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METHODOLOGY

Detection and analysis of wheat spikes 
using Convolutional Neural Networks
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Abstract 

Background: Field phenotyping by remote sensing has received increased interest in recent years with the pos-

sibility of achieving high-throughput analysis of crop fields. Along with the various technological developments, the 

application of machine learning methods for image analysis has enhanced the potential for quantitative assessment 

of a multitude of crop traits. For wheat breeding purposes, assessing the production of wheat spikes, as the grain-

bearing organ, is a useful proxy measure of grain production. Thus, being able to detect and characterize spikes from 

images of wheat fields is an essential component in a wheat breeding pipeline for the selection of high yielding 

varieties.

Results: We have applied a deep learning approach to accurately detect, count and analyze wheat spikes for yield 

estimation. We have tested the approach on a set of images of wheat field trial comprising 10 varieties subjected 

to three fertilizer treatments. The images have been captured over one season, using high definition RGB cameras 

mounted on a land-based imaging platform, and viewing the wheat plots from an oblique angle. A subset of in-field 

images has been accurately labeled by manually annotating all the spike regions. This annotated dataset, called SPIKE, 

is then used to train four region-based Convolutional Neural Networks (R-CNN) which take, as input, images of wheat 

plots, and accurately detect and count spike regions in each plot. The CNNs also output the spike density and a clas-

sification probability for each plot. Using the same R-CNN architecture, four different models were generated based 

on four different datasets of training and testing images captured at various growth stages. Despite the challeng-

ing field imaging conditions, e.g., variable illumination conditions, high spike occlusion, and complex background, 

the four R-CNN models achieve an average detection accuracy ranging from 88 to 94% across different sets of test 

images. The most robust R-CNN model, which achieved the highest accuracy, is then selected to study the variation 

in spike production over 10 wheat varieties and three treatments. The SPIKE dataset and the trained CNN are the main 

contributions of this paper.

Conclusion: With the availability of good training datasets such us the SPIKE dataset proposed in this article, deep 

learning techniques can achieve high accuracy in detecting and counting spikes from complex wheat field images. 

The proposed robust R-CNN model, which has been trained on spike images captured during different growth 

stages, is optimized for application to a wider variety of field scenarios. It accurately quantifies the differences in 

yield produced by the 10 varieties we have studied, and their respective responses to fertilizer treatment. We have 

also observed that the other R-CNN models exhibit more specialized performances. The data set and the R-CNN 

model, which we make publicly available, have the potential to greatly benefit plant breeders by facilitating the high 

throughput selection of high yielding varieties.
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Background
Wheat is one of the most globally significant crop spe-

cies with an annual worldwide grain production of 700 

million tonnes  [1]. In recent years, however, there is an 

increasing demand for grain. At the same time, the sea-

sonal fluctuations, the extreme weather events and the 

altering climate in various regions of the world, increase 

the risk of inconsistent supply. �is points to the need 

to identify hardier and higher yielding plant varieties to 

both increase crop production and improve plant toler-

ance to biotic and abiotic stresses.

To discover higher-yielding and more stress-tolerant 

varieties, biologists and breeders rely more and more 

on high-throughput phenotyping techniques to measure 

various plant traits, which in turn are used to understand 

plant’s response to various environmental conditions and 

treatments, with the hope to improve grain yield.

Early works on high-throughput image-based phe-

notyping focused on controlled environments such as 

purpose-built chambers and automated glasshouses. Li 

et al. [2], for example, proposed an approach that detects, 

counts and measures the geometric properties of spikes 

of a single plant grown in a controlled environment. Bi 

et al. [3, 4] and Pound et al. [5], on the other hand, meas-

ured more detailed morphological properties, such as the 

numbers of awns and spikelets, of plants imaged in small 

purpose-built chambers with uniform backgrounds. 

Unfortunately, in such experiments plants are confined 

to small pots, which no doubt affect root development, 

nutrient uptake and, ultimately, yield. Some experiments 

have been carried out using plants grown in large (120 

cm × 80 cm) indoor bins, which are capable of housing 

almost 100 plants in competition  [6–8]. Spike detec-

tion was not attempted in these latter studies, but their 

more critical limitation was that the plants, although 

grown closer to field-like conditions and not individu-

ally in pots, were not subject to realistic environmental 

conditions. �e challenge to providing quantitative plant 

breeder support is yield estimation under true field con-

ditions, relying on the ability to accurately and automati-

cally detect and count the ears of wheat in the field.

A range of different phenotyping platforms exist for 

capturing images in the field  [9–11]. However, due to 

the large scale nature of such studies, many researchers 

have turned to aerial imaging systems such as unmanned 

aerial vehicles  [12–15] and satellite imagery  [16, 17]. 

While these approaches are capable of capturing infor-

mation about a large number of plants across a large area 

of land within a short period of time, only coarse level 

information, such as mean canopy coverage and mean 

canopy color, has thus far been reported. It should also 

be kept in mind that the nature of the uncontrolled field 

environment poses significant challenges for both image 

acquisition and image analysis algorithms, which should 

ideally be robust to changing conditions and applied 

autonomously. �e challenges indeed often result in 

images being analyzed manually or semi-automatically, 

and often qualitatively.

In this study we utilize a land-based vehicle and a sin-

gle RGB camera to acquire images of a field. �e proxim-

ity of the camera to the plants allows for high-resolution 

data capture. �e simplicity of the imaging set-up makes 

it affordable and easy to implement, thus accessible to 

any potential user. �e remaining challenge, on which 

we focus attention here, is of analyzing these high reso-

lution images to extract quantitative information such 

as the number and density of wheat spikes. To go some 

way to meeting this challenge we have chosen to image 

plots from an oblique perspective as opposed to the more 

common nadir perspective. In an oblique view a sig-

nificant number of spike features such as texture, color, 

shape etc. can be discerned easily. �ese features can be 

more readily extracted for the purposes of various plant 

phenotyping applications such as spike counting (which 

is the focus of this paper), spike shape measurement, 

spike texture, disease detection, grain yield estimation 

etc. We note that we are not unique in taking this more 

advantageous perspective [7, 18, 19].

�ere are some computer vision approaches for detect-

ing spikes in field images obtained using land-based 

imaging techniques, which have been reported in the 

literature. Fernandez-Gallego et  al.  [20] used RGB cam-

eras manually held at approximately one meter above the 

center of the plant canopy to gain images from a nadir 

perspective. �e authors then apply the Laplacian and 

the median filter to produce a transformed image where 

the local maxima can be detected and classified as wheat 

spikes. �is approach achieved a recognition rates of 

up to 92%, but failed when observing plants in different 

developmental stages (32%). Alharbi et  al.  [18], which 

used Gabor filters, principal component analysis and 

k-means clustering, were able to achieve an average accu-

racy of 90.7%. �e approach, however, places constraints 

on image content such as the density of spikes, color and 

texture differences between spikes and shoots and the 

angle of spikes in the image. Zhou et  al.  [21] proposed 

an image fusion method by using multi-sensor data and 

an improved maximum entropy segmentation algorithm 

to detect wheat spikes in the field. However, the method 

required the use of a multi-spectral camera and was vali-

dated on images where canopy and spikes rarely overlap 

or occlude one another.

Machine learning has been adopted as the method 

of choice in many recent image analysis applications 

to address a number of plant phenotyping problems. 

�ese include the study of wheat spikes in controlled 
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environments  [2], the classification of leaf species and 

leaf venation  [22], the analysis of the architecture of 

root systems  [23, 24], the measurement of plant stress 

levels  [25] and the determination of wheat growth 

stages  [26]. More recently, deep learning has begun to 

outperform previous image analysis and machine learn-

ing approaches and promises a step-change in the per-

formance of image-based phenotyping. In particular, the 

use of Convolutional Neural Networks (CNNs) for image 

analysis tasks has seen a rapid increase in popularity. For 

instance, CNNs have been used to improve the perfor-

mance of the approach of Wilf et al.  [22] for identifying 

and counting leaf species  [27], to quantitatively pheno-

type Arabidopsis thaliana plants grown in controlled 

environments [28, 29], and to provide detailed quantita-

tive characterization of wheat spikes on plants grown in 

controlled environments [3–5].

In this study we present the first deep learning model 

designed specifically to detect and characterize wheat 

spikes present in wheat field images. We adapt, train 

and apply a variant of CNN, hereinafter referred to as 

Region-based Convolutional Neural Networks (R-CNN), 

to accurately count wheat spikes in images acquired with 

our land-based RGB imaging platform. �e approach 

relies on a training data set of images containing spikes 

that have been labeled manually with rectangular boxes; 

�e procedure produces a complete list of locations and 

dimensions of bounding boxes identifying plant spikes 

detected in images unseen during the training stage. A 

successful deep learning analysis requires thorough train-

ing using large data sets of high quality [5, 30]. As such, a 

second major contribution of this work is the release of 

the SPIKE data set, made up of hundreds of high quality 

images containing over 20,000 labeled wheat spikes.

�e outline of this article is as follows. In the "Methods" 

section we describe the field trial we have studied and the 

image acquisition system. �e images from this field trial 

form the SPIKE data set which is then described in detail 

and used for training and testing of our R-CNN model. 

Finally, we also present the metrics used for the valida-

tion of the proposed CNN model. In the "Results and 

discussion" section we analyze the performance of the 

model both on the main data set and on subsets contain-

ing images of field plots at different growth stages. We 

also provide an analysis of the density of spikes detected 

in images of plots of different wheat varieties treated with 

fertilizer at different times. In brief, we found that early 

treatment resulted in significantly higher yields (spike 

densities) for nearly all the varieties tested, than what 

were produced by the same varieties either untreated or 

treated later in the season.

Methods
Figure 1 shows the overall work-flow of the in-field wheat 

spike detection system. �e goal is to develop a fast 

and accurate system which can detect spikes from field 

images. �e output is a list of bounding boxes enclos-

ing wheat spikes, as well as the confidence level for each 

box, along with a count of the total number of spikes. �e 

model has been developed in two main stages: the train-

ing stage, used to train the R-CNN for spike detection, 

Fig. 1 The general work-flow diagram of the proposed system. The top diagram shows the training procedure of the Convoluted Neural Network 

(CNN) model implemented in this article. The bottom diagram depicts the testing procedure that is followed to obtain our results
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and the testing stage, in which the trained CNN model is 

applied to test images.

Experimental setup

�e field trial was conducted at Mallala (− 34.457062, 

138.481487), South Australia, in a randomized complete 

block design with a total of 90 plots, 18 rows and 5 col-

umns, consisting of ten spring wheat (Triticum aestivum 

L.) varieties (Drysdale, Excalibur, Gladius, Gregory, Kukri, 

Mace, Magenta, RAC875, Scout, Yitpi) and nine replicates 

of each, all of which were sown on July 3, 2017. To mitigate 

the boundary effects, an additional plot (not included in 

the analysis) was planted at the beginning and at the end 

of each row of plots. �e plots were 1.2 m wide, with an 

inter-row spacing of approximately 0.2 m, and 4 m long 

with a gap of approximately 2 m between plot rows and 

0.3 m between columns. To explore the impact of ferti-

lizer on wheat spike production, each variety was subject 

to three fertilizer treatments: no treatment, early treat-

ment, and late treatment. Each combination of variety × 

treatment is replicated three times. Two thirds of the rep-

licates were treated at a standard rate of 80 kg nitrogen, 40 

kg phosphorus and 40 kg potassium per hectare (referred 

to as 16 − 8 − 16 N − P − K  ), while the other 30 plots 

received no treatment at all. For the early treatment, the 

macronutrients nitrogen, phosphorus and potassium were 

applied on July 14. Urea was then applied on July 18 to the 

same 30 plots. For the late stage treatment, both fertiliz-

ers were applied together on September 26. �e imaging of 

the plots took place approximately twice a week during the 

period of July 21–November 22, 2017.

�e land-based vehicle used for image capture is 

shown in Fig.  2. �is wagon is comprised of a steel 

frame and four wheels with a central overhead rail for 

mounting imaging sensors. While capable of hous-

ing a stereo pair of cameras for orthogonal view-

ing, only the camera mounted at one end at an angle 

oblique to the plots was used for this study. Viewed 

from directly above, many spikes, primarily those near 

the viewing axis, appear in images small and circular, 

making them difficult to detect (see the comparison of 

images of the same plot taken from the two perspec-

tives in Additional file 1). Although not pursued in this 

paper, a perspective view also admits the possibility of 

a more detailed analysis of spikes (for, say, grain num-

ber estimation) with a greater fraction of their length 

visible, although the problem of partial occlusion of 

some spikes may complicate the estimation process. 

Figure  2b (inset, top right) shows an image captured 

with this imaging platform. �e images were acquired 

using an 18.1 megapixel Canon EOS 60D digital cam-

era, shown in Fig.  2a, surrounded with a waterproof 

casing. Manual focus was used during all the imaging 

sessions with the camera focused at 2.2 m and 1.8 m 

during early and late plant growth stages, respectively. 

Following some experimentation, a viewing angle of 

55
◦ from the horizontal overhead rail was chosen to 

capture a maximum plot area with minimal the area 

from overlapping regions. �e camera sensor is located 

190  cm above the ground level. �e camera settings 

were as follows;

• Focal length—18 mm,

• Aperture—f/9.0,

• ISO—automatic and

• Exposure time—1/500 s.

Fig. 2 The ground-based vehicle for imaging in the field. a A camera, angled for oblique viewing, is placed at the top of an imaging frame mounted 

on a four-wheel base (the wagon). The frame also supports two stereo cameras, angled vertically, placed in the center of the top section. These have 

not been used in this article. b A schematic of the wagon from a side-view. A sample image taken with the oblique-view camera is shown in the 

inset, top right
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Finally, the resolution of images was 5184 × 3456 pixels, 

resulting in an image resolution of approximately 0.04 cm 

per pixel.

The SPIKE dataset

�e high quality in-field images from this field trial are 

used to construct the SPIKE data set, a key contribu-

tion of this study. �e SPIKE data set has three main 

components:

• Over 300 images of ten wheat varieties at three dif-

ferent growth stages.

• Annotations for each image denoting the bounding 

boxes of spikes.

• Deep learning models trained on these images and 

labels.

A diagram illustrating each of these components is 

shown in Fig.  3. First, images are acquired in the field. 

�ese are then automatically cropped so that only the 

region of interest (ROI) is kept. �e captured in-field 

images contain other objects including neighbor plots, 

plot gaps, vehicle and color-chart which are not required 

in our approach. So, a significant SPIKE region from the 

plot is selected as ROI and cropped automatically for all 

images in the experiment. Next, the images are manu-

ally annotated with bounding boxes highlighting all the 

spikes present in the images. �e images and annotations 

are then fed to the Convolutional Neural Network (CNN) 

for training.

Images While the original images capture the major-

ity of the 4 m × 1.2 m plot area, they also contain parts 

of the neighboring plots, inter-plot weeds and parts of 

the wagon. �ese background objects can confound the 

testing phase; a particular issue is spikes of neighbor-

ing plots appearing in an image and thus included in 

the density estimation. To overcome this issue, images 

were automatically cropped to a 0.8 m × 0.8 m region of 

interest as shown in Fig. 3. In total, 335 images contain-

ing a total of approximately 25,000 wheat spikes have 

been captured. With our camera image resolution, the 

spike size [width, height] ranged from [10 px, 80 px] to 

[50 px, 300 px].

We found that the most convenient situation for 

detecting wheat spikes in images is when there is con-

siderable color contrast between the spikes and other 

parts of the canopy. As such, the majority of the images 

in the SPIKE data set contains images where the spikes 

are approximately green in color while the canopy has 

already senesced to a more yellow color. However, in 

order to fully test the capabilities of deep learning tech-

niques for spike detection in the field, the SPIKE data 

set also includes a number of images taken at two other 

growth stages, where spike detection spikes is more dif-

ficult. Hereafter we denote the three different situations, 

shown in Fig. 4, as:

• Green Spike and Green Canopy (GSGC)

• Green Spike and Yellow Canopy (GSYC)

• Yellow Spike and Yellow Canopy (YSYC).

�e GSGC, GSYC, and YSYC images were acquired on 

the 26/10/2017, 9/11/2017 and 16/11/2017, respectively. 

Table  1 shows the number of images acquired for each 

of the three classes. Although the data set contains 255 

GSYC images, only 235 were used for training while 

the remaining 20 were reserved for testing. Each of the 

GSGC and YSYC data sets comprise 40 images, of which 

35 have been used for training and 5 for testing. �e sec-

ond half of the table, which indicates how many images 

were used in the different models, will be explained in 

more detail at the end of this section.

Fig. 3 Steps for training the model. Images are acquired in the field before being automatically cropped to a region of interest. Training images 

were then manually annotated with bounding boxes. Finally, both the cropped and annotated images were passed to the R-CNN model for training
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Annotations �e images have been labeled by multi-

ple experts at the resolution of 2000 × 1500 pixels. For 

the annotation of images, we used the publicly available 

Video Object Tagging Tool provided by Microsoft. Each 

labelled image has an additional text file containing the 

coordinates of the annotated bounding boxes, see Fig. 5. 

Fig. 4 Examples of training images captured at three different growth stages. From left to right: the GSGC images contain green spikes and a green 

canopy, the GSYC images contain green spikes and a yellow canopy, and the YSYC images contain yellow spikes and a yellow canopy.

Table 1 Number of images from each growth stage used for training and testing

Images GSYC GSGC YSYC

Data

   Training 235 35 35

   Test 20 5 5

   Total 255 40 40

 Images GSYC + GSGC + YSYC GSYC++

Models

   Training 235 270 270 305

   Test 20 25 25 30

Fig. 5 Representation and annotation of the SPIKE data set. The data set is split into three subsets: the positive, negative and test images. Image 

labeling classes, locations and their annotations are saved in a separate text file
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In this file the boxes are saved as a 4-tuple (xb, yb,wb, hb) 

where (xb, yb) denotes the top-left corner of the box 

while the pair (wb, hb) denotes the width and height of 

the bounding box. Each image contains approximately 

70–80 spikes. �erefore, in total, the 335 images contain 

approximately 25,000 annotated spikes.

Model development �e SPIKE data set of 335 images 

in total was split into 305 training images and 30 testing 

images. �is split was performed at the image level, not 

at the spike level, to ensure that no spikes from the same 

image could be seen in both training and testing sets. 

We found that the GSYC class of images, which exhibit 

a high color contrast, were the most suitable for spike 

detection in the field. For this reason the main model 

used in this study was trained and tested only on the 

set of GSYC images. However, in order to better under-

stand the effect of spike and canopy color on deep learn-

ing models we trained three additional models using the 

two other classes. �e reader is referred to the bottom 

half of Table  1 for a summary of the number of train-

ing and testing images used in each of the four models. 

�e + GSGC and + YSYC models were trained using 

the original 235 images as well as the 35 GSGC images 

and 35 YSYC images, respectively. �ey also have a set of 

test images made up of combinations of the test images 

from their corresponding classes. Finally, a fourth model, 

‘GSYC++’, was based on the 305 training images from all 

three classes and had a test set comprised of all the 30 

designated test images.

R-CNN model

Region-based Convolutional Neural Network (R-CNN) 

was introduced by Girshick et al. [31] for object detection 

using a selective search to detect regions of interest and 

a CNN to classify them. Later, Fast R-CNN by ROI pool-

ing [32] was used after final convolution to extract a fixed 

length feature vector from the feature map along with the 

training of all network weights with back-propagation. 

Later, Faster R-CNN was developed by Ren et  al.   [33]. 

�is model consists of two networks: a region proposal 

network (RPN) for generating region proposals, and a 

convolutional network which takes the proposed regions 

to detect objects almost in real-time. �e main difference 

between the two region-based methods is that, to gener-

ate region proposals, Fast R-CNN uses selective search 

whereas Faster R-CNN uses high-speed RPN and shares 

the bulk of the computation time with object detection. 

Briefly, RPN ranks the region boxes (called anchors) and 

proposes the ones that are most likely to contain the 

desired objects. Due to its fast processing capability and 

high recognition rate, Faster R-CNN is used in this article 

for wheat spike detection. Python implementation of the 

Faster-RCNN is publicly available and can be accessed 

online [34]. �e implementation is modified somewhat 

and hyper-parameters have been optimized for better 

classification of the spike regions and overall detection 

performance. A detailed description of R-CNN, the spe-

cific architecture of the model, and the image processing 

techniques used in this article can be found in Additional 

file 2.

For each box detected, the R-CNN provides as output a 

corresponding confidence level, C ∈ [0, 1] , where 0 repre-

sents the lowest level of confidence that a detected object 

is a spike and 1 represents the highest level of confidence. 

When a detected box proposed by the CNN has a confi-

dence value C that is larger than a predefined threshold, 

then the proposal is classified as a spike. Otherwise, it is 

classified as a background. Higher values of C will result 

in fewer boxes being incorrectly labeled as spikes, but 

will also result in more spikes being incorrectly labeled as 

background. Conversely, low values of C will correspond 

to incorrectly captured (background) regions but will 

rarely miss plant spikes. In this study we have chosen to 

use a confidence value of C = 0.5 as it provided a desir-

able trade-off between the two scenarios.

Validation

�e output of the R-CNN used in this study is a list of 

bounding boxes which will ideally contain all of the 

wheat spikes in an image. �e goal of this study is for 

the number of boxes to accurately match the number of 

spikes in an image. Denoting boxes as spike or non-spike 

can yield three potential results, with the latter two being 

sources of error: true positive (TP)—correctly classifying 

a region as a spike; false positive (FP)—incorrectly clas-

sifying a background region as a spike as well as multiple 

detection of the same spike; and false negative (FN)—

incorrectly classifying a spike as a background region. 

In contrast, true negative (TN)—correct classification of 

background is always ’zero’ and is not required in this 

binary classification problem where foreground is always 

determined for object detection. In order to quantify our 

errors, the validation metrics are based on the concepts 

of precision, recall, accuracy and the F1 score, which are 

defined as follows:

• Precision =
TP

TP + FP
 measures how many of the 

detected regions are actually spikes.

• Recall =
TP

TP + FN
 measures how many of the spikes 

in the image have been captured.

• Accuracy =
TP + TN

TP + TN + FP + FN
 implies the mod-

els performance
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• F1 Score = 2
Precision · Recall

Precision + Recall
 is the harmonic 

mean of Precision and Recall. It is a useful measure 

to observe a model’s robustness.

• �e mean Average Precision (mAP)  [35], which 

quantifies how precise the method is at varying levels 

of Recall. It can be expressed as follows: 

 In other words, it is defined as the mean preci-

sion of a set of eleven equally spaced Recall levels 

[0, 0.1, . . . , 1] . Here, p(ri) is the measured Precision at 

Recall ri . �e Precision at each Recall level ri is inter-

polated by taking the maximum Precision measured 

for which the corresponding Recall exceeds r.

All the experiments in this article were conducted using 

a high-performance computer with Intel Xeon 3.50 

GHz processor and 128 GB of memory. Also, a NVIDIA 

GeForce graphics processing unit(GPU) has 12 GB mem-

ory which is used along with the CPU to accelerate the 

training of the CNN.

(1)mAP =
1

11

∑

ri∈{0,0.1,...,1}

max
ri:ri≥r

p(ri).

Results and discussion
�e performance of the proposed model was measured in 

terms of detection accuracy and mean precision defined 

in the Validation Section. To demonstrate the robust-

ness of deep learning for spike detection, we analyzed the 

degrees to which the different training and testing data 

sets, captured at different growth stages, affect the model 

performance. Finally, we analyze the differences in spike 

density across the different varieties grown under the 

three different treatments in the field trial.

Performance

For each test image the R-CNN program returns the 

locations of the detected spikes, the total number of 

spikes, and a classification probability (confidence) for 

each detected spike, see Fig. 6. �e GSYC class of images 

was chosen to train the main model proposed in this 

study. For 20 test images, the model achieved a mAP of 

0.6653 and an average accuracy of 93.3% based on the 

1463 spikes detected among the 1570 manually counted 

spikes. For each test image, the following statistics are 

provided in Table 2; the number of spikes in the ground 

truth image, the number of spikes detected by the pro-

posed approach, the number of true positives, the num-

ber of false positives, the number of false negatives, the 

Table 2 Evaluation and validation of spike detection using the GSYC image model applied to the GSYC image data set

Image no GT-count Detected TP FP FN Precision mAP Accuracy F1-score

Test_001.jpg 73 71 70 1 3 0.98 0.7289 96% 0.97

Test_012.jpg 75 68 68 0 7 1.00 0.6002 91% 0.95

Test_025.jpg 87 85 84 1 3 0.98 0.7324 96% 0.97

Test_032.jpg 80 76 76 0 4 1.00 0.7286 95% 0.97

Test_118.jpg 76 73 70 3 6 0.95 0.6126 92% 0.93

Test_141.jpg 66 61 58 3 8 0.95 0.5835 88% 0.91

Test_185.jpg 69 68 65 3 4 0.95 0.7105 94% 0.94

Test_199.jpg 72 69 68 1 4 0.98 0.7184 94% 0.96

Test_220.jpg 80 79 76 3 4 0.96 0.7229 95% 0.95

Test_242.jpg 70 64 63 1 7 0.90 0.5926 90% 0.94

Test_254.jpg 83 77 76 1 7 0.98 0.6085 91% 0.95

Test_320.jpg 80 77 74 3 6 0.96 0.6213 92% 0.94

Test_383.jpg 87 84 78 6 9 0.92 0.5947 90% 0.91

Test_399.jpg 80 78 77 1 3 0.98 0.7301 96% 0.97

Test_417.jpg 96 93 89 4 7 0.95 0.6573 93% 0.94

Test_421.jpg 71 73 70 3 1 0.95 0.7552 98% 0.97

Test_422.jpg 82 79 78 1 4 0.98 0.7211 95% 0.96

Test_432.jpg 85 81 79 2 6 0.97 0.6502 93% 0.95

Test_437.jpg 70 64 62 2 8 0.96 0.5924 88% 0.92

Test_480.jpg 88 84 82 2 6 0.97 0.6441 93% 0.95

Total 1570 1504 1463 41 107 − − − −

Average − − − − − 0.97 0.6653 93.4% 0.95

Standard dev. 7.82 8.17 7.86 1.46 1.11 0.02 0.06 0.03 0.02
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precision, the mAP, the accuracy, and the F1 score. �e 

output images of this table are included in the supple-

mentary material (Additional file 2).

Testing the supplementary models

In this section, the results of the base GSYC model are 

compared with those of the other three models. �e 

comparative analysis for different testing sample com-

binations is presented in Table  3 in terms of the aver-

age detection accuracy (ADA) and in Table 4 in terms of 

mean Average Precision.

From Table  2, one can see that the spike detection 

accuracy is always within the range of 88–98 for the 20 

images tested. �is is quite satisfactory considering the 

challenges associated with in-field imaging, e.g., complex 

backgrounds, various illumination conditions, shadow 

effects and self occlusion. Also, the high mAP of 0.6653 

shows the proficiency of our R-CNN, trained on the 

SPIKE data set. �is is to be compared with the mAP 

performance of other CNN’s applied to prominent data 

sets such as PASCAL VOC  [35] and COCO [33], for the 

detection of 21 and 80, respectively, regular object classes 

such as, men, car, horse, dog, cat, bicycle, etc. Figure  7 

shows the relationship between ground truth number 

of spikes and the estimated number of spikes, for each 

of the 20 images. �e R-CNN approach provides a near 

one-to-one estimate of the number of spikes per image 

(the line slope is 1.0086), with an intercept value of − 3.95 

indicating an intrinsic error of just four spikes. �e model 

produces a high R2 value of 0.93, proving a strong linear 

relationship between the ground truth and the results of 

our approach.

�e efficiency of a training model can also be analyzed 

by observing the training loss and error rates while the 

model is learning. An epoch is defined as one full pass 

forwards and backwards through the network during the 

learning stage. While the model weights are initialized 

randomly, after a number of epochs they become closer 

to their final values, progressively reducing rates of error 

and training loss. Figure  8 shows that the loss metric 

(described in full detail in Additional file  2) is decreas-

ing over subsequent epochs of training. Although the loss 

and error rate is initially high, after each training epoch 

Fig. 6 An example of a generated output image (b) from a test image (a). Detected spikes are indicated using bounding boxes along with their 

respective classification confidences. Among 82, 78 spikes were detected with a mAP of 0.7211 and an accuracy of 95.18%

Table 3 average detection accuracy (ADA) ( % ) 

of the Faster R-CNN on di�erent SPIKE dataset models

Test images Base Extended model

GSYC (%) + GSGC (%) + YSYC (%) GSYC++ (%)

GSYC (20) 93.4 92.2 91.7 92.9

GSGC (5) 89.6 94.5 87.4 93.7

YSYC (5) 84.8 86.5 93.1 92.3

GSYC + 
GSGC + 
YSYC (30)

89.8 90.7 91.9 93.2

Fig. 7 Ground truth versus estimated number of spikes per plot. 

The horizontal axis refers to the number of spikes estimated by the 

proposed approach and the vertical axis refers to the number of 

spikes that have been manually counted
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the reduced rate of error is accompanied by a higher 

detection accuracy; the loss and error rates become 

almost constant after 200 epochs indicating that no fur-

ther improvement is possible. Based on several trials the 

number of epochs was fixed at 400 to avoid overfitting. 

�is choice produced the high accuracy results presented 

in this article.

When limited to GSYC images, the GSYC model 

proved to return the highest accuracy in terms of ADA, 

valued as a percentage of spikes detected, as testing and 

training images covered plants at the same growth. When 

applied to GSGC or YSYC testing images, however, while 

still achieving a high accuracy, the performance had 

declined. Including GSGC and YSYC images in the test 

image set reduced the accuracy from 93.4 to 91.8% and 

88.7%, respectively. Clearly, detection accuracy deterio-

rates when testing with images that are unknown to the 

trained model. Note also that the lower detection accu-

racy following inclusion of YSYC images in the GSYC 

data set points to the increased difficulty of differentiat-

ing yellow spikes from yellow canopy. �e ADA compari-

son reflects the anticipated and indeed intuitive fact that 

a model can perform best when applied to similar types 

of images as those used for training. �e consistent mAP 

results confirm the ADA finding.

�e same situation is reflected by the + GSGC and + 

YSYC models. �ese models work well when applied to 

image types that are included in the respective training 

sets. Not surprisingly, the GSYC++ model performs 

consistently better, in terms of both ADA and mAP, for 

all types of testing samples. It is not clear what factors 

are responsible for the highest degree of accuracy found 

for the GSYC + YSYC + GSGC image set. In light of the 

superior accuracy of the GSYC++ model it can be con-

cluded that a model is particularly robust if trained with 

all types of spike-versus-canopy scenarios. With no a pri-

ori knowledge of samples, this model will perform bet-

ter than the other training models. In fact, in the other 

models, the mAP for spike detection is reduced wherein 

GSYC++ model it is higher while maintaining the higher 

accuracy of 93.2% . Considering that we are dealing with 

in-field imaging complexities and we are seeking to detect 

hundreds of spikes in an image, the mAP value of 0.6763 

leading to a 93.2% detection accuracy with the extended 

GSYC++ model is significantly better than the perfor-

mance exhibited with the conventional VOC07 or COCO 

data sets  [33], with values ranging from 64 to 78%.

From Tables 3 and 4, it can be concluded that if a model 

is trained properly, Faster R-CNN can detect with high 

accuracy spikes in images that were acquired at the same 

growth stage and in an equivalent category. �e preci-

sion of a model may drop but its scalability and robust-

ness will depend on how well it is trained, particularly by 

including all different types of complex scenarios. Based 

on the performances of the different CNN models and 

considering the ADA and mAP metrics for bounding box 

regression described in Additional file  2, the GSYC + + 

model was chosen to analyze the spike density variation 

across the different treatments applied to the different 

wheat varieties. For this latter investigation we selected 

an imaging date that is different from the dates used for 

data acquisition and training of the CNN models.

Spike density analysis

A third contribution of this paper is a comparative analy-

sis of spike density for the different wheat varieties under 

the different treatments. �e 10 varieties underwent 

three different fertilizer treatments: no treatment, early 

treatment, and late treatment. Determining spike density 

as a function of genotype and treatment should provide 

some insight into their relative contribution to yield. �e 

latter is based on the total number of detected spikes 

within the ROI within each plot, resulting in an esti-

mate of spike density (number per square meter). Since 

the ROI is uniformly cropped and consistently defined, 

edge effects are minimized. To quantify spike density, we 

Fig. 8 Number of epochs versus training loss. While training loss 

begins large it steadily decreases over the training epochs until 

eventually, at around 200 epochs, the benefit of further training 

appears to be negligible

Table 4 Detection mAP of Faster R-CNN on di�erent SPIKE 

dataset models

Test images Base Extended model

GSYC + GSGC + YSYC GSYC++

GSYC (20) 0.6653 0.6462 0.6435 0.6575

GSGC (5) 0.6570 0.7077 0.6405 0.6857

YSYC (5) 0.6546 0.6590 0.7163 0.7085

GSYC + GSGC + 
YSYC (30)

0.6050 0.6413 0.6520 0.6763
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have constructed another test set different from the set 

of images used in training and from the previous test-

ing analysis. �e image set is derived from the imaging 

session conducted on 7/11/2017. �is test set contains 

90 images of the 10 different varieties subject to the 

three treatments, with three replicates for each case. We 

remark in passing that the spike densities found in this 

study were consistent with the conditions for the region 

and standard sowing rate (45 g of seed per plot). �e den-

sities thus are not as high as found in other parts of Aus-

tralia or elsewhere in the world.

Table 5 shows the number of spikes detected using the 

GSYC++ model. For the different categories of variety 

× treatment, the average values show the mean num-

ber of spikes detected in the three replicated plots. It is 

clear that the untreated wheat plants generally produced 

fewer spikes per square meter compared with either of 

the other two treatments. In the case of early fertilization, 

the varieties Excalibur, Drysdale and Gladius produced 

significantly more spikes (and hence greater spike densi-

ties) than the other varieties (see Fig. 9). �e effect of an 

early treatment was more moderate for Kukri, Mace and 

Scout, whose densities increased by just over 15 spikes 

per square meter. In complete contrast, the effect of fer-

tilizer application on RAC875, at either time point, was 

negligible.

Regarding the timing of treatment, the early stage 

treatment resulted in significantly higher yields for nearly 

all varieties than what was produced by the same variety 

treated later in the season. We speculate that this was due 

at least in part to the longer exposure time of the ferti-

lized soil to rainfall, which facilitated greater uptake of 

nutrients than possibly occurred with the plants treated 

later in the season. On the other hand, it is also possible 

that the comparison is simply consistent with established 

findings [36] that an early treatment results in greater 

biomass, while a later treatment can instead result in 

increased grain nitrogen content. Unfortunately, no anal-

ysis of the grain was conducted in this field trial to con-

firm such an outcome. Further studies are underway to 

assess the importance of timing on the question of grain 

filling versus biomass production.

Shown also in Fig. 9 is the degree of variation between 

replicates of the 10 cultivars under different treatments. 

In the majority of cases, adding fertilizer early in the sea-

son reduced the degree of variation across replicates: no 

treatment resulted in a deviation of between 3 and 15 

spikes/m2 over the 10 varieties, while for the plots treated 

early, the spread reduced to between 1 and 5 spikes/m2 . 

�e greater consistency possibly highlights another 

aspect of fertilizer treatment. Applying fertilizer later in 

the season did little to improve consistency, with only 2 

out of 3 replicates showing similar results, the third dif-

fering significantly, as found in the case of no treatment. 

Indeed, if one removes the outliers then one could con-

clude that, as in the case of RAC875, there is little dif-

ference between the untreated plots and the late treated 

plots of Gregory, Excalibur and Magenta.

Conclusion
Estimating the yield of cereal crops grown in the field is a 

challenging task, yet it is an essential focus of plant breed-

ers for wheat variety selection and improved crop produc-

tivity. Most of the previous works involving image analysis 

of wheat spikes have been conducted in laboratory condi-

tions and controlled environments. Here, we have pre-

sented the first deep learning models for spike detection, 

trained on wheat images taken in the field. �e models 

are capable of accurately detecting wheat spikes within a 

complex and changing imaging environment. �e best per-

forming model produced an average accuracy and F1 score 

of 93.4% and 0.95, respectively, when tested on 20 images 

Table 5 Spike density (per square meter) of wheat varieties for di�erent types of treatments. The detection is performed 

using the GSYC++ model

Wheat No treatment Early treatment Late treatment

Varieties Rep1 Rep2 Rep3 Avg Rep1 Rep1 Rep3 Avg Rep1 Rep2 Rep3 Avg

Kukri 136 146 141 141 165 160 167 164 148 162 152 154

RAC875 130 148 142 140 154 145 145 148 135 146 142 141

Excalibur 145 129 146 140 173 180 172 175 145 159 146 150

Gladius 142 142 136 140 169 177 176 174 140 156 160 152

Drysdale 152 141 145 146 170 178 180 176 159 146 163 156

Mace 158 143 149 150 170 170 164 168 173 167 149 163

Yitpi 146 129 142 139 160 161 165 162 150 160 161 157

Scout 135 152 154 147 163 164 168 165 139 158 183 160

Magenta 133 160 160 151 166 163 166 165 160 147 155 154

Gregory 149 158 143 150 161 164 155 160 149 160 153 154
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containing 1570 spikes in total. Although we have not 

applied the model to oblique-view images of higher spike 

density field plots, due to the lack of access to such images, 

we expect the model to perform well at higher densities 

notwithstanding partial occlusion. Improvement is never-

theless possible by complementing the SPIKE data set with 

further training images of partial spike objects. �e ability 

to count spikes in the field, a trait closely related to crop 

yield, to such a degree of accuracy, without destructive 

sampling or time consuming manual effort, is a significant 

step forward in field-based plant phenotyping.

Additional �le

Additional �le 1.  View Comparison and Spike Detection Results Com-

parison between images captured from the top and oblique view angle. 

Additional spike detection results which contain the original image and 

corresponding spike detected output image for GSGC, GSYC and YSYC 

test images.

Additional �le 2. CNN for Spike Detection. Technical details of the overall 

Faster R-CNN architecture and step-wise description to train the model for 

spike detection.
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