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Executive Summary

Evidence has grown since the Fourth Assessment Report (AR4) that impacts of recent changes in climate on natural and human

systems occur on all continents and across the oceans. This conclusion is strengthened both by new and longer term observations and

through more extensive analyses of existing data. {18.3-6}

Reported impacts are caused by changes in climate that deviate from historical conditions, irrespective of the driver of climate

change. Most reported impacts of climate change are attributed to warming and/or shifts in precipitation patterns. There is also emerging

evidence of impacts of ocean acidification. Only some robust attribution studies and meta-analyses link responses in physical and biological

systems to anthropogenic climate change. {18.1, 18.3-5}

For many natural systems there is new or stronger evidence for substantial and wide-ranging impacts of climate change. These

systems include the cryosphere, water resources, coastal systems, and ecosystems on land and in the ocean. {18.3}

Impacts of climate change on the hydrological cycle, and notably the availability of freshwater resources, have been observed on all continents

and many islands. Glaciers continue to shrink worldwide, as a result of climate change (high confidence), affecting runoff and water resources

downstream. Climate change is the main driver of permafrost warming and thawing in both high-latitude and high-elevation mountain regions

(high confidence). Hydrological systems have changed in many regions because of changing precipitation or melting cryosphere, affecting

water resources, water quality, and sediment transport (medium confidence). {18.3.1, 18.5, Figure 18-2}

Across all climate zones and continents, the major role of climate change and increasing atmospheric carbon dioxide (CO2) on terrestrial and

freshwater ecosystems has been confirmed by new and stronger evidence on phenology (high confidence), productivity (low confidence),

distribution ranges (medium confidence), and other processes, affecting an increasing number of species and ecosystems. The majority of

species extinctions and the recession of the Amazon forest cannot be attributed reliably to climate change. Major climate-driven changes occur

in the Arctic region (high confidence), the boreal forest (low confidence), and many freshwater ecosystems (low to high confidence, region-

dependent). {18.3.2, 18.5}

Despite the known sensitivity of coastal systems to sea level rise, local natural and human perturbations preclude a confident detection of sea

level-related impacts of climate change. Climate change has had a major role in observed changes in abundance and distribution of many

coastal species (medium confidence). {18.3.3}

The physical and chemical properties of oceans (including the extent of Arctic sea ice) have changed significantly over the past 6 decades, due

to anthropogenic climate change. Marine organisms have moved to higher latitudes and changed their depth distribution or their phenology,

mostly as a result of the warming (high confidence). Coral reefs have experienced increased mass bleaching and mortality, driven mainly by

warming (high confidence). {18.3.3-4, 18.5, Table 18-8, Box 18-2}

Substantial new evidence has been collected on sensitivities of human systems to climate change. Climate change-related impacts

on human systems are often dominated by effects of changing social and economic factors. {18.4}

Production of wheat and maize globally and in many regional systems has been impacted by climate change over the past several decades

(medium confidence). The impacts of climate change on rice and soybean have been small in major production regions and globally (medium

confidence). Crop production has increased in some mid-latitude regions (United Kingdom, Northeast China) (high confidence). Evidence of

observed climate change impacts on food systems other than agricultural crops and fisheries is limited. {18.4.1}

Economic losses due to extreme weather events have increased globally, mostly due to increase in wealth and exposure, with a possible

influence of climate change (low confidence). {18.4.3} 
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There has been a shift from cold- to heat-related mortality in some regions as a result of warming (medium confidence), but despite many well-

documented sensitivities of human health to other aspects of weather, clear evidence of an additional observed climate change impact on

health outcomes is lacking. {18.4.4} 

Livelihoods of indigenous peoples in the Arctic have been altered by climate change, through impacts on food security and traditional and

cultural values (medium confidence). There is emerging evidence of climate change impacts on livelihoods of indigenous people in other

regions. {18.4.6, Box 18-5, Table 18-9}

There is emerging literature on the impact of climate change on poverty, working conditions, violent conflict, migration, and economic growth

from various parts of the world, but evidence for detection or attribution to climate change remains limited. {18.4}

Regional impacts of climate change have now been observed at more locations than before, on all continents and across ocean

regions. In many regions, impacts of climate change are now detected also in the presence of strong confounding factors such as pollution or

land use change. {18.6.2}

“Cascading” impacts of climate change from physical climate through ecosystems on people can now be detected along chains

of evidence. Examples include systems in the cryosphere, the oceans, and forests. In these cases, confidence in attribution to observed climate

change decreases for effects further down the impact chain. {18.6.3}

Evaluation of observed impacts of climate change supports risk assessment of climate change for four of the “Reasons for

Concern” developed by earlier IPCC assessments. (1) Impacts related to Risks to Unique and Threatened Systems are now manifested for

several systems (Arctic, glaciers on all continents, warm-water coral systems). (2) High-temperature spells have impacted one system with high

confidence (coral reefs), indicating Risks Associated with Extreme Weather Events. Elsewhere, extreme events have caused increasing impacts

and economic losses, but there is only low confidence in attribution to climate change for these. (3) Though impacts of climate change have

now been documented globally with unprecedented coverage, observations are still insufficient to address the spatial or social disparities

underlying the Risks Associated with the Distribution of Impacts. (4) Risks Associated with Aggregated Impacts: large-scale impacts, indicated

by unified metrics, have been found for the cryosphere (ice volume, high confidence), terrestrial ecosystems (net productivity, carbon stocks,

medium-high confidence), and human systems (crop yields, disaster losses, low-medium confidence). (5) Risks Associated with Large-Scale

Singular Events: impacts that demonstrate irreversible shifts with significant feedback potential in the Earth system have yet to be observed,

but there is now robust evidence of early warning signals in observed impacts of climate change that indicate climate-driven large-scale regime

shifts for the Arctic region and the tropical coral reef systems. {18.6.4} 

Though evidence is improving, there is a persistent gap in the knowledge regarding how certain parts of the world are being

affected by observed climate change. Data collection and monitoring are in need to gain wider coverage. Research to improve the

conceptual basis, timeliness, and knowledge about detection and attribution is needed in particular for human systems. {18.2, 18.7}
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18.1. Introduction

This chapter synthesizes the scientific literature on the detection and
attribution of observed changes in natural and human systems in response
to observed recent climate change. For policy makers and the public,
detection and attribution of observed impacts will be a key element to
determine the necessity and degree of mitigation and adaptation efforts.
For most natural and essentially all human systems, climate is only one
of many drivers that cause change—other factors such as technological
innovation, social and demographic changes, and environmental
degradation frequently play an important role as well. Careful accounting
of the importance of these and other confounding factors is therefore
an important part of the analysis. 

At any given location, observed recent climate change has happened
as a result of a combination of natural, longer term fluctuations and
anthropogenic alteration of forcings. To inform about the sensitivity of
natural and human systems to ongoing climate change, the chapter
assesses the degree to which detected changes in such systems can be
attributed to all aspects of recent climate change. For the development
of adaptation policies, it is less important whether the observed changes
have been caused by anthropogenic climate change or by natural climate
fluctuations. Where possible, the relative importance of anthropogenic
drivers of climate change is assessed as well.

18.1.1. Scope and Goals of the Chapter

Previous assessments, notably in the IPCC Fourth Assessment Report
(AR4; Rosenzweig et al., 2007), indicated that numerous physical and
biological systems are affected by recent climate change. Owing to
a limited number of published studies, human systems received
comparatively little attention in these assessments, with the exception
of the food system, which is a coupled human-natural system. This
knowledge base is growing rapidly, for all types of impacted systems,
but the disequilibrium remains (see also Section 1.1.1, Figure 1-1). The
great majority of published studies attribute local to regional changes
in affected systems to local to regional climate change.

The objective of the assessment was to cover the growing knowledge
about detection and attribution of impacts as exhaustively as possible.
To improve coverage across sectors and regions, the work was linked
directly to the assessments made by most other chapters of the report.
This ensured that knowledge gained in the expert assessments of any
given sector, system, or region found its way into this chapter. This
chapter uses a consistent set of definitions for detection and attribution
(elaborated in Section 18.2.1—these differ from those found in some
other chapters).

This chapter first reviews methodologies and definitions for detection
and attribution, including the uncertainties that are inherent in such
assessments (Section 18.2). It then assesses the scientific knowledge
base that has developed since the AR4, focusing on the different types
of impacted systems. The assessment covers the state of knowledge
across major natural (Section 18.3) and human systems (Section 18.4),
based largely on the respective sectoral chapters of this report (Chapters
3 to 7, 10 to 13). Assessment in confidence of the existence and cause

of impacts is made according to the definitions elaborated in Section
18.2.1.2. Based on this material, and on regional assessments mostly
drawn from the regional chapters of this report (Chapters 22 to 30), an
assessment is made to highlight regional impacts and also to identify
the regional pattern of observed impacts around the globe (Section 18.5).
A synthesis (Section 18.6) and an analysis of research and knowledge
gaps (Section 18.7) conclude the chapter.

18.1.2. Summary of Findings
from the Fourth Assessment Report

Based on Rosenzweig et al. (2007), IPCC (2007a, p. 8) reported that
“observational evidence from all continents and most oceans shows that
many natural systems are being affected by regional climate changes,
particularly temperature increases.” In particular, they highlighted
several areas where this general conclusion was supported by specific
conclusions that were reported with high confidence:
• Changes in snow, ice, and frozen ground had increased ground

instability in mountains and other permafrost regions; these changes
had led to changes in some Arctic and Antarctic ecosystems and
produced increases in the number and size of glacial lakes.

• Some hydrological systems had been affected by increased runoff
and earlier spring peak discharges; in particular many glacier- and
snow-fed rivers and lakes had warmed, producing changes in their
thermal structures and water quality.

• Spring events had appeared earlier in the year so that some terrestrial
ecosystems had moved poleward and upward; these shifts in plant
and animal ranges were attributed to recent warming.

• Shifts in ranges and changes in algal, plankton, and fish abundance
as well as changes in ice cover, salinity, oxygen levels, and circulation
had been associated with rising water temperatures in some marine
and freshwater systems.

In terms of a global synthesis, this assessment noted “that it is likely
that anthropogenic warming over the last three decades has had a
discernible influence on many physical and biological systems” (IPCC,
2007a, p. 9). Though it was based on analyses of a very large number
of observational data sets, the assessment noted a lack of geographic
balance in data and literature on observed changes, with marked
scarcity in low- and middle-income countries.

Evidence reported for human systems was scarce. IPCC (2007a, p. 9)
concluded with medium confidence only that, “other effects of regional
climate change on […] human environments are emerging, although
many are difficult to discern due to adaptation and non-climatic drivers.”
They especially noted effects of temperature increases on agricultural
and forestry management practices in the higher latitudes of the Northern
Hemisphere (NH), various aspects of human health, and some human
activities in snow- and glacier-dominated environments.

18.2. Methodological Concepts for Detection and
Attribution of Impacts of Climate Change

There are substantial challenges to the detection and assessment of the
impacts of climate change on natural and human systems. Virtually all
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such systems are affected by factors other than climate change. Isolating
the impacts of climate change therefore requires controlling for the
effects of other factors. The problem is further complicated by the ability
of many systems to adapt to climate change. In this section we
summarize the concepts underlying the detection and attribution of
impacts of climate change and the requirements for addressing the
main challenges.

18.2.1. Concepts and Approaches

18.2.1.1. Detecting and Attributing Change in the Earth System

Detection and attribution is concerned with assessing the causal
relationship between one or more drivers and a responding system.
From an analysis perspective, the Earth system can be separated into
three coupled subsystems, referred to here as the climate system, the
natural system, and the human system (Figure 18-1). Separation of drivers
from a responding system is a crucial element of formal detection and
attribution analysis. Many external drivers may influence any system,
including the changing climate and other confounding factors (Hegerl
et al., 2010). Each of the three subsystems affects the other two directly
or indirectly. For example, the human system may directly affect the
natural system through deforestation, which in turn affects the climate
system through changes in albedo; this can alter surface temperatures,
which in turn feed back on natural and human systems. If an observed

change in the human system impacts the climate system, we call this
an anthropogenic driver of climate change.

In this chapter we assess the impacts of climate change, where climate
change refers to any long-term trend in climate, irrespective of its cause
(see Glossary). The great majority of published scientific studies support
this type of assessment only. Some studies directly address the detection
of and attribution to anthropogenic climate change, relating observed
impacts, via the climate, to anthropogenic emissions of greenhouse gases
and other human activities. Because of the complexity of the causal
chain, investigation of this relationship is exceptionally challenging
(Parmesan et al., 2011). The findings from such studies are explicitly
highlighted in the chapter.

18.2.1.2. Concepts of Detection and Attribution of Climate
Change Impacts Used in this Chapter

“Detection of impacts” of climate change addresses the question of
whether a natural or human system is changing beyond a specified
baseline that characterizes its behavior in the absence of climate change
(Stone et al., 2013). The baseline may be stationary or non-stationary
(e.g., due to land use change), and needs to be clearly defined. This
definition of the detection of climate change impacts differs from that
in WGI AR5 Chapter 10 which concerns any change in a climate variable,
regardless of its cause. The definition adopted here focuses explicitly

P
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Direct impacts Subsequent impacts

Emission of CO
2

Warming Altered crop yield
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Figure 18-1 | Schematic of the subject covered in this chapter. The Earth system consists of three coupled and overlapping systems. Direct drivers of the human system on the 
climate system are denoted with a red arrow; some of these drivers may also directly affect natural systems. These effects can in turn influence other systems (dashed red arrows). 
Further influences of each of the systems on each other (confounding factors) that do not involve climate drivers are represented by blue arrows. Examples of drivers and their 
impacts are given in the table. Adapted from Stone et al. (2013).
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on the impact of climate change and not on trends related to other
factors. The statement of detection is binary: an impact has or has not
been detected.

“Attribution” addresses the question of the magnitude of the contribution
of climate change to a change in a system. In practice, an attribution
statement indicates how much of the observed change is due to climate
change with an associated confidence statement. Hence, attribution
requires the evaluation of the contributions of all external drivers to the
system change. In this chapter we simplify the assessment of this
relative contribution by specifying whether observed climate change
has had a “minor role” or a “major role” in the overall change in the
impacted system. A major role is assessed if the past behavior of the
system would have been grossly different in the absence of the observed
climate change. 

18.2.2. Challenges to Detection and Attribution

Two broad challenges to the detection and attribution of climate change
impacts relate to observations and process understanding. On the
observational side, high-quality, long-term data relating to natural and
human systems and the multiple factors affecting them are rare. In
addition, the detection and attribution of climate change impacts requires
an understanding of the processes by which climate change, in conjunction
with other factors, may affect the system in question (see also Box 18-1).
These processes can be nonlinear—for example, involving threshold
effects (e.g., De Young and Jarre, 2009; Wassmann and Lenton, 2012)—
and non-local in both space and time, involving lagged responses and
trans-regional effects due, for example, to trade or migration. 

Conclusions about the effect of climate change on natural and human
systems in this report are based on a synthesis of findings in the scientific

literature. A potential problem arises through the preferential publication
of papers reporting statistically significant findings (Parmesan and Yohe,
2003). Methods exist for detecting and correcting for publication bias in
formal quantitative synthesis analysis (Rothstein et al., 2005; Menzel et
al., 2006), but these methods cannot be applied in all situations (Kovats et
al., 2001). While the assessment in this chapter considers findings in the
context of consistency across studies, regions, and similar systems, it has
not been possible to quantitatively account for selection bias and to fully
differentiate it from the lack of monitoring for some regions and systems. 

18.3. Detection and Attribution of Observed
Climate Change Impacts in Natural Systems

The following section provides a synthesis of findings with regard to
freshwater resources, terrestrial and inland water systems, coastal systems,
and oceans, which are documented in greater detail in Chapters 3, 4,
5, 6, and 30, respectively. It also incorporates evidence from regional
chapters and further available literature.

18.3.1. Freshwater Resources 

Impacts of climate change on the hydrological cycle, and notably the
availability of freshwater resources, have been observed on all continents
and many islands, with different characteristics of change in different
regions (Chapters 3, 22 to 29; WGI AR5 Chapters 2 and 10). Figure 18-2
presents a synthesis of confidence in detection of global scale changes
in freshwater resources and related systems (notably slope stability and
erosion), and their attribution to climate change. Frozen components of
freshwater systems tend to show higher confidence in detection and
attribution, while components that are strongly influenced by non-
climatic drivers, such as river flow, have lower confidence.

Box 18-1 | Quantitative Synthesis Assessment of Detection and Attribution Studies in Ecological Systems

The wealth of observations in ecological systems now permits the application of quantitative tools for synthesis assessment of

detection and attribution (Root et al., 2005). These tools include associative pattern analyses (e.g., Rosenzweig et al., 2008) and

regression analyses (Chen, I.C. et al., 2011), which compare expected changes due to anthropogenic climate change across multiple

studies against observed changes.

Quantitative synthesis assessments have been particularly prominent in ecology, where measures of phenology (timing of seasonal

events) and geographical range can be assembled across species into standardized indices (Parmesan and Yohe, 2003; Rosenzweig et

al., 2008; Chen, I.C. et al., 2011; Poloczanska et al., 2013; Rosenzweig and Neofotis, 2013). Confidence in the detection of general

patterns of change in these indices can increase with the number of species/ecosystems observed, the number of independent studies,

the geographical distribution of these observations, the temporal depth and resolution of the data, and the representativeness of

species/ecosystems and locations studied. However, increasing spatial coverage, numbers of species, and so forth does not a priori

increase confidence that climate change is a more credible explanation for biological change than alternative hypotheses. Additional

data can contribute to increased confidence in causal relationships, that is, attribution, in a synthesis assessment when it provides

new evidence for explicit testing against a credible range of alternative hypotheses.
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18.3.1.1. The Cryosphere

Most components of the cryosphere (glaciers, ice sheets, and floating ice
shelves; sea, lake, and river ice; permafrost and snow) have undergone
significant changes during recent decades (high confidence), related to
climatic forcing (high confidence; WGI AR5 Chapter 4). It is likely that
there is an anthropogenic component in the changes observed in Arctic
sea ice, Greenland’s surface melt, glaciers, and snow cover (WGI AR5
Section 10.5). Glaciers continue to shrink worldwide, with regional
variations. It is likely that a substantial part of the glacier mass loss is
due to anthropogenic warming (WGI AR5 Section 10.5.2.2). Climate
change has a major role in the absolute contribution of ice loss from
glaciers and ice caps to sea level rise, which has increased since the
early 20th century and has now been close to 1 mm yr–1 for the past
2 decades (WGI AR5 Sections 4.3.3, 4.4.3), around a third of total
observed sea level rise. Recent mass loss of ice sheets and glaciers has
accelerated isostatic land uplift in the North Atlantic Region (Jiang et al.,
2010). In several high-mountain regions, slope instabilities have occurred
as a consequence of recent glacier downwasting (high confidence;
Vilímek et al., 2005; Haeberli and Hohmann, 2008; Huggel et al., 2011).

The role of climate in changes in runoff decreases from major to minor
as the distance from glaciers increases and other non-climatic factors
become more important. Runoff from glacier areas has increased for
catchments in western and southwestern China over the past several
decades, and in western Canada and Europe (Collins, 2006; Zhang, Y. et
al., 2008; Moore et al., 2009; Li et al., 2010; Pellicciotti et al., 2010; Stahl
et al., 2010). Glacier runoff has decreased in the European Alps (Collins,
2006; Huss, 2011), in the central Andes of Chile (Casassa et al., 2009),
and in the Cordillera Blanca (Baraer et al., 2012; medium confidence), a
trend that has also been confirmed by qualitative observations made
by local people (Bury et al., 2010; Carey et al., 2012a). For lake and river

ice, there is generally high confidence in detection of, and a major role
of climate change in, later freeze-up and earlier break-up over the past
100+ years for several sites in the NH, yet with regional differences and
warmer regions showing higher sensitivities in interannual variability
(Livingstone et al., 2010; Voigt et al., 2011; Weyhenmeyer et al., 2011;
Benson et al., 2012). Changes in lake and river ice can have effects on
freshwater ecosystems, transport and traffic over frozen lakes and rivers,
and ice-induced floods during freeze-up and break-up events (Voigt et
al., 2011). Some evidence exists in Europe that ice-jam floods were
reduced during the last century due to reduced freshwater freezing
(Svensson et al., 2006).

The rate of Arctic sea ice decline has increased significantly during the
first decade of the 21st century, due to warming (WGI AR5 Section
4.2.2). It is very likely that at least some of the decline in Arctic sea ice
extent can be attributed to anthropogenic climate forcing (WGI AR5
Section 10.5.1). Observations by Inuit people in the Canadian Arctic
confirm with high confidence the instrumental observations on the
various changes of sea ice (see Box 18-5). Antarctic sea ice has slightly
increased over the past 30 years, yet with strong regional differences
(WGI AR5 Section 4.2.3).

Combined in situ and satellite observations indicate a decline of 8% in
NH spring snow cover extent since 1922 (WGI AR5 Section 4.5.2). A
limited number of studies indicate an anthropogenic influence on snow
cover reduction (high confidence; WGI AR5 Section 10.5.3), including a
significant contribution of anthropogenic climate forcing on changes in
snow pack and runoff timing between 1950 and 1999 in the western
USA (Table 18-6; Barnett et al., 2008).

Climate change generally exerts a major role on permafrost changes.
Widespread permafrost warming and thawing, and active layer thickening
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Cryosphere (Section 18.3.1.1)

Rivers, lakes, and groundwater (Section 18.3.1.2)
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Figure 18-2 | Assessment of confidence in detection of observed climate change impacts in global freshwater systems over the past several decades, with confidence in 

attribution of a major role of climate change, based on expert assessment contained in Section 18.3.1 and augmented by subsections of Chapter 3 as indicated.
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in both high-latitude lowlands and high-elevation mountain regions,
have been observed over the past decades (high confidence; WGI AR5
Section 4.7.2). Climate change impacts have been related to permafrost
changes, including an increase of flow speed of rock glaciers and debris
lobes in the European Alps and Alaska (high confidence), resulting in
rockfall, debris flows, and potential hazards to transport and energy
systems (Kääb et al., 2007; Delaloye et al., 2010; Daanen et al., 2012),
expansion, deepening and higher dynamics of thermokarst lakes and
ponds in the Arctic (Rowland et al., 2010), and a doubled erosion rate
of Alaska’s northern coastline over the past 50 years (high confidence;
Section 18.3.3.1, Table 18-8; Mars and Houseknecht, 2007; Karl et al.,
2009; Forbes, 2011). Expansion of channel networks (Toniolo et al.,
2009), increased river bank erosion (Costard et al., 2007), and an increase
in hillslope erosion and landsliding in northern Alaska since the 1980s
(Gooseff et al., 2009) have all been related to climate. Warming and
thawing of permafrost in Alaska has adversely affected transport and
energy structures and their operation (Karl et al., 2009). Feedbacks and
interactions complicate detection of drivers and effects. For example,
drying of land surface due to permafrost degradation may cause an
increase in wildfires, in turn resulting in a loss of ground surface
insulation and change in surface albedo that accelerates permafrost
thawing (Rowland et al., 2010; Forkel et al., 2012).

18.3.1.2. The Regional Water Balance

The regional water balance is the net result of gains (precipitation, ice
and snow melt, river inflow, and groundwater recharge) and losses
(evapotranspiration, water use and river outflow, and groundwater
discharge). Impacts of climate change include reduced availability of
freshwater for use (one of the variables defining drought) or excess water
(floods). Evapotranspiration, being a function of solar radiation, surface
temperature, vegetation cover, soil moisture, and wind, is affected by the
changing climate, but also by changing vegetation processes and land
cover. At the global scale, human influence has contributed to large-
scale changes in precipitation patterns over land and, since the mid-
20th century, in extreme precipitation (medium confidence; WGI AR5
Section 10.6.1.2; Min et al., 2011). More locations worldwide have
experienced an increase than a decrease in heavy rainfall events, yet
with significant regional and seasonal variations (Seneviratne et al.,
2012; Westra et al., 2013). In some regions, however, there is medium
confidence that anthropogenic climate change has affected streamflow
and evapotranspiration (WGI AR5 Section 10.3.2.3).

Change in river flow is a direct indicator of a changing regional water
balance. Globally, about one-third of the top 200 rivers (ranked by river
flow) show statistically significant trends during 1948–2004, with more
rivers having reduced flow (45) than rivers with increased flow (Dai et
al., 2009). Regional reductions in precipitation in southwestern South
America are primarily due to internal variability (Dai, 2011; see also
Section 27.2.1.1). River floods, defined as impacts caused by the over-
topping of river banks and levées, have shown statistically significant
increasing and decreasing trends in some regions. The role of climate
change in these changes is uncertain, as they may reflect decadal
climate variability and be affected by other confounding factors such
as human alteration of river channels and land use (Section 3.2.7). In
regions with detected increases in heavy rainfall events (North America,

Europe), both increases and decreases in floods have been found
(medium confidence in detection; Petrow and Merz, 2009; Villarini et
al., 2009). In the UK, flood risk has increased due to anthropogenic
forcing for events comparable to the 2000 floods (Kay et al., 2011; Pall
et al., 2011; see also Section 18.4.3).

Expanding or new lakes as a result of ice melt at the margin of many
shrinking glaciers in the Alps of Europe, Himalayas, Andes, and other
mountain regions have altered the risk of glacier lake outburst floods
(GLOFs) and required substantial risk reduction measures in the 21st
century (Huggel et al., 2011; Carey et al., 2012b). Though there is no
evidence for a change in frequency or magnitude of GLOFs (Seneviratne
et al., 2012), climate change has had a major role in the substantial
increase in glacial lake area in the eastern Himalaya region between
1990 and 2009 (Gardelle et al., 2011), and the similarly strong increase
in lake numbers in the Andes of Peru in the second half of the 20th
century (Carey, 2005), and in northern Patagonia from 1945 to 2011
(Loriaux and Casassa, 2013; high confidence in detection). New
glacier lakes are not only an additional source of floods but also
have become a tourist attraction, led to additional infrastructure, and
stimulated assessment of potential for hydropower generation (Terrier
et al., 2011). 

Since the 1950s some regions of the world have experienced more
intense and longer droughts, although a global trend currently cannot
be established (Seneviratne et al., 2012; see also Section 3.2.2 and
WGI AR5 Section 2.6.2.3). Longer drought periods have affected
groundwater recharge (Leblanc et al., 2009; Taylor et al., 2013), but
changes in groundwater storage are generally difficult to attribute to
climate change, due to confounding factors from human activities (Table
3-1; Rodell et al., 2009; Taylor et al., 2013). Likewise, confounding factors
do not permit attribution of observed changes in water quality to climate
change (Kundzewicz and Krysanova, 2010; see also Section 3.2.5). 

18.3.1.3. Erosion, Landslides, and Avalanches

Erosion and landsliding typically increase in phase with deglaciation in
mountain areas (Ballantyne, 2002; Korup et al., 2012), and there is
emerging evidence for this to occur during contemporary deglaciation
(Schneider et al., 2011; Uhlmann et al., 2013). In the western Himalaya,
sediment flux has increased (medium confidence; Wulf et al., 2012)
and been related to hydrologic extreme events over the past 60 years
(low confidence; Malik et al., 2011), with important consequences for
hydropower schemes. In China, a drastic decrease of sediment load in
the Yangtze River was observed since the 1980s. There have been local
variations in precipitation and runoff since 1950, but changes in
sediment load are attributed primarily to more than 50,000 dams and
vegetation changes (medium confidence; Xu et al., 2008). There is clear
evidence for decline in sediment load in the Zhujiang (Pearl River) basin
since the early 1990s (Zhang, S. et al., 2008).

In the European Alps, no clear evidence exists so far for any change in
frequency of shallow landslides and debris flows from recently
deglaciated mountain areas (Jomelli et al., 2004; Stoffel and Huggel,
2012). In some cases climate change has had a major role in influencing
frequency and magnitude of alpine shallow landslides and debris flows
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by altering sediment yield, for example, from rockfall or disintegration
of rock glaciers (low confidence; Lugon and Stoffel, 2010).

Glacier shrinkage, permafrost degradation, and high-temperature events
have contributed to many high-mountain rock slope failures since the
1990s (medium confidence in major role of climate change; Allen et al.,
2010; Ravanel and Deline, 2011; Schneider et al., 2011; Fischer et al.,
2012; Huggel et al., 2012a). Rock slope failures have increased over this
period in the Western Alps of Europe (high confidence), the New Zealand
Alps (medium confidence), and globally (low confidence). Cascading
processes of permafrost and ice-related landslides impacting lakes and
downstream areas have been observed in many high-mountain regions,
causing major damages and risk reduction measures (high confidence),
with climate change exerting a major role (medium confidence; e.g.,
Xin et al., 2008; Bajracharya and Mool, 2009; Künzler et al., 2010; Carey
et al., 2012a; Huggel et al., 2012b). For landslide types other than the
above, there is no clear evidence that their frequency or magnitude has
changed over the past decades (Huggel et al., 2012b). In general,
detection of changes in the occurrence of landslides is complicated by
incomplete inventories, both in time and space, and inconsistency in
terminology. 

Physical understanding suggests that climate change has a major role
in changes of snow avalanche activity but no such changes have been
reported so far (medium confidence; Laternser and Schneebeli, 2002;
Voigt et al., 2011), except for the French Alps (Eckert et al., 2013;
medium confidence in detection). The detection of changes in snow
avalanche impacts, such as fatalities and property loss, is difficult over
the past decades because of changes in snow sport activities and
avalanche defense measures.

18.3.2. Terrestrial and Inland Water Systems

As documented by previous IPCC reports (notably Rosenzweig et al.,
2007), climate-driven changes in terrestrial and inland water systems
are widespread and numerous. Confidence in such detection of change
is often very high, reflecting high agreement among many independent
sources of evidence of change, and robust evidence that changes in
ecosystems or species are outside of their natural variation. Confidence
in attribution to climate change is also often high, due to process
understanding of responses to climate change, or strong correlations
with climate trends and where confounding factors are understood to
have limited importance (Sections 4.3.2, 4.3.3, Figure 4-4). The scientific
literature in this field is growing quickly; detailed traceability is provided
in Chapter 4. 

Organisms respond to changing climate in a multitude of ways, including
through their phenology (the timing of key life history events such as
flowering in plants or migration of birds), productivity (the assimilation
of carbon and nutrients in biomass), spatial distribution, mortality/
extinction, or by invading new territory. Noticeable changes may occur
at the level of individual organisms, ecosystems, landscapes, or by
modification of entire biomes. Organisms and ecosystems are adapted
to a variable environment, and they are capable of adapting to gradual
change to some degree. Assessing confidence in the detection of such
change therefore involves assumptions about natural variability in these

ecosystems, while assessment of confidence in the attribution of
detected change to climate drivers (or carbon dioxide (CO2)) implies the
assessment of confounding drivers such as pollution or land use change.

18.3.2.1. Phenology

Since the AR4 there has been a further substantial increase in observations,
showing that hundreds of (but not all) species of plants and animals
have changed functioning to some degree over the last decades to
centuries on all continents (high confidence due to robust evidence but
only medium agreement across all species; Section 4.3.2.1; Menzel et
al., 2006; Cook et al., 2012b; Peñuelas et al., 2013). New satellite-based
analyses confirm earlier trends, showing, for example, that the onset of
the growing season in the NH has advanced by 5.4 days from 1982 to
2008 and its end has been delayed by 6.6 days (Jeong et al., 2011).
Significant changes have been detected, by direct observation, for many
different species, for example, for amphibians (e.g., Phillimore et al., 2010),
birds (e.g., Pulido, 2007; Devictor et al., 2008), mammals (e.g., Adamík
and Král, 2008), vascular plants (e.g., Cook et al., 2012a), freshwater
plankton (Adrian et al., 2009), and others (Section 4.3.2.1); a number
of new meta-analyses have been carried out summarizing this literature
(e.g., Cook et al., 2012a). Attribution of these changes to climate change
is supported by more refined analyses that consider also the regional
changes in several variables such as temperature, growing season
length, precipitation, snow cover duration, and others, as well as
experimental evidence (Xu et al., 2013). The high confidence in attributing
many observed changes in phenology to changing climate is a result of
these analyses, as well as of improved knowledge of confounding factors
such as land use and land management (see also Section 4.3.2.1).

18.3.2.2. Productivity and Biomass

Many terrestrial ecosystems are now net sinks for carbon over much of
the NH and also in parts of the Southern Hemisphere (high confidence;
see also Sections 4.3.2.2-3). This is shown, for example, by inference
from atmospheric chemistry, but also by direct observations of increased
tree growth in many regions including Europe, the USA, tropical Africa,
and the Amazon. During the decade 2000 to 2009, global land net
primary productivity was approximately 5% above the preindustrial
level, contributing to a net carbon sink on land of 2.6 ± 1.2 PgC yr–1

(Section 4.3.2.2; WGI AR5 6.3.2.6; for primary literature, see also Raupach
et al., 2008; Le Quéré et al., 2009), despite ongoing deforestation.
Forests have increased in biomass for several decades in Europe
(Luyssaert et al., 2010) and the USA (Birdsey et al., 2006). These trends
are in part due to nitrogen deposition, afforestation, and altered land
management which makes direct attribution of the increase to climate
change difficult. The degree to which rising atmospheric CO2

concentrations contribute to this trend remains a particularly important
source of uncertainty (Raupach et al., 2008). Canadian managed forests
increased in biomass only slightly during 1998-2008, because growth
was offset by significant losses due to fires and beetle outbreaks (Stinson
et al., 2011). In the Amazon forest biomass has generally increased in
recent decades, dropping temporarily after a drought in 2005 (Phillips
et al., 2009). A global analysis of long-term measurements suggests that
soil respiration has increased over the past 2 decades by approximately
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0.1 PgC yr–1, some of which may be due to increased productivity (Bond-
Lamberty and Thomson, 2010). Man-made impoundments in freshwater
ecosystems represent an increasing and short-lived additional carbon
store with conservative annual estimates of 0.16 to 0.2 PgC yr–1 (Cole
et al., 2007).

18.3.2.3. Species Distributions and Biodiversity

Each species responds differently to a changing environment; therefore
the composition of species, genotypes, communities, and even ecosystems
varies in different ways from place to place, in response to climate
change. The consequences are changing ranges of species, changing
composition of the local species pool, invasions, mortality, and ultimately
extinctions. For different species and species groups, detected range
shifts vary, and so do the confidence of detection and the degree of
attribution to climate change. The number of species studied has
considerably increased since the AR4. Overall, many terrestrial species
have recently moved, on a global average, 17 km poleward and 11 m
up in altitude per decade (e.g., Europe, North America, Chile, Malaysia),
which corresponds to predicted range shifts due to warming (Chen, I.C.
et al., 2011) and is two to three times faster than previous estimates
(Parmesan and Yohe, 2003; Fischlin et al., 2007), with high confidence
in detection. Europe forest species are moving up in altitude, probably
due to climate warming at the end of the 20th century (Gehrig-Fasel et
al., 2007; Lenoir et al., 2008). Species with short life cycles and high
dispersal capacity—such as butterflies (high confidence in a major
role of climate change)—are generally tracking climate more closely
than longer-lived species or those with more limited dispersal such as
trees (Devictor et al., 2012; medium confidence in a major role of
climate change). There are many less well-studied species for which
detection of change and its attribution to climate change are more
uncertain.

Changes in abundance, as measured by changes in the population size
of individual species or shifts in community structure within existing
range limits, have occurred in response to recent global warming (Thaxter
et al., 2010; Bertrand et al., 2011; Naito and Cairns, 2011; Rubidge et
al., 2011; Devictor et al., 2012; Tingley et al., 2012; Vadadi-Fülöp et al.,
2012; Cahill et al., 2013; Ruiz-Labourdette et al., 2013), but owing to
confounders, confidence in a major role of climate change is often low.
Across the world, species extinctions are at or above the highest rates
of species extinction in the fossil record (high confidence; Barnosky et
al., 2011). However, only a small fraction of observed species extinctions
have been attributed to climate change—most have been ascribed to
non-climatic factors such as invasive species, overexploitation, or habitat
loss (Cahill et al., 2013). For those species where climate change has been
invoked as a causal factor in extinction (such as for the case of Central
American amphibians), there is low agreement among investigators
concerning the importance of climate variation in driving extinction and
even less agreement that extinctions were caused by climate change
(Pounds et al., 2006; Kiesecker, 2011). Confidence in the suggested
attribution of extinctions across all species to climate change is very
low (see also Section 4.3.2.5).

Species invasions have increased over the last several decades
worldwide, notably in freshwater ecosystems (very high confidence),

often causing biodiversity loss or other negative impacts. There is only
low confidence that species invasions have generally been assisted by
recent climatic trends because of the overwhelming importance of
human facilitated (intentional or non-intentional) dispersal in the transfer
from the area of origin. Once established in a new environment, many
introduced species have recently become invasive due to climate change
(medium to high confidence, depending on the taxon; see also Section
4.2.4.6).

18.3.2.4. Impacts on Major Systems

Field and satellite measurements indicate substantial changes in
freshwater and terrestrial ecosystems (often linked to permafrost
thawing) in many areas of the Arctic tundra (high confidence; Hinzman
et al., 2005; Axford et al., 2009; Jia et al., 2009; Post et al., 2009; Prowse
and Brown, 2010; Myers-Smith et al., 2011; Walker et al., 2012).
Vegetation productivity has systematically increased over the past few
decades in both North America and northern Eurasia (Goetz et al., 2007;
Jia et al., 2009; Elmendorf et al., 2012). Most subpopulations of the
polar bear are declining in number (Vongraven and Richardson, 2011).
These changes correspond to expectations, based on experiments,
models, and paleoecological responses to past warming, of broad-scale
boreal forest encroachment into tundra, a process that takes decades
and that would have very large impacts on ecosystem structure and
function. The particular strength of warming over the last 50 years for
most of the Arctic further facilitates attribution of a major role of climate
change (high confidence). The change affects a significant area of the
tundra biome and can be considered an early warning for an ongoing
regime shift (Section 4.3.3.4, Figure 4-4).

For the boreal forest, increases in tree mortality are observed in many
regions, including widespread dieback related to insect infestations
and/or fire disturbances in North America (Fauria and Johnson, 2008;
Girardin and Mudelsee, 2008; Kasischke et al., 2010; Turetsky et al.,
2010; Wolken et al., 2011) and in Siberia (Soja et al., 2007), but there is
low confidence in detection of a global trend. Many areas of boreal
forest have experienced productivity declines (high confidence; Goetz
et al., 2007; Parent and Verbyla, 2010; Beck and Goetz, 2011), related
to warming-induced drought, specifically the greater drying power of
air (Williams et al., 2012), inducing photosynthetic down-regulation of
boreal tree species not adapted to the warmer conditions (Welp et al.,
2007; Bonan, 2008). Conversely, productivity has increased along the
boreal-tundra ecotone where more mesic (moist) conditions may be
generating the expected warming-induced positive growth response
(McGuire et al., 2007; Goldblum and Rigg, 2010; Beck and Goetz, 2011).
Overall, these multiple impacts in the boreal forest biome can be
considered an early warning for an ongoing regime shift only with low
confidence (Section 4.3.3.1.1, Figure 4-4). Many of the aforementioned
changes take place in the tundra-boreal ecotone, affecting both biomes
significantly (Box 4-4, Figure 4-10).

In tropical forests, climate change effects are difficult to identify against
the confounding effects of direct human influence as is well illustrated
for the Amazon forest (Davidson et al., 2012) but also applies elsewhere.
Since AR4, there is new evidence of more frequent severe drought
episodes in the Amazon region that are associated with observed sea
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surface temperature increases in the tropical North Atlantic (medium
confidence; Marengo et al., 2011a). There is low confidence, however,
that these changes can be attributed to climate change (Section
4.3.3.1.3). There is medium confidence that tree mortality in the Amazon
region has increased due to severe drought and increased forest fire
occurrence and low confidence that this can be attributed to warming
(Section 4.3.3.1.3, Figures 4-4, 4-8).

In freshwater ecosystems of most continents and climate zones, rising
temperatures have been linked to shifts in invertebrate and fish
community composition, especially in headwater streams where species
are more sensitive to warming (Brown et al., 2007; Durance and Ormerod,
2007; Chessman, 2009; see also Section 4.3.3.3; high confidence in
detection, low confidence in a major role of climate change due to
numerous confounding factors). Long-term shifts in macroinvertebrate
communities have been observed in European lakes where temperatures
have increased (Burgmer et al., 2007).

18.3.3. Coastal Systems and Low-Lying Areas 

Coastal systems are influenced by many anthropogenic and natural
processes. Important climate-related drivers include changes in ocean
temperature, salinity, and pH; and sea level (see Table 5-2). In coastal
waters, both annual and seasonal changes in temperature tend to be
larger than the average rate for the open ocean (Section 5.3.3). Sea
surface temperatures have increased significantly during the past 30
years along more than 70% of the world’s coastlines, with large spatial
and seasonal variation, and the frequency of extreme temperature
events in coastal waters has changed in many areas (Lima and Wethey,
2012). Seawater pH spans larger ranges and exhibits higher variability
near coastlines, and anthropogenic ocean acidification can be enhanced
or reduced by coastal geochemical processes (Borges and Gypens, 2010;
Feely et al., 2010; Duarte et al., 2013, see also Box CC-OA). 

While it is likely that extreme sea levels have increased globally since
the 1970s, mainly as a result of mean sea level rise due in part to
anthropogenic warming (WGI AR5 Sections 3.7.5-6, 10.4.3), local sea
level trends are also influenced by factors such as regional variability
in ocean and atmospheric circulation, subsidence, isostatic adjustment,
coastal erosion, and coastal modification (see also Section 5.3.2). As a
consequence, the detection of the impact of climate change in observed
changes in relative sea level remains challenging (Nicholls et al., 2007,
2009; Menéndez and Woodworth, 2010). An exception is lower sea level
in regions of isostatic rebound in response to reduced ice cover due to
climate change (Kopp et al., 2010; Tamisiea and Mitrovica, 2011). In
these regions, climate change has played a major role in the lowering
sea level (medium confidence).

18.3.3.1. Shoreline Erosion and Other Coastal Processes 

Throughout the world, the rate of shoreline erosion is increasing
(Section 5.4.2.1). While processes related to climate change, such as
rising mean sea levels (Leatherman et al., 2000; Ranasinghe and Stive,
2009), more frequent extreme sea levels (Woodworth et al., 2011), or
permafrost degradation and sea ice retreat (Forbes, 2011) can be

expected to enhance global erosion, there are multiple drivers involved
in shoreline erosion that are unrelated to climate change including long
shore sediment transport; the diversion of sediments by dams; and
subsidence due to resource extraction, mining, and coastal engineering
and development (see also Table 5-3). Owing to the fragmentary nature
of the information available, and to the multiple natural and anthropogenic
stressors contributing to coastal erosion, confidence in detection of a
climate change contribution to observed shoreline changes is very low,
with the exception of polar regions (Table 18-8; Mars and Houseknecht,
2007; Forbes, 2011). 

Coastal lagoons and estuaries, as well as deltas, are highly susceptible
to alterations of sediment input and accumulation (Syvitski et al., 2005;
Ravens et al., 2009), processes that can be influenced by climate change
via changes in mean and extreme sea levels, storminess, and precipitation.
However, the primary drivers of widespread observed changes in those
systems are human drivers other than climate change so that there is
very low confidence in the detection of impacts related to climate change
(Section 5.4.2).

Coastal aquifers are crucial for the water supply of densely populated
coastal areas, in particular in small island environments and dry
climates. Aquifer recharge is sensitive to changes in temperature and
precipitation, and rising sea levels and saltwater overwash from storm
surges can contribute to saline intrusion into groundwater (Post and
Abarca, 2010; Terry and Falkland, 2010; White and Falkland, 2010; see
also Section 29.3.2, Table 18-8). However, groundwater extraction for
coastal settlements and agriculture is the main cause for widely
observed groundwater degradation in coastal aquifers (e.g., White et
al., 2007a; Barlow and Reichard, 2010). It is not yet possible to detect
the impact of climate change on coastal aquifers with any degree of
confidence (Rozell and Wong, 2010; White and Falkland, 2010).

Changes in water column mixing have combined with other factors such
as nutrient loading to drive down oxygen concentrations and increase
the number and extent of hypoxic zones (Vaquer-Sunyer and Duarte,
2011). These zones are characterized by very low oxygen and high CO2

levels and, in some cases, exert strong local and regional effects on
marine biota such as distribution shifts, habitat contraction or loss, and
fish kills (Diaz and Rosenberg, 2008). The operation of other factors
makes the detection of a climate change impact on the frequency,
distribution, and intensity of hypoxia possible with only medium
confidence and it is difficult to assess the relative magnitude of this
impact (see Table 18-1).

18.3.3.2. Coastal Ecosystems

Coastal habitats and ecosystems experience cumulative impacts of
land- and ocean-based anthropogenic stressors (Halpern et al., 2008).
Most coral reefs, seagrass beds, mangroves, rocky reefs, and shelves
have undergone substantial changes over the course of the last century.
Fishing and other extractive activities, land use changes, and pollution
have been responsible for a large proportion of these historical changes
(Lotze et al., 2006). Biological responses to changes in the temperature,
chemistry, and circulation of the ocean are complex and often interact
with other anthropogenic factors. 
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Coral reefs have been degraded due both to local anthropogenic factors
such as fishing, land use changes, and pollution and to ocean warming
related to climate change and also possibly to acidification (see Box
CC-CR). Over the past 30 years, mass coral bleaching has been detected
with very high confidence on all coasts, and warming is a major
contributor (high confidence; for further discussion see Boxes 18-2,
CC-OA).

Changes in abundance and distribution of rocky shore species have
been observed since the late 1940s in the Northeast Atlantic (Hawkins
et al., 2008), and the role of temperature has been demonstrated by
experiments and modelling (Poloczanska et al., 2008; Wethey and
Woodin, 2008; Peck et al., 2009; Somero, 2012; see also Section 5.4.2.2).
Globally, the ranges of many rocky shore species have shifted up to
50 km per decade, much faster than most recorded shifts of terrestrial
species (Helmuth et al., 2006; Poloczanska et al., 2013; see also Box
18-3). However, distinguishing the response of these communities to
climate change from those due to other natural and anthropogenic
causes is challenging. Weak warming, overriding effects of confounding
factors, or biogeographic barriers can explain the fact that geographical
distribution of some species did not change over the past decades
(Helmuth et al., 2002, 2006; Rivadeneira and Fernández, 2005; Poloczanska
et al., 2011). 

Ocean warming has contributed to observed range shifts in vegetated
coastal habitats such as coastal wetlands, mangrove forests and seagrass
meadows (Section 5.4.2.3). Poleward expansion of mangrove forests,
consistent with expected behavior under climate change, has been

observed in the Gulf of Mexico (Perry and Mendelssohn, 2009; Comeaux
et al., 2012; Raabe et al., 2012) and New Zealand (Stokes et al., 2010).
High temperatures have impacted seagrass biomass in the Atlantic
Ocean (Reusch et al., 2005; Díez et al., 2012; Lamela-Silvarrey et al.,
2012), the Mediterranean Sea (Marbà and Duarte, 2010), and Australian
waters (Rasheed and Unsworth, 2011). Extreme weather events also
contributed to the overall degradation of seagrass meadows in a
Portuguese estuary (Cardoso et al., 2008).

Decline in kelp populations attributed to ocean warming has occurred
off the north coast of Spain (Fernández, 2011), as well as in southern
Australia, where the poleward range expansion of some herbivores have
also contributed to observed kelp decline (Ling, 2008; Ling et al.,
2009a,b; Johnson et al., 2011; Wernberg et al., 2011a). The spread of
subtropical invasive macroalgal species (e.g., Lima et al., 2007) may be
adding to the stresses temperate seagrass meadows experience from
ocean warming. Extreme temperature events can alter marine and
coastal communities, as shown, for example, for the European 2003
heat wave (Garrabou et al., 2009), and the early 2011 heat wave off
the Australian west coast (Wernberg et al., 2012).

In summary, there is high confidence in the detection of the impact of
climate change on the abundance and distribution of a range of coastal
species and medium confidence that climate change has played a major
role in many cases. In specific cases, such as the decline of salt marshes
and mangroves, the impact of climate change has been detected with
very low confidence owing to the overriding effect of land use changes,
pollution, and other factors unrelated to climate change.

Box 18-2 | Attribution of Mass Coral Bleaching Events to Climate Change

A critical source of energy for the maintenance and growth of coral is provided by symbiotic brown algae. Coral bleaching occurs

when these symbionts leave their host. Bleaching events have deleterious impacts on corals and, depending on their severity and

duration, can cause death. It is known that thermal stress can trigger coral bleaching (Muscatine, 1986; Hoegh-Guldberg and Smith,

1989; Jones et al., 1998). Mass bleaching events that affect entire reefs or coastal regions can occur when local or regional temperatures

exceed the typical summer maximum for a period of a few weeks (Hoegh-Guldberg, 1999; Baker et al., 2008; Strong et al., 2011). The

effect of elevated temperature is exacerbated by strong solar irradiance (Hoegh-Guldberg, 1999).

Since 1980, mass coral bleaching events have occurred throughout the tropics and subtropics at a rate without precedent in the

literature (see also Boxes CC-CR and CC-OA, and Section 5.4.2.4). These events have often been followed by mass mortality (Hoegh-

Guldberg, 1999; Baker et al., 2008). In the very warm year of 1998, for example, mass bleaching occurred in almost every part of the

tropics and subtropics and resulted in the loss of a substantial fraction of the world's corals (Wilkinson et al., 1999). A large-scale

bleaching event also occurred in the Caribbean during 2005 (Eakin et al., 2010).

Declining water quality, coastal development, increased fishing, and even tourism have also been implicated in the decline of coral

communities over the past 50 years (Bryant et al., 1998; Gardner et al., 2003; Bruno and Selig, 2007; Sheppard et al., 2010; Burke et al.,

2011; De'ath et al., 2012). However, given the scope of recent mass bleaching events, their co-occurrence with elevated temperatures,

and a physiological understanding of the role of temperature in bleaching, there is very high confidence in the detection of the

impact of climate change and high confidence in the finding that climate change has played a major role.
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18.3.3.3. Coastal Settlements and Infrastructure

Total damages from coastal flooding have increased globally over the
last decades (high confidence); however, with exposure and subsidence
constituting the major drivers, confidence in detection of a climate change
impact is very low (Seneviratne et al., 2012, see also Sections 5.4.3.2,
5.4.4).

Recent global (e.g., Menéndez and Woodworth, 2010; Woodworth et
al., 2011) and regional (e.g., Marcos et al., 2009; Haigh et al., 2010,
2011) studies have found increases in extreme sea levels consistent
with mean sea level trends (see also Table 5-2), indicating that the
increasing frequency of extreme water levels affecting coastal
infrastructures observed so far is related to rising mean sea level rather
than to changes in the behavior of severe storms. While vulnerability
of coastal settlements and infrastructure to future climate change, in
particular sea level rise and coastal flooding, is widely accepted and
well documented (see Section 5.5), there is a shortage of studies
discussing the role of climate change in observed impacts on coastal
systems.

Increases in saltwater intrusion and flooding have been observed in
low-lying agricultural areas of deltaic regions and small islands, but the
contribution of climate change to this is not clear (e.g., Rahman et al.,
2011; see also Sections 5.4.2.5, 5.4.3.3). While both climate change
impacts on physiological and ecological properties of fish (e.g., Barange
and Perry, 2009; see also Section 18.3.4) and vulnerability of coastal
communities and fisherfolks to climate fluctuations and change (Badjeck
et al., 2010; Cinner et al., 2012) are well established in the literature,
there is limited evidence for observed effects of climate change on
coastal fishery operations (see also Section 18.4.1.2). 

18.3.4. Oceans

Since 1970, ocean temperatures have increased by around 0.1°C per
decade in the upper 75 m and approximately 0.015°C per decade at
700 m (see Section 30.3.1.1). It is very likely that the increase in global
ocean heat content observed in the upper 700 m since the 1970s has a
substantial contribution from anthropogenic forcing (WGI AR5 Section
10.4.1).

The increased flux of CO2 from the atmosphere to the ocean has reduced
the average pH of sea water by about 0.1 pH units over the past century,
with the greatest reduction occurring at high latitudes (see also Box CC-
OA). These changes have been attributed to increases in the atmospheric
concentration of greenhouse gases as result of human activities (very
high confidence; WGI AR5 Section 10.4.4). Changes in wind speed,
upwelling, water column stratification, surface salinity, ocean currents,
and oxygen depth profile have also been been detected with at least
medium confidence (WGI AR5 Chapter 3; Figures 30-5, 30-6).

Changes in the physical and chemical nature of ocean environments
are predicted to have impacts on marine organisms and ecosystems,
with many already having been observed across most ocean regions
(Sections 6.2-3, 30.4-5). However, the detection of these predicted
changes and the assessment of the role of climate change in them are
complicated by the influence of long-term variability such as the Pacific
Decadal Oscillation (PDO) and the Atlantic Multi-decadal Oscillation
(AMO). The fragmentary nature of ocean observations and the influence
of confounding factors such as fishing, habitat alteration, and pollution
also represent significant challenges to detection and attribution
(Hoegh-Guldberg et al., 2011; Parmesan et al., 2011; see also Box
18-3).

Process
Confi dence in

Role Context Reference
Detection Attribution

Impacts of ocean acidifi cation 
on pelagic marine biota 

Low Very low Minor For example, reduction in foraminiferan, coccolithophores, and pteropod shell 
weight. Attribution supported by experimental evidence and physiological 
knowledge. 

1

Expansion of midwater 
hypoxic zones 

Medium Low Minor Oxygen minimum zones caused by enhanced stratifi cation and bacterial 
respiration due to effects of warming

2

Regional and local impacts of 
expanding hypoxic zones

Medium Low Minor Reduction of biodiversity, compression of oxygenated habitat for intolerant 
species, range expansion for tolerant taxa

3

Direct temperature effects on 
marine biota related to limited 
physiological tolerance ranges

Very high High Major For example, large-scale latitudinal shifts of species distribution, changes in 
community composition; attribution supported by experimental and statistical 
evidence as well as physiological knowledge 

4

Increase in net primary 
production at high latitudes

Medium Medium Major At higher latitudes, net primary production is increasing owing to sea ice 
decline and warming. At the global scale, estimates vary regionally, and there is 
a discrepancy between satellite observations and open ocean time series sites. 

5

Changes in microbial 
processes

Low Very low Minor Limited understanding of microbial processes, drivers, and interactions, and 
subsequently of large-scale shifts in biogeochemical pathways such as oxygen 
production, carbon sequestration, and export production and nitrogen fi xation 

6

Table 18-1 |  Observed changes in ocean system properties and their effects, with confi dence levels for the detection of the effect of climate change and an assessment of the 

magnitude of its role.

Key references and further related information for the assessment in this table:
1Wootton et al. (2008); De Moel et al. (2009); Moy et al. (2009); Bednaršek et al. (2012); Section 6.3.2; Box CC-OA
2Stramma et al. (2008); Stolper et al. (2010); Sections 6.1.1.3 and 6.3.3
3Levin et al. (2009); Ekau et al. (2010); Stramma et al. (2010, 2012); Sections 6.3.3, 6.3.5, and 30.5
4Merico et al. (2004); Perry et al. (2005); Pörtner and Farrell (2008); Beaugrand et al. (2010); Alheit et al. (2012); Section 6.3.1
5Behrenfeld et al. (2006); Saba et al. (2010); Arrigo and Van Dijken (2011); Section 6.3.4; Box CC-PP
6Sections 6.3.1.2, 6.3.2.2, 6.3.3.2, and 6.3.5.2
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18.3.4.1. Impacts on Ocean System Properties
and Marine Organisms and Ecosystems

Greater thermal stratification in many regions has reduced ocean
ventilation and mixing depth. As this reduces the availability of inorganic
nutrients, it can reduce primary productivity in surface layers. However,
trends in primary production from different observational methods
disagree (Sections 6.1.1, 6.3.4; Box CC-PP). Coastal upwelling has
increased in some regions bringing greater concentrations of nutrients
to surface waters, boosting productivity and enhancing fisheries output
(see Section 30.5.5). Increases in productivity also occurred with
warming and sea ice loss at high latitude (medium confidence; Table
18-1).

Poleward shifts in the distributions of zooplankton, fish, seabirds, and
benthic invertebrates related to climate change have been detected
with high confidence in the well-studied Northeast Atlantic. There is
also high confidence that climate change has played a major role in
these shifts (Box 6-1; Sections 6.3, 30.5.1). In many regions, temperature
exerts the strongest influence on ecosystems and the responses of
ecological systems to changing temperature are well studied. However,
it is often difficult to clearly identify the interaction of temperature with
other factors (Section 6.3.5). Some studies have found changes in the
abundance of fish species that are consistent with regional warming,
with differences in response between species, in line with differential
specializations of coexisting species (Sections 6.2, 6.3.1; see also Pörtner,
2012). Anthropogenic influences modulate responses to climate, for
example, due to exploitation status (Tasker, 2008; Belkin, 2009; Overland
et al., 2010; Schwing et al., 2010), with more heavily exploited species
being more sensitive to environmental variability in general, including
temperature trends and extremes (Hsieh et al., 2005, 2008; Stige et al.,
2006).

Laboratory experiments have shown that a broad range of marine
organisms (e.g., corals, fish, pteropods, coccolithophores, and macroalgae),
physiological processes (e.g., skeleton formation, gas exchange,

reproduction, growth, and neural function), and ecosystems processes
(e.g., productivity, reef building, and erosion) are sensitive to changes
in pH and carbonate chemistry of seawater (Section 6.2, Box CC-OA).
However, few field studies have been able to detect specific changes in
marine ecosystems to ocean acidification owing to the inability to
identify the effect of ocean acidification from ocean warming or local
factors (Wootton et al., 2008; De Moel et al., 2009; Moy et al., 2009;
Bednaršek et al., 2012; see also Section 6.3.2).

There has been a substantial increase in the number of studies
documenting significant changes in marine species and processes
since the AR4. A new meta-analysis using a database of long-term
observations from peer-reviewed studies of biological systems, with
nearly half of the time series extending prior to 1960, shows that more
than 80% of observed responses are consistent with regional climate
change (see Section 30.4, Box CC-MB). Poloczanska et al. (2013) argue
that the high consistency of marine species’ responses across geographic
regions (coastal to open ocean, polar to tropical), taxonomic groups
(phytoplankton to top predators), and types of responses (distribution,
phenology, abundance) reported in their analysis support the detection
of a widespread impact of climate change on marine populations and
ecosystems (see Sections 30.4 and 30.5 for more detail). Table 18-2
gives examples of the manifestation of climate change on marine
species and ecosystems.

18.3.4.2. Observed Climate Change Effects across Ocean Regions

Climate change has affected physical properties across the ocean, with
regional variations (Table 30-1; Figures 30-2 to 30-5; WGI AR5 Chapter
3). Confidence in the detection and attribution of these impacts also
varies regionally, reflecting differences in system understanding, data
availability, influence of long-term natural variability, and the impact
of factors unrelated to climate change. The attribution of changes in
heat content to climate change is less certain regionally than globally,
but warming has been detected with high confidence in all basins except

Table 18-2 |  Observed changes in marine species and ecosystems, with confi dence levels for the detection of the effect of climate change and an assessment of the magnitude 

of its role (see also Sections 6.2, 6.3, and 30.4; Box CC-MB).

Process
Confi dence in

Role Context Reference
Detection Attribution

Range shifts of fi sh and macroalgae High High Major Changes in species biogeographical ranges to higher latitudes or greater depths 1

Changes in community composition High High Major Due to effects of warming, hypoxia, and sea ice retreat 1

Changes in abundance High Medium Major Observed in fi sh, corals, and intertidal species 1

Impacts on large non-fi sh species, 
e.g., walruses, penguins, and other 
sea birds 

High High Major Observed effects include changing abundance, phenology, species distribution 
and turtle sex ratios, and are mediated mostly through changes in resource 
availability, including prey.

2

Impacts on reef-building corals Very high High Major Effects attributed mostly to warming and rising extreme temperatures, though 
ocean acidifi cation may contribute 

3

Changes in fi sh species richness in 
temperate and high-latitude zones

High Medium Major Effect associated with loss of sea ice and latitudinal species shifts due to 
warming trends 

4

Key references and further related information for the assessment in this table:
1Müller et al. (2009); Stige et al. (2010); Sections 6.3.1 and 30.4; Box CC-MB
2Grémillet and Boulinier (2009); McIntyre et al. (2011); Section 6.3.7
3Hoegh-Guldberg (1999); Hoegh-Guldberg et al. (2007); Baker et al. (2008); Veron et al. (2009); Sections 6.3.1.4 and 6.3.1.5; Box CC-CR
4Hiddink and ter Hofstede, (2008); Beaugrand et al. (2010); Box 6-1; Section 6.3.1.5



995

Detection and Attribution of Observed Impacts                                                                                                                                           Chapter 18

18

Eastern boundary upwelling systems (Table 30-1, Figure 30-2). Recent
research shows declining oxygen levels (medium confidence; Section
30.3.2.3) and deep penetration of warming in some regions. Regional
estimates of CO2 uptake are in line with global estimates, and ocean
acidification has been detected with high confidence in most regions
(Section 30.3.2.2; WGI AR5 Section 3.8.2).

The high latitude spring bloom systems of the NH show strong warming
and associated effects (see above). In the North Pacific, the Bering Sea
has undergone major changes in recent decades as a result of climate
variability, climate change, and fishing impacts (Litzow et al., 2008;
Mueter and Litzow, 2008; Jin et al., 2009; Hunt et al., 2010). Loss of sea
ice has led to the retreat of the cold pool in parts of the Bering Sea, and
northward expansion of productivity (Wang et al., 2006; Mueter and
Lizow, 2008; Brown and Arrigo 2012; see also Section 30.5.1.1.2).

Marginal seas such as the East China Sea are also warming rapidly,
with subsequent impacts such as declining primary productivity and

fisheries yields as well as other ecological changes (Section 30.5.4.1).
However, other human pressures including over-fishing, habitat
alteration, and nutrient loading are important contributing factors
and it is difficult to disentangle these from the impacts of climate
change.

Semi-enclosed seas such as the Black and Baltic Seas and the Arabian/
Persian Gulf show differing patterns of change over the past decades
(Section 30.5.3.1). Expansions of hypoxic zones in the Baltic and Black
Seas have been detected. Although there is high confidence that climate
change has had a role, its magnitude is difficult to assess in light of
other contributing factors. Coral reefs in the Arabian/Persian Gulf and
Red Sea have experienced widespread bleaching in 1996 and 1998
associated with elevated temperature with high confidence that climate
change has played a major role.

Warming of the Mediterranean has been associated with mass mortality
events as well as invasions and spread of new warm water species,

Box 18-3 | Differences in Detection and Attribution of Ecosystem Change on Land and in the Ocean

Marine and terrestrial ecosystems differ in fundamental ways. Gradients in turbulence, light, pressure, and nutrients uniquely drive

fundamental characteristics of organisms and ecosystems in the ocean. While the critical factor for transporting nutrients to marine

primary producers is ocean mixing driven by wind, water is the primary mode for transporting nutrients to land plants. In addition to

these characteristics, marine ecosystems are often more technically difficult and costly to explore than terrestrial equivalents, which

explains the low number and shorter scientific studies of marine ecosystems (Hoegh-Guldberg and Bruno, 2010). The latter has

restricted the extent to which changes within the ocean can be detected and attributed.

Impacts of climate change in terrestrial and marine systems differ significantly for the same types of measures, for example, species

phenology and range shifts, leading to differences in experts’ interpretations of the data and possibly divergent levels of confidence

in detection and attribution. There are also fundamental differences in exposure of organisms to recent warming, their biological

responses, and our ability to detect change through observations. Changes in temperature of ocean systems have generally been less

than those of terrestrial ecosystems over the last 4 decades (Burrows et al., 2011). Furthermore, despite higher variability the horizontal

spatial gradient of temperature change (°C km–1) is generally much higher in terrestrial ecosystems than in marine ecosystems. All

else being equal, the net result is that species have generally needed to move much shorter distances in terrestrial ecosystems to stay

within their preferred climates, also due to the influence of the topography such as mountain ranges (Burrows et al., 2011), although

many marine species can potentially exploit strong vertical thermal gradients to attenuate the need for range shifts in response to

warming.

Species and ecosystems may respond very differently to these climate signals in ways that influence the ability to detect change. For

example, a comparison of ectotherm species (i.e., species that do not actively regulate their body temperatures, such as reptiles and

fish) indicates that marine species' ranges have tracked recent warming at both their poleward and equatorial range limits, while

many terrestrial species’ ranges have tracked warming only at their poleward range limits (Sunday et al., 2012). Biological processes

influencing phenological shifts may also differ substantially between systems. For example, the effect of climate on the timing of

flowering of terrestrial plants at high latitudes is only moderately influenced by confounding effects, whereas the timing of

phytoplankton blooms in high-latitude marine systems is highly dependent on ocean temperature and associated stratification and

changes in nutrient availability.
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resulting in the “tropicalization” of fauna with high confidence in a
major role for climate change (Section 30.5.3.1.5). In many tropical
regions and the subtropical gyres of the Pacific, Indian, and Atlantic,
periodic heat stress related to climate change has combined with other
local stresses to cause mass coral bleaching and mortality (see also Box
CC-CR, Section 30.5).

In other regions, such as the California Current upwelling system, there
is very high confidence in both the detection and attribution of ecological
changes associated with climate change, but separating the effects
of El Niño-Southern Oscillation (ENSO) and the PDO from those of
anthropogenic climate change is not possible.

In overall terms, attributing observed local and regional changes in
marine species and ecosystems to climate change remains an important
question for ongoing research (Stock et al., 2010).

18.4. Detection and Attribution of
Observed Climate Change Impacts in
Human and Managed Systems

Observed impacts on human systems have received considerably less
attention in previous IPCC reports and the scientific literature, compared
to observed impacts on natural systems. Human systems’ “normal
state in the absence of climate change” is almost never stationary.
Confounders other than climate change have been and continue to
drive the normal evolution of these systems, with climate often playing
a relatively minor role. Further, monitoring in many of the systems has
been and continues to be inadequate. It is therefore difficult to detect
and attribute the signal of climate change in the majority of human
systems, food production systems constituting one noteworthy
exception. There is emerging literature estimating the sensitivity to
climate of many sectors within the human system (see Box 18-4), yet
climate impacts are often not detectable over the impacts from non-
climate confounders.

For some human systems, the clearest situations where a climate signal
had a detectable and sometimes attributable impact are during extreme
weather events. Impacts of extreme events and single event attribution
are therefore discussed in Section 18.4.3, and the discussion is expanded
to include responses to extreme weather for some sectors. Overall, the
literature has made significant progress for certain sectors, such as food
systems, since AR4. The following sections provide a synthesis of findings
with regard to food systems, economic systems, human health, human
security, and human livelihoods and poverty, which are documented in
greater detail in Chapters 7, 9, 10, 11, 12, and 13. They also incorporate
evidence from regional chapters and further available literature,
especially for the discussion of extreme events, human security, and
observed changes in indigenous communities.

18.4.1. Food Production Systems

Detection and attribution of climate change impacts in food systems is
challenging, given that the behavior of the system in the absence of
climate change is driven by a large number of other factors (Section 7.2.1).

For cropping systems, these confounders include, but are not limited to,
cultivar improvement and increased use of synthetic fertilizers, herbicides,
and irrigation. These confounders are often not well measured in terms
of their distribution across space and time. Further, it is difficult to
quantify or model the exact relationship between these confounders
and outcomes of interest (e.g., crop yield or pasture productivity). In
addition, the role of farmers’ behavior in response to climate change
requires significant assumptions and has been shown to change over
time (Section 7.2.1). The discussion below is limited to crop systems
and fisheries, as literature is scarce on observed impacts for other
important sources of food.

18.4.1.1. Agricultural Crops

A significant number of studies have provided impact estimates of
observed changes in climate on cropping systems over the past few
decades (e.g., Auffhammer et al., 2006; Kucharik and Serbin, 2008;
Ludwig et al., 2009; Lobell et al., 2011; Tao et al., 2012; see also Figure
7-2). Over the past several decades, observed climate trends have
adversely affected wheat and maize production for many regions, as
well as the total global production of these crops (medium confidence
in a minor role of climate change in overall production). Climate change
impacts on rice and soybean yields over this time period have been
small in major production regions and globally (medium confidence;
Figure 7-2). In some high-latitude regions, such as the UK and northeast
China, warming has benefitted crop production during recent decades
(high confidence in a minor role of climate change; Section 7.2.1.1;
Jaggard et al., 2007; Chen. C. et al., 2011). At the continental or global
scale, observed trends in some climatic variables, including mean summer
temperatures, attributed to anthropogenic activity (see Section 7.2.1.1;
WGI AR5 Section 10.3.1 and Table 10-1) have had significant negative
impacts on trends in yields for certain crops (Lobell and Field, 2007; You
et al., 2009; Lobell et al., 2011). 

Attributable trends have been found not only in the seasonal averages
of climate variables, but also for extremes (WGI AR5 Section 10.6).
Extreme rainfall events are widely recognized as important to cropping
systems (Rosenzweig et al., 2002), and global scale changes in the
patterns of rainfall extremes have been attributed to anthropogenic
activity (Min et al., 2011). High nighttime temperatures are harmful to
most crops, particularly for rice yield (Peng et al., 2004; Wassmann et
al., 2009; Welch et al., 2010) and quality (Okada et al., 2009). Daytime
extreme heat is also damaging and sometimes lethal to crops (Porter
and Gawith, 1999; Schlenker and Roberts, 2009). At the global scale,
trends in annual maximum daytime temperatures have been attributed
to greenhouse gas emissions (Christidis et al., 2011; Zwiers et al., 2011),
and similar observations have been made for the occurrence of very hot
nights (WGI AR5 Section 10.6.1.1; Seneviratne et al., 2012).

Changing atmospheric conditions are affecting crops both positively
and negatively. It is virtually certain that the increase in atmospheric
CO2 concentrations since preindustrial times has improved water use
efficiency and yields most notably in C3 crops. These effects are however
of relatively minor importance when explaining total yield trends
(Amthor, 2001; McGrath and Lobell, 2011). Emissions of CO2 have been
associated with tropospheric ozone (O3) precursors (Morgan et al., 2006;
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Mills et al., 2007; see also Section 7.3.2.1.2). O3 suppresses global
output of major crops, with reductions estimated at roughly 10% for
wheat and soy and 3 to 5% for maize and rice (Van Dingenen et al.,
2009). Detected impacts are most significant for India and China, but
can also be found for soybean and maize production in the USA in
recent decades (Fishman et al., 2010).

18.4.1.2. Fisheries

Many new studies focus on the relationship between the dynamics of
marine fish stocks and climate, suggesting a sensitivity to climate of
these stocks and on the fisheries that exploit them (Hollowed et al.,
2001; Roessig et al., 2004; Shriver et al., 2006; Brander, 2007). Some
fisheries and aquaculture do not show evidence of climate change
impacts (e.g., aquaculture in the UK and Ireland; Callaway et al., 2012),
while many others do with both positive and negative changes (see
also Sections 7.2.1.1, 18.3.4, 30.6.2.1).

There is high confidence in the detection of a climate change impact
on the spatial distributions of marine fishes (Perry et al., 2005) and in
the timing of events like spawning and migration (Sydeman and Bograd,
2009), with high confidence of a major role of climate change (see
Sections 18.3.4, 30.4; Box CC-MB). This distributional shift is reflected
in the species composition of harvest, with the relative share of warm
water species increasing (Cheung et al., 2013). The impacts of ocean
warming and acidification on fish stocks vary from region to region
(Section 30.6.2.1). To date, the role of climate change in change in fish
stocks and fishery yields is, in most cases, minor (high confidence) in
relation to other factors such as harvesting, habitat modification,
technological development, and pollution (Brander, 2010).

18.4.2. Economic Impacts,
Key Economic Sectors, and Services

18.4.2.1. Economic Growth

In low-income countries, careful tracking of incomes and temperatures
over an extended period, taking into account important confounders,
shows that higher annual temperatures as well as higher temperatures
averaged over 15-year periods result in substantially lower economic
growth (Dell et al., 2012). This effect is not limited to the level of per
capita income, but also to its rate of growth. Declining rainfall over the
20th century partly explains the slower growth of sub-Saharan economies
relative to those of other developing regions (Barrios et al., 2006; Brown
et al., 2011). Dell et al. (2009) find that 1°C of warming reduces income
by 1.2% in the short run and by 0.5% in the long run. The difference is
argued to be due to adaptation. Horowitz (2009) finds a much larger
effect: a 3.8% drop in income in the long run for 1°C of warming.
One proposed mechanism for this is the impact of heat stress on
workers in the workplace (Dash and Kjellström, 2011; Dunne et al.,
2013). Temperature shocks have negatively affected the growth of
developing countries’ exports, for which 1°C of warming in a given
year reduced the growth rate of its exports by 2.0 to 5.7 percentage
points (Jones and Olken, 2010). The export sectors most affected are
agricultural and light manufacturing exports. 

18.4.2.2. Energy Systems

Energy production and consumption is growing rapidly globally, with
much of the growth taking place in low-income and emerging
economies. Various parts of the energy sector are known to be sensitive

Box 18-4 | The Role of Sensitivity to Climate and Adaptation for Impact Models in Human Systems

Impacts of climate change on a measurable attribute of a human system occur only if (1) the attribute is sensitive to climate and (2)

a change in climate has occurred. Many studies now attempt to quantify both climate sensitivity of various systems and observed

changes in climate.

Assessment of the sensitivity of an outcome such as crop yields, heat-related mortality, or migration to climate relies on observed

climate variability either across space (e.g., Schlenker et al., 2005), time (e.g., Mann and Emanuel, 2012), or space and time (e.g., Dell

et al., 2012). Though there are many studies using climate variability across space, the lack of long observational weather time series

required for exploring climate variability across space and time have limited the opportunities for study. A number of studies have

instead estimated the sensitivity of outcomes to short-run fluctuations (e.g., weather) in order to project the future impacts of climate

change (Deschênes and Greenstone, 2007, 2011), or attribute impacts for the past (Auffhammer et al., 2006). The issue with impact

studies using a weather-based sensitivity measure is that they cannot provide estimates of impacts based on the sensitivity to climate.

For example, farmers may respond to an unusually hot summer, which is a weather event, by applying more irrigation water. However,

in the long run farmers may respond to a warmer climate by switching crops, changing irrigation technology, or abandoning farming

altogether. The two sensitivities and resulting magnitudes of attributable impacts due to a change in weather versus a change in

climate are therefore different. To detect and attribute a change in a system to climate change, one needs to combine a measure of

sensitivity of the outcome to climate with climate observations under climate change.
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to climate change (cf. Ebinger and Vegara, 2011). Higher temperatures
raise the demand for cooling and lower the demand for heating. Cooling
demand is largest in the summer and in some areas peak loads during
the summer months have increased, this peak being highly correlated
with summer maximum temperatures (Franco and Sanstad, 2008). There
are also opposing effects of warmer winters and summers on electricity
and gas demand. Statistical studies have confirmed this U-shaped
relationship of energy and electricity demand in temperature for the
USA and elsewhere (Isaac and van Vuuren, 2009; Akpinar-Ferrand and
Singh, 2010; Deschênes and Greenstone, 2011).

On the supply side, sensitivity to climatic factors such as ambient
temperature, wind speeds, or snow and ice is well known for many
energy technologies and part of the transmission infrastructure (see
Sections 10.2.2-3); however, there are no studies available that discuss
observed effects of climate change on the energy sector. 

18.4.2.3. Tourism

Tourism is a climate sensitive economic sector and ample research has
been performed to understand its sensitivity to climate change and
impacts of (future) climate change on tourism, yet few studies have
focused on detection and attribution of observed impacts (cf. Scott et
al., 2008; see also Section 10.6).

A comparatively well-studied area is the sensitivity of the winter sports
industry in lower lying areas to climate. For example, the increase in
investment in artificial snow machines in the European Alps can be
attributed with high confidence to a general decrease of snow depth,
snow cover duration, and snowfall days since the end of the 1980s for
low-elevation mountain stations (Durand et al., 2009; Valt and Cianfarra,
2010; Voigt et al., 2011), which in turn has been attributed to anomalous
higher winter temperatures over the past 20 years (Marty, 2008).

Variability in precipitation, shrinking glaciers, and milder winters has
been shown to negatively affect visitor numbers in winter sports areas
in Europe and North America (Becken and Hay, 2007). Another indirect
effect of climate change that has been reported is a rise in popularity
of destinations that are perceived to be at risk from climate change
(e.g., Eijgelaar et al. (2010) for Antarctic glaciers, or Farbotko (2010) for
Tuvalu). 

18.4.3. Impacts of Extreme Weather Events

The impacts of extreme weather events depend on the frequency and
intensity of the events, as well as exposure and vulnerability of society
and assets. The last several decades have seen changes in the frequency
and intensity of extreme weather events including extreme temperature,
droughts, heavy rainfall, and tropical and extratropical cyclones with
low to very high confidence, depending on the type of extreme event
(IPCC, 2012; WGI AR5 Chapter 2). However, the impacts of extreme
weather events also depend on the vulnerability and exposure of
systems. It is possible that climate change can affect vulnerability and
exposure, but typically both are influenced primarily by non-climate
confounders, most notably economic development.

18.4.3.1. Economic Losses Due to Extreme Weather Events

Extreme weather events can result in economic impacts related to
damage to private and public assets as well as the temporary disruption
of economic and social activities, long-term impacts, and impacts beyond
the areas affected. Some economic and especially social impacts are
not readily monetizable and are thus excluded from most economic
assessments (Handmer et al., 2012, their Sections 4.5.1, 4.5.3).

Economic costs of extreme weather events have increased over the
period 1960–2000 (high confidence), with insured losses increasing more
rapidly than overall losses (Section 10.7.3; Handmer et al., 2012, their
Sections 4.5.3.3, 4.5.4.1). This is also reflected by an increase in the
frequency of extreme weather-related disasters over the same period
(Neumayer and Barthel, 2011). Recent studies from Mexico and Colombia
highlight both variability and positive trends in disaster frequency
(unadjusted) losses and other damage metrics (Saldaña-Zorrilla and
Sandberg, 2009; Marulanda et al., 2010; Rodriguez-Oreggia et al., 2013).
However, the greatest contributor to increased cost is rising exposure
associated with population growth and growing value of assets (high
confidence; Bouwer et al., 2007; Bouwer, 2011; Barthel and Neumayer,
2012; Handmer et al., 2012, their Sections 4.2.2, 4.5.3.3, Box 4-2). To
account for changes over time in the value of exposed assets, many
studies attempt to normalize monetary losses by an overall measure of
changes in asset value. A majority of studies have found no detectable
trend in normalized losses (Bouwer, 2011). Studies on insured losses
that in general meet higher data quality standards than data on overall
losses due to thoroughly monitored payouts have focused on developed
countries including Australia, Germany, Spain, the USA (Changnon, 2007,
2008, 2009a,b; Barredo et al., 2012; Barthel and Neumayer, 2012; Sander
et al., 2013; see also Section 10.7.3). Studies of normalized losses from
extreme winds associated with hurricanes in the USA (Miller et al., 2008;
Pielke Jr. et al., 2008; Schmidt et al., 2010; Bouwer and Botzen, 2011)
and the Caribbean (Pielke Jr. et al., 2003), tornadoes in the USA (Brooks
and Doswell, 2002; Boruff et al., 2003; Simmons et al., 2013), and wind
storms in Europe (Barredo, 2010) have failed to detect trends consistent
with anthropogenic climate change, although some studies were able
to find signals in loss records related to climate variability, such as
damage and loss of life due to wildfires in Australia related to ENSO and
Indian Ocean dipole phenomena (Crompton et al., 2010), or typhoon loss
variability in the western North Pacific (Welker and Faust, 2013). Effects
of adaptation measures (disaster risk prevention) on disaster loss
changes over time cannot be excluded as research is currently not able
to control for this factor (Neumayer and Barthel, 2011). 

In conclusion, although there is limited evidence of a trend in the
economic impacts of extreme weather events that is consistent with a
change driven by observed climate change, climate change cannot be
excluded as at least one of the drivers involved in changes of normalized
losses over time in some regions and for some hazards.

18.4.3.2. Detection and Attribution of the Impacts of
Single Extreme Weather Events to Climate Change

Although most studies on the relationship between climate change and
extreme weather events have focused on changes over time in their



999

Detection and Attribution of Observed Impacts                                                                                                                                           Chapter 18

18

Date 
and locale

Impact event Associated climate hazard
Trends relating to likelihood 

of climate hazard
Trends relating to consequence 

of climate hazard

France, summer 
2003

Approximately 15,000 excess 
deaths (Hémon and Jougla, 
2003; Fouillet et al., 2006) 

Record hot days / heat wave (Hémon 
and Jougla, 2003; Fouillet et al., 2006)

Increasingly frequent hot days and 
heat waves in recent decades (Perkins 
et al., 2012; Seneviratne et al., 2012) 
( high confi dence)

• Aging population, increasing population, trends in 
marital status (Hémon and Jougla, 2003; Prioux, 
2005; Fouillet et al., 2006; Rey et al., 2007)

• Diffi culties staffi ng health services, undeveloped 
early warning system (Lalande et al., 2003; Fouillet 
et al., 2008) 

Atlantic and 
Gulf coasts 
of the United 
States, 2005

More than 1,000 deaths and 
more than US$100 billion in 
damage (Beven et al., 2008) 

Record number of tropical storms, 
hurricanes, and category 5 hurricanes 
(Bell et al., 2006) 

Recent increase in frequency but 
no clear century-scale trends in 
USA landfalling tropical storms or 
hurricanes (WGI AR5 Section 2.6.3, 
Knutson et al., 2010) ( high confi dence)

• More population, settlement, and wealth in coastal 
areas (Pielke Jr. et al., 2008; Schmidt et al., 2010)

• Strengthening of building codes (IntraRisk, 2002)

Mozambique, 
early 2007

More than 100,000 people 
displaced by fl ooding (Foley, 
2007; Artur and Hilhorst, 
2012)

High rainfall in upper Zambezi Basin in 
preceding months; passage of Cyclone 
Favio (Thiaw et al., 2008)

Warming and decreasing rainfall 
leading to lower discharge of the 
Zambezi (Dai et al., 2009) ( low 
confi dence)

Decreasing frequency of tropical 
cyclones in the Mozambique Channel 
during past 50 years (Mavume et al., 
2009) ( medium confi dence)

• Increased settlement of Zambezi fl ood plain 
following dam construction (Foley, 2007)

• Development of emergency response plans 
(Cosgrave et al., 2007; Foley, 2007)

Colombia, 
October –
December 2010

Floods affecting 4 million 
people; US$7.8 billion total 
damage (Hoyos, N. et al., 
2013)

Wettest year since records began 40 
years ago (Martinez et al., 2011)

No clear trend in discharge of rivers in 
fl ood-affected areas since 1940 (Hoyos, 
N. et al., 2013) ( low confi dence)

• Rapid urbanization, with high concentration of 
residential areas in fl ood-prone areas (OSSO, 2013; 
Álvarez-Berríos et al., 2013)

• Increasing vulnerability of rural population over the 
past decades and highly fragile urban systems (e.g., 
water and gas) (OSSO, 2013)

Pakistan, 
July – September 
2010

Flooding leading to 2,000 
deaths; 20 million affected; 
total loss US$10 billion 
(NDMA, 2011)

Exceptionally high monsoon rainfall 
over northern Pakistan during July and 
August (Houze Jr. et al., 2011; Rajeevan 
et al., 2011; Webster et al., 2011)

No substantial trend in heavy rainfall 
event frequency in northern Pakistan 
in past several decades (Wang, S.-Y. 
et al., 2011; Webster et al., 2011) ( low 
confi dence)

• Rapid population growth and expansion of formal 
and informal human settlements (Oxley, 2011)

• Decreased risk through development of fl ood and 
disease warning systems and disaster planning 
(NDMA, 2011)

• Increased risk from deforestation on mountainous 
slopes (Ali et al., 2006)

• Recent unrest in north constrains ability of 
institutions to deliver basic services (World Bank  
and ADB, 2010)

European 
Russia, July –
August 2010

Burned area >12,500 km 
(Müller, 2011)

Record hot days (Barriopedro et al., 
2011; Müller, 2011)

Unusually dry June – August (Bulygina 
et al., 2011)

Trends in temperature, precipitation, 
humidity, soil moisture, and snow 
cover toward less conducive climatic 
conditions for fi re (Groisman et al., 
2007) ( medium confi dence)

• Increased risk from draining of peat bogs in 1960s 
and earlier (Global Fire Monitoring Center, 2010; 
Müller, 2011)

• Increased risk from poorly implemented devolution 
of forest management and forest fi re protection 
in 2007 to regional administrations (Global Fire 
Monitoring Center, 2010)

Russia, summer 
2010

Grain harvest 30% lower 
than forecast (Wegren, 2011)

Hottest June – August in at least 130 
years, unusually dry June – August 
(Bulygina et al., 2011)

~1°C summer warming trend over last 
70 years (Gruza and Mescherskaya, 
2008; Bulygina et al., 2011) (very high 
confi dence)

• Increase in grain production partially due to 
government support programs (Wegren, 2011)

Southeast 
Queensland, 
Australia, 
January 2011

Floods affecting >200,000 
people; >30,000 homes 
fl ooded; damages and cost 
to economy of US$2.5 –10 
billion (Hayes and 
Goonetilleke, 2012)

2010 was the wettest year since 1974, 
with landfall of tropical cyclone in 
December and wet start to January 
resulting in highest fl ood since 1974 
(Van den Honert and McAneney, 2011; 
Hayes and Goonetilleke, 2012).

Decreasing frequency of intense fl oods 
since 1840 (Van den Honert and 
McAneney, 2011) ( medium confi dence)

• Increased development in fl ood-prone urban areas 
(Van den Honert and McAneney, 2011)

• Lack of development of riverine fl ood insurance 
(Van den Honert and McAneney, 2011; Ma et al., 
2012)

Thailand, 2011 Prolonged inundation of 
urban and industrialized 
areas; manufacturing losses 
of about US$32 billion (World 
Bank, 2012)

One of the wettest monsoon seasons 
on record in middle and upper Chao 
Phraya Basin, resulting in fl ooding 
(Komori et al., 2012; Van Oldenborgh 
et al., 2012)

No detectable change in precipitation 
over the basin (Van Oldenborgh et al., 
2012) ( low confi dence)

• Economic development focused on large industrial 
estates built in fl ood plains (Chongvilaivan, 2012; 
Courbage et al., 2012)

• Recent spell of political instability (Courbage et 
al., 2012)

• Subsidence from groundwater pumping (Phien-Wej 
et al., 2006)

Contiguous 
United States, 
summer 2012

Agricultural drought, with 
57% of cropland and 43% of 
farms experiencing at least 
severe drought (Crutchfi eld, 
2013)

Second warmest summer and warmest 
month (July) in the contiguous USA, 
and one of the driest March – July 
periods in the central USA in the 118-
year record (Crouch et al., 2013; Kumar 
et al., 2013)

~0.5ºC warming in summer over the 
last century (Menne et al., 2009) (very 
high confi dence)

No substantial long-term trend in 
drought occurrence (Peterson et al., 
2013) ( medium confi dence)

Signifi cant growth in area dedicated to soy and 
maize (FAOSTAT, 2013)

Table 18-3 |  Illustrative selection of recent disasters related to extreme weather events, with description of the impact event, the associated climate hazard, recent climate trends 

relating to the weather event, and recent trends relating to the consequences of such a weather event. 
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frequency and intensity, a few studies have focused on the contribution
of climate change to specific events (WGI AR5 Section 10.6.2). Assessing
the contribution of climate change to a specific event poses particular
challenges, both in terms of methodology and communication of results
(Allen, 2011; Curry, 2011; Hulme et al., 2011; Trenberth, 2011). Only a
few studies have attempted to evaluate the role of climate change in
the impacts of individual extreme weather events. For instance, Pall et
al. (2011) and Kay et al. (2011), using observational constraints on climate
and hydrologic model simulations, concluded that greenhouse gas
emissions have increased the probability of occurrence of a comparable
flooding event in autumn 2000 over the UK.

In highly temperature-sensitive regions, such as high mountains, several
extreme impact events of recent decades can be qualitatively attributed
to effects of long-term warming (high confidence), namely glacier lake
outburst floods due to glacier recession and subsequent formation of
unstable lakes (Evans and Clague, 1994; Carey, 2005; Bajracharya and
Mool, 2009), debris flows from recently deglaciated areas, and rock fall
and avalanches following the loss of mechanical support accompanying
glacier retreat (Haeberli and Beniston, 1998; Oppikofer et al., 2008;
Huggel et al., 2012b; Stoffel and Huggel, 2012; see also Section 18.3.1.3).
Multi-step approaches can be used to evaluate the contributions of
anthropogenic emissions to recent damaging extreme events (Hegerl
et al., 2010).

Irrespective of whether a specific event can be attributed in part to climate
change, there is ample evidence of the severity of related impacts on
people and various assets. Both low- and high-income countries have
been strongly impacted by extreme weather events in recent years, but
the impacts relative to economic strength have been higher in low-income
countries (Handmer et al., 2012). Similarly, at the national scale, poor
or elderly people have been disproportionately affected, as documented
for Hurricane Katrina in the USA in 2005 (Elliott and Pais, 2006; Bullard
and Wright, 2010) or the 2003 European heat wave (Fouillet et al.,
2008). Exacerbating effects of extreme weather events are mostly of
non-climatic nature, including increasing exposure and urbanization,
land use changes including deforestation, or vulnerable infrastructure.
Table 18-3 lists a selection of recent weather-related disasters, and lists
various factors contributing to long-term changes in the risk of damage,
including recent climate change.

18.4.4. Human Health

IPCC AR4 (Confalonieri et al., 2007) concluded that there was weak to
moderate evidence of effects of recent observed climate change on
three main categories of health exposure (ranging from low to medium
confidence): vectors of human infectious diseases (changes in distribution),
allergenic pollen (changes in phenology), and extreme heat exposures
(trend in increased frequency of very hot days and heat wave events).
Overall, there was a lack of evidence for observed effects of climate
change on human health outcomes, and this generally remains the case
(see Chapter 11). Evaluation of the detection and attribution of impacts
on health outcomes requires disentangling the roles of changes in
exposures (e.g. patterns), control measures (e.g., vaccination, drug
resistance), population structures (e.g., population aging), and reporting
practices.

The most direct potential health impact of climate change is through
exposure to higher temperatures, as the association between very hot
days and increases in mortality is very robust (Section 11.4.1). Recent
decades have seen a shift toward more frequent hot extremes and less
frequent cold extremes (high confidence; Seneviratne et al., 2012; WGI
AR5 Table 2.13). However, the translation of this trend in hazard to a
trend in exposure is complicated by changes in social, environmental,
and behavioral factors (e.g., Carson et al., 2006; see also Table 18-3)
and interseasonal mortality relationships (Rocklöv et al., 2009; Ha et
al., 2011). Climate change has contributed to a shift from cold-related
mortality to heat-related mortality during recent decades in Australia
(medium confidence; Bennett et al., 2013). In a similar shift in England
and Wales, a contribution from anthropogenic climate change has been
detected (medium confidence; Christidis et al., 2010).

For pollen production, changes in phenology have been consistently
observed in mid- to high latitudes with, for example, earlier onset in
Finland (e.g., Yli-Panula et al., 2009) and Spain (D’Amato et al., 2007;
García-Mozo et al., 2010; see also Section 4.3) over the past few
decades. In North America, the pollen season of ragweed (Ambrosia
spp.) has been extended by 13 to 27 days since 1995 at latitudes above
44°N (Ziska et al., 2011). Allergic sensitization of humans has changed
over a 25-year period in Italy, but the attribution to observed warming
remains unclear (Ariano et al., 2010).

There is limited evidence regarding the role of observed warming in
changes in tick-borne disease in mid- to high latitudes. While patterns
of changes in tick-borne encephalitis (TBE) incidence in the Czech
Republic match those expected from observed warming (Kriz et al.,
2012), the upsurge of TBE in the 1980–1990s in Central and Eastern
Europe generally has been attributed to socioeconomic factors (human
behavior) rather than temperature (Šumilo et al., 2008, 2009).
Changes in the latitudinal and altitudinal distribution of ticks in Europe
and North America are consistent with observed warming trends (e.g.,
Gray et al., 2009; Ogden et al., 2010), but there is no evidence so far of
any associated changes in the distribution of human cases of tick-borne
diseases. There is limited evidence of a change in the distribution of
rodent-borne infections in the USA (plague and tularemia) consistent
with observed warming (Nakazawa et al., 2007). Specifically, a
northward shift of the southern edge of the distributions of the diseases
(based on human case data for period 1965–2003) was observed.
There was no change detected in the northern edge of the distributions,
however.

Globally, the dominant trend concerning malaria has been a contraction
of the geographical range and a decrease in endemicity over the past
century due to changes in land cover, behavior, and health care (Gething
et al., 2010). Given that the mosquito vector is climate sensitive,
however, there may be specific locations where climate change matches
the influence of these other factors. In the Kericho region of Kenya, both
increasing incidence and warming have been observed over several
decades (Omumbo et al., 2011). Modelling suggests that the gradual
warming is inducing an amplified nonlinear response in malaria
incidence (Alonso et al., 2011). A detailed review concluded that
decadal temperature changes have played at least a minor role in these
malaria trends in the East African highlands (low confidence; Chaves
and Koenraadt, 2010).
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18.4.5. Human Security

A small number of studies have examined the connection between the
collapse of civilizations and large-scale climate disruptions such as
severe or prolonged drought. However, both the detection of a climate
change effect and an assessment of the importance of its role can be
made only with low confidence owing to limitations on both historical
understanding and data. Some studies have suggested that levels of
warfare in Europe and Asia were relatively high during the Little Ice Age
(Parker, 2008; Brook, 2010; Tol and Wagner, 2010; White, 2011; Zhang
et al., 2011), but for the same reasons the detection of the effect of
climate change and an assessment of its importance can be made only
with low confidence. There is no evidence of a climate change effect on
interstate conflict in the post-World War II period.

Most recent research in this area has focused on the relationship
between interannual climate variability in temperature, precipitation,
and other climate variables and civil conflict, with most studies focusing

on Africa (Hsiang et al., 2013; see also Section 12.5). A number of
studies have identified statistical relationships (Miguel et al., 2004;
Hendrix and Glaser, 2007; Hsiang et al., 2011), but the results have been
challenged (Buhaug et al., 2010; Theisen et al., 2011; Buhaug and
Theisen, 2012; Slettebak, 2012) on both technical and substantive
grounds. The issue is further complicated by the focus on interannual
variability—rather than climate change—and civil conflict. Though a
plausible argument could be made that climate change has increased
interannual variability and has, therefore, contributed positively to the
rate of civil conflict, this argument has not been tested in the literature.
For these reasons, neither the detection of an effect of climate change
on civil conflict nor an assessment of the magnitude of such an effect
can currently be made with a degree of confidence.

Several studies have examined links between climate variability and
small-scale communal violence (Adano et al., 2012; Butler and Gates,
2012; Hendrix and Salehyan, 2012; Raleigh and Kniveton, 2012; Theisen,
2012). As with larger-scale civil conflict, this work has focused on climate

Box 18-5 | Detection, Attribution, and Traditional Ecological Knowledge

Indigenous and local peoples often possess detailed knowledge of climate change that is derived from observations of environmental

conditions over many generations. Consequently, there is increasing interest in merging this traditional ecological knowledge

(TEK)—also referred to as indigenous knowledge—with the natural and social sciences in order to better understand and detect

climate change impacts (Huntington et al., 2004; Parry et al., 2007; Salick and Ross, 2009; Green and Raygorodetsky, 2010; Ford et

al., 2011; Diemberger et al., 2012). TEK, however, does not simply augment the sciences, but rather stands on its own as a valued

knowledge system that can, together with or independently of the natural sciences, produce useful knowledge for climate change

detection or adaptation (Agrawal, 1995; Cruikshank, 2001; Hulme, 2008; Berkes, 2009; Byg and Salick, 2009; Maclean and Cullen,

2009; Wohling, 2009; Ziervogel and Opere, 2010; Ford et al., 2011; Herman-Mercer et al., 2011). 

Cases in which TEK and scientific studies both detect the same phenomenon offer a higher level of confidence about climate change

impacts and environmental change (Huntington et al., 2004; Laidler, 2006; Krupnik and Ray, 2007; Salick and Ross, 2009; Gamble et

al., 2010; Green and Raygorodetsky, 2010; Alexander et al., 2011; Cullen-Unsworth et al., 2012). Evidence is available in particular

from Nordic and Mountain peoples, for example, from Peru’s Cordillera Blanca mountains (Bury et al., 2010; Carey, 2010; Baraer et

al., 2012; Carey et al., 2012b), Tibet (Byg and Salick, 2009), and Canada (Nichols et al., 2004; Laidler, 2006; Krupnik and Ray, 2007;

Ford et al., 2009; Aporta et al., 2011). TEK can also inspire scientists to study new issues in the detection of climate change impacts.

In one case, experienced Inuit weather forecasters in Baker Lake, Nunavut, Canada, reported that it had become increasingly difficult

for them to predict weather, suggesting an increase of weather variability and anomalies in recent years. To test Inuit observations,

scientists analyzing hourly temperature data over a 50-year period confirmed that afternoon temperatures fluctuated much more

during springtime during the last 20 years—precisely when Inuit forecasters noted unpredictability—than they had during the

previous 30 years (Weatherhead et al., 2010).

Despite frequent confluence between TEK and scientific observations, there are sometimes discrepancies between them, indicating

uncertainty in the identification of climate change impacts. They can arise because TEK and scientific studies frequently focus on

different and distinct scales that make comparison difficult. Local knowledge may fail to detect regional environmental changes

while scientific regional or global scale analyses may miss local variation (Wohling, 2009; Gamble et al., 2010). Furthermore, TEK-

based observations and related interpretations necessarily need to be viewed within the context of the respective cultural, social, and

political backgrounds (Agrawal, 1995). Therefore, a direct translation of TEK into a natural science perspective is often not feasible.
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variability rather than on climate change, so neither the detection of
the effect of climate change nor an assessment of its magnitude can
currently made with a degree of confidence. 

Finally, efforts have been made to establish a link between high
temperatures and violent crime (Anderson, 1987; Field, 1992; Anderson,
2001; Rotton and Cohn, 2001; Butke and Sheridan, 2010; Breetzke and
Cohn, 2012; Gamble and Hess, 2012). However, the findings remain
controversial with other studies identifying non-climate factors as
explaining variations in the rate of violent crime (Kawachi et al., 1999;
Fajnzylber et al., 2002; Neumayer, 2003; Cole and Gramajo, 2009).
Again, the focus in this work has been on weather rather than climate
and, in light of this and the equivocal nature of the results, neither the
detection of a climate change effect nor an assessment of its magnitude
can currently be made with a degree of confidence. 

The impact of future climate change on human displacement and
migration has been identified as an emerging risk (Section 19.4.2.1).
The social, economic, and environmental factors underlying migration
are complex and varied (see, e.g., Black et al., 2011) and it has not been
possible to detect the effect of observed climate change nor assess its
magnitude with any degree of confidence (see also Section 12.4.1.1).
Migration in response to climate-related events has been identified in
sub-Saharan Africa (Marchiori et al., 2012), with evidence from North
America a subject of disagreement (Auffhammer and Vincent, 2012;
Feng et al., 2012; Feng and Oppenheimer, 2012).

18.4.6. Livelihoods and Poverty

The vulnerability of the world’s poor to climate change, and more
generally the sensitivity of many livelihood aspects to climate variability,
has been shown in this and earlier IPCC reports (see Chapter 13).

However, available research about climate-related effects on livelihood
and poverty has focused on impacts of climate extremes or year to year
climate variability rather than long-term climatic trends, resulting in a
paucity of evidence on observed impacts of climate change on livelihoods
and poverty. Moreover, detection of changes in livelihood aspects is often
difficult due to a lack of observations (Section 13.2.1), while multiple
confounding factors and lack of both adequate climate data and system
understanding preclude attribution (Nielsen and Reenberg, 2010). 

Table 18-4 summarizes examples of impacts on livelihoods related to
climatic trends, climate variability, and extreme weather events.
Impacted natural assets include land, water, fish stocks, and livestock
(Osbahr et al., 2008; Bunce et al., 2010). There is growing concern about
negative effects of climate change and ocean acidification on marine
and coastal fisheries, and the livelihoods of fisherfolks (Cooley and
Doney, 2009; Badjeck et al., 2010); however, there are no studies
evaluating observed impacts.

Climate-related impacts disproportionately affect poor populations, thus
increasing social and economic inequalities, both in urban and rural areas,
and in low-, middle-, and high-income countries (Sections 13.1.4, 13.2.1).
Evidence for poor people in high-income nations being disproportionately
affected by extreme weather events comes, for instance, from 2005 U.S.
Hurricane Katrina (Elliott and Pais, 2006; Bullard and Wright, 2010; see
also Section 13.2.1.5) or severe drought in Australia (Alston, 2011).
Glacial lake outburst floods in the Peruvian Andes also affected different
populations depending on their degree of exposure, level of vulnerability,
race, ethnicity, and socioeconomic class (Carey, 2010; Carey et al., 2012b).
Owing to gender-specific roles within the household, communities, and
wider sociopolitical and institutional networks, a gender bias has been
found in observations of impacts of extreme weather events and climate
variability (Carr, 2008; Arora-Jonsson, 2011; Nightingale, 2011; see also
Box 13-1).

Impacted population Climate-related driver Impact on livelihood Reference

Small-scale farmers, Ghana Drought (past 20 – 30 years) Landscape transformation causing emotional distress, sense of loss 
of belonging

Tschakert et al. (2013) 

Middle-class farmers, Australia Drought (2000s) Landscape transformation, income loss from agriculture, social 
confl ict, poverty

Alston (2011)

Arctic indigenous peoples Warming (past decades) Changing ice and snow conditions, dwindling access to hunting 
grounds

Section 28.2.4; Table 18-9; Hovelsrud et 
al. (2008); Ford (2009a); Brubaker et al. 
(2011); Arctic Council (2013); Crate (2013)

Urban populations in Maputo, 
Accra, Nairobi, Lagos, Kampala

Flood frequency and severity increase 
(1990s and 2000s)

Direct impacts on people and loss of physical assets (e.g., housing) Douglas et al. (2008); Adelekan (2010) 

Industry workers in India Temperature variability and heat waves 
(1960s to present)

Decrease of fully workable days since 1960; limited ability to carry 
out physical work; health impacts

Ayyappan et al. (2009); Balakrishnan et al. 
(2010); Dash and Kjellström (2011) 

Farmers in Subarnabad, 
Bangladesh

Sea level rise (~1980s to present) Salt water intrusion; shift from agriculture to shrimp farming; loss of 
agricultural livelihoods

Pouliotte et al. (2009) 

Women farmers, Ghana Rainfall-related climate variability 
(~1990s and 2000s)

Adaptation practices in agriculture produce gender inequalities. Carr (2008)

Cambodian rice farmers Warming, rainfall-related climate 
variability (1980s to present)

Shift in income generation patterns between men and women Resurreccion (2011)

Poor children in Africa and 
Latin America

Weather- and climate-related events 
(1980s to present)

Food price shocks, reduced caloric intake, physical stunting, long-
term effects such as reduced lifetime earnings

Alderman (2010)

Smallholder farmers in 
highlands of Bolivia

Locally perceived changes in 
temperature means and extremes, and 
rainfall seasonality (~1990s and 2000s)

Stress on household resources due to need to respond to increasing 
plant pests; switching to other crop types or livestock

McDowell and Hess (2012)

Table 18-4 |  Cases of regional livelihood impacts associated with weather- and climate-related events, inter-annual climate variability, or climate change (see also Table 18-3; 

Section 13.2.1.1).
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Poor people living in hazard exposed areas in Africa and Latin America
were increasingly affected by floods and landslides in the 1990s and
2000s (high confidence; Handmer et al., 2012); however, most of this trend
was due to increased urbanization in such areas (Douglas et al., 2008;
Hardoy and Pandiella, 2009). There is evidence of a decline in average
precipitation in West Africa since 1960 (Lacombe et al., 2012), including
repeated droughts (Dietz et al., 2004; Armah et al., 2011), which in some
cases has been partly attributed to anthropogenic climate forcing (Held
et al., 2005; Jenkins et al., 2005; Biasutti and Giannini, 2006). However,
there is only limited evidence of changes in poverty among affected
small-holder and subsistence farmers that can be attributed to climate
drivers such as rainfall decline and droughts (Section 13.2.1). 

Livelihoods of indigenous people in the Arctic have been identified as
among the most severely affected by climate change, including food

security aspects, traditional travel and hunting, and cultural values and
references (Hovelsrud et al., 2008; Ford et al., 2009; Ford, 2009a,b;
Beaumier and Ford, 2010; Pearce et al., 2010; Olsen et al., 2011; Eira,
2012; Crate, 2013; see also Box 18-5, Table 18-9). Impacts of rising
temperatures, increased variability, and weather extremes on crops and
livestock of indigenous people in highlands were reported from Tibet
Autonomous Region, China (Byg and Salick, 2009), and the Andes of
Bolivia (McDowell and Hess, 2012). 

18.5. Detection and Attribution of Observed
Climate Impacts across Regions 

Since the AR4, significant new knowledge about detected impacts of
recent climate change has been gained from all continents and oceans

Mountains, snow and ice References
Confi dence 

in 
detection

Role of 
climate

Climate 
driver

Reference 
behavior

Confi dence 
in 

attribution

Africa Retreat of tropical highland glaciers in 
East Africa

Mölg et al. (2008, 2012); Taylor et al. (2009) Very high Major Warming, 
drying

No change High

Europe Retreat of Alpine, Scandinavian, and 
Icelandic glaciers

WGI AR5 Section 4.3.3; Bauder et al. (2007); Björnsson 
and Pálsson (2008); Paul and Haeberli (2008); WGMS 
(2008); Zemp et al. (2009); Andreassen et al. (2012); 
Marzeion et al. (2012); Gardner et al. (2013)

Very high Major Warming No change High

Increase in rock slope failures in western 
Alps

Sections 18.3.1.3 and 23.3.1.4; Fischer et al. (2012); 
Huggel et al. (2012a)

High Major Warming No change Medium

Asia Permafrost degradation in Siberia, 
Central Asia, and the Tibetan Plateau

WGI AR5 Section 4.7.2; Section 24.4.2.2; Romanovsky 
et al. (2010); Yang et al. (2013)

High Major Warming No change High

Shrinking mountain glaciers across most 
of Asia

WGI AR5 Section 4.3.3; Section 24.4.1.2; Box 3-1; 
Bolch et al. (2012); Cogley (2012); Gardelle et al. 
(2012); Kääb et al. (2012); Yao et al. (2012); Gardner et 
al. (2013); Stokes et al. (2013)

High Major Warming No change Medium

Australasia Substantial reduction in ice and glacier 
ice volume in New Zealand

WGI AR5 Section 4.3.3; Table 25-1; Chinn et al. (2012) High Major Warming No change Medium

Signifi cant decline in late-season snow 
depth at three out of four alpine sites in 
Australia 1957–2002

Table 25-1; Nicholls (2006); Hennessy et al. (2008) High Major Warming No change Medium

North 
America

Shrinkage of glaciers across western and 
northern North America

WGI AR5 Section 4.3.3; Gardner et al. (2013) High Major Warming No change High

Decreasing amount of water in spring 
snowpack in western North America 
1960–2002

Stewart et al. (2005); Mote (2006); Barnett et al. (2008) High Major Warming No change High

South and 
Central 
America

Shrinkage of Andean glaciers WGI AR5 Section 4.3.3; Section 27.3.1.1; Table 27-3; 
Vuille et al. (2008); Bradley et al. (2009); Jomelli et 
al. (2009); Poveda and Pineda (2009); Marzeion et al. 
(2012); Gardner et al. (2013); Rabatel et al. (2013)

High Major Warming No change High

Polar 
regions

Decreasing Arctic sea ice cover in 
summer

WGI AR5 Section 4.2.2.1; ACIA (2005); AMAP (2011) Very high Major Air and 
ocean 
warming, 
change 
in ocean 
circulation

No change High

Reduction in ice volume in Arctic glaciers WGI AR5 Section 4.3.3; ACIA (2005); Nuth et al. (2010); 
AMAP (2011); Gardner et al. (2011, 2013); Moholdt 
et al. (2012)

Very high Major Warming No change High

Decreasing snow cover across the Arctic Section 28.2.3.1; AMAP (2011); Callaghan et al. (2011) High Major Warming No change Medium

Widespread permafrost degradation, 
especially in the southern Arctic

Section 28.2.1.1; AMAP (2011); Olsen et al. (2011) High Major Warming No change High

Ice mass loss along coastal Antarctica WGI AR5 Sections 4.3.3, 4.4, and 10.5.2.1; Gardner et 
al. (2013); Miles et al. (2013)

Medium Major Warming No change Medium

Table 18-5 |  Observed impacts of climate change reported since AR4 on mountains, snow, and ice, over the past several decades, across major world regions, with descriptors 

for (1) the confi dence in detection of a climate change impact; (2) the relative contribution of climate change to the observed change, compared to that of non-climatic drivers; 

(3) the main climatic driver(s) causing the impacts; (4) the reference behavior of the system in the absence of climate change; and (5) the confi dence in attribution of the impacts 

to climate change. References to related chapters in this report are given as well as key references to other IPCC reports and the scientifi c literature. Absence of climate change 

impacts from this table does not imply that such impacts have not occurred.
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Rivers, lakes, and soil moisture References
Confi dence 

in 
detection

Role of 
climate

Climate driver
Reference 
behavior

Confi dence 
in 

attribution

Africa Reduced discharge in West African 
rivers 

d’Orgeval and Polcher (2008); Dai et al. 
(2009); Di Baldassarre et al. (2010)

Medium Major Reduced 
precipitation

No change Low

Lake surface warming and water 
column stratifi cation increases in the 
Great Lakes and Lake Kariba

Section 22.3.2.2; Tierney et al. (2010); 
Ndebele-Murisa et al. (2011); Powers et al. 
(2011)

High Major Warming No change High

Increased soil moisture drought in 
the Sahel since 1970, partially wetter 
conditions since 1990

Section 22.2.2.1; Hoerling et al. (2006); 
Giannini et al. (2008); Greene et al. (2009); 
Seneviratne et al. (2012)

Medium Major Change in 
precipitation

No change Medium

Europe Changes in the occurrence of extreme 
river discharges and fl oods

Section 23.2.3; Schmocker-Fackel and Naef 
(2010); Beniston et al. (2011); Cutter et 
al. (2012); Vorogushyn and Merz (2012); 
Kundzewicz et al. (2013)

Low Minor Change in 
precipitation; 
change in extreme 
precipitation

No change Very low

Asia Changes in water availability in many 
Chinese rivers

Table SM24-4; Zhang et al. (2007); Zhang, S. 
et al. (2008)

High Minor Change in 
precipitation

Changes due 
to land use

Low

Increased fl ow in several rivers in China 
due to shrinking glaciers

Casassa et al. (2009); Li et al. (2010); 
Zhang, Y. et al. (2008)

High Major Warming No change High

Earlier timing of maximum spring fl ood 
in Russian rivers

Section 28.2.1.1; Shiklomanov et al. (2007); 
Tan et al. (2011)

High Major Warming No change Medium

Reduced soil moisture in North Central 
and Northeast China 1950 – 2006

Sections 24.3.1 and 24.4.1.2; Sheffi eld 
and Wood (2007); Wang, A. et al. (2011); 
Seneviratne et al. (2012)

Medium Major Warming; change in 
precipitation

No change Medium

Surface water degradation in parts 
of Asia

Section 24.4.1.2; Prathumratana et al. (2008); 
Delpla et al. (2009); Huang et al. (2009)

Medium Minor Warming; change in 
precipitation

Changes due 
to land use

Medium

Australasia Intensifi cation of hydrological drought 
due to regional warming in Southeast 
Australia

Table 25-1; Nicholls (2006); Cai et al. (2009) Low Minor Warming No change Low

Reduced infl ow in river systems in 
southwestern Australia (since the 
mid-1970s) 

Table 25-1; Section 25.5.1; Cai and Cowan 
(2006); Nicholls (2010)

High Major Change in 
precipitation; 
warming

No change High

North 
America

Shift to earlier peak fl ow in snow 
dominated rivers in western North 
America

Barnett et al. (2008) High Major Warming; change 
in snow

No change High

Runoff increases in the midwestern and 
northeastern USA

Georgakakos et al. (2013) High Minor Change in 
precipitation; 
warming

No change Medium

South and 
Central 
America

Changes in extreme fl ows in Amazon 
River

Section 27.3.1.1; Butt et al. (2011); Wang, G. 
et al. (2011); Espinoza et al. (2013)

High Major Change in 
precipitation; 
change in extreme 
precipitation

No change Medium

Changing discharge patterns in rivers 
in the Western Andes; for major river 
basins in Colombia discharge has 
decreased during the last 30 – 40 years

Section 27.3.1.1; Table 27-3; Vuille et al. 
(2008); Casassa et al. (2009); Poveda and 
Pineda (2009); Baraer et al. (2012); Rabatel 
et al. (2013)

Medium Major Warming No change Medium

Increased streamfl ow in sub-basins of 
the La Plata River

Section 27.3.1.1; Pasquini and Depetris 
(2007); Krepper et al. (2008); Saurral et al. 
(2008); Conway and Mahé (2009); Krepper 
and Zucarelli (2010); Doyle and Barros (2011)

High Major Change in 
precipitation

Increase due 
to land use

High

Polar 
regions

Increased river discharge for large 
circumpolar rivers (1997 – 2007) 

Section 28.2.1.1; Overeem and Syvitsky, 
(2010)

High Major Warming; change in 
precipitation; change 
in snow cover

No change Low

Winter minimum river fl ow increase in 
most sectors of the Arctic

Section 28.2.1.1; Tan et al. (2011) High Major Warming; change in 
snow cover

No change Medium

Increasing lake water temperatures 
1985 – 2009, prolonged ice-free seasons

Section 28.2.1.1; Callaghan et al. (2010); 
Schneider and Hook (2010)

Medium Major Warming No change Medium

Thermokarst lakes disappear due to 
permafrost degradation in the low 
Arctic, new ones created in areas of 
formerly frozen peat

Section 28.2.1.1; Riordan et al. (2006); Marsh 
et al. (2008); Prowse and Brown (2010)

High Major Warming No change High

Small 
islands

Increased water scarcity in Jamaica Gamble et al. (2010); Jury and Winter (2010) Low Minor Change in 
precipitation

Increase due 
to water use

Very low

Table 18-6 |  Observed impacts of climate change reported since AR4 on rivers, lakes, and soil moisture, over the past several decades, across major world regions, with 

descriptors for (1) the confi dence in detection of a climate change impact; (2) the relative contribution of climate change to the observed change, compared to that of 

non-climatic drivers; (3) the main climatic driver(s) causing the impacts; (4) the reference behavior of the system in the absence of climate change; and (5) the confi dence in 

attribution of the impacts to climate change. References to related chapters in this report are given as well as key references to other IPCC reports and the scientifi c literature. 

Absence of climate change impacts from this table does not imply that such impacts have not occurred.
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of the world, as assessed in Chapters 22 to 30 of this report. Tables
18-5 to 18-9 summarize impacts in major natural and human systems,
at the local to continental scale, for which assessment of the role of
climate as one driver has been possible. The following paragraphs
provide a summary of recent climate changes in these regions along
with notes about particular challenges in the regional assessments.

For much of Africa, knowledge about recent climate change is limited,
owing to weak climate monitoring and gaps in coverage that continue
to exist. On the other hand, the low natural temperature variability

over the continent allows earlier detection of warming signals. Thus
there is medium to high confidence in regional warming, with low to
high confidence in attribution to anthropogenic emissions. A main
regional feature has been the drying of the Sahel during the decades
following 1970, but that trend has halted during the most recent decade
(Hoerling et al., 2006; Giannini et al., 2008; Greene et al., 2009;
Seneviratne et al., 2012). African natural and human systems present
challenges for the potential detection and attribution of responses to
climate change. Given the weak spatial and temporal variations in
temperature, there is smaller scope for migrational and phenological

Continued next page

Terrestrial ecosystems References
Confi dence 

in 
detection

Role of 
climate

Climate 
driver

Reference 
behavior

Confi dence 
in 

attribution

Africa Tree density decreases in Western Sahel 
and semi-arid Morocco

Section 22.3.2.1; Gonzalez et al. (2012); Le 
Polain de Waroux and Lambin (2012)

Medium Major Change in 
precipitation

Changes due to 
land use

Medium

Range shifts of several southern plants 
and animals: South African bird species 
polewards; Madagascan reptiles and 
amphibians upwards; Namib aloe 
contracting ranges

Table 22-3; Foden et al. (2007); Raxworthy et 
al. (2008); Hockey and Midgley (2009); Hockey 
et al. (2011)

High Major Warming Changes due to 
land use

Medium

Wildfi res increase on Mt. Kilimanjaro Table 22-3; Hemp (2005) Medium Major Warming; 
drying

No change Low

Europe Earlier greening, earlier leaf emergence 
and fruiting in temperate and boreal trees

Section 4.3.2.1; Menzel et al. (2006) High Major Warming No change High

Increased colonization of alien plant 
species in Europe

Section 4.2.4.6; Table 23-6; Walther et al. 
(2009)

Medium Major Warming Some invasion Medium

Earlier arrival of migratory birds in Europe 
since 1970

Section 4.2.4.6; Table 23-6; Møller et al. 
(2008)

Medium Major Warming No change Medium

Upward shift in tree line in Europe Section 18.3.2.3; Table 23-6; Gehrig-Fasel et 
al. (2007); Lenoir et al. (2008)

Medium Major Warming Changes due to 
land use

Low

Increasing burnt forest areas during 
recent decades in Portugal and Greece

Table 23-6; Camia and Amatulli (2009); 
Hoinka et al. (2009); Costa et al. (2011); 
Koutsias et al. (2012)

High Major Warming; 
change in 
precipitation

Some increase 
due to land use

High

Asia Changes in plant phenology and growth 
in many parts of Asia (earlier greening), 
particularly in the north and the east

Sections 4.3.2.1 and 24.4.2.2; Figure 4-4; Ma 
and Zhou (2012); Panday and Ghimire (2012); 
Shrestha et al. (2012); Ogawa-Onishi and 
Berry (2013)

High Major Warming No change Medium

Distribution shifts in many plant and 
animal species, particularly in the north of 
Asia, upwards in elevation or polewards

Sections 4.3.2.5 and 24.4.2.2; Figure 4-4; 
Moiseev et al. (2010); Chen et al. (2011); Jump 
et al. (2012); Ogawa-Onishi and Berry (2013)

High Major Warming No change Medium

Invasion of Siberian larch forests by pine 
and spruce during recent decades

Section 24.4.2.2; Kharuk et al. (2010); Lloyd 
et al. (2011)

Medium Major Warming No change Low

Advance of shrubs into the Siberian 
tundra

Sections 4.3.3.4, 24.4.2.2, and 28.2.3.1; Henry 
and Elmendorf (2010); Blok et al. (2011)

High Major Warming No change High

Australasia Changes in genetics, growth, distribution, 
and phenology of many species, in 
particular birds, butterfl ies and plants in 
Australia

Table 25-3; Chambers (2008); Chessman 
(2009); Green (2010); Kearney et al. (2010); 
Keatley and Hudson (2012); Chambers et al. 
(2013b)

High Major Warming Fluctuations due 
to variable local 
climates, land 
use, pollution, 
invasive species

High

Expansion of some wetlands and 
contraction of adjacent woodlands in 
southeast Australia

Table 25-3; Keith et al. (2010) Medium Major Change in 
precipitation; 
warming

No change Low

Expansion of monsoon rainforest at 
expense of savannah and grasslands in 
north Australia

Table 25-3; Banfai and Bowman (2007); 
Bowman et al. (2010)

Medium Major Change in 
precipitation; 
increased CO

2

No change Medium

Migration of glass eels advanced by 
several weeks in Waikato River, New 
Zealand

Table 25-3; Jellyman et al. (2009) Medium Major Warming No change Low

Table 18-7 |  Observed impacts of climate change reported since AR4 on terrestrial ecosystems, over the past several decades, across major world regions, with descriptors for: 

(1) the confi dence in detection of a climate change impact; (2) the relative contribution of climate change to the observed change, compared to that of non-climatic drivers; (3) 

the main climatic driver(s) causing the impacts; (4) the reference behavior of the system in the absence of climate change; and (5) the confi dence in attribution of the impacts 

to climate change. References to related chapters in this report are given as well as key references to other IPCC reports and the scientifi c literature. Absence of climate change 

impacts from this table does not imply that such impacts have not occurred.
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responses to anthropogenic climate change than in other parts of the
world. High-quality monitoring is relatively sparse in time and space, and
is often unsuitable for detecting changes across margins and borders
where responses to climate change are most expected. The dearth of
studies examining attribution questions means it is currently difficult
to estimate the degree to which studies are selectively published based
on results, and thus to determine whether each attribution study is
indicative only of local reasons for concern or if it is more generally
representative of a broader domain.

Amongst all continents, Europe has the longest tradition in climate
monitoring. Warming has been occurring across the continent in all
seasons, with an associated decreasing frequency of cold extremes and

increasing frequency of hot extremes (Seneviratne et al., 2012). The
Mediterranean basin has been getting drier, while northern areas have
been getting wetter (Section 23.2.2.1), with a general increase in the
frequency of extreme wet events everywhere (Seneviratne et al., 2012).

Asia spans a particularly wide range of climate types. Warming has been
observed throughout the continent, with northern areas among the fastest
warming on the planet. Precipitation trends vary geographically, with
a weaker Indian monsoon (WGI AR5 Section 14.2.2.1) and contrasting
increasing and drying trends over coastal and inland China (Section 24.3).

Warming has occurred in Australasia during the past century, with hot
extremes becoming more frequent and cold extremes becoming less

Terrestrial ecosystems References
Confi dence 

in 
detection

Role of 
climate

Climate 
driver

Reference 
behavior

Confi dence 
in 

attribution

North 
America

Phenology changes and species 
distribution shifts upward in elevation and 
northward across multiple taxa

Section 26.4.1; Parmesan and Galbraith 
(2004); Parmesan (2006); Kelly and Goulden 
(2008); Moritz et al. (2008); Tingley et al. 
(2009)

High Major Warming No change Medium

Increased wildfi re frequency in subarctic 
conifer forests and tundra

Section 28.2.3.1; Mack et al. (2011); Mann et 
al. (2012)

High Major Warming No change Medium

Regional increases in tree mortality and 
insect infestations in forests

Section 26.4.2.1; Van Mantgem et al. (2009); 
Peng et al. (2011)

Medium Minor Warming No change Low

Increase in wildfi re activity, fi re frequency 
and duration, and burnt area in forests 
of the western US and boreal forests in 
Canada

Box 26-2; Gillett et al. (2004); Westerling et al. 
(2006); Girardin et al. (2013)

High Minor Warming; 
change in 
precipitation

Changes due to 
land use and fi re 
management

Medium

South and 
Central 
America

Increased tree mortality and forest fi re in 
the Amazon

Section 4.3.3.1.3; Phillips et al. (2009) Medium Minor Warming No change Low

Degrading and receding rainforest in the 
Amazon

Sections 18.3.2.4, 27.2.2.1, and 27.3.2.1; Etter 
et al. (2006); Nepstad et al. (2006); Oliveira et 
al. (2007); Wassenaar et al. (2007); Killeen et 
al. (2008); Nepstad and Stickler (2008)

Low Minor Warming Deforestation 
and land 
degradation

Low

Polar 
regions

Increase in shrub cover in tundra in North 
America and Eurasia

Section 28.2.3.1.2; Tape et al. (2006); Walker 
et al. (2006); Henry and Elmendorf (2010); 
Blok et al. (2011); Elmendorf et al. (2012); 
Tape et al. (2012)

High Major Warming No change High

Advance of Arctic tree-line in latitude and 
altitude

Section 28.2.3.1.2; AMAP (2011); Hedenås et 
al. (2011); Van Bogaert et al. (2011)

High Major Warming No change Medium

Loss of snow-bed ecosystems and tussock 
tundra

Section 28.2.3.1.2; Björk and Molau (2007); 
Molau (2010a); Hedenås et al. (2011); 
Callaghan et al. (2013)

High Major Warming; 
change in 
precipitation

No change High

Impacts on tundra animals from increased 
ice layers in snow pack, following rain-on-
snow events

Section 28.2.3.1.3; Callaghan et al. (2011); 
Hansen et al. (2013)

Medium Major Change in 
precipitation; 
warming

No change Medium

Changes in breeding area and 
population size of subarctic birds, due to 
snowbed reduction and/or tundra shrub 
encroachment

Molau (2010b); Callaghan et al. (2013) High Major Warming No change Medium

Increase in plant species ranges in the 
West Antarctic Peninsula and nearby 
islands over the past 50 years

Section 28.2.3.2; Fowbert and Smith (1994); 
Parnikoza et al. (2009)

High Major Warming No change High

Increasing phytoplankton productivity in 
Signy Island lake waters

Quayle et al. (2002); Laybourn-Parry (2003) High Major Warming No change High

Small 
islands

Changes in tropical bird populations in 
Mauritius

Section 29.3.2; Senapathi et al. (2011) Medium Major Change in 
precipitation

No change Medium

Decline of an endemic plant in Hawai’i Krushelnycky et al. (2013) Medium Major Warming; 
change in 
precipitation

No change Medium

Upward trend in tree lines and associated 
fauna on high-elevation islands

Section 29.3.2; Benning et al. (2002); Jump 
et al. (2006)

Low Minor Warming No change Low

Table 18-7 (continued)
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Continued next page

Coastal and marine 
ecosystems

References
Confi dence 

in 
detection

Role of 
climate

Climate driver
Reference 
behavior

Confi dence 
in 

attribution

Africa Decline in coral reefs in tropical 
African waters

Sections 30.5.3.1.2 and 30.5.4.1.5; Baker et al. 
(2008); Carpenter et al. (2008); Ateweberhan et 
al. (2011)

High Major Ocean warming Decline due to 
human impacts

High

Europe Northward shifts in the 
distributions of zooplankton, 
fi sh, seabirds, and benthic 
invertebrates in the northeast 
Atlantic

Box 6-1; Table 6-2; Sections 6.3.1, 23.6.5, and 
30.5.1.1; Beaugrand et al. (2009); Philippart et 
al. (2011)

High Major Ocean warming No change High

Northward and depth shift in 
distribution of many fi sh species 
across European seas

Sections 6.3.1, 23.6.4, 23.6.5, and 30.5.3.1; 
Table 6-2; Perry et al. (2005); Pörtner et 
al. (2008); Beaugrand et al. (2009, 2010); 
Beaugrand and Kirby (2010); Hermant et al. 
(2010); Philippart et al. (2011)

High Major Ocean warming No change Medium

Phenology changes in plankton 
in the northeast Atlantic

Box 6-1; Sections 6.3.1, 23.6.5, and 30.5.1.1; 
Beaugrand et al. (2002, 2009); Edwards and 
Richardson (2004); Philippart et al. (2011)

Medium Major Ocean warming No change Medium

Spread of warm water species 
into the Mediterranean

Sections 23.6.5 and 30.5.3.1.5; Boero et al. 
(2008); Lasram and Mouillot (2009); Raitsos et 
al. (2010)

High Major Ocean warming Changes due to 
invasive species 
and human 
impacts

Medium

Asia Decline in coral reefs in tropical 
Asian waters

Sections 24.4.3.2 and 30.5.1.4.3; McLeod et al. 
(2010); Krishnan et al. (2011); Coles and Riegl 
(2012)

High Major Ocean warming Decline due to 
human impacts

High

Northward range extension of 
coral in the East China Sea and 
western Pacifi c, and a predatory 
fi sh in the Sea of Japan

Section 24.4.3.2; Yamano et al. (2011); Tian et al. 
(2012); Ogawa-Onishi and Berry (2013)

Medium Major Ocean warming No change Medium

Shift from sardines to anchovies 
in the western North Pacifi c

Sections 6.3.1 and 6.3.6; Table 6-2; Takasuka et 
al. (2007, 2008)

Medium Major Ocean warming Fluctuations due 
to fi sheries

Low

Increased coastal erosion in 
Arctic Asia

Section 24.4.3.2; Razumov (2010); Forbes 
(2011); Lantuit et al. (2011)

Medium Major Permafrost 
degradation, ocean 
warming, change in 
sea ice

No change Low

Australasia Southward shifts in the 
distribution of marine species 
near Australia

Table 25-3; Ling et al. (2009b); Pitt et al. (2010); 
Neuheimer et al. (2011); Wernberg et al. (2011b)

High Major Ocean warming Changes due 
to short-term 
environmental 
fl uctuations; 
fi shing and 
pollution

Medium

Change in timing of migration of 
seabirds in Australia

Section 25.6.2.1; Chambers et al. (2011, 2013a) Medium Major Air and ocean 
warming

No change Low

Increase in coral bleaching in the 
Great Barrier Reef and Western 
Australian Reefs 

Sections 6.3.1.4, 6.3.1.5, and 25.6.2.1; Table 
25-3; Cooper et al. (2008); De’ath et al. (2009, 
2012); Moore et al. (2012)

High Major Ocean warming Pollution; 
physical 
disturbance

High

Changes in coral disease patterns 
at Great Barrier Reef

Section 25.6.2.1; Table 25-3; Bruno et al. (2007); 
Sato et al. (2009); Dalton et al. (2010)

Medium Major Ocean warming Pollution Medium

North 
America

Northward shifts in the 
distributions of northwest 
Atlantic fi sh species

Section 30.5.1.1; Nye et al. (2009, 2011); Lucey 
and Nye (2010)

High Major Ocean warming No change High

Changes in mussel beds along 
the west coast of the USA

Smith et al. (2006); Menge et al. (2008); Harley 
(2011)

High Major Ocean warming No change High

Changes in migration and 
survival of salmon in the 
northeast Pacifi c

Table 6-2; Eliason et al. (2011); Kovach et al. 
(2012)

High Major Ocean warming No change High

Increased coastal erosion in 
Alaska and Canada

Sections 18.3.1.1 and 18.3.3.1; Mars and 
Houseknecht (2007); Forbes (2011); Lantuit et 
al. (2011)

High Major Permafrost 
degradation; ocean 
warming, change in 
sea ice

No change Medium

Table 18-8 |  Observed impacts of climate change reported since AR4 on coastal and marine ecosystems, over the past several decades, across major world regions, with 

descriptors for (1) the confi dence in detection of a climate change impact; (2) the relative contribution of climate change to the observed change, compared to that of 

non-climatic drivers; (3) the main climatic driver(s) causing the impacts; (4) the reference behavior of the system in the absence of climate change; and (5) the confi dence in 

attribution of the impacts to climate change. References to related chapters in this report are given as well as key references to other IPCC reports and the scientifi c literature. 

Absence of climate change impacts from this table does not imply that such impacts have not occurred.
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frequent (Section 25.2, Table 25-1). Winters in southern areas of
Australia have become drier in the past few decades and the northwest
has become wetter, and precipitation increased over the south and west
of both islands of New Zealand. Though there have been no significant
trends in drought frequency over Australia, regional warming may have
increased their hydrological intensity, and fire weather increased since
1973 in Australia (Table 25-1; Clarke et al., 2012).

North America spans a wide range of climate types and observed climate
changes. While the northwest has been among the fastest warming
regions on the planet, the southeast of the USA has experienced slight
cooling (Section 26.2.2.1). Hot extremes have been becoming more
frequent while cold extremes and frost days have been becoming less
frequent over the past several decades. Trends in precipitation over
western parts of the continent are strongly influenced by the variability
of the ENSO, with a matching drying and decreasing snowpack. The
intensity of precipitation events has been increasing over most of the

continent, but trends in dryness are spatially heterogeneous (Section
26.2.2.1). Intense tropical storms have increased in the North Atlantic
over the past several decades (WGI AR5 Section 2.6.3).

Most of Central and South America has warmed over the past half
century, except for a slight cooling over a western coastal strip (Section
27.2.1). Precipitation over much of Central and South America is strongly
influenced by the ENSO, with accompanying long-term variability.
There has been a reduction in the number of dry summer months in the
southern half of the continent, while trends over the Amazon are
sensitive to the selection of time period (Section 27.2.1). More frequent
and severe droughts in the Amazon have been linked to warming
(Marengo et al., 2011a).

The areas of largest observed warming are all polar: the northwest of
North America, northern Asia, and the Antarctic Peninsula. The nature
of polar regions means that warming can lead to large changes in other

Coastal and marine 
ecosystems

References
Confi dence 

in 
detection

Role of 
climate

Climate driver
Reference 
behavior

Confi dence 
in 

attribution

South and 
Central 
America

Increase in coral bleaching in the 
western Caribbean

Section 27.3.3.1; Guzman et al. (2008); Manzello 
et al. (2008); Carilli et al. (2009); Eakin et al. 
(2010)

High Major Ocean warming Pollution; 
physical 
disturbance

High

Mangrove degradation on north 
coast of South America

Section 27.3.3.1; Alongi (2008); Lampis (2010); 
Polidoro et al. (2010); Giri et al. (2011)

Low Minor Ocean warming Degradation due 
to pollution and 
land use

Low

Polar 
regions

Increased coastal erosion across 
the Arctic

Sections 18.3.1.1, 18.3.3.1, 28.2.4.2, and 28.3.4; 
Mars and Houseknecht (2007); Razumov (2010); 
Forbes (2011); Lantuit et al. (2011)

Medium Major Permafrost 
degradation; ocean 
warming, change in 
sea ice

No change Medium

Negative effects on non-
migratory Arctic species

Section 28.2.2.1; Laidre et al. (2008); Amstrup et 
al. (2010); McIntyre et al. (2011)

High Major Atmospheric and 
ocean warming; 
circulation change; 
change in sea ice

No change High

Decreased reproductive success 
in Arctic seabirds

Section 28.2.2.1.2; Gaston et al. (2009); 
Grémillet and Boulinier (2009)

Medium Major Air and ocean 
warming; change in 
ocean circulation; 
change in sea ice

No change Medium

Decline in Southern Ocean seals 
and seabirds

Section 28.2.2.2; Croxall et al. (2002); Patterson 
et al. (2003); Jenouvrier et al. (2005); Véran et 
al. (2007); Forcada et al. (2008); Trathan et al. 
(2011); Chambers et al. (2013a)

High Major Ocean warming No change Medium

Reduced thickness of 
foraminiferal shells in the 
Southern Ocean

Sections 6.3.2 and 28.2.2.2; Moy et al. (2009) Medium Major Ocean acidifi cation No change Medium

Reduced density of krill in the 
Scotia Sea

Atkinson et al. (2004); Trivelpiece et al. (2011) Medium Major Ocean warming; 
change in ocean 
circulation; change 
in sea ice

No change Medium

Small 
islands

Increased coral bleaching near 
many tropical small islands

Section 29.3.1.2; Alling et al. (2007); Bruno and 
Selig (2007); Oxenford et al. (2008); Sandin et 
al. (2008)

High Major Ocean warming Degradation due 
to fi shing and 
pollution

High

Degradation of mangroves, 
wetlands, and seagrass around 
small islands

Section 29.3.1.2; McKee et al. (2007); Gilman 
et al. (2008); Schleupner (2008); Krauss et al. 
(2010); Marbà and Duarte (2010); Rankey (2011)

Low Minor Sea level rise; 
atmospheric and 
ocean warming

Degradation 
due to other 
disturbances

Very low

Increasing fl ooding and erosion Section 29.3.1.1; Webb (2006); Webb (2007); 
Yamano et al. (2007); Cambers (2009); Novelo-
Casanova and Suarez (2010); Storey and Hunter 
(2010); Ballu et al. (2011); Rankey (2011); Ford 
(2012); Romine et al. (2013)

Low Minor Sea level rise Erosion due to 
human activities, 
natural erosion, 
and accretion 

Low

Degradation of groundwater and 
freshwater ecosystems due to 
saline intrusion

Section 29.3.2; White et al. (2007a,b); Ross et al. 
(2009); Carreira et al. (2010); Terry and Falkland 
(2010); White and Falkland (2010); Goodman 
et al. (2012)

Low Minor Sea level rise Degradation due 
to pollution and 
groundwater 
pumping

Low

Table 18-8 (continued)
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Continued next page

Human and managed 
systems

References
Confi dence 

in 
detection

Role of 
climate

Climate 
driver

Reference 
behavior

Confi dence 
in 

attribution

Africa Adaptative responses to changing 
rainfall by South African farmers

Section 13.2.1.2; Thomas et al. (2007) Low Major Change in 
precipitation

Changes due 
to economic 
conditions

Very low

Decline in fruit-bearing trees in Sahel Wezel and Lykke (2006); Maranz (2009) Medium Major Change in 
precipitation

No change Low

Malaria increases in Kenyan 
highlands

Section 11.5.1.1; O’Meara et al. (2010); Alonso et 
al. (2011); Stern et al. (2011)

Low Minor Warming Changes due 
to vaccination, 
drug resistance, 
demography, 
and livelihoods

Low

Reduced fi sheries productivity of 
Great Lakes and Lake Kariba

Sections 7.2.1.2, 13.2.1.1, and 22.3.2.2; Descy 
and Sarmento (2008); Hecky et al. (2010); 
Ndebele-Murisa et al. (2011); Marshall (2012)

Low Minor Warming Changes due 
to fi sheries 
management 
and land use

Low

Europe Shift from cold-related mortality to 
heat-related mortality in England 
and Wales

Sections 18.4.4 and 23.5.1; Christidis et al. 
(2010)

Medium Major Warming Changes due to 
exposure and 
health care

Low

Impacts on livelihoods of Sámi 
people in northern Europe

Eira (2012); Mathiesen et al. (2013) Medium Major Warming Economic and 
sociopolitical 
changes

Medium

Stagnation of wheat yields in some 
countries in recent decades

Section 23.4.1; Brisson et al. (2010); Kristensen 
et al. (2011)

High Minor Warming Increase due 
to improved 
technology

Medium

Positive yield impacts for some crops, 
mainly in northern Europe

Figure 7-2; Section 23.4.1; Jaggard et al. (2007); 
Supit et al. (2010); Gregory and Marshall (2012)

High Minor Warming Increase due 
to improved 
technology

Medium

Spread of bluetongue virus in sheep, 
and of ticks across parts of Europe

Section 23.4.2; Arzt et al. (2010); Randolph and 
Rogers (2010); Van Dijk et al. (2010); Guis et al. 
(2012); Petney et al. (2012)

High Minor Warming No change Medium

Asia Impacts on livelihoods of indigenous 
groups in Arctic Russia

Sections 13.2.1.2, 18.4.6, and 28.2.4.2; Table 
18-4; Crate (2013)

Medium Major Warming; change 
in snow cover; 
change in sea ice

Economic and 
sociopolitical 
changes

Low

Negative impacts on aggregate 
wheat yields in South Asia

Section 7.2.1; Figure 7-2; Pathak et al. (2003) Medium Minor Warming; change 
in precipitation

Increase due 
to improved 
technology

Medium

Negative impacts on aggregate 
wheat and maize yields in China

Section 7.2.1; Figure 7-2; Tao et al. (2006, 2008, 
2012); You et al. (2009); Chen et al. (2010)

Low Minor Warming Increase due 
to improved 
technology

Low

Increases in a water-borne disease 
in Israel

Paz et al. (2007) Low Minor Warming No change Low

Australasia Advance timing of wine-grape 
maturation in recent decades

Table 25-3; Webb et al. (2012) High Major Warming Advance due 
to improved 
management

Medium

Shift in winter versus summer human 
mortality in Australia

Sections 11.4.1, 18.4.4, and 25.8.1.1; Bennett 
et al. (2013)

Medium Major Warming Changes due to 
exposure and 
health care

Low

Relocation or diversifi cation of 
agricultural activities in Australia

Section 25.7.2; Box 25-5; Gaydon et al. (2010); 
Howden et al. (2010); Park et al. (2012); Thorburn 
et al. (2012)

Medium Minor Warming Changes due to 
policy, markets, 
and short-
term climate 
variability

Low

Central 
and South 
America

More vulnerable livelihood 
trajectories for indigenous Aymara 
farmers in Bolivia, due to water 
shortage

Section 13.1.4; McDowell and Hess (2012) Medium Major Warming Increasing 
social and 
economic 
stress

Medium

Increase in agricultural yields and 
expansion of agricultural areas in 
southeastern South America

Section 27.3.4.1; Magrin et al. (2007); Barros 
(2010); Hoyos et al. (2013)

Medium Major Precipitation 
increase

Increase due 
to improved 
technology

Medium

Table 18-9 |  Observed impacts of climate change reported since AR4 on human and managed systems, over the past several decades, across major world regions, with 

descriptors for (1) the confi dence in detection of a climate change impact; (2) the relative contribution of climate change to the observed change, compared to that of 

non-climatic drivers; (3) the main climatic driver(s) causing the impacts; (4) the reference behavior of the system in the absence of climate change; and (5) the confi dence in 

attribution of the impacts to climate change. References to related chapters in this report are given as well as key references to other IPCC reports and the scientifi c literature. 

Absence of climate change impacts from this table does not imply that such impacts have not occurred.
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aspects of the climate system, in particular the observed decrease in
summer sea ice cover, earlier thaw, earlier spring runoff, and thawing
of permafrost (Section 28.2).

Despite the widely accepted high vulnerability of many small islands to
climate change, there are only few formal studies on observed impacts.
Detection of climate change impacts in small islands is challenging due to
the strong presence of other anthropogenic drivers of local environmental
change. Attribution is further challenged by the strong influence of
natural variability compared to incremental changes of climate drivers
and by the lack of long-term monitoring and high-quality data.

18.6. Synthesis: Emerging Patterns of
Observed Impacts of Climate Change

18.6.1. Approach

The AR4 precursor of the current chapter (Rosenzweig et al., 2007)
provided a geographically distributed empirical analysis of correlations
across numerous detailed and localized studies of changing systems
(elaborated more later in Rosenzweig et al., 2008). Rather than expand
that approach, this synthesis organizes the findings on detection and
attribution of observed impacts of climate change aiming at covering
the full disciplinary, sectoral, and geographic diversity of impacts, drawn
directly from sectoral and regional assessments in this report. 

A key motivation for the effort in assessing these observed changes is
the possibility that observed impacts could constitute indications of future
expected changes. Observed losses in glacial volume, for example, lend
important additional plausibility to model-based expectations that
sustained warming could result in additional ice loss. Such extrapolation
faces important limitations, however. First, owing to the complex
nonlinear behavior of most natural and human systems, it cannot always
be assumed that past impacts scale linearly to future impacts. Likewise,
absence of past impacts cannot constitute evidence against the
possibility of future impacts. Nonetheless, detection and attribution of
observed impacts may serve as part of the foundation for a climatic risk
analysis. To do so, the total body of observed impacts needs to undergo
a synthetic assessment pointing toward any conceivable risks.

Virtually all observed impacts of climate change are of regional nature
(Section 18.5); however, the occurrence of similar impacts in many
regions of the world emerges more strongly with every IPCC assessment.
The global pattern emerging from the sum of observed regional impacts
is therefore analyzed in Section 18.6.2. The current body of observations
provides improved evidence of major impacts in natural and human
systems that have “cascading” consequences for other systems—key
examples for these are synthesized in Section 18.6.3. Finally, Section
18.6.4 aims to establish current conditions concerning the risk analysis
model formulated earlier by the IPCC through the establishment of a
limited number of “Reasons for Concern” (RFC)—the risk analysis itself
is part of Chapter 19 of this report.

18.6.2. The Global Pattern of Regional Impacts

The global pattern of observed climate change differs strongly for the
different climate variables. Broadly, more warming has occurred at
higher latitudes than in the Tropics, while the pattern of rainfall changes
is highly complex (WGI AR5 Chapter 2). Taken together, this provides a
heterogeneous pattern of climate change across the globe. In addition,
some natural and human systems (and the regions in which they
occur) are more vulnerable to changing climate than others. Crucially,
observational records are of highly heterogeneous nature: not only do
low-income countries report fewer impacts than high-income countries,
but there is also a significant shortage of observations from remote
areas such as the deep sea or sparsely populated mountains and
deserts. Taken together, it is therefore natural to expect an uneven
distribution of detected impacts (Figure 18-3).

The outstanding finding about the global pattern of observed impacts
is that, on all continents and across major ocean regions, significant
impacts have now been observed. Many of these concern systems which
are affected directly by warming (the cryosphere, marine systems), but
a growing number of observed impacts have been shown to be the
result of a combination of changing temperature and precipitation
(agricultural and hydrological systems).

The global distribution of observed impacts shown in Figure 18-3
demonstrates that analyses can now detect impacts in systems strongly

Human and managed 
systems

References
Confi dence 

in 
detection

Role of 
climate

Climate 
driver

Reference 
behavior

Confi dence 
in 

attribution

North 
America

Impacts on livelihoods of indigenous 
groups in the Canadian Arctic

Sections 18.4.6 and 28.2.4.2; Table 18-4; 
Hovelsrud et al. (2008); Ford et al. (2009); 
Beaumier and Ford (2010); Pearce et al. (2010); 
Brubaker et al. (2011)

Medium Major Warming; change 
in snow cover; 
change in sea ice

Economic and 
sociopolitical 
changes

Medium

Polar 
regions

Impact on livelihoods of Arctic 
indigenous peoples

Sections 18.4.6 and 28.2.4.2; Table 18-4; 
Hovelsrud et al. (2008); Ford et al. (2009); 
Beaumier and Ford (2010); Pearce et al. (2010); 
Eira (2012); Crate (2013); Mathiesen et al. (2013)

Medium Major Warming; change 
in snow cover; 
change in sea ice

Economic and 
sociopolitical 
changes

Medium

Increase of shipping traffi c across the 
Bering Strait

Section 28.2.6.1.3; Figure 28-4; Robards (2013) Medium Major Warming; change 
in sea ice

No change Medium

Small 
islands

Increased degradation of coastal 
fi sheries due to direct effects and 
effects of increased coral reef 
bleaching

Box CC-CR; Sections 18.3.3.3, 18.4.1.2, 29.3.1.2, 
and 30.6.2.1

Low Minor Ocean warming Coastal 
fi sheries 
degraded by 
overfi shing and 
pollution

Low

Table 18-9 (continued)
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Range shifts of fish and 
macroalgae (high/high)

Changes in 
fishery yields 

(low/low)Impacts on large non-fish 
species (high/high)

Regional changes in 
species abundance 

(high/medium)

Ocean Physical impacts Biological impacts Impacts on managed systems

Forests High elevation islands Western North America Western Sahel

Upward shift in treelines 
(low/low)

Increase in insect pests 
(medium/low)

Increased soil moisture drought 
(medium/medium)

Upward shift in fauna 
(low/low)

Increased tree mortality 
(medium/low)

Decreased tree density 
(medium/medium)

Description of impact
(confidence in detection/confidence in attribution)

Attribution of climate change role

Major role Minor role

Expansion of hypoxic 
zones (medium/low)

Arctic sea ice retreat 
(very high/high)

Ocean 
surface 

warming

Increased thermal 
stratification (very 

high/very high)

Increased primary production at 
high latitudes (medium/medium)

Early spring peak 
flow (high/high)

Permafrost degradation
(high/high)

Changes in species 
richness (high/medium)

Figure 18-4 | Major systems where new evidence indicates interconnected, “cascading” impacts from recent climate change through several natural and human subsystems. 
Text in parentheses indicates confidence in the detection of a climate change effect and the attribution of observed impacts to climate change. The role of climate change can be 
major (solid arrow) or minor (dashed arrow). Confidence is assessed in Sections 18.3, 18.4, 18.5, and 18.6.
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influenced by confounding factors and hence where climate change
plays only a minor role. The most outstanding examples for this are
agricultural systems where impacts now emerge in a number of places.
An identified minor role of climate for some impact does not imply that
this role is less important. New studies now identify more clearly such
roles even when they are masked by stronger confounding factors such
as environmental degradation or improved technology. Examples for such
studies include assessments of mangrove degradation, caused by both
warming and pollution (Giri et al., 2011), or changes in Inuit livelihoods,
influenced by both warming and social changes (Ford et al., 2009).
Enhanced research efforts would probably add additional observations
of impacts with a minor, but important, role of climate to the global map.

18.6.3. Cascading Impacts

Many impacts of climate change are direct cause-effect relationships,
such as reduction of glacier volume following higher temperatures.
Others may be mediated through impacts on intermediary systems (e.g.,
Johnson et al., 2011). Enhanced evidence of observed impacts of climate
change, and improved research methodologies now allow attribution
of effects at various stages along the causal impact chain (Figure 18-4).
Within the cryosphere, changes in atmospheric and ocean properties of
the climate have driven changes in the cryosphere on the land surface,
the land subsurface, and the ocean surface. These changes have in turn
led to changes in multiple aspects of hydrology and ecosystems, and in
some regions (e.g., the Arctic) changes in these systems have impacted
human livelihoods (Xu et al., 2009). Within most ocean regions,
warming has led to a number of observed impacts on biota, some of

which are mediated through the effect of warming on the ocean’s thermal
stratification or on sea ice. Impacts tend to propagate up the food chain,
eventually affecting large mammals, birds, reptiles, and humans. In
forests and woodlands, climate change impacts on trees have been
transmitted through pests, fire, and drought, while impacts on forests
have also been observed to affect the forest fauna. In all these cases,
confidence in detection and attribution to observed climate change
decreases for effects further down each impact chain.

18.6.4. Reasons for Concern

To synthesize its findings in support of a risk analysis the IPCC in its
Third Assessment Report (TAR) developed the “Reasons for Concern”
(RFC) concept (Smith et al., 2001), which was adopted for a second time
in IPCC AR4 (IPCC, 2007b), and elaborated in Smith et al. (2009). It is
further developed in Chapter 1 of this report and employed extensively
in Chapter 19 for the risk framing approach of WGII AR5. In this chapter,
the goal is to establish, qualitatively, the evidence of impacts already
observed that are relevant to these categories (names of categories have
been adapted for consistency across Chapters 1, 18, and 19; see below).
The broad definitions of the RFC continue to imply significant overlap;
hence some observed impacts are referred to under more than one RFC. 

The RFC Risks to Unique and Threatened Systems is concerned with the
potential for increased damage to, or irreversible loss of, systems such
as physical systems, ecosystems, and human livelihoods, all of which are
known to be highly sensitive to temporal and/or spatial variations in
climate. Figure 18-5 displays confidence levels in the current evidence
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Figure 18-5 | Confidence in detection and attribution of observed impacts on “Unique and Threatened Systems” as a result of recent climate change. Global assessments (large 
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for a minor (outlined circles) or major (filled circles) role of climate change, as indicated.
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derived from detection and attribution studies of such observed impacts.
Changes in the three indicated main natural systems (physical systems,
marine and terrestrial ecosystems) have at least high confidence in
attribution of a major role of climate change, with regional assessments
also tending to have similar confidence. There is at least medium
confidence in attribution of a major role for at least one each of
ecosystems, physical systems, and human systems.

The unique and threatened systems with strongest detection and
attribution evidence cover the Arctic, warm-water coral reefs, and
mountains. In the Arctic, climate change has played a major role in
observed impacts on glaciers, permafrost, the tundra, marine ecosystems,
and livelihoods of indigenous peoples (at least medium confidence),
reflecting large-scale changes across both natural and human systems
and across the physical and ecological sub-regions. Evidence for the
detection and attribution of shrinkage and recession of glaciers comes
from all continents, while evidence for attribution of coral bleaching
spans a similarly broad area of the tropical oceans (see Figure 18-5).

The RFC Risks Associated with Extreme Weather Events “tracks increases
in extreme events with substantial consequences for societies and
natural systems” (Smith et al., 2009, p. 4134). Besides episodic (e.g.,
coral bleaching) and chronic (e.g., erosion) impacts of extreme weather
events, this RFC also considers increased frequency of extreme impact
events (e.g., floods), even if their climate drivers are not wholly episodic
in nature. A change in the risk of impacts of extreme weather events

could be caused by a change in the probability, intensity, or sequencing
of the weather event itself (which are manifestations of recent climate
change), or by a change in exposure, vulnerability, or the resilience of
the impacted system. Trends have been noted for extreme weather
hazards. Temperature extremes have changed in most regions over the
past half century, with more frequent hot events and less frequent cold
events (high confidence; Hansen et al., 2012; Seneviratne et al., 2012;
Coumou et al., 2013; see WGI AR5 Section 2.6.1). Some regions have
also experienced increasingly frequent periods of heavy precipitation
events (medium confidence; Min et al., 2011), while other regions have
experienced positive or negative trends in measures of dry spells
(Seneviratne et al., 2012). Current evidence does not, however, indicate
sustained global trends in tropical cyclone or extratropical cyclone
activity (Seneviratne et al., 2012; see WGI AR5 Section 2.6.3).

Table 18-10 summarizes new evidence concerning this RFC. Generally,
the strongest evidence of detected impacts related to extremes concerns
warm-water corals where bleaching has been linked directly to high-
temperature spells (Box 18-2; Baker et al., 2008; Strong et al., 2011).
Outside of these coral reef systems, however, evidence for extreme
event impacts is limited and mostly local. Overall, a number of trends
in observed impacts on natural systems have been documented that
indicate changing risks driven by changes in extreme weather
(medium confidence), but any similar trends in human systems have
not been detected against large shifts in exposure, vulnerability, and
resilience.

Impacts and impact events Climate/ weather drivers

Reference
Observed trend

Confi dence 
in 

detection
Reference behavior

Confi dence 
in 

attribution

Role of 
climate 
change

Observed trend
Confi dence 
in existence 

of trend

Earlier timing 
and decreasing 
magnitude of 
snowmelt fl oods

Medium
 

No change Medium Major Decreasing snow pack High Section 3.2.7; Tables 18-5 and 18-6; WGI 
AR5 Section 4.5; Seneviratne et al. (2012)

Increasing heavy 
precipitation amounts

Medium

Changes in fl ood 
frequency and 
magnitude in non-
snowmelt–fed rivers

Low Changes due to land use Low Minor Trends in extreme rainfall 
amounts

Medium Min et al. (2011); WGI AR5 Sections 2.5.2 
and 2.6.2

Increased evapotranspiration 
and decreased soil moisture

Medium

Increased coastal 
erosion in low and 
mid latitudes

Very low Erosion due to shoreline 
modifi cation and natural 
processes

Very low Minor Increasingly frequent high 
storm waves and surges

High Sections 5.4.2 and 18.3.3.1; WGI AR5 
Section 3.7.5

Increased erosion of 
Arctic coasts

Medium No change Medium Major Lack of sea ice protection 
from wind storms

Very high Table 18-8; Sections 18.3.1.1, 24.4.3.2, 
28.2.4.2, and 28.3.4; Forbes (2011); WGI 
AR5 Section 4.2.2

Increase in high-
mountain rock slope 
failures

Low No change Low Major Increasingly frequent and 
intense heat waves

Medium Figure 18-2; Huggel et al. (2012a); 
Seneviratne et al. (2012); Allen and 
Huggel (2013); WGI AR5 Section 2.6.1

Increased coral 
bleaching

Very high Changes due to pollution, 
physical disturbance, and 
fi shing

High Major Increasingly frequent 
extreme hot surface waters

Very high Tables 18-2 and 18-8; Sections 5.2.4.2, 
6.3.1, 24.4.3.2, 27.3.3.1, 29.3.1.2, 
30.3.1.1, and 30.5; Box 18-2 

Increased monetary 
losses

Low Changes due to exposure 
and wealth

Low Minor Increased frequency of 
storms

Low Sections 10.7.3 and 18.4.3.1; Seneviratne 
et al. (2012); WGI AR5 Section 2.6 

Increased frequency of fl oods Low

Increased heat 
related mortality

Low Changes due to exposure 
and health care

Very low Minor Increased frequency of heat 
waves

Medium Section 11.4.1; Seneviratne et al. 
(2012);WGI AR5 Section 2.6.1

Table 18-10 |  Confi dence in detection and attribution of observed trends in impacts related to extreme weather. The assessment, for the impacts on various systems, is of 

attribution of those trends to climate change and of the confi dence in existence of observed trends in that extreme weather. The assessment of confi dence in detection is against 

the specifi ed reference behavior, while the assessment of attribution is for the indicated minor or major role of observed climate trends. The confi dence statements refer to a 

globally balanced assessment.
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The RFC Risks Associated with the Distribution of Impacts focuses on
the disparities of impacts between regions, countries, and populations.
The survey of recent studies presented in Section 18.5 indicates that,
while evidence for detected impacts is still more exhaustive from Europe
and North America, considerable confidence in conclusions has been
developed elsewhere since the AR4, particularly in Central and South
America and Australasia (Figure 18-3). It is no longer the case that
higher confidence levels of detected impacts are restricted to any
particular region (Figure 18-6). 

The qualitative conclusion that observed impacts on human and managed
systems have now been detected with at least medium confidence on all
inhabited continents is new and noteworthy. However, the number of
systems with detectable impacts is only an indicative metric of coverage,
because many options exist for aggregation and disaggregation of
evidence. Thus this synthesis of detection and attribution studies does not,
at this time, provide evidence of differing severity of impacts between
continents. Throughout its assessments, the IPCC has repeatedly noted
the significant disparity between the vulnerability of countries, regions,
and social groups, related to differences in adaptive capacity (e.g.,
Wilbanks et al., 2007). Nevertheless, additional coverage of detection and
attribution studies is required for broad evaluation of social disparities in
impacts. 

The original intent of the category now labeled as Risks Associated with
Aggregate Impacts was to assess those economic impacts, damages,
and risks that are specifically driven by climate change at a globally
aggregated level, using unified monetary metrics. Recognizing the limits
of calibrated monetarization of impacts, the scope of this RFC has been
expanded over time to also include non-monetary metrics (Smith et al.,
2009). Table 18-11 lists various aggregate systems of near-global extent

for which the following two conditions apply: there is some form of
calibrated metric for comparison of impacts across space and subsystems,
and the evidence for detection and attribution of the impacts has
sufficient geographical coverage to count as spatially representative
sample.

Confidence in such large-scale detection is, again, highest in cryospheric
systems (expressed in glacier volume or permafrost active layer thickness),
but climate change has also affected ecosystems (expressed as net
productivity or carbon stocks, ranging from medium to high confidence)
and some human systems (crop yields, losses due to extreme events,
ranging from low to medium confidence) according to the listed
aggregate measures. Thus, several globally aggregated impacts of
recent climate change have now been identified.

The RFC Risks Associated with Large-Scale Singular Events “represents
the likelihood that certain phenomena (sometimes called singularities
or tipping points) would occur, any of which may be accompanied by
very large impacts” (Smith et al., 2009). Several studies have identified
“tipping elements” in the Earth system that exhibit nonlinear behavior
with potentially strong feedbacks on the Earth system (Lenton et al.,
2008; Leadley et al., 2010). For observed impacts, the concern translates
into a question of the possible presence of “early warning signals” for
discontinuities that may be derived from monitoring changes in some
climate or natural systems (Collie et al., 2004; deYoung et al., 2008;
Andersen et al., 2009; Lenton, 2011). 

For the Arctic region, new evidence indicates a biophysical regime shift
is taking place, with cascading impacts on physical systems, ecosystems,
and human livelihoods. For Arctic marine biota, the rapid reduction
of summer ice cover causes a tipping element that is now severely
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affecting pelagic ecosystems as well as ice-dependent mammals such
as seals and polar bears (high confidence; Duarte et al., 2012a; see also
Tables 18-2, 18-8; Section 28.2.2.1). On land, thawing of Arctic
permafrost and shrub encroachment on the tundra have been driven
by warming and prolongation of the growing season (high confidence;
Sections 4.3.3.4, 18.3.2.4, 24.4.2.2; Tables 18-5, 18-7; Figure 4-4).
Permafrost degradation has contributed to widespread hydrological
changes including lake formation or disappearance within a few years’
time (high confidence; Prowse and Brown, 2010; Callaghan et al., 2013;
Table 18-6), while increasing winter rains have had consequences for
the tundra food webs (medium confidence; Post et al., 2009; Callaghan
et al., 2013; Hansen et al., 2013). Indigenous people throughout the
Arctic are impacted by these changes (Eira, 2012; Crate, 2013; see also
Section 18.4.6). In summary, several indicators of the ongoing regime shift
in the entire Arctic land-sea socio-ecological system can be interpreted
as a warning sign for a large-scale singular event (Post et al., 2009;
CAFF, 2010; Callaghan et al., 2010; AMAP, 2011; Duarte et al., 2012b;
Figure 18-3; Tables 18-5, 18-7 to 18-9; Section 28.2).

Reef building corals are in rapid decline in many regions, and climate
change is one of the major drivers (high confidence; Box 18-2). This
irreversible loss of biodiversity has significant feedbacks within the
marine biosphere, and significant consequences for regional marine
ecosystems as well as the human livelihoods that depend on them
(Hoegh-Guldberg and Bruno, 2010; Richardson et al., 2012). The growing
evidence for presently ongoing change and its attribution to warming
gained since the AR4 strengthens the conclusion that increased mass
bleaching of corals constitutes a strong warning signal for the singular
event that would constitute the irreversible loss of an entire biome.

Dieback and degradation in the boreal forests as well as the Amazonian
rainforest have also been identified as potential tipping elements in the
Earth system, due to their large extent and the possible feedbacks with
the carbon cycle (Lenton et al., 2008; Leadley et al., 2010; Marengo et
al., 2011b; see also Section 4.3.3.1). For the boreal forest, increases in
tree mortality have been observed in many regions, including widespread
dieback related to insect infestations and fire in North America (Sections
4.3.3.1, 26.4.2.1). Taken together, these may be seen as indicators of
an ongoing regime shift in the boreal forest, but there is only low
confidence in attribution to climate change (Section 18.3.2.4; Figure
4-4). In the humid tropical forests of the Amazon basin, increased tree
turnover (both mortality and growth) and enhanced drought risks have
been observed during recent decades. However, the main reason for
concern is the interaction between climate change, deforestation, and

the high susceptibility of forests to fire, which together could produce
positive feedbacks leading to degradation of forests in large areas of
the Amazon (Malhi et al., 2009). Currently, there is only low confidence
in attribution of observed ecosystem changes in the Amazon to climate
change. In conclusion, there is insufficient evidence from observed climate
change impacts to support a climate-related warning sign of possible
large-scale singular events in the boreal and Amazonian forest.

18.6.5. Conclusion

Detection and attribution studies evaluate the agreement between
observations of change in a system and process understanding of its
causes, whether these are due to climate change or other forces. This
sets a higher bar for establishing confidence in the assessment of past
changes than is generally applied to the projections of future changes,
because observational evidence has important gaps, while plausibility
of future changes is established on the basis of process knowledge only.
Despite this constraint, the body of evidence on observed impacts of
recent climate change demonstrates increasing coverage of the Earth
and its various subsystems, including human livelihoods. Increasingly,
there is also evidence for complex changes in interconnected systems. 

This analysis lends new qualitative support to four out of the five RFCs
established by earlier IPCC assessments. Specifically, evidence is notable
for risks to unique and threatened systems, risks stemming from
extreme weather events, risks associated with globally aggregated
impacts, and—in terms of early warnings—risks associated with large-
scale discontinuities. Only the spatial or social disparities covered under
“Risks Associated with the Distribution of Impacts” are still insufficiently
studied to permit a synthesis of available observations for the
characterization of a global concern. While the Arctic stands out as a
region with robust evidence of impacts across numerous systems,
current detection and attribution literature does not address whether
the severity of those impacts differs from other regions. The Arctic
region, warm-water coral reef systems, and mountain glaciers feature
strongly in the observational evidence discussed for all the RFCs, but
there are also important observations from impacted hydrological
systems and human systems, including agriculture.

The evidence gathered since the AR4 on detection and attribution of
observed impacts from climate change has reached a level at which it
can inform evaluation of many of the aspects of present-day climate
change risk as described by the RFCs. In particular, the geographical

Global aggregated impact
Confi dence 
in detection

Reference behavior
Confi dence 

in attribution
Role of climate 

change
Reference

Glacier ice volume reduction Very high No change High Major Sections 3.2.2 and 18.3.1.1

Permafrost degradation and increase of active layer 
thickness

High No change High Major Section 18.3.1.1

Increase in terrestrial net primary production and carbon 
stocks

High Changes due to nitrogen deposition, 
afforestation, and land management

Low Major Section 18.3.2.2

Negative yield impacts on global wheat and maize yields Medium Changes due to technology, practice, 
and coverage

Medium Minor Section 18.4.1.1; Figure 7-2

Increase in monetary losses due to extreme weather Low Changes due to exposure and wealth Low Minor Sections 10.7.3 and 18.4.3.1

Table 18-11 |  Confi dence in detection of impacts on aggregate impact measures against the specifi ed reference behavior and confi dence in attribution of the specifi ed role of 

climate change in those observed changes.
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distribution of studies is reaching the point where assessment of the
global nature of impacts is possible:
• There is now robust evidence of observed changes in natural

systems in all of the regional groupings used in this report. Climate
change has played a major role in observed changes in various
components of the cryosphere on all continents (high confidence).
Climate change has also driven observed changes in terrestrial
ecosystems on six continents (high confidence, the exception being
low confidence in Central and South America) and on some small
islands (medium confidence), and for marine ecosystems surrounding
six continents and some small islands (high confidence, with evidence
lacking for Africa).

• There is new and stronger evidence of the detection of impacts in
human systems on the inhabited continents. There is at least
medium confidence in detection of impacts on food production in
all the inhabited continents except North America.

• While the current detection and attribution literature does not
reveal observational evidence of geographical differences in the
severity of climate change impacts between continents, it does
indicate that the unique systems of the Arctic region and warm
water coral reefs are undergoing rapid changes in response to
observed warming in ways that are potentially irreversible.

18.7. Gaps, Research Needs, and Emerging Issues

There are three broad areas relating to the detection and attribution of
the impacts of climate change on natural and human systems that
require more research. The first concerns the formulation of the relevant
issues and further development of rigorous scientific methods for
addressing them. At present, the terms detection and attribution are
used in numerous different ways, and, while there is no need for a single
definition, more clarity about usage is important. Methods in this area

are closely linked to specific formulations of these terms and there is a
parallel need to develop, refine, and evaluate them in light of this. For
example, statistical methods are commonly used to detect the impact
of variations in climate on human and natural systems while controlling
for the effect of other factors. Such detection can be valuable in helping
to predict the response of systems to projections of future climate
change but a positive correlation does not necessarily imply that the
system has already changed in response to historical climate change. A
second example is the growing use of methods that combine information
from multiple systems— for example, different locations or species—
to draw a conclusion about systems in general. More conceptual work
is needed to develop the basis for such ecological meta-analysis and
the interpretation of its results.

A second area in which more work is needed is data collection and
monitoring. Globally, environmental data are still insufficient for
monitoring the impacts of climate change. In addition, developed
countries are typically over-represented in impact studies because of
their comparable wealth in socioeconomic data. Because the level of
economic development is extremely important in determining the
impacts of climate change, this over-representation probably gives rise
to a distorted picture of the global impacts of climate change.

Finally, this chapter stresses the need to base detection and attribution
studies on a scientific understanding of the system in question and the
way in which climate change (and other factors) might affect it rather
than on relatively simple correlational analysis. This is particularly
important for human systems and at least some natural systems in which
the combined effect of climate change and other factors is complex and
historical adaptation to climate change must be expected. Further
development, refinement, and evaluation of both conceptual and process-
based models of the human-environment system will be essential for
improved conclusions about detection and attribution.

Frequently Asked Questions

FAQ 18.1 | Why are detection and attribution of climate impacts important?

To respond to climate change, it is necessary to predict what its impacts on natural and human systems will be. As

some of these predicted impacts are expected to already have occurred, detection and attribution provides a way

of validating and refining predictions about the future. For example, one of the clearest predicted ecological

impacts of climate is a poleward shift in the ranges of plant and animal species. The detection in historical data of

a climate-related shift in species ranges would lend credence to this prediction, and the assessment of its magnitude

would provide information about the likely magnitude of future shifts.

Frequently Asked Questions

FAQ 18.2 | Why is it important to assess impacts of all climate change aspects,
                  and not only impacts of anthropogenic climate change?

Natural and human systems are affected by both natural and anthropogenic climate change, operating locally,

regionally, and/or globally. To understand the sensitivity of natural and human systems to expected future climate

change, and to anticipate the outcome of adaptation policies, it is less important whether the observed changes

have been caused by anthropogenic climate change or by natural climate fluctuations. In the context of this chapter,

all known impacts of climate change are assessed.
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Frequently Asked Questions

FAQ 18.3 | What are the main challenges in detecting climate change impacts?
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Frequently Asked Questions

FAQ 18.4 | What are the main challenges in attributing changes in a system
                  to climate change?
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Frequently Asked Questions

FAQ 18.5 | Is it possible to attribute a single event, like a disease outbreak
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the influence of other drivers of change, such as policy decisions and increasing wealth, can make this challenging.

However, any single impact event also results from the antecedent conditions of the impacted system. Thus though
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