Using beta-binomial regression for high-precision differential methylation

analysis in multifactor whole-genome bisulfite sequencing experiments. BMC Bioinformatics 15, 215.

GELMAN, A., JAKULIN, A., PITTAU, M. G. AND SU, Y.-S. (2008). A weakly informative default prior distribution for

logistic and other regression models. The Annals of Applied Statistics 2, 1360–1383.

HANSEN, K. D., LANGMEAD, B. AND IRIZARRY, R. A. (2012). BSmooth: from whole genome bisulfite sequencing

reads to differentially methylated regions. Genome Biology 13, R83.

HE,Y., HARIHARAN, M., GORKIN, D. U., DICKEL, D. E., LUO, C., CASTANON, R. G., NERY, J. R., LEE, A.Y., WILLIAMS,

B. A., TROUT, D. and others. (2017). Spatiotemporal DNA methylome dynamics of the developing mammalian

fetus. bioRxiv, doi:10.1101/166744.

HEBESTREIT, K., DUGAS, M. AND KLEIN, H. U. (2013). Detection of significantly differentially methylated regions

in targeted bisulfite sequencing data. Bioinformatics 29, 1647–1653.

IRIZARRY, R.A., LADD-ACOSTA, C., WEN, B., WU, Z., MONTANO, C., ONYANGO, P., CUI, H., GABO, K., RONGIONE, M.,

WEBSTER, M. and others. (2009). The human colon cancer methylome shows similar hypo- and hypermethylation

at conserved tissue-specific CpG island shores. Nature Genetics 41, 178–186.

JAFFE, A. E., MURAKAMI, P., LEE, H., LEEK, J. T., FALLIN, M. D., FEINBERG, A. P. AND IRIZARRY, R. A. (2012). Bump

hunting to identify differentially methylated regions in epigenetic epidemiology studies. International Journal of

Epidemiology 41, 200–209.

JONES, R. H. AND BOADI-BOATENG, F. (1991). Unequally Spaced Longitudinal Data with AR(1) Serial Correlation.

Biometrics 47, 161–175.

JUHLING, F., KRETZMER, H., BERNHART, S. H., OTTO, C., STADLER, P. F. AND HOFFMANN, S. (2016). metilene: fast

and sensitive calling of differentially methylated regions from bisulfite sequencing data. Genome Research 26,

256–262.

KHAMIS, A. M., LIOZNOVA, A. V., ARTEMOV, A. V., RAMENSKY, V., BAJIC, V. B. AND MEDVEDEVA, Y. A. (2017).

CpG traffic lights are markers of regulatory regions in humans. bioRxiv, doi:10.1101/095968.



382 K. KORTHAUER AND OTHERS

KRUEGER, F. AND ANDREWS, S. R. (2011). Bismark: a flexible aligner and methylation caller for Bisulfite-Seq

applications. Bioinformatics 27, 1571–1572.

LEE, W. AND MORRIS, J. S. (2016). Identification of differentially methylated loci using wavelet-based functional

mixed models. Bioinformatics 32, 664–672.

LEEK, J. T., SCHARPF, R. B., BRAVO, H. C., SIMCHA, D., LANGMEAD, B., JOHNSON, W. E., GEMAN, D., BAGGERLY,

K. AND IRIZARRY, R. A. (2010). Tackling the widespread and critical impact of batch effects in high-throughput

data. Nature Reviews Genetics 11, 733–739.

LOADER, C. (1999). Local Regression and Likelihood. New York: Springer.

LOU, S., LEE, H.-M., QIN, H., LI, J.-W., GAO, Z., LIU, X., CHAN, L. L., KL LAM, V., SO, W.-Y., WANG, Y. and others.

(2014). Whole-genome bisulfite sequencing of multiple individuals reveals complementary roles of promoter and

gene body methylation in transcriptional regulation. Genome Biology 15, 408.

LOVE, M. I., HUBER, W. AND ANDERS, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq

data with DESeq2. Genome Biology 15, 550.

LUN, A. T. AND SMYTH, G. K. (2014). De novo detection of differentially bound regions for ChIP-seq data using

peaks and windows: controlling error rates correctly. Nucleic Acids Research 42, e95.

MARX, V. (2016). Genetics: profiling DNA methylation and beyond. Nature Methods 13, 119–122.

MAYO, T. R., SCHWEIKERT, G. AND SANGUINETTI, G. (2015). M3D: a kernel-based test for spatially correlated changes

in methylation profiles. Bioinformatics 31, 809–816.

PACIS, A., TAILLEUX, L., MORIN, A. M., LAMBOURNE, J., MACISAAC, J. L., YOTOVA, V., DUMAINE, A., DANCKAERT,

A., LUCA, F., GRENIER, J. C. and others. (2015). Bacterial infection remodels the DNA methylation landscape of

human dendritic cells. Genome Research 25, 1801–1811.

PARK, Y., FIGUEROA, M. E., ROZEK, L. S. AND SARTOR, M. A. (2014). MethylSig: a whole genome DNA methylation

analysis pipeline. Bioinformatics 30, 2414–2422.

PARK, Y. AND WU, H. (2016). Differential methylation analysis for BS-seq data under general experimental design.

Bioinformatics 32, 1446–1453.

PINHEIRO, J., BATES, D., DEBROY, S., SARKAR, D. AND R CORE TEAM. (2017). nlme: linear and nonlinear mixed

effects models. R package version 3.1-131. https://CRAN.R-project.org/package=nlme.

ROBINSON, M. D., KAHRAMAN, A., LAW, C. W., LINDSAY, H., NOWICKA, M., WEBER, L. M. AND ZHOU, X.

(2014). Statistical methods for detecting differentially methylated loci and regions. Frontiers in Genetics

5, 324.

SAITO, Y., TSUJI, J. AND MITUYAMA, T. (2014). Bisulfighter: accurate detection of methylated cytosines and

differentially methylated regions. Nucleic Acids Research 42, e45.

SCHULTZ, M. D., HE,Y., WHITAKER, J. W., HARIHARAN, M., MUKAMEL, E.A., LEUNG, D., RAJAGOPAL, N., NERY, J. R.,

URICH, M. A., CHEN, H. and others. (2015). Human body epigenome maps reveal noncanonical DNA methylation

variation. Nature 523, 212–216.

SHAFI, A., MITREA, C., NGUYEN, T. AND DRAGHICI, S. (2018). A survey of the approaches for identifying differential

methylation using bisulfite sequencing data. Briefings in Bioinformatics 19, 737–753.

SIEGMUND, D. O., ZHANG, N. R. AND YAKIR, B. (2011). Miscellanea false discovery rate for scanning statistics.

Biometrika 98, 979–985.

SMITH, Z. D. AND MEISSNER, A. (2013). DNA methylation: roles in mammalian development. Nature Reviews

Genetics 14, 204–220.

SUN, D., XI, Y., RODRIGUEZ, B., PARK, H. J., TONG, P., MEONG, M., GOODELL, M. A. AND LI, W. (2014). MOABS:

model based analysis of bisulfite sequencing data. Genome Biology 15, R38.

https://CRAN.R-project.org/package=nlme


Detection and accurate FDR control of differentially methylated regions 383

WEN,Y., CHEN, F., ZHANG, Q., ZHUANG,Y. AND LI, Z. (2016). Detection of differentially methylated regions in whole

genome bisulfite sequencing data using local Getis-Ord statistics. Bioinformatics 32, 3396–3404.

WU, H., XU, T., FENG, H., CHEN, L., LI, B., YAO, B., QIN, Z., JIN, P. AND CONNEELY, K. N. (2015). Detection of

differentially methylated regions from whole-genome bisulfite sequencing data without replicates. Nucleic Acids

Research 43, e141.

YANG, L., RODRIGUEZ, B., MAYLE, A., PARK, H. J., LIN, X., LUO, M., JEONG, M., CURRY, C. V., KIM, S. B., RUAU, D.

and others. (2016). DNMT3A loss drives enhancer hypomethylation in FLT3-ITD-associated leukemias. Cancer

Cell 29, 922–934.

YU, X. AND SUN, S. (2016). HMM-DM: identifying differentially methylated regions using a hidden Markov model.

Statistical Applications in Genetics and Molecular Biology 15, 69–81.

ZILLER, M. J., HANSEN, K. D., MEISSNER, A. AND ARYEE, M. J. (2015). Coverage recommendations for methylation

analysis by whole-genome bisulfite sequencing. Nature Methods 12, 230–232.

[Received August 31, 2017; revised December 19, 2017; accepted for publication January 21, 2018]


