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1.  INTRODUCTION

The Fifth Assessment Report (AR5) of the Intergov-

ernmental Panel on Climate Change (IPCC 2013)

illustrates the latest advances in climate change

research since the publication of AR4 (IPCC 2007). It

assesses the science of climate change, impacts,

adaptation and mitigation in the present and future

at both regional and global scales. Understanding

the causes of observed changes in climate is an

important focus of this assessment, since this pro-

vides not only an explanation for the observed

changes, but also confidence in model performance

and projection. AR5 states that ‘Human influence has

been detected in warming of the atmosphere and the

ocean, in changes in the global water cycle, in reduc-

tions in snow and ice, in global mean sea level rise,

and in changes in some climate extremes’ (IPCC

2013, p. 17).

Detection and attribution of climate change in

terms of the relative contribution of anthropogenic

and natural factors is a hot topic, and one of the key

issues in the global climate change debate. It pro-

vides an important scientific basis to answer the

question of whether, and to what extent, human

activities have influenced climate change. The detec-

tion and attribution of climate change was initially

conducted on the annual mean temperature at a

global scale. Now, it extends to other components of

the climate system such as precipitation, sea level

pressure, climate extremes, and other variables that

are more impact-relevant and occur on various

space−time scales (IPCC 2013).

The use of climate model simulations is a very

important approach in climate change detection and

attribution analyses, as reviewed by Hegerl & Zwiers

(2011). The recently completed Coupled Model Inter-

comparison Project Phase 5 (CMIP5) provides histor-

ical climate simulations under the combined effect of

external forcings as well as individual forcings, with

a compilation of over 50 models from different mod-

eling centers around the world (Taylor et al. 2012).

These simulations provide an important foundation

for the detection and attribution of climate change as

it enables climatic responses to various forcings to be

assessed. Using the Hadley Centre new Global Envi-
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ronmental Model 2 Earth System (HadGEM2-ES)

model simulations, Stott & Jones (2012) detected the

effect of greenhouse gas forcing on the global mean

temperature. Gareth et al. (2013) conducted a more

comprehensive analysis by using simulations from

multiple models, trying to attribute observed histori-

cal near-surface temperatures to anthropogenic and

natural external forcings. The results indicated that

anthropogenic emissions of greenhouse gases are

the dominate causes of the observed global warming

that has occurred since the mid-20th century. Of the

estimated observed warming trend of ~0.6 K, be -

tween 0.6 and 1.2 K can be attributed to greenhouse

gases, balanced by a counteracting cooling of be -

tween 0 and −0.5 K from other anthropogenic forc-

ings such as anthropogenic aerosols.

While it is important to understand the causes of

warming at a global scale, the interests and concerns

of policy makers are aimed more towards regional

and even local scales. Thus, considerable efforts

have been made towards attributing observed

changes at regional scales (e.g. Zwiers & Zhang

2003, Zhang et al. 2006, Hegerl et al. 2007, Stott et al.

2010). As in other parts of the world, significant

warming has been observed over China in the last

several decades (e.g. Zhai & Pan 2003, Tang & Ren

2005, Qian et al. 2011, Ren & Zhou 2014).

A limited number of studies have been conducted

using the optimal fingerprinting method, to under-

stand the causes of these observed temperature

changes. Zhou & Yu (2006) analyzed temperature

changes in the 20th century, simulated by 19 models

from CMIP3. They found a high correlation between

mean temperature in China and model simulated

responses under the combined effects of anthro-

pogenic and natural forcing, indicating an influence

from external forcings. External forcing explained

32.5% of the annual mean temperature change in the

20th century over China, while internal variability

was as high as 67.5%. This suggests that attribution

of the changes at a regional scale is much more com-

plex compared to that at a global scale. Using the

optimal fingerprinting method, Zhang et al. (2006)

quantitatively compared temperature changes in the

observations and responses to external forcings sim-

ulated by 2 models over different regions, including

China. They detected the effect of anthropogenic

forcing from greenhouse gases and sulfate aerosols

in the annual mean temperature over China. Using

an optimal detection method, Wen et al. (2013) com-

pared spatio-temporal patterns of 4 extreme indices

(namely annual maxima of daily maximum and daily

minimum temperatures and annual minima of daily

maximum and daily minimum temperatures) with

those observed and simulated by the Canadian Earth

System Model 2 (CanESM2) over China between

1961 and 2007. They established a clear connection

be tween human emission of greenhouse gases and

ex treme temperature changes in China. More

recently, Sun et al. (2014) compared the observed

summer temperature changes with those simulated

by CMIP5 models, with a focus on the 2013 heat

event in eastern China, and found contributions from

anthropogenic influences. Zhou et al. (2014) reported

that both anthropogenic influences and the internal

variability of the Pacific decadal oscillation/inter-

decadal Pacific oscillation (PDO/IPO) contributed to

the heat event in eastern China in 2013. Other attri-

bution studies include the applications of a single

global model, the Bergen Climate Model (BCM;

Wang et al. 2013) and a single regional model, the

Regional Climate Model version 4 (RegCM4; Zhang

et al. 2015) to investigate the possible human influ-

ences on the rainfall patterns observed in China over

the last several decades.

The objective of the study was to try to further

understand the surface temperature response over

China to external forcings during the period of 1961−

2005 based on the CMIP5 multi-model ensemble. We

focused on annual mean temperature only in the

present period. 

2.  DATA

2.1  Observational data

The observational dataset employed in this study is

an updated version of the gridded daily scale dataset,

CN05.1, developed by Wu & Gao (2013). The differ-

ence between the updated dataset and the original

CN05.1 is that station data employed in the interpo-

lation has been homogeneously adjusted by China’s

National Meteorological Information Center using

RHtest of Wang et al. (2007). This homogenization

resulted in some differences between the 2 versions,

similar to that found by Li et al. (2015) using a differ-

ent method, Multiple Analysis of Series for Homoge-

nization (MASH).

CN05.1 is the further improvement of CN05 (Xu et

al. 2009), but is based on interpolation from more sta-

tion observations (760 for CN05 vs. 2416 for CN05.1),

comprises more variables and has a higher spatial

resolution (0.25° latitude × 0.25° longitude). The

data set was constructed following the commonly

used ‘anomaly approach’, in which a gridded clima-
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tology is first calculated, and then a gridded daily

anomaly is added to the climatology to obtain the

final dataset. The density of stations used in CN05.1

is quite high over eastern China, but not so high in

the west where population density and urban estab-

lishments are much lower, in particular over the

Tibetan Plateau. More detailed information concern-

ing the data construction and comparison with other

datasets can be found in Xu et al. (2009) and Wu &

Gao (2013). CN05 and the updated CN05.1 are

becoming more popular models for validation analy-

sis over the Chinese region (e.g. Gao et al. 2011, Wu

et al. 2012, Guo & Wang 2013, Sui et al. 2014).

2.2.  Model data

A typical detection and attribution analysis

requires the use of model simulations to estimate cli-

mate responses (or signals) to external forcing as well

as to internal variability. For this purpose, we used

296 simulations from the 20 models participating in

CMIP5 under various external forcings (Table 1).

These models produced different ensembles for the

period from 1850−2005, including (1) 118 historical

forcing runs that included both anthropogenic and

natural external forcing (ALL); (2) 48 natural forcing

runs that only contain changes in solar irradiance

and volcanic activity (NAT); and individual forcing

runs, including (3) 42 runs under greenhouse gases

(GHG); (4) 33 runs under anthropogenic aerosol

(AA); (5) 15 runs under land use change (LU); and (6)

40 anthropogenic runs (ANT) (see Table 1). Each

ensemble from a model contained at least 3 member

runs. Detailed information on forcing data can be

found on the CMIP5 website (http://cmip-pcmdi. llnl.

gov/ cmip5/forcing.html). These models were also

conducted using different years of pre-industrial con-

trol simulation (CTL): a total of 13 008 yr in the 20

models. Values of annual mean temperature were

extracted from the monthly outputs of these simula-

tions for the estimation of internal variability. All

model data were bilinearly interpolated to the com-

mon 1° × 1° grids.
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Models                          Institution and country                                                  Atm. Res                   Number of runs 

                                                                                                                                                     (lon × lat)     ALL  NAT GHG ANT  LU  AA

BCC-CSM1-1               Beijing Climate Center,                                                                       128 × 64         3        −        −        −       −      −

                                      China Meteorological Administration, China

BCC-CSM1-1-m           Beijing Climate Center,                                                                       320 × 160       3        −        −        −       −      −

                                      China Meteorological Administration, China

CCSM4                         National Center for Atmosphere Research, United States               288 × 192       6        4        3        −       −      −

CESM1-CAM5             National Center for Atmosphere Research, United States               288 × 192       3        −        −        −       −      −

CNRM-CM5                 CNRM and CERFACS, France                                                            256 × 128      10       6        6       10      −      −

CSIRO-Mk3-6-0           CSIRO and QCCCE, Australia                                                            192 × 96        10       5        5        5       −      5

CanESM2                     Canadian Centre for Climate Modeling and Analysis, Canada      128 × 64         5        5        5        −       5      5

FGOALS-g2                  Institute of Atmospheric Physics, Chinese Academy of Sciences    128 × 60         5        −        −        −       −      −

                                      and Tsinghua University, China

FIO-ESM                       The First Institution of Oceanography, China                                   128 × 64         3        −        −        −       −      −

GFDL-CM3                   NOAA Geophysical Fluid Dynamics Laboratory, United States      144 × 90         5        3        3        3       −      3

GISS-E2-H(p1,p2,p3)   NASA, GISS (Goddard Institute for Space Studies), United States 144 × 90      3 × 5     5        5       10      5     10

GISS-E2-R(p1,p2,p3)    NASA, GISS (Goddard Institute for Space Studies), United States 144 × 90      3 × 6    10       5       10      5     10

HadGEM2-ES              MOHC (Met Office Hadley Centre), UK                                            192 × 145       4        4        4        −       −      −

IPSL-CM5A-LR            Institute Pierre-Simon Laplace, France                                                96 × 96         6        3        3        2       −      −

MIROC-ESM                NIES, JAMSTEC, Japan                                                                      128 × 64         3        3        3        −       −      −

MIROC5                        AORI, NIES, JAMSTEC, Japan                                                          256 × 128       5        −        −        −       −      −

MPI-ESM-LR                Max Planck Institute for Meteorology, Germany                              192 × 96         3        −        −        −       −      −

MPI-ESM-MR               Max Planck Institute for Meteorology, Germany                              192 × 96         3        −        −        −       −      −

MRI-CGCM3                Meteorological Research Institute, Japan                                          320 × 160       5        −        −        −       −      −

NorESM1-M                 Norwegian Climate Centre, Norway                                                 144 × 96         3        −        −        −       −      −

Sum

Models                                                                                                                                                               20      10     10)       6       3      5

(runs)                                                                                                                                                               (118)   (48)    (42    (40)  (15) (33)

Table 1. The 20 models included in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Atm. Res: atmospheric model resolution

(in no. of grid squares); ALL: includes anthropogenic and natural external forcings; NAT: only solar irradiance and volcanic activity; 

GHG: greenhouse gases; ANT: anthropogenic influences; LU: land use changes; AA: anthropogenic aerosols; (−) not included
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3.  METHODS AND DATA PROCESSING

3.1.  Detection and attribution method

Climate change detection is defined as the process

of demonstrating that climate (or a system affected

by climate) has changed in some defined statistical

sense, without providing a reason for that change.

Climate change attribution is defined as the process

of evaluating the relative contributions of multiple

causal factors to a change or event with an assign-

ment of statistical confidence. In the context of IPCC,

detection also occasionally refers to the discovery of

an influence from external forcings, and thus is

closely linked to attribution (IPCC 2013). Casual fac-

tors usually refer to external influences, which may

be anthropogenic (e.g. greenhouse gases, aerosols,

ozone precursors, land use) and/or natural (e.g. vol-

canic eruptions, solar cycle modulations).

Detection and attribution have 4 core elements: ob -

servations of climate indicators from which climate

responses to external forcing might be detected; an

estimate of external forcing; a quantitative  physically-

based understanding of how external forcing might

affect these climate indicators, usually based on cli-

mate model simulations; and an estimate of climate

internal variability, also typically based on climate

model simulations. Additionally, it is important that

the key external forces are identified, that signals and

noise are additive, and that the large-scale patterns of

response are correctly simulated by climate models

(Bindoff et al. 2013).

A typical detection and attribution analysis uses an

optimal fingerprint method based on generalized

multivariate linear regression (e.g. Allen & Tett 1999,

Allen & Stott 2003). The optimal fingerprinting

method assumes that the climate response to differ-

ent forcings superimposes linearly, and that the

forced response also superimposes linearly on

unforced climate variability. Consequently, detection

and attribution relies heavily on climate models.

The optimal fingerprint method assumes that sig-

nals are linearly additive. This was found to be the

case even for a highly non-linear system (Allen &

Stott 2003). The linearity of the climate response to

different forcings has been evaluated in numerous

studies and found to work well, at least for the

transient climate response. The larger equilibrium

temperature responses to aerosol and greenhouse

gas emissions do not necessarily combine linearly

(Ming & Ramaswamy 2009). However, as the

changes we examined in this study were small rel-

ative to the equilibrium state, we would assume

such non-linearity to have little impact on our

analysis.

The optimal fingerprint method assumes the obser-

vations are the sum of expected changes (scaled sig-

nals) and internal variability (residual), expressed as

following equation:

y = βX + ε

Here, the vector y is a filtered version of the ob -

served temperature record. Matrix X represents

model-simulated signal patterns consisting of 1 or 2

vectors (i.e. either the estimated ANT signal in our 1-

signal analysis or the estimated GHG and AA signals

in our 2-signal analysis). Vector ε represents natural

(residual) variability that is not explained by the sig-

nals. The scaling factor β, a vector of 1 or 2 elements,

adjusts the signal amplitude so that the scaled signal

best matches the observations.

We conducted a single-signal analysis involving

only 1signal vector at a time. The detection of a signal

would indicate the presence of response to a particu-

lar forcing (or combined forcings) in the observations.

As the observations may be influenced by multiple

forcing factors, regression models with multiple pre-

dictors provide a better fit. Therefore, we also con-

ducted a 2-signal analysis in which X had 2 signal

vectors. The use of a 2-signal analysis allows the sep-

aration of responses to different forcings, so a clearer

attribution to individual forcing can be obtained.

3.2.  Data processing

3.2.1.  Methods

The detection analysis was conducted based on

temperature evolution over both space and time. For

both observations and model simulations, we com-

puted a regional time series of annual mean temper-

ature anomalies over 8 sub-regions of China using

area weighting. These regions were defined accord-

ing to administrative boundaries and societal and

geographical conditions, and were used in China’s

National Assessment Report on Climate Change

(CCNARCC 2007). The 8 sub-regions consisted of

northeastern China (NEC: 39−54° N, 119−134° E),

north China (NC: 36−46° N, 111−119° E), eastern

China (EC: 27−36° N, 116−122° E), central China

(CC: 27−36° N, 106−116° E), southern China (SC: 20−

27° N, 106−120° E), southwestern China (SWC1: 27−

36° N, 77−106° E; SWC2: 22−27° N, 98−106° E) and

northwestern China (NWC: 36−46° N, 75− 111° E), as

outlined in Fig. 1 by the red rectangles.
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Detection and attribution analysis must usually be

conducted within relatively small dimensions, due to

a lack of sample data for the estimation of noise

covariance, or because the estimated noise covari-

ance matrix is not ‘full rank’ if the dimension is too

large. We used 2 approaches to obtain small dimen-

sions from annual mean temperatures: (1) we used

multi-year non-overlapping means to reduce the

time dimension; and (2) we further reduced the

dimension by projecting the space−time series onto

leading empirical orthogonal functions (EOFs) of the

model-simulated natural variability. The use of

shorter time averages may provide a better chance

to detect climate response to short-time period forc-

ings such as volcanic activities. However, the use of

shorter time averages also requires estimation of a

larger covariance matrix, which results in larger esti-

mation error with the limited data sample. According

to Wen et al. (2013), if an analysis is conducted on

 different multi-year non-overlapping mean series,

the detection results are not sensitive to the use of

time averaging. For this reason, we based our results

on the analysis of a 9 yr mean series. The number of

EOFs retained was determined by a residual consis-

tency check (Allen & Tett 1999). Further details on

the data processing are described in the next section.

3.2.2.  Observations and model data processing

The original resolution of CN05.1 is 0.25° latitude ×

0.25° longitude, and was re-grid to the 1° × 1° grids in

the present study using the interpolation method of

conservative remapping in order to facilitate compar-

ison with model simulations. Observed daily temper-

atures were averaged to obtain monthly values over

China. Monthly anomalies relative to the base period

of 1961−1990 were then computed for each grid.

Finally, regional mean series were computed based

on available grid values weighted by the grid box

area for the 8 sub-regions. The 9 yr non-overlapping

averages of regional annual series were used for sub-

sequent detection and attribution analyses.

Due to the different spatial resolution of multi-

model data, we re-grid all model data into the com-

mon 1° latitude × 1°longitude grid. Also, prior to
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Fig. 1. Topography of China showing the spatial distribution of 2416 observation stations (dots: major stations; crosses: other sta-

tions). Red rectangles identify the 8 sub-regions used in this study: NEC, northeastern China; NC, north China; EC, eastern 

China; CC, central China; SC, southern China; SWC1 and SWC2, southwestern China; NWC, northwestern China
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analysis, we masked them to the same space−time

coverage as the observations. Signals were estimated

as multiple model ensemble means by first comput-

ing individual model ensemble means and then aver-

aging the utilized models. These included signals for

the effects of ANT and NAT and their combined

effects, as well GHG, AA, and LU.

Many different methods have been employed to

estimate the climate response to anthropogenic forc-

ing. One method is to compute multi-model ensem-

ble means for simulations under ANT forcing. The

resulting signal is referred to as ANT1. Another

method is to use the difference between the ALL and

NAT signals (i.e. ANT = ALL − NAT). The resulting

signal is referred to as ANT2. The third method is to

accumulate responses from individual anthropogenic

forcings, including GHG, AA, and LU. The resulting

signal is referred to as ANT3. Note that the latter 2

estimates assume that climate response to various

forcing agents may be additive (e.g. Cubasch et al.

2001, Meehl et al. 2004). This assumption has been

validated for temperature at the global scale (Meehl

et al. 2004), although it has not been examined over

China. Each method has its own advantages and dis-

advantages. In this paper, we only used the ANT1

(multi-model ensemble mean under ANT forcing) as

the estimate for the anthropogenic forcing signal

(hereinafter referred to as ‘ANT’).

Model data were further processed to produce data

for noise estimation as detailed below. In order to

make the best use of the available data, we included

inter-ensemble differences when estimating covari-

ance structure. This was done by dividing model

 simulations under different external forcings into 2

chunks: for 1961−2005 and 1901−1945. Respective

ensemble means were then removed. To make the

noise data comparable with observational coverage,

simulations for 1901−1945 were masked with the

observational data for 1961−2005, with the year 1961

in the observation matching the year 1901 in the sim-

ulation. Secondly, we divided the 13 008 yr CTL from

the 20 models into non-overlapping, 45 yr chunks and

obtained 2 independent samples, each having 130

chunks of data. These 130 chunks of data, along with

those from different forcing runs (including 118 of

the 45 yr chunks from ALL simulations, 42 from NAT,

48 from GHG, 40 from ANT, 15 from LU, and 33 from

AA), made up 2 sets of 426 45-yr model output

chunks, plus the preindustrial CTL, which are avail-

able for the estimation of natural variability (noise1

and noise2). The 45 yr chunks of noise data were split

into 2 independent sets, with one set used for opti-

mization and the other for testing.

4.  RESULTS

4.1.  Observations and simulations

Fig. 2 shows linear trends in annual mean temper-

atures for the observed trend as well as for model

simulated temperature responses to different forc-

ings. An increase in the observed mean temperature

occurred almost everywhere in China. Increases in

northeastern and western China were much stronger

than in other regions. Some cooling trends occurred

in the Sichuan Basin area (Fig. 2a). These findings

are consistent with results reported in previous stud-

ies (e.g. Ren et al. 2012). Mean temperature re -

sponses to ALL, GHG, ANT, and NAT were charac-

terized by warming trends. NAT (Fig. 2c) showed the

weakest trend; GHG (Fig. 2d) exhibited the strongest

trend. ALL (Fig. 2b) and ANT (Fig. 2g) trends were of

similar magnitudes, which were generally weaker

than the observed trend. In general, the response to

LU forcing (Fig. 2e) exhibited a negative trend, with

a similar negative trend appearing in most areas of

China, especially on the Tibetan Plateau.

Fig. 3 displays a time series of annual mean temper-

atures averaged over China, expressed as tem -

perature anomalies relative to the 1961−1990 mean

for both observations and model simulations. Visual

inspec tion suggests a good match in the long-term

changes in annual mean temperature between the

observed trend and the responses to ALL, or between

observations and responses to GHG. However, the

observed trend was clearly above the upper range of

model simulated responses to NAT. Additionally,

model simulated responses to LU and AA showed

negative trends. Clearly, the observed temperature

changes can be explained by a response to ALL or

GHG forcings, but not by NAT, LU or AA alone. Lin-

ear trends in the observations and in multi-model en-

semble means for different forcings are provided in

Table 2. The results indicate that trends of ALL,

GHG, ANT were close to that of the observed trend

(especially for GHG), while the trend of NAT was

very weak, and the trend of LU and AA was negative.

4.2.  One-signal analyses

Fig. 4a shows the best estimates of scaling factors

and their 90% confidence intervals for ALL, GHG,

ANT, NAT, and LU based on 1-signal optimal analy-

ses for the annual mean temperature. The detection

results are not sensitive to the number of EOFs re-

tained. The ALL, GHG and ANT signals were ro-
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Fig. 2. Estimated trend of annual mean temperatures (°C change over 45 yr) over China under different forcings during the pe-

riod 1961−2005. OBS: observed trend; ALL: includes anthropogenic and natural external forcings; NAT: includes only solar 

irradiance and volcanic activity; GHG: greenhouse gases; LU: land use change; ANT: anthropogenic influences
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bustly detected in annual mean temperature individ-

ually across a wide range of EOF truncations as their

scaling factors were significantly greater than zero.

Results shown in Fig. 4a are based on 40 EOFs ‘full

rank’, which passed a residual consistency test.

Model simulated responses to the effect of combined

anthropogenic and natural forcing were smaller

(though not significantly) than the observed change.

The NAT-only and LU signals were not detected in

the observation. This suggests that GHG, or ANT in-

cluding GHG, or ALL including ANT alone can ex-

plain observed temperature changes, but NAT

forcing or LU forcing alone cannot. Changes in land

cover can have substantial impacts on extreme

tempera tures due to land− atmosphere interactions

(Sene viratne et al. 2006). Christidis et al. (2013)

showed that land use changes may have a cooling ef-

fect on temperature extremes at a global scale (espe-

cially on extremely warm days) due to the increase of

albedo accompanied with deforestation. Wen et al.

(2013) also found a detectable effect of LU on annual

maximum daily temperatures, suggesting that the

impact of land use changes on extremely warm days

might be detectable even at a regional scale. How-

ever, the LU effect is hard to detect in annual mean

temperature changes on a global scale (Christidis et

al. 2013). Although there is a cooling effect of the

mean temperature response to LU over China as sim-

ulated by multi-models (Fig. 2e), the signal was not

detectable in our research. Consequently, we con-

clude that LU is not a dominant forcing.

4.3.  Two-signal analyses

A 2-signal analysis was also carried out with differ-

ent combinations of forcing responses, including

ANT (individual anthropogenic forcing) and NAT

(only natural forcing), GHG (only GHG) and other

anthropogenic forcing (ANT-GHG, including anthro-

pogenic aerosols and land use), LU and other anthro-

pogenic forcing (ANT-LU, representing GHG and

anthropogenic aerosols). These analyses shed more

light on the relative importance of individual forcing.

Fig. 5 displays 90% confidence regions and mar-

ginal confidence intervals for the 2-signal detection

analysis using ANT and NAT. The origin (0, 0) is out-

side the 90% confidence region, suggesting that

ANT and NAT are jointly detected at the 90% confi-

dence level. The marginal 90% confidence intervals

for ANT are above 0, but for NAT, include 0. This

suggests that ANT is clearly detected in the annual

mean temperature but NAT is not. It also indicates

that the effects of ANT on annual mean temperatures

can be separated from NAT.

The magnitude of scaling factors and their 90%

marginal confidence intervals for ANT are also com-

parable to those from the 1-signal analysis. The 2-

signal analysis results are also very robust to differ-
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Fig. 3. Annual mean temperature anomalies averaged

across China from observation and model simulations dur-

ing the period of 1961−2005. Shaded bands: multi-model

range. OBS: observed trend; ANT: anthropogenic influ-

ences; NAT: includes only solar irradiance and volcanic ac-

tivity; GHG: greenhouse gases; AA: anthropogenic aerosols; 

LU: land use change

OBS           ALL      GHG     NAT       LU        AA       ANT

0.28            0.18       0.25       0.09      −0.04     −0.08      0.17

Table 2. Observed and model simulated trends (°C change

over 10 yr) of annual mean temperature over China. 

See Fig. 2 for abbreviations
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ent EOF truncations. ALL and ANT

were clearly detectable but NAT was

clearly not detectable in the 1-signal

analyses. That ANT and NAT can be

jointly detected, and the effects of

ANT can be separated from those of

NAT in the 2-signal analyses suggests

that only anthropogenic forcing can

explain the ob served annual mean

temperature changes in China from

1961 to 2005.

A 2-signal analysis conducted on a

combination of individual anthro-

pogenic forcings suggests that the

effect of GHG could be separated

from those of other anthropogenic

forcings for annual mean tempera-

ture. Analysis for annual mean tem-

perature conducted with GHG

against ANT-GHG (Fig. 5b) suggests

that the effect of GHG could be sepa-

rated from the combined effect of

anthropogenic aerosols and land use

changes. The uncertainty range of

the ANT-GHG scaling factor was

much larger than that for GHG. A

comparison of LU against ANT-LU

(Fig. 5c) suggests that the effect of

land use change could be separated

from the combined effect of GHG and

anthropogenic aerosol, but the effect

of LU was not detected in the 1-signal

analysis.

The 2-signal analysis for AA and

GHG indicates that the effect of GHG

can be separated from that of AA, and

that the separate detection of AA

from GHG is very robust (Fig. 5d).

Analysis for GHG and LU failed to

separate the GHG contribution from

that of LU, suggesting that simulated

re sponses to GHG and LU may be

highly correlated (not shown).

Fig. 4b shows the attributable

warming of different forcings from 1-

and 2-signal detection. Attributable

warming was estimated as the linear

least-square trend of the relevant

time series multiplied by the corre-

sponding scaling factors. From the 1-

signal de tection results, the attributa-

ble warming of ALL and GHG to the

mean temperature of the observed
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trend was 1.29°C (90% CI 0.63~ 1.96°C) and 1.28°C

(90% CI 0.86~ 1.70°C), respectively (Fig. 4b). The

warming attributable to ANT was 0.99°C (90% CI

0.61~1.38°C), while the contribution of NAT was

0.04°C (90% CI −0.04~ 0.12°C) from the 2-signal ana -

lysis (Fig. 4b).

5.  DISCUSSION AND CONCLUSIONS

Using an optimal detection technique and CMIP5

multi-model simulations, we have shown that the

effect of anthropogenic forcing on climate change is

detectable in China. The combined effect of green-

house gas emissions and sulfate aerosol forcing is

clearly detectable in the observed annual mean tem-

perature change over China from 1961−2005. The

effects of ANT and NAT are separately detectable,

and the effect of GHG can be separated from other

anthropogenic forcings for annual mean tempera-

ture. The effect of LU failed to separate. The climate

response to greenhouse gas forcing can be clearly

and robustly identified in the annual mean tempera-

ture, and results show that only anthropogenic forc-

ing can explain the observed changes in China’s

mean temperature from 1961 to 2005.

Our detection results were based on the most state-

of-the-art multiple CMIP5 models. Our results are

consistent with, and further confirm the findings of

Stott (2003) — who used the single Hadley Centre

Coupled Model (HadCM3), and of Zhang et al.

(2006), who used 2 versions of 2 general circulation

models (GCMs) — that the anthropogenic influence

on warming can be detected in Asia.

In this study, the effect of LU was not detected. But

the influence of LU at the regional and local scales is

likely not negligible, and should not be discounted,

in particular over China with its long history of agri-

cultural activities and its high population (e.g. Gao et

al. 2007). Perhaps the global LU forcing data used in

our simulation did not fully reflect Chinese LU

changes, due to a lack of sufficient local or regional

details. Future regional climate detection studies,

employing the LU and aerosol datasets developed in

China based on both satellite and field based studies

(e.g. Liu et al. 2003, Zhang et al. 2012, 2013) are

needed in order to increase our knowledge and to

better understand the attribution of observed climate

change in this region.
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