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ABSTRACT

This paper addresses the question of where we now stand with respect to detection and attribution of an anthropo-

genic climate signal. Our ability to estimate natural climate variability, against which claims of anthropogenic signal

detection must be made, is reviewed. The current situation suggests control runs of global climate models may give the

best estimates of natural variability on a global basis, estimates that appear to be accurate to within a factor of 2 or 3 at

multidecadal timescales used in detection work.

Present uncertainties in both observations and model-simulated anthropogenic signals in near-surface air tem-

perature are estimated. The uncertainty in model simulated signals is, in places, as large as the signal to be detected.

Two different, but complementary, approaches to detection and attribution are discussed in the context of these

uncertainties.

Applying one of the detection strategies, it is found that the change in near-surface, June through August air tem-

perature field over the last 50 years is generally different at a significance level of 5% from that expected from model-

based estimates of natural variability. Greenhouse gases alone cannot explain the observed change. Two of four climate

models forced by greenhouse gases and direct sulfate aerosols produce results consistent with the current climate change

observations, while the consistency of the other two depends on which model’s anthropogenic fingerprints are used.

A recent integration with additional anthropogenic forcings (the indirect effects of sulfate aerosols and tropospheric

ozone) and more complete tropospheric chemistry produced results whose signal amplitude and pattern were consis-

tent with current observations, provided the model’s fingerprint is used and detection carried out over only the last 30

years of annually averaged data. This single integration currently cannot be corroborated and provides no opportunity

to estimate the uncertainties inherent in the results, uncertainties that are thought to be large and poorly known. These

results illustrate the current large uncertainty in the magnitude and spatial pattern of the direct and indirect sulfate

forcing and climate response. They also show detection statements depend on model-specific fingerprints, time pe-

riod, and seasonal character of the signal, dependencies that have not been well explored.

Most, but not all, results suggest that recent changes in global climate inferred from surface air temperature are likely

not due solely to natural causes. At present it is not possible to make a very confident statement about the relative con-

tributions of specific natural and anthropogenic forcings to observed climate change. One of the main reasons is that

fully realistic simulations of climate change due to the combined effects of all anthropogenic and natural forcings mecha-

nisms have yet to be computed. A list of recommendations for reducing some of the uncertainties that currently hamper

detection and attribution studies is presented.
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1. Introduction

a. Background

The recent meetings in Kyoto, Japan, and Buenos

Aires, Argentina, gave a clear signal that many of the

world’s governments are taking seriously the possi-

bility of substantial changes in planetary climate due

to human activities. Yet there has been to date no com-

pletely convincing demonstration that the anthropo-

genic effects predicted by advanced climate models

have been unambiguously detected in observations.

There are a number of credible studies suggesting such

a signal has been detected. But all such statements have

been accompanied by major assumptions and substan-

tial caveats. And only recently are detection studies

beginning to take account of the inherent model/data

uncertainties. The cautious statement by the Intergov-

ernmental Panel on Climate Change (IPCC-95;

Houghton et al. 1996) that “the balance of evidence

suggests a discernible human influence on climate”

admirably summarizes the present ambivalent scien-

tific consensus.

The burden is clearly on the scientific community

to demonstrate that their computer scenarios for future

climate are realistic. A convincing way to do this is

through early detection in the observations of an an-

thropogenic climate change signal predicted by these

state-of-the-art climate models. Until such detection

has been convincingly accomplished and the source

of some part of the climate change signal clearly at-

tributed to anthropogenic sources, there will be some

who simply either do not take the possibility of

anthropogenically induced climate changes seriously

or who will use it as an excuse for considering reme-

dial action. Further, the detection and attribution state-

ments need to be supported by the majority of the

scientific community. It is toward the twin goals of de-

tection and attribution that the current report is

directed.

b. Overview of detection and attribution methods

Detecting climate change and then attributing it to

specific physical mechanisms is basically a statistical

problem, one that can be thought of in terms of famil-

iar regression analysis. Climate models are forced by

“scenarios” of how anthropogenic gases have changed

in the past and are projected to change in the future.

In conventional detection schemes, one takes the time-

dependent patterns of spatial change in, say, near-

surface air temperature (SAT) from these model runs

as the “anthropogenic signal.” The observations of

SAT are searched for the model-predicted spatial pat-

tern of change. The current detection methods, both

conventional and Bayesian (section 4), require that the

model-predicted signal, in spatial pattern and ampli-

tude, and its change with time have acceptable coun-

terparts in the observations before detection and

attribution (DA) can be claimed. In this case, “accept-

able” means that predicted and observed changes are

“consistent” to within their (separately) estimated or

assumed uncertainties. Most detection methods in use

today are “optimal” in the sense that they define, via

a rotational transform, the searched-for signal patterns

to be as distinguishable as possible from the patterns

of natural climate variability. This can simply be

thought of as a prefiltering operation of the data prior

to application of what are essentially regression tech-

niques (conventional approach) or a set of subjective

prior/posterior assumptions via a Bayesian approach.

The contrast between these two approaches to DA is

elucidated in section 4a.

c. IPCC 1995 report

A recent summary of work aimed at detecting an

anthropogenic signal appeared in chapter 8 of the 1995

IPCC report (Santer et al. 1996a). We will not repeat

the full discussion but note only the key results and

some of the issues that were raised.

The report stated that many previous analyses of

global-mean near-surface temperature had concluded

that the changes observed over the last century were

unlikely to be due to natural variability alone. It was

pointed out, however, that it is very difficult to unravel

cause–effect relationships in studies of global-mean

changes. This is due to uncertainties in our estimates

of internally generated and externally forced natural

variability (discussed in section 2) and in our estimates

of the forcing and response to anthropogenic factors.

Given these uncertainties, many combinations of natu-

ral and/or anthropogenic effects could yield similar

global-mean changes.

It was noted that detection and attribution studies

had made major advances since those discussed in the

first IPCC report in 1990 (Wigley and Barnett 1990).

The advances were judged to be in three main areas:

improvements in model-based estimates of an anthro-

pogenic signal, better understanding of the size and

characteristics of natural climate variability, and in-

creasing application of “fingerprint” methods that fa-

cilitated attribution. While initial detection studies had

focused almost exclusively on global-mean changes,

or had searched for “greenhouse gas only” signals,
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some of the work reported on in chapter 8 utilized

pattern-based information from more realistic sce-

narios of anthropogenic climate change. These in-

volved simultaneous changes in both greenhouse gases

(GHGs) and the direct scattering effects of sulfate aero-

sol particles (SUL). Some of these studies claimed to

have detected the model-predicted patterns of response

to GHGs and sulfate aerosol direct effects in observed

records of near-surface temperature change (e.g.,

Santer et al. 1995; Hasselmann et al. 1995; Mitchell

et al. 1995; Cubasch et al. 1996; Hegerl et al. 1996,

1997). But each of these studies also noted very large

uncertainties associated with their conclusions. A sum-

mary list of these uncertainties in the IPCC report sug-

gested that the situation was one where an expected

signal appeared to be just starting to emerge from

(natural) noise, yet was not sufficiently large to be seen

clearly given the uncertainties involved. This conclu-

sion was nevertheless somewhat more positive than the

1990 IPCC’s detection chapter (Wigley and Barnett

1990), where it was concluded that no definitive state-

ment could be made regarding identification of a hu-

man-induced signal in the observed climate records.

d. Outstanding problems and outline

The unresolved problems that faced the detection

community after the IPCC report are briefly summa-

rized below. It is this group of problems that the

present authors have set about to address and that con-

stitute the outline for the remainder of the paper.

1) ESTIMATING NATURAL VARIABILITY

Any attempt at detection requires that the ampli-

tude, as well as the temporal and geographic patterns

of naturally occurring climate variability, be known

or estimated. Without such information, how can one

say that recent, observed changes are caused by hu-

man activities? They might well have occurred at an

earlier time in the historic record for reasons that had

nothing to do with human pollution. So in order to

claim detection of an anthropogenic climate impact,

the change must be significantly different than any

likely to be found in, say, the last 1000 years.

2) ACCOUNTING FOR UNCERTAINTIES

It is obvious that any observations used to detect

an anthropogenic signal will be attended by errors, or

uncertainties, as we shall refer to them. It is equally

clear that the models used to predict anthropogenic

impacts will also contain uncertainties due to flaws in

their formulation and uncertainties in the way they are

forced. These will affect their predicted signals, whose

signature we wish to find in the observations. Both

classes of uncertainty have only begun to be consid-

ered in the most current detection work. Basically, we

need to know if we can detect a change in climate,

given all the model/data uncertainties. If we can say

climate has changed, can we then attribute the change

to specific forcing mechanisms, given the level of

model/data uncertainty?

3) METHODOLOGY

The detection methods reported in IPCC-95, chap-

ter 8, essentially sought to find in the observations

some type of model signal that represented a spatial

pattern of change in, say, near-surface temperature.

The temporal characteristics of this spatial pattern, for

example, averaging interval, seasonal dependence,

etc., were not fully considered. Perhaps more funda-

mental, the detection issue was couched in a rigid

framework that allowed no room for a priori assign-

ment of uncertainties on the signal and/or the data used

to detect it. This excluded the use of potentially valu-

able qualitative climate change indices or events such

as glacier melting, sea ice changes, etc.

We have investigated all three of the areas de-

scribed above. The remainder of the report describes

our current findings in these areas. These findings have

been incorporated into our detection strategy. This

improved strategy has been used to provide an assess-

ment, in the final sections, about our current confi-

dence in statements that an anthropogenic signal has,

or has not, been detected. This is largely based on in-

cluding the quantified uncertainties as fully as possible

into one particular detection approach (Hegerl et al.

1997). Our results emphasize that future detection

approaches must focus more strongly on and include

the uncertainty estimates if they are to be useful.

As an aid to readers, each of the following sections

(2–5) contains a “purpose” statement at its beginning

and “summary” statement(s) at its end. A superficial

overview of the paper can be obtained by reading these

parts alone. Sections 6 and 7 summarize the main re-

sults and suggested future research, respectively.

2. Estimating natural variability

To attribute an observed climate change to human

influence, it is first necessary to show that such a cli-

mate change is unlikely to have occurred naturally, for

example, has not occurred in the past. For purposes of
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this paper, we will confine our attention to climate

changes as manifest in the SAT field, since it has long,

near-global coverage. There are at least two sources

of natural variability in SAT: Internal interactions

within the climate system, such as ENSO, and exter-

nal forcing, for example, through changes in solar lu-

minosity or volcanic activity. In the following we shall

refer to both externally forced and internally induced

fluctuations as natural climate variability.

So how does one know what has happened before

industrialization? There are three general approaches

to answering this question. The most obvious ap-

proach is to look at the instrumental record of SAT,

the climate variable that has been best observed. One

can also look at paleoclimate proxies or, alternatively,

use climate models to infer “normal” climatic behav-

ior of SAT. Each of these approaches is discussed

below.

a. Instrumental records

Direct estimation of the natural variability of SAT

from actual observations has a number of problems.

With a few notable exceptions, local records are gen-

erally less than 100 years in length. As we shall see,

detection requires analysis over periods of the order

of several decades or more, so the instrumental record

has only a few realizations of climate change on these

timescales. This is not adequate. Further, the instru-

mental record must be contaminated by an anthropo-

genic signal if one is present. Attempts to remove such

a signal have been made by Jones and Hegerl (1998),

among others (see also Wigley et al. 1998b). Such an-

thropogenic signal removal or “correction” leaves a

residual that can be attributed to natural variability.

The results show that the corrections are a sizable frac-

tion of the signal itself, a highly unsatisfactory situa-

tion, especially when the correction depends on an

assumed model that itself may be uncertain (Fig. 1).

The instrumental data may also have biases due to

changing measurement methods/instruments. These

biases are often poorly documented. Although they can

be as large locally as the currently expected anthro-

pogenic signal, it is believed that they have been ad-

equately corrected for in the SAT dataset (Jones et al.

1999). Finally, there are large expanses of the planet

where the observations are either scant or missing

altogether, especially during the early part of this cen-

tury. Many of these areas are just where an anthro-

pogenic signal is expected to be most prominent. The

impact these data-void regions have on detection was

discussed by Wigley et al. (1998a). Detection and at-

tribution studies remove these data-poor regions from

the simulated signals so that only information from

data-adequate areas is used.

In summary, while instrumental data are margin-

ally adequate for validating climate models and first

detection efforts, they cannot be used for estimating

multidecadal or secular natural variability of SAT over

the last few centuries or more.

b. Paleoclimate proxies

Tree rings, coral records, and ice cores, among oth-

ers, have been suggested as proxies of past climates.

They certainly have the longer records, extending back

in many cases 500–1000 years, required to estimate

natural climate variability on multidecadal scales. And

almost all of this record is before there was any pos-

sible contamination from anthropogenic sources.

Indeed, the proxies appear to offer the only means of

directly assessing natural variability prior to instru-

mental records.

Unfortunately, there are numerous problems with

using paleodata to estimate past climate changes in the

SAT. The proxies are largely indicators of local cli-

mate change and are sparsely scattered over the globe.

Perhaps more importantly, they are generally not per-

FIG. 1. Annual-mean observed global temperatures (expressed

as anomalies from 1861 to 1890) for 1856–1995 (gray histogram

and 10-yr Gaussian filter). The thick and thin smooth lines, re-

spectively, are the anthropogenic and greenhouse-gas-only fitted

responses (from Jones and Hegerl 1998). The model responses

come from Hegerl et al. 1997. The dotted and dashed lines, re-

spectively, are the “residuals” after extracting the anthropogenic

and greenhouse-gas-only signals from the 10-yr Gaussian

smoothed data.
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fect temperature indicators, but rather reflect a blend

of different climatic effects. For example, coral records

might demonstrate the combined effects of changes in

ocean temperature, precipitation and its runoff, sea

level changes, and turbidity of the waters in which the

corals live. Dating uncertainties and low-frequency

distortion introduced in climate reconstructions for

trees, corals, and ice cores are also present in

paleorecords (Jones et al. 1998).

Recent compilations of paleoclimatic data have

offered the first opportunity to analyze this type of data

on a global scale. Straightforward comparisons via

cross-spectral analysis of the recent paleodata with the

instrumental record show that most of the paleodata

are not simple proxies of temperature (Barnett et al.

1996; Jones 1998; Jones et al. 1998; see Table 1).

Indeed, only a few of the tree-ring records from mid-

to high-latitude sites can be interpreted directly as tem-

perature changes. Attempts by Jones et al. (1998) to

use these “good” records to construct a record of

Northern Hemisphere (NH) temperature over the last

five centuries are shown in Fig. 2. Also shown is a dif-

ferent reconstruction created using a full compilation

of proxy data (Mann et al. 1998). The disparity be-

tween these reconstructions at some times over the

last 400 years is as large as the observed changes in

global temperature over the last 100 years. Some of

the differences are due to different compilations of

proxy data and also differences in the seasons recon-

structed, but most of the disparity simply represents

uncertainties in our knowledge of past changes in NH

average temperature.

The general conclusion from the above, and other

studies, is that for a few regions and some proxies, re-

liable reconstructions of temperature change on the

required decadal timescales can be produced. The

number, however, is quite limited in relation to the

volume of paleodata available. At present, it is debat-

able whether there is enough temperature proxy data

to be representative of hemispheric, let alone global,

climate changes given the lack of large spatial scale

coherence in the data. Yet the few good records that

are available serve as strong checks on efforts to model

natural climate variability (Jones et al. 1998).

c. Climate models

Global climate models, operated in a control-run

mode, may offer the best chance to estimate natural vari-

ability. Model simulations can be long and provide uni-

form global coverage of many different variables, just

what is needed to estimate internal climate variability.

The major question here is, Can coupled global

climate models (CGCMs) accurately reproduce natu-

ral low-frequency variability in SAT (or any other

variable)? New studies, based on the recent observa-

tional record, suggest the answer to this question for

SAT is a qualified yes. For instance, power spectra of

global mean temperature from four different CGCMs1

agree moderately well with that of the observations in

the frequency range corresponding to the averaging

times, 20–50 yr, used in detection studies (Fig. 3, and

Stouffer et al. 1999). However, the differences in en-

ergy in this key frequency band still varies by a factor

of 2–3 to between models. The low number of degrees

of freedom and large error bands in the spectral analy-

sis make more exact estimates impossible. Joint

eigenanalysis of multiple, long CGCM control simu-

lations, paleoproxies, and observations by Stouffer

et al. (1999), Barnett et al. (1996), and Jones et al.

(1998) suggest that the models reproduce the observed

spatial–temporal structure of near-surface temperature

FIG. 2. Comparison of three Northern Hemisphere proxy tem-

perature reconstructions with instrumental data on the same space

scale. The thinnest line is from Jones et al. (1998) and is based on

a simple average of 10 NH proxy reconstructions. The next thin-

nest line (generally the highest) comes from a tree-ring density

reconstruction in Briffa (1998) using up to 400 series from the high

latitudes and high elevations of the NH. The thicker line is from

Mann et al.’s (1998) multiproxy assemblage. The thickest of all

lines is the annual temperature average for the NH (based on both

the land and the marine components) for the period 1856–1998.

All lines have been smoothed with a 30-yr Gaussian filter and all

are expressed as anomalies from 1961 through 1990.

1 The GFDL model used here had R15 resolution. The new GFDL

model used later in the paper has R30 resolution.
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changes surprisingly well, although the pattern load-

ings between models and observations also varied here

by about a factor of 2–3.

The major shortcomings found in these studies is

a tendency for the models to underestimate the mag-

nitude of the largest spatial scales of variability. This

is shown in Fig. 4 where the model data projected onto

its common EOF eigenstructure typically have less en-

ergetic eigenvalues than those obtained from the ob-

servations projected onto the same basis set. This

Svalbard Ice 0.19 0.13 0.14 0.9 0.25 0.05 0.22

S. Greenland Ice 0.16 0.09 0.10 0.26 0.17 0.24 0.07

Crete Ice 0.26 0.48 0.50 0.24 0.54 0.43 0.50

Law Dome Ice 0.19 0.12 0.00 0.25 0.16 0.01 0.13

GB Reef 5 corals 0.46 0.19 0.31 0.26 0.09 0.33 0.18

GB Reef 10 corals 0.46 0.26 0.10 0.07 0.26 0.38 0.27

Galp. Island Coral 0.05 0.20 0.22 0.32 0.64 0.16 0.32

Kapoposa Coral 0.52 0.25 0.23 0.22 0.09 0.05 0.38

New Cal. Coral 0.40 0.40 0.47 0.36 0.31 0.08 −0.20

N. Treeline Tree 0.24 0.13 0.07 0.05 0.16 0.04 0.15

W. U.S. Tree/width 0.74 0.66 0.52 0.59 0.14 0.15 0.43

W. U.S. Tree/den 0.51 0.41 0.77 0.55 0.60 0.66 0.69

New Zealand Tree 0.17 0.12 0.39 0.27 0.23 0.90 −0.15

N. Fenno. Tree 0.63 0.45 0.43 0.36 0.56 0.73 0.72

N. Urals Tree 0.93 0.65 0.67 0.54 0.65 0.43 0.79

Jasper Tree 0.20 0.12 0.53 0.31 0.04 0.08 0.49

Tasmania Tree 0.66 0.50 0.13 0.05 0.54 0.20 0.55

Chile Tree 0.07 0.16 0.03 0.20 0.07 0.50 0.29

Argentina Tree 0.05 0.26 0.21 0.31 0.52 0.12 0.40

C. England Instru. 0.73 0.56 0.83 0.86 0.56 0.86 0.88

C. Europe Doc. 0.83 0.77 0.70 0.54 0.59 0.94 0.89

TABLE 1. Cross-spectral analysis of paleoproxies and collocated observed near-surface temperatures.

Coherence squared: paleo vs. instrumental*

Data source/

location Type 40 20 10 5 4 3 Correlation

Period band (yr)

*Data from Jones et al. (1998), which also contains reference to paleo data sources. Underlined coherence squared values are

significant at the 95% level.
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could be due mainly to the fact

that the runs studied had no forc-

ing from either anthropogenic or

natural sources. When estimates

of solar and volcanic forcing are

added into the CGCM control

simulations, the underestimation

problem is reduced (e.g., Cubasch

et al. 1997). We shall see in sec-

tion 5 that simulations with these

CGCMs reproduce the near-

surface air temperature changes

of the last 100 years rather well.

d. Summary

Claims of detection of an an-

thropogenic climate change sig-

nal, for example, in the SAT

field, must compete against the

likelihood that the observed

change is due to natural causes.

It appears that our best estimates

of natural variability will come

from CGCMs, even if the vari-

ance levels can be determined

only to within a factor of 2–3.

Instrumental and paleoproxy data

have serious shortcomings that preclude their use for

this purpose. However, these latter data types can pro-

vide valuable validation checks on the CGCMs, build-

ing up enough confidence in the models to use them for

estimates of natural variability in detection studies.

3. Uncertainties

Only recently has detection work paid serious at-

tention to the variety of uncertainties that attend the

observations and model projections of an anthropo-

genic signal. This section briefly discusses and illus-

trates several of the more significant uncertainties;

space limitations preclude a more detailed discussion

of this important issue here. The impact of uncertain-

ties on detection statements will be illustrated in sec-

tion 5 by sensitivity tests with one particular detection

and attribution method.

a. Observational uncertainties

1) NEAR-SURFACE TEMPERATURE

Near-surface air temperature has been the major

variable used in prior detection studies because it is a

fairly easy measurement that has a long historical record

(e.g., Barnett et al. 1991; Santer et al. 1995; Hegerl et al.

1996). These data have been used to produce time se-

ries of changes in global and hemispheric mean tem-

peratures over the last 100 or so years. It is only

recently that the magnitude of the sampling errors as-

sociated with these calculations have been included on

the time series (Fig. 5, after Jones et al. 1997; see also

Karl et al. 1994). Typical 95% confidence limits for

estimates of the global means on interannual time-

scales are 0.11°C since 1951 and 0.17°C prior to that

date. The uncertainty values are significantly higher

for regions and higher still for individual 5° grid boxes.

It is often stated that the global temperature has

been increasing steadily since the turn of the century.

Figure 5, with the confidence limits included, shows

this is not an accurate statement. Rather, the tempera-

ture increased abruptly between about 1920 and 1945

and again from 1975 to the present (e.g., Jones et al.

1999). The confidence limits are large enough so that

no change in temperature can be claimed outside these

periods, for example, between about 1860 and 1920

and about 1940 and 1975. Nevertheless, the observa-

tional uncertainties are considerably smaller than the

FIG. 3. Power spectra of global-mean, annual temperatures from a number of coupled

model control integrations compared with that derived from observations. The model des-

ignators are explained in Table 3. The record lengths vary and so do the confidence limits.

In most cases, the confidence limits are large compared to differences between spectra. Note

the difference in energy in the 30–50-yr band, where most detection work is done, is of or-

der 2–4. See Stouffer et al. 1999 for additional details.



2638 Vol. 80, No. 12, December 1999

total change since 1900, so the increase in global-mean

temperature is highly statistically significant. Although,

as pointed out, these data could potentially contain

contamination due to urban heat island effects and

biases (especially in ocean temperatures) due to chang-

ing instrumentation (e.g., Barnett 1984), recent stud-

ies suggest these errors have probably been adequately

allowed for (Jones et al. 1990; Parker et al. 1995).

2) UPPER-AIR TEMPERATURES

Some of the first studies to claim qualified detec-

tion of a model-predicted anthropogenic signal were

based on the free air temperatures (Santer et al. 1996b;

Tett et al. 1996). These data came from radiosondes

and did not really have reasonable spatial coverage

until the late 1950s, and even then were highly irregu-

lar in time (Gaffen et al. 1999), providing a relatively

short record, at best about 40 years, for detection

analysis. Changes in instrumentation are known to

have introduced very large discontinuities to this data-

set (e.g., Parker et al. 1997). However, comparison of

lower-tropospheric temperature trends from radio-

sondes and the satellite-derived Microwave Sounding

Unit (MSU) 2R over the period 1979–96 is claimed

to be good (e.g., Christy et al. 1998). Unfortunately,

the satellite dataset is only 20 years long and there-

fore too short for practical detection work. In any

event, such comparisons typically have neglected

large uncertainties in the radiosonde datasets, particu-

larly during the 1958–78 period, and have not ac-

counted for data coverage differences. A more

definitive discussion of the upper-air data and its prob-

lems can be found in Parker et al. (1997) and Santer

et al. (1999). For present purposes, it appears that ra-

diosonde data, despite their deficiencies, have reason-

able horizontal and vertical resolution, which

eventually may be of considerable help in constrain-

ing present uncertainties in anthropogenic forcing and

in model-based signal estimates.

FIG. 4. Partial eigenvalue spectrum. The letter codes refer to

various coupled global climate models. The heavy solid line rep-

resents the partial eigenvalue spectrum obtained by projecting the

observed, detrended air temperature onto the CGCM common

EOF basis set. The vertical bars show the approximate 95% con-

fidence limits on the observed partial eigenvalues (after Barnett

1998).

FIG. 5. Decadal timescale surface temperature record for (a)

global, (b) Northern Hemisphere, and (c) Southern Hemisphere

means, with ±1 standard error (shaded) and ±2 standard error (thin

lines). Temperatures expressed as anomalies from the 1961–90

mean. After Jones et al. (1997).
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3) REANALYSIS PRODUCTS

Extensive efforts have re-

cently been made in the area of

reanalysis. Dynamical atmo-

spheric general circulation mod-

els have been applied to assimilate

available observations in an at-

tempt to produce a temporally

homogeneous, regularly gridded,

dynamically consistent recon-

struction of the 3D atmospheric

structure over the last 20–40

years [Kalnay et al. (1996) for

the National Centers for Envi-

ronmental Prediction (NCEP) and

Gibson et al. (1997) for the Eu-

ropean Centre for Medium-Range

Weather Forecasts (ECMWF)].

It is natural to inquire if these re-

analyses data can be used for DA.

Unfortunately, our studies

indicate that the current genera-

tion of reanalyses have very lim-

ited usefulness for detection

and attribution studies. For ex-

ample, the NCEP and ECMWF

reanalyses show inhomogene-

ties and very different tempera-

ture behavior in the lower and

midtroposphere (Santer et al.

1999; Chelliah and Ropelewski

1999, manuscript submitted to

J. Climate, hereafter CR). In the

former region, the temperature

trends in the two reanalyses differ by up to 0.11°C/de-

cade over 1979–93—a value within the estimated

range of an expected anthropogenic signal (Santer

et al. 1996a). NCEP and ECMWF also have large sys-

tematic differences in the midtroposphere, particularly

in the Tropics (Fig. 6; CR). Also, Santer et al. (1999)

have compared layer-average temperatures in NCEP

and ECMWF with those in MSU (versions b, c, and

d) and various radiosonde datasets and also find seri-

ous problems with both sets of reanalysis. In sum-

mary, use of reanalysis data in DA studies will have

to await a future generation of reanalysis products.

b. Model uncertainties

The model-predicted anthropogenic signal is asso-

ciated with a number of uncertainties. Some are due

to fundamental errors in the models themselves, for

example, an inability to produce a credible ENSO

cycle, parameterizing ocean mixing, clouds, etc.

Others arise from errors in the forcings that are in-

cluded (such as sulfate aerosol direct effects), and from

errors due to neglect or inadequate specification of

poorly known anthropogenic or natural forcings, such

as indirect sulfate aerosol effects and volcanic dust

loadings. Another major source of uncertainty arises

from the expected internal model variability, for ex-

ample, nonlinear interactions within the models that

produce large variability even when run in control

mode (no external forcing of any kind). In the brief

space we have here, it is only possible to give examples

of several of these uncertainties as they relate to de-

tection of a large-scale anthropogenic signal. In sec-

tion 5, we will see what impact they have on

detection statements.

FIG. 6. Time series of the tropospheric temperature anomaly differences between

NCEP reanalysis and MSU2 (solid) and ECMWF reanalysis and MSU2 (dotted). (top) The

globe equatorward of 80° latitude. (bottom) The Tropics equatorward of 20° latitude. After

CR.
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1) ANTHROPOGENIC SIGNAL DIFFERENCES

How much uncertainty is introduced into the de-

tection problem by different representations of the

same anthropogenic forcing in different computer

models? An idea of the difference was obtained by

analyzing the ensemble of scenario runs produced by

the Hadley Centre (HC), the Geophysical Fluid Dy-

namics Laboratory (GFDL), and the Max Planck In-

stitute of Meteorology (MPI). These runs simulated the

time-dependent effects of increasing “total equivalent”

CO
2
 (denoted GHG) and the direct effect of sulfate

aerosols (denoted SUL), the latter represented in the

models by a change in surface albedo. So all the mod-

els were forced with conceptually the same anthropo-

genic pollutants. Just how the forcing from these

pollutants was specified varied from model to model.

The details of the models, ensembles and appropriate

references are given in Table 2.

The (smoothed) temperature changes between

1945 and 1995 predicted by the ensemble average for

each model simulation are shown in Fig. 7. All of the

models suggest warming over most of the oceans and

continents of order 0.5°C or less. The main difference

between models (Fig. 8) is over the midlatitude oceans

of the Northern Hemisphere and over or just east of

the main industrial sectors of European and North

American landmasses. The main differences, which

can easily exceed 0.5°C locally in the models’ pre-

dicted anthropogenic signal, could be due to the way

in which models represent sulfate aerosols and other

physical differences such as clouds (e.g., Hegerl et al.

1999). Fortunately, most of the disparity between the

ensemble average of the models is high wavenumber

in character, while current detection schemes use only

the very low wavenumber information, for example,

Stott and Tett (1998). In this case, the dissimilarities

between models will appear as noise and might not

greatly affect standard detection methods. On the other

hand, Fig. 8 does have some large-scale features and

these could impact DA studies (e.g., lower panel).

2) INTERNAL MODEL VARIABILITY

Each CGCM demonstrates relatively large vari-

ability generated by internal nonlinear interactions.

This is demonstrated in Table 3 where the pattern cor-

relations between various of the realizations listed in

Table 2 show large intramodel variability between

predicted June–July–August (JJA) trend patterns over

the period 1945–95. Estimates of this variability sug-

gest it is comparable with the observed natural climate

variability (Barnett 1999; Manabe and Stouffer 1997;

Barnett 1995; Stouffer et al. 1999; among others).

HadCM2 HadCM2 Hadley Centre, A: 3.75 × 2.5 ~1610 Four G, four GS,

Bracknell, UK O: 3.75 × 2.5 four Sol, four Vol

HAM3L ECHAM3/LSG MPI, Hamburg, A: 5.625 × 5.625 ~1518 G, two GS,

Germany O: 3.5 × 3.5 two Sol

HAM4P ECHAM4/OPYC MPI A: 2.8 × 2.8 ~300 G, GS, GSI

O: variable

GFDL GFDL R30 GFDL, Princeton, NJ A: 3.75 × 2.25 ~675 Five GS

O: 1.9 × 2.25

TABLE 2. Model descriptions.

Scenario runs

CTL run (number and

ID Model name Modeling center Grid size (°) (yr) type)

G = greenhouse gas only.

GS = G + direct sulfate aerosol forcing.

GSI = GS + indirect aerosol and troposhere ozone forcing.

Sol = time-dependent solar insolation forcing after Hoyt and Schatten (1993).

Vol = time-dependent volanic forcing after Sato et al. (1993).

The grids of the ocean (O) and atmospheric (A) models are given. Details of the HadCM2 model are given in Johns et al. (1997),

the MPI model in Voss et al. (1997), and the GFDL model in KDDS.
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Earlier work by Cubasch et al.

(1994) demonstrated this prob-

lem could be important particu-

larly for early detection of an

anthropogenic signal. In their

simulations, the early evolution

of the anthropogenically in-

duced signals differed markedly

for integrations starting from

different initial states.

We illustrated this using the

four HC (model HadCM2) simu-

lations described in Table 2. Each

used the same model and the

same representation of anthro-

pogenic forcing, the only differ-

ence between the runs being

perturbations in the initial con-

ditions. Hence, the differences

between the runs were due solely

to internal model variability.

The matter of concern is the size

of the model’s anthropogenic

signal compared to the differ-

ences between individual signal

estimates. To determine this ra-

tio, the individual runs were first

smoothed in time to eliminate

“end point” effects and the tem-

perature change between 1995

and 1945 was computed. The

mean signal was determined by

averaging together the four

realizations of smoothed tem-

perature change (Fig. 9, lower

panel). At each grid point, we

then computed the ratio of the

mean signal to the standard

deviation between the four runs

(Fig. 9, upper panel). The re-

gions in Fig. 9 (upper panel) where the ratio is greater

than one are colored. In these areas the signal exceeds

the “noise” associated with internal model variabil-

ity, while in the remaining gray regions the ratio is one

or less. In these areas, the mean model GHG+SUL sig-

nal based on only four realizations is uncertain.

The results show that, for the 1945–95 period, per-

haps half the Northern Hemisphere above 30° latitude

has a mean anthropogenic signal that is equal to or less

than the intramodel noise. This applies particularly to

the aerosol fallout regions noted above. Detection of

the signal in these regions at this time will be diffi-

cult. In contrast, strong, clear anthropogenic signals

are observed over the continents, especially those in

the Southern Hemisphere, and all of the Tropics.

The results discussed above, plus those given by

Knutson et al. (1999, manuscript submitted to J.

Geophys. Res., hereafter KDDS) and Barnett et al.

(1999, manuscript submitted to J. Geophys. Res., here-

after BHKT) illustrate the dangers of using only a

single CGCM anthropogenic run in early detection

studies. In its early stages of growth, the space–time

FIG. 7. Changes in smoothed near-surface temperature (°C) between 1945 and 1995 pro-

duced by ensemble averages from coupled global climate models of the HadCM2, MPI,

and GFDL. All models were forced by their own independent estimates of an anthropogenic

signal composed of greenhouse gases and direct sulfate aerosol effects.
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structure of the signal can be distorted by the internal

model variability2 thereby most likely depressing or

elevating the detection significance levels. It is cur-

rent practice to use ensembles of scenario runs in DA

studies to minimize this possibility. Unfortunately,

this cannot be done with the (noisy) observations of

which we have only one realization.

c. Summary

Uncertainties that are large relative to the currently

expected anthropogenic signal exist in the observa-

tions. In most cases, these uncertainties cannot easily

be eliminated since they are associated with instru-

mental changes over the century. The sampling uncer-

tainties, however, can be estimated and are relatively

small for the SAT observations currently used in most

detection studies. Similar uncertainties arise through

the models used to estimate the anthropogenic signal.

These uncertainties are also poorly known, since they

have been investigated in only a

few models, and even then not

completely.

Thus, to avoid overoptimis-

tic (or overpessimistic) claims of

detection, especially early detec-

tion, it is essential that a careful

assessment of all potential error

sources in both observations and

models be made and their im-

pact properly included in the

detection methodology. The in-

herent uncertainties involved in

making these error estimates

must be emphasized. These fac-

tors are the origin of many of the

caveats permeating the pub-

lished literature on detection.

4. Theory

We summarize in the fol-

lowing the basic concepts and

methods of application of the

conventional and Bayesian ap-

proaches to detection and attri-

bution. Both approaches are

based on formal statistical theory,

but differ in how they translate

the results of the formal theory

into the real world. Details of the

general mathematical formalism

of both approaches are given in

appendixes A and B. Readers

more interested in the results of

applying these theories may

wish to skip to section 5 describ-

ing the current status of DA

studies.

2 The most recent studies explicitly include estimates of these un-

certainties as will be demonstrated in section 5.

FIG. 8. Differences in ensemble averaged temperature change (°C) between the three

model scenarios described in Fig. 7. Note the local values of the difference fields are often

as large or larger than the mean change in any one model (Fig. 7). However, the spatial scale

of the difference is somewhat smaller than those associated with the mean field.
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a. Conventional and Bayesian statistics: Overview

Formal statistical theory is concerned with prob-

ability distributions of variables or fields defined with

respect to an infinite ensemble of realizations. In prac-

tice, we never have such an infinite ensemble of real-

izations, that is, the true frequency distribution of a

variable is not known. This is especially true in de-

tection work where this theoretical requirement is sat-

isfied only marginally for the natural variability of

near-surface temperatures. However, we normally

assume that the observed temperature distributions ap-

proximate the unknown abstract distribution. In this

case, if the CGCM-predicted near-surface temperature

signal is known, signal-to-noise ratios can be com-

puted using conventional statistics. On the other hand,

the impact of the signal uncertainty associated with

model errors currently lies outside the scope of con-

ventional statistical theory, as there exists only the

small set of model ensembles described in section 3b

on which to base the model error statistics. Similarly,

conventional statistics cannot be applied to variables

for which there exist no reliable estimates of the natu-

ral variability on the range of timescales relevant for

detection, say, the waxing and waning of glaciers over

the last 500 years. This is a severe restriction on the

conventional method, since there exist many indica-

tors of climate change that suffer from this limitation,

but that one would nevertheless like to incorporate in

a comprehensive climate change detection and attri-

bution study.

These shortcomings are overcome in the Bayesian

approach, albeit at the expense of a subjective rather

than an objective definition of probability of detection.

The Bayesian probability concept is based on the ev-

HC 1 1.00 0.59 0.28 -0.08 0.42 0.50 0.52 0.38 0.26 0.23 0.36 0.26

HC 2 0. 1.00 0.33 0.21 0.37 0.38 0.59 0.14 0.41 0.46 0.49 0.21

HC 3 0. 0. 1.00 -0.14 0.67 0.51 0.40 0.50 0.04 0.58 0.14 0.25

HC 4 0. 0. 0. 1.00 -0.33 -0.16 -0.08 -0.22 -0.16 0.03 0.07 -0.29

EC A 0. 0. 0. 0. 1.00 0.68 0.48 0.45 0.33 0.55 0.26 0.23

EC B 0. 0. 0. 0. 0. 1.00 0.43 0.54 0.13 0.29 0.08 0.22

GF 1 0. 0. 0. 0. 0. 0. 1.00 0.41 0.32 0.56 0.37 0.04

GF 2 0. 0. 0. 0. 0. 0. 0. 1.00 0.14 0.25 0.00 0.17

GF 3 0. 0. 0. 0. 0. 0 0. 0. 1.00 0.13 0.50 0.07

GF 4 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.00 0.13 0.02

GF 5 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.00 0.16

Obs. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.00

TABLE 3. Pattern correlation of spatially smoothed JJA temperature trends between various realizations of GHG+SUL forcing from

different models. Trend Period: 1945–95. See Table 2 for model references.

HC 1 HC 2 HC 3 HC 4 EC A EC B GF 1 GF 2 GF 3 GF 4 GF 5 Obs.

HC= Hadley Centre/HadCM2.

EC= MPI/HAM3L.

GF= GFDL/R30.

Obs.= observations.
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eryday observation that people speak of probabilities

(and are willing to quantify their probability assess-

ments through investments in the stock market, e.g.)

independent of the existence of frequency distribu-

tions. It is assumed that people have a rational basis

to assign to events or hypotheses, such as the exist-

ence of an anthropogenic climate change signal,

subjective probabilities based simply on past experience

and limited available information. New evidence, such

as the analysis of an observational dataset, results in

the conversion of a person’s prior probability assess-

ment into a posterior probability. In addition to open-

ing the door to climate change indices that would

otherwise be excluded from a detection study based

on the conventional statistical approach, the Bayesian

approach offers a rational framework for the debate on

controversial issues of detection and attribution that

are often strongly colored by individual, subjective

estimates of model errors.

b. The optimal fingerprint method of conventional

statistics

In the conventional approach, the analysis is car-

ried out in what can be called “attribution space,” a

low-dimensional subspace derived from the model-

predicted signals. Each dimension of this space can

simplistically be thought of as associated with the fin-

gerprint of a particular type of anthropogenic forcing,

for example, greenhouse gases, sulfate aerosols, etc.

However, the fingerprints are not identical to the sig-

nal patterns, but are obtained from these by a rotation

in the climate phase space away from the directions

with the highest natural variability noise. This is ac-

complished by a simple inverse weighting of the ob-

servations/signal with the covariance of natural

variability (estimated from long CGCM control runs).

The search for the signal is then carried out in the op-

timal fingerprint direction that maximizes the signal-

to-noise ratio (see appendix A). The rotation can be

viewed as a filtering operation

analogous to the standard prac-

tice of prewhitening time series

data.

Both the model predictions

and observations are projected

onto this attribution subspace, an

action that is akin to projecting

different datasets onto a com-

mon basis set such as in standard

EOF analysis. The uncertainties

in the model and data are repre-

sented in this space by probabil-

ity distributions characterized by

elliptical confidence regions (in

our later examples in a 2D space).

In particular, the natural climate

variability is represented by an

ellipse centered on the origin. If

the model signal falls outside the

95% confidence ellipse, say, of

the natural variability, one states

that a climate change signal due

to other than natural processes

has been detected at a signifi-

cance level of 5%, that is, the

probability that a signal as large

as the observed climate change

occurs due to natural climate

variability is less than 5%. This

does not necessarily imply that

the observed climate change can

FIG. 9. (bottom) Ensemble average temperature change 1945–95 from a four-member

ensemble of GHG+SUL forced runs from the HadCM2 model, but with slight change in

color bar from that used in Fig. 7. (top) Ratio of ensemble average 1945–95 temperature

change to the standard deviation between the four independent members of the HadCM2

ensemble. This ratio is referred to as the S/N ratio. The gray area shows where the S/N is

less than or equal to 1.
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be attributed to an assumed forcing mechanism.

However, if the climate change signal falls within the

overlap region of the confidence regions of the model-

predicted signal and the data errors, one can state fur-

ther that the climate change signal is consistent with

the model’s forcing mechanism(s). But this still does

not imply that the signal can be uniquely attributed to

the hypothesized mechanism, since it is conceivable

(and in fact often the case) that other forcing mecha-

nisms could also satisfy the consistency criterion.

Unique attribution can be claimed only if it can be

demonstrated that there exist no forcing mechanisms,

other than the assumed mechanism, that are consistent

with the data. Since this is clearly impossible in a rig-

orous sense (there can always exist mechanisms one

has overlooked), detection and attribution claims nec-

essarily have the nature of statistical consistency

statements.

c. Bayesian approach to detection

The Bayesian approach (Hasselmann 1998; Leroy

1998) starts from an assumed subjective a priori prob-

ability (the “prior”) for the existence of an anthropo-

genic climate change signal. The analysis of the data

then provides new information that modifies the prior,

yielding an a posteriori probability (the “posterior”).

The relation between the prior and the posterior

depends on the relative likelihoods of the outcome of

the data analysis, given that the hypothesis of an an-

thropogenic climate change is either true or false.

The relation (“Bayes’ theorem”) follows from

straightforward application of the rules of condi-

tional probabilities (see appendix B). Conceptually,

the advantage of the Bayes approach is that it consid-

ers not only the probability of the validity of the null

hypothesis (e.g., climate change due to natural vari-

ability), as in conventional theory, but also the prob-

ability of the validity of the complementary climate

change hypothesis, for the rejection of one hypothesis

in favor of the other must clearly depend on the pri-

ors of both hypotheses.

In practice, the main advantages of the Bayesian

formalism over the conventional approach is that it

enables a number of different climate change indices,

whose noise level estimates may be associated with

very different levels of uncertainty, to be incorporated

into a single comprehensive test that exploits all avail-

able information. This generally yields, if the indices

are statistically independent, much enhanced signifi-

cance levels compared with a conventional detection

and attribution test based on only a few variables, such

as near-surface temperatures, for which adequate sta-

tistics exist. Another, more formal, advantage is that

there is no longer any need to distinguish between de-

tection and attribution, as in the conventional ap-

proach; both issues can be combined into a single

hypothesis test.

In summary, the Bayesian approach allows a wide

variety of information to be used in the detection

analysis. The analysis, being subjective, also allows

an equally wide set of beliefs to be incorporated into

the detection formalism. As the example of appendix

B shows, very different sets of initial beliefs might

nevertheless be modified by cumulative observed cli-

mate change information to converge on a closer

agreement as to the causes of observed climate change

than might have been anticipated.

5. Detection results

This section combines the results of the previous

sections to derive some general conclusions on detec-

tion and attribution of model-generated anthropogenic

signals in observations of SAT, specifically the tem-

perature trends over approximately the last 50 years

for June–August. Before applying the various meth-

odologies, it is informative to first visually compare

the model-predicted and observed temperature

changes. We then explore the implications for detec-

tion and attribution using the optimal fingerprint

method with a number of different models, taking into

account the various forms of uncertainty discussed

above. Subsequently we consider the impact of remov-

ing the global mean from the analysis. The list of

models used in this section, with their resolution and

type of forcing, is shown in Table 2. The analysis is

restricted to the data-adequate regions of the earth, but

one could also work with selected stations or grid

boxes as have Barnett (1986), North and Stevens

(1998), and others; the choice is a matter of taste.

a. Visual comparison

Spatial patterns of summertime temperature trend

over the period 1946–953 predicted by 11 different

realizations from three different models forced by

GHG+SUL were averaged together and compared in

3 The end year 1995 was chosen to avoid impacts of the recent

large ENSO activity on trend estimation. Results including data

through 1998 are similar.
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Fig. 10 with the corresponding trend estimates from

observations (Jones et al. 1999). The observations

show warming over much of the Southern Hemisphere

oceans (as far as data exist), and much of the Northern

Hemisphere landmass (except eastern Asia), while cool-

ing trends occur over most of the Northern Hemisphere

oceans. In contrast, most models simulate rather weaker

warming over the Northern Hemisphere landmasses

than observed and miss the cooling of the Northern

Hemisphere oceans. Also, while the observations show

strong hemispheric asymmetry in the warming, it is

less apparent in the average model signal. The average

of the models appears visually to underestimate the ob-

served land–sea temperature contrast, a key factor in

detection (North and Stevens 1998). However, the in-

dividual model ensembles do differ on some of these

features, for example, the MPI runs where the stronger

Southern Hemispheric warming may be partly due to

model drift. Note also that the average of all the model

runs shows less influence of internal variability (less

noise) and hence smaller contrasts than the individual

model responses or the single observed trend pattern.

In summary, visual inspection shows many simi-

larities between model simulations and observation

but also some substantial differ-

ences. In short, simple visual in-

spection does not allow a clear

statement as to whether the

model signals are present in

the observations.

b. Optimal fingerprint

detection

The optimal fingerprints es-

timated according to appendix

A from the MPI’s ECHAM3/

LSG model and the Hadley

Centre’s HadCM2 model were

used independently as anthro-

pogenic basis sets (“finger-

prints”) on which to project the

observations. Different esti-

mates of the anthropogenic

forcing and their uncertainties

(section 3) were also projected

onto these coordinate systems.

Thus, many different model

runs, their uncertainties, and the

observations can all be com-

pared in a common coordinate

system.

The simplest coordinate sys-

tem is the one-dimensional sys-

tem defined by a single response

pattern to combined GHG and

SUL forcing. We designate this

as the “GS fingerprint.” The

one-dimensional detection analy-

sis using a single GS fingerprint

is aimed at quantifying an an-

thropogenic signal in observa-

tions and comparing it with the

presently expected magnitudes

FIG. 10. (top) Temperature trend for JJA between 1945 and 1995 obtained by averaging

together the ensembles from HadCM2, GFDL, and MPI. All models were forced by their

independent estimates of greenhouse gases and direct sulfate aerosol effects. (bottom) Ob-

served temperature trend for JAA between 1945 and 1995 from Jones et al. (1999).
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of model signals. Additionally, a GHG and a SUL fin-

gerprint are applied synchronously in order to sepa-

rate the response to greenhouse gases from that to

sulfate aerosols. This two-dimensional fingerprint

regression approach was found to be more suitable to

distinguish between forcing hypotheses (Hegerl et al.

1997). In this latter coordinate system, the abscissa de-

notes the amplitude of a pure greenhouse gas pattern

and the ordinate the orthogonal sulfate induced pat-

tern (i.e., the sulfate pattern after subtraction of the

component parallel to the greenhouse pattern). We

shall refer to this 2D space as attribution space. The

results described below are discussed in more detail

by Hegerl et al. (1999).

1) RESULTS: GS FINGERPRINT

The one-dimensional analysis (Fig. 11a) shows

that, when projected onto a GS fingerprint, indepen-

dent of whether the HadCM2 (dashed vertical lines)

or ECHAM3/LSG (solid vertical lines) fingerprints

are used, the observations (labeled “1” on the abscissa

and denoted by a black dot) represent significant cli-

mate change at more than the 5% significance level,

this level being estimated from a t test. That is, these

estimates do not include zero and so are not likely to

be due to natural variability. The 5% significance level

reflects uncertainty due to internal climate variabil-

ity in observations and due to differences in gridbox

value sampling between observations and model

[G. C. Hegerl et al. 1999b; for details of the analysis,

see Hegerl et al. (1997) and (1999a)]. HadCM2 has

been used to estimate the internal climate variability,

since it provides the largest standard deviation of in-

ternal variability in the direction of the GS fingerprint

and so yields the most conservative answer. Increas-

ing the level of internal variability by a factor of 2 re-

duces the significance level to 10%.

Other results demonstrated in Fig. 11a are as

follows.

1) Abscissa values 2–5 correspond to ensemble-av-

eraged GHG+SUL runs from HAM3L, HadCM2,

GFDL, and HAM4P, respectively (see Table 2 for

model identification). Both the HAM3L and

HadCM2 GHG+SUL signals are consistent with

the observations according to the t test for either

choice of GS fingerprint. The consistency of the

GFDL and the HAM4P GS runs with the observa-

tions depends on which model fingerprint is used;

for example, it is inconsistent (denoted by an “x”

on the abscissa origin) with the observations if the

FIG. 11 (a). Model predictions and uncertainties in the ampli-

tude of the one-dimensional GS fingerprint pattern. The type of

data/simulation is given by the abscissa value: 1 = observations,

2–5 GHG+SUL forcing, 6 = GHG+SUL+indirect sulfate forcing,

7 = natural forcings (solar/volcanic) from the HadCM2, and 8 =

natural and GHG+SUL forcing (all) from HadCM2. The points are

the best estimates of the signal strength in GS space. The vertical

lines are 90% confidence levels on each signal estimate. Dashed line

for GS fingerprint from HadCM2 and solid for HAM3L. The “x”

on the abscissa denotes signal estimates that are not consistent with

the observations. Colors: black = observations, blue = HadCM2,

red = HAM3L, pink = GFDL, and green = HAM4P. See Table 2

for model details and references, and Hegerl et al. (1999a) for de-

tails of the calculations and significance tests. (b) Model predictions

and associated uncertainty regions for greenhouse gas forcing

alone. The points in the attribution space are the location of the vari-

ous models’ estimated trend in surface temperature over the period

1946–95. The model simulations can be compared with the loca-

tion of the observed temperature trend over the same period (black

asterisk). The color code identifies the model, e.g., blue for the

average of the HadCM2 integrations, red for Ham3L, and green

for Ham4P. See Table 2 for more information on the models. The

confidence limits on each simulation are shown by ellipses (dashed

for HAM4P). Since there is little or no overlap between model

uncertainty ellipses and observed uncertainty ellipses, the obser-

vations do not support the hypothesis that greenhouse gases alone

can explain the observed change in summer near-surface tempera-

ture trend over the last 50 yr. The global mean has been included

in the above calculations. For details, see Hegerl et al. (1999a).
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HadCM2 fingerprint is used but the reverse is true

if the MPI fingerprint is used. So two of the four

simulations have an anthropogenic signal whose

magnitude is consistent with the observations for

both sets of fingerprints.

2) Adding indirect sulfate effects puts HAM4P sig-

nal (abscissa coordinate 6, GSI defined in Table 2)

into agreement with observations.

3) Natural forcing due to volcanoes and solar vari-

ability (abscissa = 7, “nat,” as simulated by a lin-

ear sum of the HadCM2 solar and volcanic forced

simulations) projects negatively onto both GS fin-

gerprints and is found to be inconsistent with the

observations.

4) Combining both natural and GS forcing (“all”)

produces a signal in the HadCM2 model that is in

good agreement with the observations (Tett et al.

1999; see also North and Stevens 1998; Stevens

and North 1996).

2) RESULTS: ATTRIBUTION SPACE

Separation of the GS signal into its component

parts offers a better view of how the model response

is composed of a GHG and SUL pattern and hence

leads to more powerful attribution statements. So we

discuss next the projection of the various model

runs, uncertainties, and observations onto attribution

space.

(i) Anthropogenic signals

Figures 11b and 12 show estimates for the ampli-

tude of a greenhouse gas fingerprint (GHG) and an or-

thogonal sulfate aerosol fingerprint (SUL) in

observations and model simulations. These results

again are based on using 50-yr trend patterns (1946–

95) for summer (JJA) surface air temperature, as in

the one-dimensional case. The optimal fingerprints are

derived from HAM3L signal patterns [see appendix A,

Eq. (A2)] and, for Fig. 12b, from HadCM2 signal pat-

terns. Estimates of internal variability in observations

are again based on HadCM2 in control simulations in

order to be conservative.

Figure 11b shows a comparison between the am-

plitudes of signals from greenhouse-gas-only simula-

tions from the different models and observations. Note

that in this case, any amplitude of an SUL pattern (or-

dinate values other than zero) in the models would

occur only due to internal variability or to model–

model differences since the forcing was by GHG

alone. The position of the observed 50-yr trend pat-

tern (*) in this space is uncertain due to internal cli-

FIG. 12. The same as Fig. 11b. Detection results are presented

in attribution space defined by the HAM3L (upper) and HadCM2

(lower) models. A variety of runs using different combinations of

anthropogenic and/or estimated natural variability are shown. Red

denotes simulations with HAM3L, blue with HadCM2, green with

HAM4P, and pink with GFDL. The G denotes greenhouse-gas-

only forcing, GS greenhouse gas + direct sulfate aerosol effect,

while “nat” refers to a linear combination of solar and volcanic

forcing from the HC run. The radiative forcing of the HAM4P

simulations (GSI) includes an updated estimate of the direct and

indirect sulfate aerosol effect, the major greenhouse gases, and

tropospheric ozone (Roeckner et al. 1999).

Model simulations that lie outside their respective uncertainty

ellipse (which is based on internal variability noise in observa-

tions, the ensemble average in the simulation, and the observa-

tional sampling error) are inconsistent with the observations at

the 5% level. The confidence ellipses have now all been centered

on the current observed state. The much larger confidence el-

lipse (dashed) is associated with the HAM4P run for which there

is only one realization. The global mean is included in the cli-

mate change signal.
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mate variability and sampling error. The position of

the model trend estimates (o, +, x) is uncertain due to

internal model variability. Both uncertainties are

shown as ellipses around their respective best esti-

mates. In Fig. 12, which now includes simulations with

a variety of different forcings in addition to GHG

alone, both observational and model uncertainty are

combined into a joint ellipse for the differences be-

tween model and observed climate state, which is cen-

tered around the observed climate state. Where the

models’ points lie outside their respective ellipse, the

difference from the observations is too large and the

model is inconsistent with the observations at the

given significance level.

A comparison of the various model predictions and

their projection onto the ECHAM3/LSG and HadCM2

fingerprints leads to the following conclusions.

1) The black ellipse defines the uncertainty region of

the observed signal, in the GHG and SUL pattern

space, associated with the natural variability and

observational sampling error. In the MPI world

(Fig. 12a), the ellipse does not contain the origin

point (0,0), implying that internal climate variabil-

ity alone cannot explain the recent observed trend.

When the HadCM2 fingerprints are used, however,

the joint uncertainty ellipse encompasses the ori-

gin, so that an explanation of the observed trend

by natural variability cannot be excluded (Fig. 12b).

However, this explanation was excluded in the 1D

analysis of section 5b(1). Also, application using

observed trends through 1998 and a full space–time

detection method using the HadCM2 model (Tett

et al. 1999; P. A. Stott et al. 1999, manuscript sub-

mitted to Climate Dyn.) produced a conclusion

similar to that obtained in the ECHAM3/LSG at-

tribution space. At this stage, the detection and at-

tribution conclusions clearly are sensitive to and

depend on the model fingerprints and detection

techniques used in the analysis.

2) The GHG-only simulations from the different

models (denoted by G in Figs. 11b and 12) are all

substantially inconsistent with the observations;

that is, the experiments occupy positions in the at-

tribution space that fall well outside the 95% con-

fidence ellipse of the observations. Thus the simu-

lated temperature trends produced with green-

house forcing only are not consistent with the

observations.

3) The observations (black asterisk in Figs. 11b, 12,

and 13) in the attribution space of the ECHAM3/

LSG have a significant ordinate component, indi-

cating a substantial influence of the sulfate forc-

ing. This component is somewhat larger in the ob-

servations than predicted by all model simulations

except MPI GHG+SUL (red circle labeled GS). In

the HadCM2 fingerprint, the observations are not

significantly separated from the origin, suggesting

an insignificant sulfate response, for example, sul-

fate has no significant impact on SAT in that model.

This suggests the detectability of the sulfate response

in observed trend patterns is model dependent.

Further, Stott et al. (1999, manuscript submitted to

Climate Dyn.) found explicit inclusion of the time-

dependent response to sulfate gives a clear identi-

fication. So the identification of this signal also

depends on the detection method one uses.

4) The simulations forced by GHG+SUL (GS) are

consistent with the observations for two of the four

models using either fingerprint. However, as we

saw in the 1D case, the GFDL result (pink circle)

depends on which fingerprint one uses and is mar-

ginally consistent or inconsistent in either case.

5) The HAM4P simulations, which include the most

sophisticated, yet novel, chemistry package, lie

outside the 95% confidence limits for all experi-

ments (green, G, GS, GSI) in the ECHAM3/LSG

fingerprint and the GS experiment on the HadCM2

fingerprint. Notice the weak, almost negligible

sulfate response (no significant ordinate values)

based on either fingerprint. This feature arises in

HAM4P since the combined direct and indirect

sulfate signal is moderately uniform over the globe.

So it looks like the GHG signal but of opposite

sign. Hence it projects onto the GHG axis and the

two signals become hard to separate (Feichter et al.

1997). Unfortunately, we have only one realization

of this simulation and a short control run, hence the

huge uncertainty ellipse, and no comparable simu-

lations from other models to substantiate it. Until

these limitations are removed, the validity of this

simulation cannot be judged. The danger of bas-

ing detection statements, either positive or nega-

tive, on a single scenario run is well illustrated in

KDDS and BHKT.

6) The HAM4P signal was found to be statistically con-

sistent with the observations if we redid the detec-

tion test using 30-yr trends of anually averaged

SAT and a fingerprint derived from HAM4P itself

(R. Schnur, personal communication). This result

illustrates the potentially strong dependence that

detection statements have on the fingerprint used,
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the time period, and the season considered in the test.

These dependencies have not been well explored.

(ii) Natural and anthropogenic forcing

Various types of “natural” forcing have been in-

cluded in the HadCM2 simulations, either together

with or separately from the anthropogenic forcing. The

principal results from these additional experiments are

as follows.

1) A superposition of simulations forced with solar

insolation variations and volcanic forcing (“nat,”

blue +) is found to be (marginally) inconsistent

with the observations. The same conclusion, but at

a higher significance level, was found by Tett et al.

(1999) using a different detection scheme.

Similarly, Hegerl et al. (1997) find that climate

variations induced by changes in solar insolation

alone (Cubasch et al. 1997) are unlikely to explain

the observed temperature increase (not shown). We

conclude that natural forcings cannot convincingly

explain the most recent temperature trends, unless

reasons can be found to increase the magnitude of

the solar forcing above current estimates.

2) The combined simulation with the HadCM2

model including natural forcing by solar insolation

variations and volcanic activity together with the

GHG+SUL anthropogenic forcing (blue asterisk:

GS+nat) is in good agreement with the observa-

tions, yet very similar to GS forcing alone. This

result was obtained also by Tett et al. (1999) us-

ing a different methodology and was found to be

robust relative to uncertainty in estimates of natu-

ral variability. The simulation does not include

poorly known, but probably important, radiative

forcings such as indirect sulfate effects (Hansen

et al. 1998). North and Stevens (1998) and Stevens

and North (1996) also find significant GHG, SUL,

and volcanic signals in observations applying a

space–frequency detection method.

(iii) Summary

The results of the last two sections indicate that

greenhouse gas forcing alone is inconsistent with the

observations in all the coupled global climate model

simulations studied. The anthropogenically forced

runs with combined greenhouse gas and sulfate forc-

ing (GHG+SUL) from two of the four models are con-

sistent with the observations; the other two models are

either consistent or inconsistent with the observations

depending on the fingerprint used (Hegerl et al. 1999).

A similar conclusion about consistency of the

HadCM2 model has been reached by Tett et al. (1999),

using a different detection strategy. However, the MPI

model HAM4P with the most complete, yet novel,

chemistry is either consistent or inconsistent with ob-

served warming (Roeckner et al. 1999), depending on

which fingerprint in 1D or 2D space one uses, the time

period studied (50-yr vs 30-yr trends), and seasonal-

ity of the signal (summer vs annual average). However,

we note this result is based on a single model run (cf.

section 3b) and is presently unconfirmed by other

models forced in a similar fashion.

Simulations forced with current estimates of natu-

ral forcing alone (variations of solar insolation with

or without variations of volcanic activity) are found

to be inconsistent with observed temperature changes.

Simulations forced with both natural and partially

complete anthropogenic forcing show rather good

agreement. This result needs to be reassessed when

simulations with other models are available, and

FIG. 13. Same as Fig. 12 except that the global mean has been

removed from the signals.
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when a combination of realistic natural and anthropo-

genic forcings are included in improved model

simulations.

c. Detection without the global mean

The analyses described above included temporal

changes both in the global-mean temperature and in

the spatial variations about the global mean over the

last 50 years. The change in the global-mean tempera-

ture, while clearly a sensitive indicator of global warm-

ing, is obviously not a very useful quantity for

discriminating between competing mechanisms of cli-

mate change. For the purposes of attribution, it has

been suggested that it would be more effective to re-

move the global mean, thus emphasizing the differ-

ences between the responses to different forcing

mechanisms (e.g., Barnett 1986).

The impact of removing the temporal changes in

the global mean is shown in Fig. 13, which may be

compared with the corresponding Fig. 12 with the glo-

bal mean included (see also Hegerl et al. 1999b). Most

of the above conclusions are seen to remain valid af-

ter exclusion of the global mean. Indeed, some model

runs that were inconsistent with the observations now

come into closer agreement with the observations.

Note that in the HadCM2 world, the observational

uncertainty still includes the origin in either case; com-

pare Fig. 12b and Fig. 13b.

d. Summary

The detection of time-dependent patterns of cli-

mate change associated with anthropogenic forcing

gives much the same results with and without inclu-

sion of the global mean. This suggests that the detec-

tion scheme used here relies for its skill not only on

changes in the global-mean temperature, but to a com-

parable or greater part on changes in the spatial pat-

terns of temperature change. This is an encouraging

result for the application of fingerprint techniques to

the problem of attribution.

6. Summary statement on detection and
attribution

Based on our analyses described in section 5, we

summarize the present situation regarding the detec-

tion and attribution of an anthropogenic climate

change signal as follows.

The recent changes in global climate inferred from

near-surface atmospheric temperatures cannot be

readily explained by natural climate variability.

However, the significance level at which the null hy-

pothesis is rejected depends on the detection method-

ology used (cf. Fig. 12).

Greenhouse warming alone is insufficient to ex-

plain the observed pattern of climate change. Most

models reproduce the observed temperature trend pat-

terns better if the direct effects of sulfate aerosols are

included with GHG. Nevertheless, it is worth noting

that the predicted temperature change pattern of the

model with the most advanced chemistry, including

other poorly known but potentially important forcings,

was either consistent or inconsistent with the obser-

vations in 2D attribution space depending on which

fingerprint, time period, and season were used for

detection. As noted above, this single run is unique

and we have no corroborating evidence, currently,

with which to either accept or reject the model’s main

result. In any event, recent results have shown it can

be misleading to base detection statements on a single

scenario run. Such statements also depend on what

method, fingerprints, etc. are used.

The most probable cause of the observed warm-

ing is a combination of internally and externally

forced natural variability and anthropogenic sources

(see also Tett et al. 1999). But given the large model

uncertainties and limited data, a reliable weighting of

the different factors contributing to the observed cli-

mate change cannot currently be given. In short, we

cannot attribute, at this time, with a high level of sta-

tistical significance, the observed changes in global

and large-scale regional climate to anthropogenic forc-

ing alone.

This result should not come as a great surprise.

Although the results shown in Fig. 12 suggested at-

tribution to anthropogenic forcing could be made, the

simulations showed considerable scatter and ne-

glected important factors such as the indirect sulfate

effects, ozone, etc.; and the single model run that in-

cluded these poorly known effects was not conclu-

sively consistent with the observations, a result that

cannot be corroborated until more realizations from

that and other similarly forced models are available

for analysis.

The current situation is that a fully realistic en-

semble of scenario runs has not yet been conducted.

This is compounded by the difficulty that, by most es-

timates, the anthropogenic signal is currently compa-

rable in magnitude to the upper limits of the natural

climate noise. Such a low signal to noise ratio makes

clear attribution statements difficult at this time. While
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some scenario runs by some models reproduce the

observations to within the level of estimated uncer-

tainty in the signal and observations, others do not. In

short, the current state of affairs is not satisfactory.

7. Recommendations for future work

Sustained efforts in several research areas are re-

quired to improve the situation. On the basis of our

analysis, we identify the following as most urgent.

1) An ensemble of scenario simulations for different

anthropogenic and natural forcings, using realistic

climate models, including the key chemical spe-

cies, is central for further work. These runs need

to be intercompared [e.g., within the framework of

the planned Coupled Model Intercomparison

Project; Meehl et al. (1997); Gates et al. (1999)]

and made widely available to a large number of

users.

2) Multivariate detection studies are required that in-

clude all available climate change indices, such as

modifications in the annual and diurnal cycle, ver-

tical temperature structure, precipitation, sea ice

extent, glacier retreat, and sea level. These studies

also need to include the statistics of natural vari-

ability, such as ENSO, the North Atlantic oscilla-

tion, and other large-scale oscillation modes, as

well as changes in the probability distributions of

shorter-term weather phenomena. Models will be

needed both to predict the relevant climate change

signals and to estimate the natural variability lev-

els. Since the model estimates will be unavoidably

contaminated by model errors, many of which will

be difficult to quantify, a Bayesian approach may

be needed to combine all information into a single

comprehensive detection and attribution analysis.

3) Existing detection and attribution theory should be

applied to make use of not only the predicted spa-

tial structure but also the full time dependence of

the multivariate signal fields as suggested by

Hasselmann (1993). This would largely remove

any dependence on the results on specific time in-

tervals (such as the 50-yr trends used in this work)

or seasonal character of the signal (summer vs an-

nual average temperatures). A first step in this di-

rection has been taken by Tett et al. (1999) and

North and Stevens (1998). Further, new detection

paradigms need to be explored and developed.

4) The basic datasets required for detection need to

be upgraded. A reconstruction of the history of the

three-dimensional atmospheric temperature field

derived from radiosondes, after correction for vari-

ous biases, would be a good place to start. It is

noteworthy that several nations have begun such

programs. Continued upgrading of the near-sur-

face temperature field is also required. In addition,

further datasets for detection need to be developed.

5) The problems with the paleodatasets require im-

mediate attention. In the final analysis, they are our

only means to determine levels of natural variabil-

ity over the last 1000 or so years from real data.

6) In the process of extending the datasets for detec-

tion and attribution, it would be useful to consider

data that are perhaps not optimal for early detec-

tion and attribution, but are nonetheless of consid-

erable public interest regarding their possible

modification through anthropogenic greenhouse

warming. Thus statements on whether and when

changes can be detected in the frequency of occur-

rence of hurricanes, midlatitude storms, floods,

droughts, El Niño, and other extreme weather or

short-term climate events would be of considerable

practical value. This would be true even if it should

be found that these climate change indices are

emerging more slowly from the natural variabil-

ity noise than other climate change indices, such

as the global near-surface temperature pattern.

7) While obvious, there is a continuing need to up-

grade the climate models used to make the anthro-

pogenic predictions. All of the models discussed

here can improve in the areas of simulating natu-

ral variability, ocean processes (especially mixing),

cloud representation, etc.
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Appendix A: The conventional
formalism

a. Optimal fingerprints

A standard assumption of all detection and attri-

bution methods is that the observed climate change

vector �(t) can be represented to first order as a linear

superposition,

ϕ ( ) ( ) ( ) ( )t a t g t n t= + (A1)

of the signal ag and noise n, where the signal is de-

composed into an amplitude a and a suitably normal-

ized signal pattern g. This notation applies to a single

pattern case and can easily be generalized to multiple

patterns. The climate change signal pattern g(t), ob-

served climate change vector �(t), and climate vari-

ability noise n(t) are defined here in the space of some

set of climate variables (temperature, pressure, pre-

cipitation, etc.) for which individual or grid-averaged

measurements exist in some spatial distribution.

In both the conventional and Bayesian approach,

one wishes to extract from the data an estimate of the

climate change signal and a measure of the signal-to-

noise ratio. This is normally achieved by applying a

suitable linear filter f(t) to the data (Hasselmann 1979,

1993, 1997, 1998; Bell 1982, 1986; North et al. 1995;

North and Kim 1995; Hegerl et al. 1996, 1997; Santer

et al. 1996a; Allen and Tett 1999). Where applicable,

the filter is designed to yield a detection variable d that

maximizes the signal-to-noise ratio. Thus, the goal is

to design a filter f(t) that projects the observed data

(defined in the interval (t
0
 ≤ t ≤ t

1
) onto a detection vari-

able, d, that is,

d f t t dt
t

t

= ∫ T

0

1

( ) ( ) ,ϕ (A2)

(using matrix notation, the index T denoting the trans-

pose), such that the square signal-to-noise ratio

S d dg n= 2 2/ (A3)

is maximized. Here d
g
 denotes the detection variable

for the case of a pure signal in the absence of noise,

�(t) = g(t), and d
n
 is the detection variable computed

for the complementary case of pure noise in the ab-

sence of a signal, �(t) = n(t). Cornered parentheses

denote expectation values. Maximizing S is also

equivalent to maximizing the square ratio 〈d2〉/〈d2
n
〉  of

signal plus noise to noise.

Equation (A2) can be written in the more compact

notation

d f= Tϕ (A4)

by combining the discretized time variable with the

component index denoting the location (and, if rel-

evant, type) of the climate state vector component in

a single composite vector-component index. Then, �

denotes the climate state trajectory.

Instead of integrating over the full time interval,

yielding a time-independent net detection variable d,

it is often convenient to define a time-dependent de-

tection variable d(t), using a running filter (represent-

ing, e.g., a trend estimate over a running time interval).

This is the approach used in the examples discussed

in section 5.

It is important to note that the optimal filter dif-

fers from the predicted climate change signal g(x,t).

Although the signal pattern is sometimes used as a

detection filter, this is not the optimal choice, as it ig-

nores the properties of the natural variability noise,

characterized by the covariance matrix C = <n nT>,

which one wishes to suppress relative to the signal.

Mathematically, the signal and filter patterns represent

co- and contravariant duals with respect to a metric

given by the inverse of the covariance matrix C

(Hasselmann 1979, 1993, 1998).

b. Estimating the signal amplitude

When inferring the climate change signal from the

observations, the number of degrees of freedom of the

estimated signal must be strongly reduced by requir-

ing the signal pattern to lie in some low-dimensional

pattern space. This is essential for a successful detec-

tion and attribution strategy. Otherwise the signal is

�

�f

f

� g n
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swamped by the many degrees of freedom of the noise

(cf. Barnett and Preisendorfer 1987; Hasselmann

1993, 1997). In the simplest case that only a single

climate change mechanism is being tested, the num-

ber of degrees of freedom can be reduced to one by

specifying the direction of the extracted signal to agree

with the predicted signal pattern. Thus the only free

parameter inferred from the observations is the sig-

nal amplitude. In most DA applications, however, a

number of candidate climate change forcing mecha-

nisms are considered simultaneously and a multipat-

tern analysis is called for. For brevity, we summarize

in the following only the single pattern case; the mul-

tipattern generalization is straightforward.

We define as the best estimate a^ of the signal am-

plitude the value for which the mean square of the re-

sidual r = � − a^g between the observed climate change

and the estimated signal  is minimized with respect to

the metric C−1:

〈 rT C−1r〉 = min. (A5)

Minimizing the residual according to (A5) is

equivalent to maximizing the probability (for Gaussian

variability) that the residual can be attributed to the

natural climate variability and therefore contains no

external forcing signal.

If the amplitude a^ is estimated from the observa-

tions by some linear process, that is, by the applica-

tion of a filter f
^
,

a^ = f
^ T �, (A6)

the optimal filter that minimizes the mean square er-

ror (Hasselmann 1998) is found to be

f
^
 = f, (Α7)

so that

a^ = d. (A8)

Thus the detection variable d represents also the opti-

mal estimate of the signal amplitude.

c. Confidence levels

As mentioned in the main text, in the conventional

approach the detection and attribution problems are

separated. First, one determines whether the detection

variable d exceeds some critical value d
c
 associated

with some given probability, c = 5%, say, that d can

still be attributed to the natural variability noise. For

Gaussian noise, for example, d
5%

 ≈ 2σ
d
, where

σ d nd= 2 .

If d > d
c
, the null hypothesis is rejected at the risk level

c, and a climate change signal is said to be detected at

the significance level 1 − c (95%).

If a climate change signal in a given signal direc-

tion has been detected at the prescribed significance

level, one addresses then the attribution problem. For

the single-hypothesis case discussed here, this reduces

to determining whether the error ε = a – a^  between

the predicted and inferred climate change amplitude

lies within some given confidence interval corre-

sponding to the errors involved in the estimation of

the signal amplitude. These consist of two contribu-

tions: statistical errors associated with the natural vari-

ability noise, and model errors. The statistical errors

can be expressed in terms of the covariance matrix C.

The model errors, however, cannot be characterized

within the framework of conventional statistics, as

there exists no adequate model ensemble over which

statistical averages can be formed. Conventional at-

tribution tests have therefore normally been based

only on the statistical estimation errors of the signal

amplitude (cf. Hegerl et al. 1999a).

Appendix B: The Bayesian formalism

In the framework of confirmation theory relevant

for our problem, Bayesian statistics is concerned with

subjective probabilities of the validity of hypotheses.

Prior to the performance of some test E, a person as-

signs some probability p(H) (the “prior”) to the valid-

ity (H = h = “true”) or invalidity (H = h
−−−−−
 = “false”) of a

hypothesis H. The outcome E = e (positive) or E = e−
(negative) of the hypothesis test E changes the prior

probability into the posterior probability p(H/E). The

relation between the prior and posterior probabilities

is given by Bayes’s basic theorem

p H E

p H

p E H

p E

( / )

( )

( / )

( )
,= (B1)

which follows directly from the relevant conditional

probability definitions. For the case that the hypoth-

esis H is correct, H = h, and the test outcome is posi-

tive, E = e, Eq. (B1) may be written
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c = c
0
l/{c

0
l + (1 − c

0
)l

^} (B2)

= (1 + β l
^
/l)−1,

where

β = −1 0

0

c

c
. (B3)

We have introduced here the shorter notation c = p(h/e)

(for “credibility”) and c
0
 = p(h) for the posterior and

prior probabilities, respectively, that the hypothesis is

true; l = p(e/h) for the likelihood of a positive outcome

of the test for the case that the hypothesis is true; and

in place of p(e) the complementary likelihood

l
^
 = p(e/h

−−−−−
) (corresponding to the conventional null-

hypothesis statistic of a positive test outcome for the

case that the hypothesis is false), where

p(e) = p(e/h)p(h) + p(e/h
−−−−−)p(h

−−−−−) (B4)

= lc
0
 + l

^
(1−c

0
).

The dependence of the posterior probability c on the

prior probability c
0
 and likelihood ratio l

^
/l is shown

in Fig. B1a (see also discussion below).

a. The detection test

The difference between the conventional and Baye-

sian approach can be illustrated by the standard detec-

tion test. The hypothesis in this case is that there exists

a climate change signal in the data that cannot be at-

tributed to natural climate variability. The detection

test E involves determining whether the amplitude of

the climate change signal inferred from observations

(for a given signal pattern) exceeds the threshold for

which the probability l
^
 that the amplitude can be at-

tributed to the natural variability noise falls below

some prescribed value (say, 5%). If this is the case,

E = e = “true,” the climate change signal is said to be

detected at a significance level

a = 1 − l
^ (e.g., 95%). (B5)

This may be compared with the Bayesian expression

(Fig. B1a), which can be approximated for small l
^
 by

c ≈ 1 − β l
^
/l. (B6)

The relations (B5) and (B6) differ by the factor β/l,

which can adopt any value between zero and infinity,

depending on the values of the probabilities c
0
 [which

determine β through (B3)] and l.

To estimate l one needs to consider the amplitude

FIG. B1. (a) Posterior probability (credibility) c that a (green-

house warming) hypothesis H is true given a positive outcome of

a detection test. The dependence of c is shown as a function of

the assumed prior for c
0
 and the likelihood ratio l

^

/l. Also shown is

the line c = 1 − l
^

/l corresponding to the conventional non-Bayesian

significance level c = 1 − l
^

 for l ≈ 1 (from Hasselmann 1998). See

text and appendix B for details. (b) Cumulative posterior prob-

ability c of greenhouse warming hypothesis H for the six climate

change indices defined in Hasselmann (1998) as a function of an

index of increasing likelihood that index changes were due to

natural variability. The three curves correspond to the three prior

probabilities c
0 
= 0.2 (S, for skeptical), 0.5 (A, for ambivalent), and

0.8 (C, for convinced).
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of the predicted climate change signal. Thus, in con-

trast to the conventional approach, in which the sig-

nal amplitude is irrelevant for detection and is invoked

only when the analysis is extended to the attribution

problem (cf. Hasselmann 1997), for the Bayesian

analysis it is not possible to separate formally between

detection and attribution, the estimate of l involving

already an element of attribution.

b. A combined detection/attribution test

A basic shortcoming of the conventional detection

test is that it is not symmetrical with respect to the case

H = h that the hypothesis is valid and the alternative

case, H = h
�

, that the null hypothesis (or, generally, the

complementary hypothesis representing the set of all

plausible alternatives to H) is valid. The same limita-

tion applies to the conventional attribution test. These

shortcomings are overcome in a Bayesian approach

that combines detection and attribution. To distinguish

between several competing climate change mecha-

nisms, a general multipattern analysis is required. The

inferred and predicted climate change signals are rep-

resented as vectors in a low-dimensional space

spanned by the predicted signal patterns of the com-

peting forcing mechanisms. We consider then the

probability of the signal lying within a small (in the

limit, infinitesimal) region of this space at the loca-

tion of the retrieved signal for each of the competing

climate change hypotheses. The probability of a posi-

tive outcome E = e of this test for any given hypoth-

esis is infinitesimally small, which would rule out such

a test in conventional statistics. However, the test is

meaningful in the Bayesian framework, as the impact

of the test on the posterior probability c depends only

on likelihood ratios, not on absolute likelihoods [Eq.

(B2)]. In this manner, we can test and intercompare

the relative posterior probabilities for each of the com-

peting climate change hypotheses, including the null

hypothesis. Apart from the different test definition, the

theory and general relations summarized in Fig. B1

apply exactly as in the detection case discussed in the

previous section.

c. Application to multiple climate change indices

As an example, consider the impact of a set of dif-

ferent climate change indices x
i
 on the hypothesis that

there exists already today a greenhouse warming sig-

nal. The advantage of combining several different

climate change indices is that, even though the infor-

mation associated with any single index may be un-

certain and inconclusive, the cumulative information

derived from a cluster of independent observations

greatly exceeds the information obtained from a single

climate variable.

To test the greenhouse warming hypothesis, we

compare the likelihood l of measuring the observed

indices for the case that the greenhouse warming hy-

pothesis is true with the likelihood l
^
 for the comple-

mentary hypothesis that the observed climate change

is due to natural variability or some other mechanism.

Both likelihoods refer to the (infinitesimal) probabili-

ties for the case e that all indices x
i
 lie in an infinitesi-

mal region of the index phase space located at the

observed values. The impact of the observations on the

credibility of the greenhouse warming hypothesis is then

determined by the probability density ratio [Eq. (B2)].

Assume, for simplicity, that the indices are statistically

independent. This will normally not be the case, but

the indices can be readily transformed to orthogonal

variables. For statistically independent variables, the

relevant net probabilities are given by the products

l(e) = �
i

l
^

i (e
i
), (B7)

l
^
(e) = �

i

l
^

i(e
i
), (B8)

of the relevant one-dimensional probabilities l
i
(e

i
),

l
^
(e

i
), for the cases e

i
 that the individual variables x

i
 lie

within infinitesimal intervals containing the observed

values. From Eq. (B2) we obtain then

c = �1 + β�
i

(l
^

i
/ l

i
)�

−1

. (B9)

Through the product forms (B7)–(B9), the posterior

probability of the greenhouse warming hypothesis can

become quite high, even when the impact of individual

indices remains relatively low.

An example of how the Bayesian approach works

is illustrated by a comparison of the single- and mul-

tiple-index case in Fig. B1 (adapted from Hasselmann

1998). The single-index case (Fig. B1a) shows the de-

pendence of the posterior c on the likelihood ratio l
^
/l,

where l
^
 denotes the likelihood that the observed sig-

nal lies outside the 95% natural variability confidence

ellipse for the case that the null hypothesis is valid and

l is the likelihood of satisfying the same test for the

complementary hypothesis that there exists a climate

change signal. The test clearly depends on the prior

(c
0
), indicated as a parameter on the curves, that is, on

how high one judges the probability in advance that
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an anthropogenic signal exists. The corresponding

result for the conventional test is also indicated. The

considerable differences between the conventional

detection test, which is independent of the prior, and

the Bayesian result illustrates the marked impact that

different prior (subjective) assessments of the likeli-

hood of the existence of an anthropogenic signal can have

on DA. Much of the current debate on climate change

detection can be attributed to these different priors.

The cumulative impact of considering a number of

different climate change indices is illustrated in

Fig. B1b, based on an example of Hasselmann (1998).

A set of six climate indices was considered: trends in

near-surface, midtropospheric, and stratospheric tem-

perature; trends in Arctic and Antarctic sea ice; and

changes in the vertical tropospheric profile. The

complementary (null) hypothesis to the greenhouse

warming hypothesis was again that the climate change

indices could be attributed to natural variability. The

Bayesian approach was applied for three different pri-

ors: c
0 
= 0.2 (skeptic, S); c

0 
= 0.5 (ambivalent, A), and

c
0 
= 0.8 (convinced, C). The abscissa axis represents a

common factor ξ = r
i
/r

i

ref that was applied to the dif-

ferent likelihood ratios r
i

ref = l
^

i
/l

i
 assumed by

Hasselmann (1998) for the six individual climate

change indices i = 1,2, . . . 6, which yielded a net (sub-

jective) likelihood ratio r ref = �r
i

ref = 0.05. Thus the

variable ξ  corresponds to the multivariate-index

equivalent of the abscissa likelihood ratio shown in

Fig. B1a.

A comparison of Figs B1a and B1b demonstrates

the great enhancement in detection and attribution

credibility achieved through the use of multiple cli-

mate change indices if the indices are statistically in-

dependent. (In the illustrative example shown, this was

presumably not the case, but the variables can be

readily orthoganized through a suitable linear trans-

formation.) The credibility curves are much higher in

Fig. B1b, and the credibility curves S and C for the

skeptical and convinced observers, respectively, are no

longer very different, even though the subjective prior

probabilities lie at the two ends of the scale, differing

by a factor of 4.
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