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Detection and Analysis of Change
in Remotely Sensed Imagery with

Application to Wide Area Surveillance
Mark J. Carlotto, Senior Member, IEEE

Abstract— A new approach to wide area surveillance is de-
scribed that is based on the detection and analysis of changes
across two or more images over time. Methods for modeling and
detecting general patterns of change associated with construction
and other kinds of activities that can be observed in remotely
sensed imagery are presented. They include a new nonlinear
prediction technique for measuring changes between images and
temporal segmentation and filtering techniques for analyzing
patterns of change over time. These methods are applied to the
problem of detecting facility construction using Landsat Thematic
Mapper imagery. Full scene results show the methods to be
capable of detecting specific patterns of change with very few
false alarms. Under all conditions explored, as the number of
images used increases, the number of false alarms decreases
dramatically without affecting the detection performance. It is
argued that the processing gain that results in using more than
two images justifies the increased computational complexity and
storage requirements of our approach over single image object
detection and conventional change detection techniques.

I. INTRODUCTION

A
N IMPORTANT area in wide-area surveillance (WAS)

is the detection of new activities and events (e.g., facil-

ity construction/demolition, deforestation, flooding, etc.) over

very large geographic areas. Since they are new (i.e., not

previously captured in a database), site models do not yet

exist, and model-supported approaches [1] cannot be used.

Automatic target recognition (ATR), which is focused primar-

ily on vehicle detection, is not well-suited to the problem of

detecting new activities and events in imagery because it is

usually not possible to specify a specific geometrical model

of the activity in advance. Historically, alternative approaches

(e.g., single image manmade object detection using fractals

[2]–[3], simple change detection techniques [4]–[9], and even

contextual approaches that use terrain data to optimize detec-

tion algorithms for different parts of the scene and to eliminate

false alarms in unlikely areas) have been unable to achieve the

required detection rates while maintaining an acceptable level

of false alarms.

In this paper, we describe a new method for detecting

patterns of change associated with construction and other

kinds of activities that can be observed in remotely sensed

imagery. Our approach is based on modeling the changes that

are expected to be observed in imagery corresponding to the
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different phases of the activity over time. For example, during

different phases of facility construction, the reflectance of the

surface undergoes distinct changes. In visible wavelengths,

as vegetation is cleared, the surface reflectance increases

significantly. Then, as the surface cover is scraped away and

excavation begins, the reflectance changes again as bare soil

and rock are exposed. The spectral reflectance further increases

as concrete footings are poured and the structure begins to

take shape. Unlike vegetation, which follows relatively well-

defined spectral trajectories over time [10]–[11], man-made

changes are more difficult to model in precise terms. In

developing a model for facility construction, it must allow

for a certain amount of uncertainty in time (since construction

schedules may vary) and in space (actual size and shape of

facility are generally unknown ahead of time). In our approach,

patterns of change are expressed in terms of the relative values

of image properties (e.g., brightness, temperature, biomass

estimates, etc.) over time. By using relative values, we can

describe changes in terms of general trends (e.g., the increase

in surface reflectance associated with a new construction

activity).

Section II reviews related work in change detection and

multitemporal processing techniques. Section III describes our

approach. Experimental results are presented in Section IV.

Conclusions and areas for future work are discussed in Section

V.

II. RELATED WORK

Our approach is related to previous work in change detection

and multitemporal image analysis. An early discussion of

change detection can be found in Rosenfeld [4]. Early change

detection techniques were based on statistical measures of sim-

ilarity between images such as cross correlation and entropy

[5]. These techniques required the images to be coregistered.

This then motivated the development of symbolic techniques

that detected changes by segmenting and matching regions

in terms of their size, shape, spectral properties, and spatial

relations [6]. Other work that led to our approach include linear

prediction [7], adaptive subtraction [8], and the perpendicular

change index [9]. Like the early change-detection techniques,

the techniques described in this paper also require the input

images to be registered to each other.

Multitemporal techniques involve the analysis of two or

more images. Some methods simply treat multitemporal data

1057–7149/97$10.00  1997 IEEE
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(a)

(b) (c)

Fig. 1. Events captured in imagery over time exhibit different patterns of
change. (a) Two events captured in three images. (b) Pattern of change (upper
left). (c) Pattern of change (lower right).

as features for classification. For example, Byrne et al. [12]

perform a principal components analysis of Landsat data

and show that gross differences in overall radiation and

atmospheric changes appear in the major component images

and that changes in land cover appear in the minor compo-

nent images. Others explicitly model changes in physically

significant features such as the tasseled cap greenness [13]

over time. The Delta classifier [10] was an early method

developed for classifying vegetation based on general growth

state models. More recent methods based on parameterized

temporal profiles [11] have been successfully applied over

large regions for crop classification and for estimating crop

status and key phenological events related to crop yield.

III. METHODOLOGY

A. Overview

Change detection techniques determine areas in a scene that

have changed in some way but cannot in general differentiate

between different kinds of changes. Consider an example

(Fig. 1) where three images acquired at times and

have captured two events (Fig. 1(a)). The event in the upper

left corner appears in the second image and increases in

brightness from the first to the third image (Fig. 1(b)). The

event in the lower right corner is a transient change. It also

appears in the second image as an increase in brightness but

disappears in the third image (Fig. 1(c)). In addition, notice

that the background in the third image is somewhat brighter

than the other two images. The two events are the same size

but have distinctly different patterns of change over time.

A pattern of change can be thought of as the variation in

the value of an observable such as image brightness as a

function of time, e.g., Our approach to

WAS is based on detecting or enhancing patterns of change

in imagery that are observed when specific kinds of events or

activities occur. Where change detection detects any significant

Fig. 2. Overview of change detection and analysis methodology.

change between pairs of images, our method extracts only

those changes that match a given pattern over time.

Fig. 2 gives an overview of our methodology. Due to

changes in solar angle, sensor gain, atmospheric scattering,

path radiance, environmental conditions, and other factors,

patterns of change are not derived directly from the sensed

brightness values. Instead, we compute a measure of change

between images that is less sensitive to the above factors,

and from these changes, we infer the pattern of change

indirectly. Section III-B formulates the measurement of change

as a prediction problem. Both linear and nonlinear prediction

techniques are considered. The set of change images com-

puted between all pairs of input images is then processed to

identify or enhance particular patterns of change over time.

Two temporal analysis techniques are discussed. In the first

technique (Section III-C), each of the difference images is

thresholded to produce a set of binary images. From the

set of binary images, a label image is produced. Each label

corresponds to a unique pattern of change. We show that

the performance of this technique depends critically on the

threshold values used. As a result, it is more useful as a data

analysis technique—to provide insight into the kinds of change

that have occurred—rather than as a detection technique. In

the second technique, instead of thresholding the difference

images, they are combined by a filter that emphasizes a

particular pattern of change. This pattern may have been

identified using the first technique or have been specified by an

image analyst. The output of the filter is thresholded to produce

a binary image. The resultant binary image is smoothed by

a Gaussian that is about the size of the expected change.

Peaks locations are extracted, rank-ordered in terms of their

magnitude, and used to cue an image analyst to areas in the

imagery likely to contain changes of interest.

B. Techniques for Measuring Change

In simple image subtraction, the measure of change is based

only on the difference between corresponding pixel values.
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Fig. 3. Landsat image over region of interest (7/10/90).

Adaptive techniques use information over larger areas (e.g.,

within a sliding window) to model and predict two or more

images from one another. The difference between the actual

and predicted image is used as a measure of change. For two

images (random variables) and acquired at

times and , where , we seek an estimate of based

on i.e., , that minimizes the mean-square

error (MSE)

(1)

where is the forward prediction error. Similarly, in the

other direction, we seek an estimate of based on , i.e.,

, that minimizes the backward prediction error

(2)

When the functions and are linear, the parameters

of the forward and backward predictors

(3)

are obtained using linear regression. In the linear prediction

model, the gains and offsets adjust for global differences

between the two images (e.g., due to solar angle, sensor



192 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 6, NO. 1, JANUARY 1997
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(e) (f)

Fig. 4. Phases of construction at Taj al-Ma’arik. (a) Pre-construction (1/15/87). (b) Early-construction (4/21/87). (c) Early-construction (6/24/87). (d)
Mid-construction (3/30/88). (e) Cloud cover (5/1/88). (f) Construction complete (3/4/90).

gain, atmospheric transmission, scattering, and changes in the

background). As demonstrated in Section IV, the linear model

works well in detecting changes when the amount of change

is small. However, in situations where there are large changes,

e.g., due to clouds or significant seasonal variations, the linear

model, in attempting to adapt to these changes as if they were

part of the background, tends to introduce spurious changes

that ultimately lead to false alarms.
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This motivates the development of a more general model

that can handle cases where there may be large changes

between images. In particular, we allow and to be

nonlinear functions of image brightness. In the general case, it

can be shown that the MSE is minimized when these functions

are the conditional expected values [14]

(4)

where is the

joint density, and and are the marginals.

The forward and backward difference images are

(5)

The forward difference image is greater than (less than) zero

where there is an increase (decrease) in brightness in the later

image that cannot be modeled in terms of the earlier image.

The backward difference image is greater than (less than) zero

where there is an decrease (increase) in brightness in the earlier

image that cannot be modeled in terms of the later image. The

total difference image will be greater

than zero either when a dark object disappears or a bright

object appears and will be less than zero when a dark object

appears or a bright object disappears.

Our approach to WAS involves the analysis of changes

between all pairs of input images. For input images

, there are total difference

images , where the total

difference between the th and th input images is

(6)

It can be shown that only

when there is a one-to-one mapping between the and

brightness values. In this case, one of the three difference

images is redundant.

Finally, it is noted that the nonlinear prediction technique

can also be applied to multiband images [15], i.e., to predict

two vectors of random variables (spectral bands)

and from each other:

(7)

where is the number of bands.

C. Temporal Segmentation

Temporal segmentation extracts unique patterns of change

across images over time. The total difference images (6) are

thresholded to produce binary change images

otherwise.
(8)

Fig. 5. Plots of bands 1, 4, and 6 brightness over Taj al-Ma’arik site versus
time.

The thresholds are computed from the histograms of

the total difference images. Each is chosen to satisfy

(9)

where is the histogram of the total difference image

, and is the fraction of the image that is assumed

to have changed.

Patterns of change are represented by an image of label

vectors At a particular pixel location, two

elements of the label vector are equal

if there is no change between the corresponding times at

that pixel ; otherwise, the two elements are

different The following algorithm is used

to compute the image of label vectors from the set of binary

change images:

For each

Let for

For to

For to

If Then

(10)

The resultant image of label vectors segments the coreg-

istered image stack where all pixels with the same label

vector exhibit the same pattern of change as defined by

our representation. It is noted that we are not distinguishing

between positive and negative changes (increase or decrease

in brightness) at this point in the discussion. In Section IV, we

shall see that although this segmentation algorithm can provide

insight into the kinds of changes occurring in different parts

of the image, its performance depends on the thresholds that,

in turn, depend on the value of

E. Temporal Filtering

Temporal filtering is designed to enhance and detect a spe-

cific pattern of change. This pattern may have been identified

using the temporal segmentation technique described above or

have been specified by an image analyst. Temporal filtering

combines difference images in ways that emphasize those

patterns of change that are expected to be observed when

a given activity occurs. In temporal segmentation, the label

vector was derived from the detected changes. We now use

the label vector as a model to specify the pattern of change

of interest and define a measure to determine the degree to

which changes in imagery over time match the pattern. One



194 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 6, NO. 1, JANUARY 1997

(a) (b)

(c) (d)

Fig. 6. Linear prediction algorithm applied to image pair with few changes. (a) 1/15/87 image. (b) 4/21/87 image. (c) Joint distribution. (d) Absolute
value of total difference in image.

filter (the absolute difference filter)

(11)

measures the degree to which the absolute value of the differ-

ences between images match the pattern of change specified

by the label vector The filter adds absolute differences

that occur when changes are expected and subtracts absolute

differences that occur when no changes are expected.

We can do better, however. Up to this point, the values

for the different labels in were used only to signify that

pixels were the same or different; otherwise, the values were

arbitrary. We now modify the label vector representation and

use the relative values of the labels to represent the direction

of change as well. For example, the label vector

describes those changes that are monotonically increasing. The

label vector describes changes that start off at

an intermediate value, slowly increase, and then abruptly fall

to a low value. The resulting filter (the Delta filter)

(12)

adds differences that occur when positive changes are expected

subtracts differences that occur when negative

changes are expected and subtracts the absolute

value of the difference when no changes are expected

Thus, negative differences that occur where positive

changes are expected and vice versa, as well as positive or
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(a) (b)

(c) (d)

Fig. 7. Linear prediction algorithm applied to image pair with many changes. (a) 3/30/88 image. (b) 5/1/88 image. (c) Joint distribution. (d) Absolute
value of total difference image.

negative differences that occur where no change is expected,

reduce the value of the measure.

For a given pattern of change the histogram of

However,

neither the conditionals nor the priors are known in general.

Therefore, we threshold the output of the Delta filter

otherwise
(13)

where the threshold satisfies

(14)

and where is false alarm rate.

E. Postprocessing

As our method is intended to screen and prioritize areas for

rapid review by an image analyst, the binary detection image

(13) is postprocessed to produce a list of candidate detections.

The binary image is first smoothed by a Gaussian filter to

eliminate small isolated detections

(15)

In practice, is chosen to be about the expected size of the

activity of interest. Peak locations in the

smoothed detection surface are extracted, rank-ordered

in terms of their magnitude ,

and used to cue an image analyst to areas in the imagery likely

to contain changes of interest. It is noted that because small

isolated detections are effectively eliminated by the smoothing
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(a) (b)

Fig. 8. Nonlinear prediction algorithm applied to image pair with many changes. (a) Joint distribution. (b) Absolute value of total difference image.

step (15), the actual false alarm rate will be lower than the

value specified in (14).

IV. EXPERIMENTAL RESULTS

A. Study Area

The study area considered in this paper is a 15 000 km

region in central Iraq (latitude to

longitude to Ten Landsat thematic

mapper (TM) images acquired between June 1986 and July

1990 were coregistered and geocoded. The last image in the

series (7/10/90) was used as a reference for registration. The

other nine images were registered to this image using a first-

order polynomial warp. Residual registration errors were less

than 1 pixel rms. Fig. 3 is a band 7-4-1 false color composite

of the 7/10/90 TM image. The coregistered images were

pixels in size.

Based on open source data, the Iraqi’s built a missile-related

plant named Taj al-Ma’arik near Latifiyah sometime in the

mid to late 1980’s [16]–[17]. The approximate location of

the plant is indicated in Fig. 3. Fig. 4 shows a series of six

Landsat images over the site, which are believed to encompass

the missile plant. The first image (Fig. 4(a)) shows the area

before construction began in early 1987. The next two images

(Fig. 4(b) and (c)) were acquired during the early stages of

construction. In this phase of construction, the boundaries of

the plant are beginning to take shape, and roads internal to

the plant can be seen. The next two images (Fig. 4(d) and (e))

were acquired in what appears to represent the middle phases

of construction. Most of the buildings appear to be underway

with foundations in, walls up, and in some cases, roofs in

place. Light areas surrounding buildings indicate the start of

berms. In several of the images, some cloud cover is

present within the scene. A cloud directly over the site is seen

in (Fig. 4(e)). The last image (Fig. 4(f)) was acquired after the

construction appears to have finished.

TABLE I
COMPARISON OF LINEAR AND NONLINEAR ALGORITHMS FOR MEASURING CHANGE

TABLE II
COMPARISON OF DIFFERENT BAND COMBINATIONS FOR CHANGE DETECTION

Fig. 5 plots the average brightness in three of the seven

TM bands (1, 4, and 6) within a region defined by the outer

perimeter of the site over time. Band 1 is in the visible portion

of the spectrum (0.45–0.52 m band 4 is in the near infrared

(0.76–0.9 m and band 6 is in thermal infrared (10.4–12.5

m The brightness in band 1 shows a definite increase over

time during the course of the construction. Less change is

evident in band 4. The decrease in brightness in all three bands

in the second image is due to the decrease in solar angle in the

winter. Overall, the thermal band appears to respond mainly

to seasonal variations in temperature.

B. Comparison of Techniques for Measuring Change

Fig. 6 is an example in which the linear model (3) is used

to measure the change between two images using TM band 1
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(a) (b)

Fig. 9. Temporal segmentation results for region around Taj al-Ma’arik site. (a) Temporal segmentation. (b) Label vectors associated with construction activity.

(a) (b)

Fig. 10. Patterns of change related to construction of Taj al-Ma’arik facility derived from two segmentations based on different thresholds. (a) p0 = 5%:

(b) p0 = 25%:

only. The area shown is a 400 400-pixel region over the

Taj al-Ma’arik site. The first image was acquired on 1/15/87,

just before the start of construction. The second image was

acquired on 4/21/87 during the early stages of construction.

The January image (Fig. 6(a)) is darker than the April image

(Fig. 6(b)) because of differences in solar angle. The high

correlation (low scatter) in the joint histogram (Fig. 6c) implies

that there are relatively few changes between the two images.

The absolute value of the total difference image (6) is shown in

(Fig. 6(d)). Bright areas have either increased or decreased in

brightness, and dark areas have remained the same. The linear

model adapts easily to the illumination difference between the

two images and is able to detect changes within the plant

(center box). A region with very little change between June

1986 and July 1990 is identified by the lower right box.

Consider now a second image pair (Fig. 7), where there are

significant atmospheric differences between the two images.

(Again, we consider only TM band 1.) The two images were

taken about a month apart in 3/30/88 and 5/1/88. Except for

the clouds, there are relatively few changes on the ground.

The clouds in (Fig. 7(b)) significantly increase the scatter in

the joint histogram (Fig. 7(c)). They effectively pull the linear

model away from the hypothetical regression line, assuming

there were no clouds (dotted line) to the actual regression

line with clouds (solid line). The absolute value of the total

difference image is shown in (Fig. 7(d)) and is dominated
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(a) (b)

Fig. 11. Outputs from temporal filters. (a) Absolute different Filter. (b) Delta filter.

TABLE III
DETECTION RESULTS VERSUS NUMBER OF IMAGES FOR THREE

MODEL VECTORS WITH � = 20 AND pFA = 0:25%

TABLE IV
DETECTION RESULTS VERSUS NUMBER OF IMAGES FOR THREE

SMOOTHING FACTORS WITH � = [11144444] AND pFA = 0:25%

by changes dues to the clouds. Although the linear model

works well when the amount of change is relatively small

(Fig. 6), when there are large changes, in this case due to

clouds, the linear model tries to adapt to these changes and

shifts the background level. This introduces a residual error

that can reduce the detection performance of the algorithm.

Such changes are evident in the lower right box, which, as

noted above, is over a region that has not changed over this

period.

Fig. 8 shows how the nonlinear prediction algorithm can

better adapt to large changes. The joint histogram is shown in

Fig. 8(a), where the dotted line is a plot of the backward pre-

dictor function (5). The function is similar to the hypothetical

linear model (Fig. 7(c)) over the part of the joint feature space

that does not contain cloud pixel values. A different behavior

TABLE V
DETECTION RESULTS VERSUS NUMBER OF IMAGES AT TWO

FALSE ALARM RATES WITH � = [1234444] AND � = 20

is seen for the brighter 5/1/88 pixel values that are mostly

clouds. The spurious change in the lower right introduced by

the linear prediction algorithm has been largely eliminated.

Table I gives the average value of the total difference within

the site (center box) and within a region with little

or no change (lower right box) for the linear and

nonlinear algorithms. Results for three image pairs are shown:

1/15/87–4/21/87 pair in Fig. 6, 3/30/88–5/1/88 pair in Figs. 7

and 8, and 6/5/86–7/10/90 pair. In all pairs, the differences

over the site are comparable. However, over the region with

little or no change, the response of the nonlinear technique is

lower in magnitude than that of the linear technique overall

and is significantly lower in the 3/30/88–5/1/88 pair with cloud

cover in the second image.

The above examples used TM band 1. Table II summarizes

the performance of the nonlinear change detection algorithm

for other spectral bands and features. The table lists and

values computed between the first image (6/5/86)

acquired just before the start of construction of Taj al-Ma’arik

and the last image (7/10/90) acquired after the facility was

completed. As a figure of merit, we computed

FOM (16)

for each spectral band and feature. For this particular facility

construction change, certain bands and spectral features are
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(a) (b)

Fig. 12. Outputs from Delta filter over the full scene. (a) For two images. (b) For eight images.

clearly better than others. TM bands 1 and 7 and the first

tasseled cap band (TC1), all of which respond strongly to

changes in soil reflectance, give the best results. On the other

hand, band 4 and the second tasseled cap band (TC2), both of

which respond largely to vegetation, give the worst results. By

using more bands (7), the performance improves (provided all

the bands respond to the changes of interest).

C. Temporal Segmentation

Temporal segmentation was performed on seven of the

10 images (from 1/15/87 to 3/4/90) over the same 400

400 pixel region shown in Figs. 6–8. First,

total difference images were computed using the nonlinear

prediction algorithm. These images were then thresholded

using a value %, i.e., 5% of the pixels in each

image were assumed to have changed. The labeling algorithm

(10) was then applied to the change images. A total of 138

unique label vectors were identified, with 10 of the 138

label vectors accounting for over 98% of the pixels. Fig. 9(a)

shows the central 100 100-pixel portion of the segmentation

overlaid on the 7/10/90 image as a visual reference. The

following three vectors corresponding to visually distinct

phases of construction evident in the imagery were extracted

interactively: [1 222 222], [1 133 333], and [1 114 444]. As

noted earlier, a cloud passed overhead during the 5/1/88 acqui-

sition. Three additional label vectors that include the transient

change caused by the cloud are [1 222 522], [1 133 533], and

[1 114 544]. These six label vectors are highlighted in Fig. 9(b)

with [122 222] and [1 222 522] shown in blue, [113 333] and

[1 133 533] in green, and [1 114 444] and [1 114 544] in red.

Fig. 10(a) shows all pixels in the region around

the site that match any one of the six label vectors highlighted

in Fig. 9(b). The greatest concentration of matches occurs near

the site in the center of the image. Fig. 10(b) shows another

result computed from the same difference images but using

thresholds based on the value % (now, 25% of the

pixels in each image were assumed to have changed). The

changes that distinguish the site in Fig. 10(a) are no longer

evident in Fig. 10(b). Although the segmentation provides

insights into the kinds of changes occurring in different parts

of the image, this example suggests a potential weakness in

attempting to use the segmentation technique to detect changes

directly, namely, that its performance depends critically on the

threshold used.

D. Temporal Filtering

Fig. 11(a) shows the result obtained by applying the abso-

lute difference filter (11) to the same set of total difference

images used above (before thresholding). The filter output

depends on the label vector that is used as a model for the
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(a) (b)

Fig. 13. Detection result for full scene. (a) Smoothed output from Delta filter. (b) Largest detection highlighted and overlaid.

pattern of change of interest, which in this case was

This particular filter thus enhances those parts of

the image where there are changes in the first, second, and third

images and no change in the fourth through seventh image.

Fig. 11(b) shows the image generated using the Delta filter

(12) using the same model vector. The Delta filter enhances

patterns of change that are increasing in brightness in the first

through fourth images and then remain relatively constant. It

appears to be better able to detect the construction activity

with less confusion from the clouds evident in Fig. 11(a).

E. Activity Detection

A series of activity detection experiments was performed

using eight of the 10 TM images from 1/15/87 to 3/28/90.

Based on the experiments in the previous section, we assume

that the patterns of change associated with construction ac-

tivities can be expected to exhibit a monotonic increase in

reflectance over the period of construction. We also assume for

this experiment that the approximate start date of construction

is known but the length of time is not. (In practice, both would

be unknown, thus requiring the search to be performed over

a sliding window in time.)

Tables III–V summarize detection results versus the number

of images used for different model vectors, smoothing factors,

and false alarm rates. All results are based on the use of TM

band 1 only. The numbers shown are the rank of the detection

over the Taj al-Ma’arik facility, i.e., a rank of one means

the strongest detection was over the facility (no false alarms).

Thus, for a rank of 49, there were 48 peaks in the smoothed

detection surface (15) that were stronger than the one over Taj

al-Ma’arik. Given the size are the area processed, the effective

false alarm rate would be 48/15 000 km or about one false

alarm per 300 km for that case. The three model vectors

and

correspond to three assumed periods of construction. (Opera-

tionally, models corresponding to different assumed lengths

of time would have to be applied since the actual period

of construction would be unknown). The facility was about

pixels in size. The largest smoothing factor is thus

intended to enhance either single detections or groupings of

detections that are about the size of the facility. Performance

for smaller smoothing factors was also measured in order to

understand how the performance of the detection algorithm

might be different in detecting smaller activities and in cases

where the size of the activity is not known in advance. Two

false alarm rates were used to determine the sensitivity of the

ranking method to thresholds.

Fig. 12 shows the full scene outputs from the Delta filter

for two images (Fig. 12(a)) and eight images (Fig. 12(b)) with
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% and Fig. 12(a) is the

total difference image between the 6/24/87 and 3/30/88 images

and represents a two image change detection result. Bright

areas indicate an increase in the brightness. In dark areas,

the total difference has decreased and includes areas where

the water level has risen to cover the land and vegetation

has appeared or developed more fully. In Fig. 12(b), there

are relatively few bright areas where the Delta filter responds

strongly other than over the facility itself. The output from

the Delta filter after it has been thresholded and smoothed is

shown in Fig. 13(a). The largest detection is highlighted and

overlaid on the 7/10/90 image in Fig. 13(b).

Based on open source data, another related facility was

constructed about 20 km south of Taj al-Ma’arik at a slightly

later time. As a test of the extendibility of the model for

detecting other construction activities occurring at different

times, we shifted the model forward in time and applied it

to the same stack of eight images. The desired construction

activity was detected with 12 false alarms, i.e., it was ranked

13. Seven false alarms were caused by changes in the level of

the large lake, three by another construction activity, and two

by land clearing for unknown purposes.

V. CONCLUSION

A new approach to WAS based on the detection and analysis

of changes across two or more images over time was described.

Methods for modeling and detecting general patterns of change

associated with construction and potentially other kinds of

activities that can be observed in remotely sensed imagery

were presented. They included a new nonlinear prediction

technique for measuring changes between images and temporal

segmentation and filtering techniques for analyzing patterns of

change over time.

In optical imagery, nonsignificant changes caused by clouds

and environmental effects can be expected to occur in an

operational environment. It was found that large changes can

adversely affect the performance of techniques that use a linear

model to measure change. A new nonlinear technique was

described and found to be less sensitive to large changes

caused by clouds present in one of the images processed. The

technique was applied to different spectral bands and features,

and its ability to differentiate areas that changed from those

that did not was assessed. Bands and features that respond

well to changes in soil brightness worked best, whereas those

sensitive to vegetation were less effective for the example

considered. Methods for selecting the best bands or spectral

features to use to detect a particular type of change is an area

for future work.

The major contribution of the paper was in the analysis

of multiple images over time. Two types of technique were

described and compared. The first was based on segmenting

the image into distinct patterns of change over time. The

second combines difference images to enhance a particular

pattern of change. One of the later techniques (Delta filtering)

was found to be effective in separating specific patterns of

change from general changes. This technique was then used to

detect the construction of a known facility over a given period

of time. Results derived from a registered set of eight TM

images suggest that the method is capable of detecting patterns

of change associated with the construction of new facilities

with very few false alarms. Under all conditions explored, as

the number of images used increased, the number of false

alarms was found to decrease dramatically without affecting

the detection performance. As a test of the extendibility of

the approach, we shifted the model for the pattern of change

of interest forward in time and detected another known con-

structed activity with a relatively small number of false alarms.

Additional experiments are currently underway to determine

the extent to which other models can be used to detect

different kinds of activities and to assess the applicability of

our approach to other sensors such synthetic aperture radar.

The promising nature of the results presented in this paper

suggest a new approach to WAS that involves ingesting and

maintaining registered imagery over regions of interest in large

imagery archives. Archives of tens of terabytes or more are

currently feasible, given the state of the art in mass storage

devices and image database technology. It can be argued that

the ability to focus the search on particular patterns of change

over time and the resultant processing gain—the reduction in

the number of false alarms—which results in using more than

two images, justifies the increased computational complexity

and storage requirements of our approach.
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