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Abstract

The reliable detection and attribution of changes in vegetation growth is a prerequisite for the development of strate-

gies for the sustainable management of ecosystems. This is an extraordinary challenge. To our knowledge, this study

is the first to comprehensively detect and attribute a greening trend in China over the last three decades. We use three

different satellite-derived Leaf Area Index (LAI) datasets for detection as well as five different process-based ecosys-

tem models for attribution. Rising atmospheric CO2 concentration and nitrogen deposition are identified as the most

likely causes of the greening trend in China, explaining 85% and 41% of the average growing-season LAI trend

(LAIGS) estimated by satellite datasets (average trend of 0.0070 yr�1, ranging from 0.0035 yr�1 to 0.0127 yr�1), respec-

tively. The contribution of nitrogen deposition is more clearly seen in southern China than in the north of the country.

Models disagree about the contribution of climate change alone to the trend in LAIGS at the country scale (one model

shows a significant increasing trend, whereas two others show significant decreasing trends). However, the models

generally agree on the negative impacts of climate change in north China and Inner Mongolia and the positive impact

in the Qinghai–Xizang plateau. Provincial forest area change tends to be significantly correlated with the trend of

LAIGS (P < 0.05), and marginally significantly (P = 0.07) correlated with the residual of LAIGS trend, calculated as the

trend observed by satellite minus that estimated by models through considering the effects of climate change, rising

CO2 concentration and nitrogen deposition, across different provinces. This result highlights the important role of

China’s afforestation program in explaining the spatial patterns of trend in vegetation growth.
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Introduction

Vegetation growth is strongly influenced by climate and

climate change (Zhou et al., 2001; Nemani et al., 2003;

Xu et al., 2013) and can affect the climate system through

a number of bio-physical processes (Friedlingstein et al.,

2006; Lee et al., 2011; Peng et al., 2014). As a result, moni-

toring, understanding and predicting the response of

vegetation growth to global change has been a central

activity in Earth system science during the past two dec-

ades. Repeated and long-term space-borne measure-

ments of the Normalized Difference Vegetation Index

(NDVI) by NOAA satellites show an unambiguous

greening trend in China since 1982 (Piao et al., 2003).

This enhanced vegetation growth in China plays an

important role in the global carbon cycle through the net

accumulation of 0.18–0.26 Pg of carbon per year (Piao

et al., 2009), which is about 28–37% of the total fossil fuel

emission from China over the last decade. Nevertheless,

many aspects of vegetation dynamics in China still

remain poorly understood. A critical gap in our under-

standing pertains to the attribution of this greening

trend – if we do not understand the mechanisms for this

trend we will have little confidence in our ability to

accurately predict either its future evolution or the con-

sequent impact on land carbon uptake in China.Correspondence: Shilong Piao, tel. +86 10 6276 5578, fax 86 10

6275-6560, e-mail: slpiao@pku.edu.cn
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Over the last few decades China has experienced

remarkable climatic warming (Piao et al., 2010). It has

been suggested that this warming has stimulated vegeta-

tion growth both through extending the growing season

and through promoting summer photosynthesis, partic-

ularly in regions where water is nonlimiting (Niemand

et al., 2005; Piao et al., 2007, 2008). Moreover, the fertil-

ization effects of rising atmospheric CO2 concentration

and atmospheric nitrogen (N) deposition have also been

considered as possible drivers for the greening. Nitrogen

deposition has increased across nearly all of China with

average increases of 25% during 1990s and 2000s (Jia

et al., 2014). In addition to the change in climate and

atmospheric composition, land-use change such as affor-

estation and reforestation may also have played a very

important role. Based on the latest national forest inven-

tory, China’s forest area has increased by about

3.1 9 105 km2 from the early 1980s (1977–1981) to the

early 2010s (2004–2008) (Guo et al., 2013). Several studies

have also emphasized the potential role of increased

crop production resulting from the modernization of

agriculture (Huang et al., 2007) and vegetation recovery

in rural areas arising from the change in energy produc-

tion systems and movement of the rural population to

cities on the carbon sink of China (Piao et al., 2009).

It is quite difficult to quantify the individual contribu-

tions of each of these driving factors to the observed

greening trend in China. Statistical correlation or regres-

sion analysis has been used (e.g., Zhou et al., 2001; Peng

et al., 2013), but they suffer from two potential limita-

tions. Firstly, statistical analysis of historical data gener-

ally characterizes the main driving factors of temporal

change in vegetation growth, and thus includes the sig-

nal not only from temporal trend, but also from interan-

nual or decadal variability (Ahlbeck, 2002). It should be

noted that the dominant driving factors of temporal

trend in vegetation growth may be different from that of

interannual variability. For example, Piao et al. (2006)

has suggested that at the continental scale, interannual

variation in vegetation growth of the northern hemi-

sphere is mainly driven by temperature variation, while

rising CO2 is the main contributor of the increasing

trend in vegetation growth during the 1980s and 1990s.

Another important caveat is that statistical analyses gen-

erally assume that effects of environmental variables on

vegetation growth are linear and independent of each

other. A growing body of evidence from both field

experiment and theoretical analysis, however, shows

nonlinear ecosystem responses to the environmental

perturbations and changes (Berry & Bjorkman, 1980;

Peng et al., 2013; Yamori et al., 2014, Piao et al., 2014),

highlighting the potential bias from a linear statistical

analysis. Yet, these limitations are being overcome

through the application of process-based ecosystem mod-

els driven by observed historical environmental variables

(Hegerl et al., 2010). For example, a recent study by Mao

et al. (2012) has explored the cause of vegetation growth

trend in the Northern Hemisphere from 1982 to 2004

using a process-based ecosystem model, CLM4 (Commu-

nity Land Model version 4, Oleson et al., 2010). A core

limitation in the ecosystem model based approach is,

however, the large uncertainties arising from model

structure and parameter choices (Sitch et al., 2008; Piao

et al., 2013). One of methods for quantifying those uncer-

tainties is to use results from multiple models.

The primary objective of this study is to quantify the

trend in vegetation greening in China during the last

three decades, and to quantify the contributions from

different factors including climate change, rising atmo-

spheric CO2 concentration, nitrogen deposition and

afforestation. The study is based on satellite data and

process-based ecosystem models. The degree of vegeta-

tion growth is inferred from the average leaf area index

(LAI) during the growing season (defined as April to

October) (LAIGS). To reduce the uncertainty in our esti-

mates of LAI, we apply three different satellite LAI

datasets (GIMMS3 g (Zhu et al., 2013), GLOBMAP (Liu

et al., 2012) and GLASS (Xiao et al., 2014)), and five dif-

ferent process-based ecosystem models (CLM4 (Oleson

et al., 2010), CABLE (Wang et al., 2010), ORCHIDEE

(Krinner et al., 2005), LPJ (Sitch et al., 2003) and VEGAS

(Zeng et al., 2005)). First, we assess change in LAIGS

from three different satellite datasets to detect and char-

acterize vegetation greening trend from 1982 to 2009.

Second, we compare LAIGS trend simulated by five pro-

cess-based ecosystem models under different scenarios

to the satellite-based measurements. This allows us to

separate the contributions from each factor. Finally, we

discuss the potential contribution of afforestation by

analysing the spatial relationship of change in forest

area reported by China’s forest inventory data (Guo

et al., 2013) with the difference of LAIGS trend between

satellite and model estimates at provincial scale. Due to

the lack of detailed information on the spatio-temporal

change in land use, no models include land-use change

in their simulations for this study.

Materials and methods

Satellite-derived LAI datasets

Remote sensing provides consistent measurements of LAI

across large spatial and temporal ranges, and thus satellite-

derived LAI datasets have been widely used for monitoring

terrestrial vegetation growth at regional and global

scales (Myneni et al., 1997). In this study, three available

satellite-derived LAI datasets are used to assess vegetation

growth changes in China during the last three decades.

© 2014 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12795
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GIMMS LAI datasets. The Global Inventory Modeling and

Mapping Studies (GIMMS) LAI is derived based on the third

generation of Normalized Difference Vegetation Index

(NDVI3 g) from GIMMS group and an Artificial Neural Net-

work (ANN) model (Zhu et al., 2013). The temporal resolution

of this dataset is half a month with one-twelfth of a degree

spatial resolution. The quality of this dataset has been

assessed through a series of tests and the results indicate suit-

ability of the data for research use (Zhu et al., 2013).

GLOBMAP LAI datasets. GLOBMAP LAI is constructed by

fusing Advanced Very High Resolution Radiometer (AVHRR)

LAI (1981–2000) and MODIS LAI (2000–2011) (Liu et al., 2012).

The AVHRR LAI during 1981–2000 is estimated using relation-

ships between AVHRR observations and MODIS LAI at each

pixel during the overlapping period (2000–2006). The temporal

resolution of the GLOBMAP LAI dataset is the same as that of

GIMMS LAI datasets, while the spatial resolution is 8 km.

GLASS LAI datasets. The Global Land Surface Satellite

(GLASS) LAI product is generated from MODIS and AVHRR

time-series reflectance data using general regression neural

networks (Xiao et al., 2014). The temporal resolution of this

dataset is 8 days. From 1981 to 1999, the LAI product is gener-

ated from LTDR AVHRR reflectance data. It is provided in a

geographic latitude/longitude projection at a spatial resolu-

tion of 0.05° (about 5 km at the Equator). From 2000 to 2013,

the LAI product is derived from MODIS surface-reflectance

data. It is provided in a sinusoidal projection at a spatial reso-

lution of 1 km. Extensive validation guarantees the method’s

qualification to estimate temporally and spatially continuous

fields of LAI with much improved accuracy (Xiao et al., 2014).

Process-based ecosystem models

Over the last two decades, process-based ecosystem models

have been developed that simulate the key processes (e.g.,

photosynthesis, respiration, evapotranspiration, phenology

and carbon allocation) that drive the dynamics of terrestrial

ecosystems. In this study, we analyse LAI output from five

different process-based ecosystem models: CABLE (Wang

et al., 2010), CLM4 (Lawrence et al., 2011), ORCHIDEE (Krin-

ner et al., 2005), LPJ (Sitch et al., 2003) and VEGAS (Zeng et al.,

2005). All these models take into account the effects of change

in climate and atmospheric CO2 concentration. The effects of

climate change on vegetation growth are generally described

through the climatic modification of leaf-level photosynthesis,

maintenance respiration and phenology, while change in

atmospheric CO2 concentration influences vegetation growth

through photosynthetic rates, water-use efficiency and indi-

rectly, the growing-season length and reproduction. CLM

includes nitrogen while CABLE include both nitrogen and

phosphorus limitations, therefore effects of increasing nitro-

gen deposition on vegetation growth can be assessed. These

models have been widely used to investigate regional and glo-

bal terrestrial carbon cycles (Sitch et al., 2013), and extensively

validated against observations across different ecosystems

and regions, including China (Tan et al., 2010; Tao & Zhang,

2010; Peng, 2012; Piao et al., 2013). Several of these models

(e.g., LPJ, ORCHIDEE, and CLM4) have also been applied to

detect and attribute change in vegetation growth at the regio-

nal and continental scale (Lucht et al., 2002; Piao et al., 2006;

Mao et al., 2013; Poulter et al., 2013).

All models performed two simulations (S1 and S2) over the

period 1901–2009 using historical climate fields from CRU-

NCEP v4 dataset (http://dods.extra.cea.fr/data/p529viov/

cruncep/) and global atmospheric CO2 concentration (Keeling

and Whorf, 2005, 2009). In simulation S1, models are forced

with changing atmospheric CO2 concentration, while climate

is held constant (recycling climate mean and variability from

the early decades of the 20th century). Both atmospheric CO2

concentration and climate are varied in simulation S2. Like

previous studies of Lucht et al. (2002) and Piao et al. (2006),

the contributions of atmospheric CO2 concentration are esti-

mated from the simulation S1, while the effects of climate

changes are evaluated based on the difference between simu-

lation S2 and S1. To assess the relative contribution of nitrogen

deposition, both CLM4 and CABLE perform another simula-

tion (S3) where atmospheric CO2 concentration, climate and

nitrogen deposition (Bonan & Levis, 2010) are all varied.

To quantify trend of LAI, we perform Linear Least Squares

Regression analysis using LAI as dependent variable and year

as independent variable. The slope of the regression is then

defined as the trend (annual mean increase amount) of LAI.

Results

Spatial patterns of LAIGS trend derived by three satellite
datasets

Figure 1 shows spatial patterns of the trend in LAIGS

derived from different datasets during the period 1982

to 2009. All satellite-derived observations consistently

show that since the 1980s most regions of China have

experienced a greening trend, although the magnitude

of LAIGS trend is different between the different data-

sets. The regions with the largest greening trend are gen-

erally found in southwest China and part of the North

China Plain, where the trend of LAIGS is generally larger

than 0.02 yr�1. Overall, GLOBMAP has the largest area

exhibiting significant increase in growing-season LAI

(56%), followed by GLASS (54%) and GIMMIS (31%).

All three datasets show that LAIGS significantly

decrease in less than 5% of the study regions, mainly in

northeastern Inner Mongolia, including Xilinguole, and

part of the Greater Hinggan mountains. The Yangtze

River and the Pearl River deltas also experience a

decrease in LAIGS.

Attribution of greening trend at country scale

Figure 2 show trends of LAIGS derived by three satellite

datasets and five process-based ecosystem models

under different scenario simulations from 1982 to 2009.

© 2014 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12795
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All models agree that the effects of CO2 fertilization

resulted in a significantly (P < 0.05) increased LAIGS,

even though the magnitudes differed from each other.

At the country scale, the average trend of LAIGS attrib-

uted to rising CO2 concentration is estimated to be

0.0060 yr�1 (ranging from 0.0028 yr�1 for ORCHIDEE

to 0.0098 yr�1 for CABLE), which is about 85% of the

average LAIGS trend estimated by satellite datasets

(average trend of 0.0070 yr�1, with a range from

0.0035 yr�1 to 0.0127 yr�1).

As shown in Fig. 2, the five ecosystem models dis-

agree about the contribution of climate change to the

trend of China’s LAIGS at the country scale. For exam-

ple, the VEGAS model shows a significantly positive

trend of LAIGS due to the climate change alone, while

LAIGS estimated by both CABLE and LPJ is signifi-

cantly decreased with a trend of �0.0022 yr�1 to

�0.0050 yr�1, respectively. Insignificant negative trends

in LAIGS are also simulated by CLM and ORCHIDEE.

The models’ estimated average trend of LAIGS in China

due to the climate change is about �0.0016 yr�1 (rang-

ing from �0.0053 yr�1 to 0.0049 yr�1).

For the effects of nitrogen deposition on vegetation

growth in China, both CLM and CABLE predict a sig-

nificant increasing trend of LAIGS at the country scale,

although the magnitude of the nitrogen deposition con-

tribution differs between two models: CLM estimates a

higher increasing trend of LAIGS (0.0053 yr�1) than

CABLE (0.0005 yr�1). Averaging these two model out-

puts suggests an increasing trend of LAIGS in China

due to nitrogen deposition of about 0.0029 yr�1, which

is about 41% of the satellite-observed average trend of

LAIGS.

In summary, the combined effect of CO2 fertilization

and climate change (S2 simulation) with the effect of

nitrogen deposition, leads to the conclusion that these

three factors are responsible for almost all of the

average increasing trend of LAIGS observed from the

satellites.

(a) (b)

(c) (d)

Fig. 1 Spatial distribution of the trend in growing-season (April–October) LAI (LAIGS) during the period 1982–2009. The trends were

calculated based on different LAI products: (a), GIMMS dataset; (b) GLOBMAP dataset; (c) GLASS dataset. (d) Frequency distribution

of the significance level (P value) of the trends in LAIGS derived by three datasets. The P value of the trend in LAIGS for each pixel is

estimated based on t test.

Fig. 2 Trend in China’s LAIGS during the period 1982–2009 at

the country scale for the three satellite datasets (Remote Sens-

ing) and five process models used. We denote those significant

at the 5% level with an asterisk, those significant at the 1% level

with two asterisks. Simulation S2 was used to estimate the effect

of both change in climate and atmospheric CO2 concentration

on the trend in LAIGS (climate+CO2), while Simulation S1 was

used to estimate the effect of atmospheric CO2 concentration

(CO2). The contribution of nitrogen deposition is derived by the

difference of simulation S3 and simulation S2, while the differ-

ence of simulation S2 and simulation S1 was used to estimate

contribution of climate change (Climate).

© 2014 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12795
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Spatial patterns of the trend in LAIGS attributed to
different factors

To investigate the spatial patterns of greening trend

that can be attributed to the different factors, we esti-

mate the trend in LAIGS for three satellite datasets and

from five process-based ecosystem models under dif-

ferent scenario simulations at the provincial scale

(Fig. 3). As shown in Fig. 3, the model-estimated con-

tributions of CO2 fertilization, climate change and nitro-

gen deposition to the satellite-observed trend of

vegetation growth show large spatial heterogeneity

across different provinces.

In northern China, including most provinces in the

Yellow River basin and northeast China, the average

model-estimation shows that climate change alone may

reduce LAIGS, accounting for �68% to �150% of the

trend in LAIGS in these regions (Fig. 3). Such a negative

effect of climate change is comparable or even larger

than the positive effects of CO2 fertilization across most

of the regions in northern China. In addition, the attri-

bution of nitrogen deposition to greening trends is also

relatively limited (about 8% to 23% of satellite-observed

greening trends) in northern China.

Compared to northern China, nitrogen deposition

makes a noticeable effect on the trend of satellite-

observed LAIGS across most regions of southern China,

particularly in the southeast of the country, where the

trend of LAIGS attributed to nitrogen deposition is gen-

erally larger than 0.0050 yr�1. On the other hand, the

relative contribution of climate change and CO2 fertil-

ization effects on the satellite-derived greening trend in

southern China (except Yunnan Province and Hainan

Province) is generally smaller than that in the north of

the country. For example, the average of model-esti-

mated LAIGS trend due to rising CO2 concentration

(simulation S1) is generally less than 50% of the average

trend of LAIGS from the three satellite datasets across

most of southern China.

It is unlikely that for most other regions of China, cli-

mate change alone significantly increases LAIGS in the

Qinghai-Tibet Plateau (Fig. 3). Furthermore, the

increasing trend of LAIGS due to climate change is also

larger than that driven by rising CO2 concentration and

nitrogen deposition. Note that the contributions of all

factors together results in an overestimated LAIGS trend

compared to the satellite observations in of the Qing-

hai-Tibet Plateau.

Fig. 3 Trends in LAIGS during the period 1982–2009 at the provincial scale, derived by satellite (Remote Sensing) and process model

simulation. Process models estimated average of total effect of rising atmospheric CO2 concentration, climate change and nitrogen

deposition on the trend in LAIGS (CO2 + CLI + Nitrogen deposition) is estimated based on the sum of average trend in LAIGS from five

process models under S2 simulation (considering both change in climate and CO2 concentration) and average trend in LAIGS due to

nitrogen deposition estimated by CLM4 and CABLE model (simulation S3 minus simulation S2). The effects of rising atmospheric CO2

concentration on the trend in LAIGS (CO2) is derived from the average of five models under simulation S1, while climate change effect

(CLI) is estimated based on the average difference between simulation S2 and S1. The contribution of nitrogen deposition is derived by

the CLM4 and CABLE model (simulation S3 minus simulation S2). The inset figure shows the dominant driving factors with the largest

trend in LAIGS.

© 2014 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12795
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Relationship of LAIGS trend with forest area change and
crop yield change

Figure 4 further illustrates the relationship of forest-

area change and crop-yield change for each province

with the trend of LAIGS as well as the residual of

LAIGS trend (RLT) calculated as satellite observation

minus model simulation through considering the

effects of climate change, rising CO2 concentration

and nitrogen deposition. Note that due to the lack of

information on the spatio-temporal change in agricul-

tural management, here, we use change in crop yield.

As shown in Fig. 4, provincial forest area change

tends to be significantly correlated with the trend of

LAIGS (P < 0.05), and marginally significantly

(P = 0.07) correlated with the residual of LAIGS trend,

calculated as the trend observed by satellite minus

that estimated by models through considering the

effects of climate change, rising CO2 concentration

and nitrogen deposition, across different provinces. In

contrast, an insignificant correlation of change in crop

yield with both trend of LAIGS and RLT is found

from the Fig. 4.

Discussion

The reliable detection and attribution of changes in veg-

etation growth is fundamental to our understanding of

the scientific basis of global change, and is needed to

enable decision-makers to manage and develop ecosys-

tems in a sustainable way (Hegerl et al., 2010). Com-

pared with the number of studies on the detection of

historical trends in vegetation growth under global

change, few studies have focused on attribution of the

causes of these changes. Commonly, regional vegeta-

tion growth changes are the consequence of climate

change and anthropogenic changes in atmospheric

composition and land use, but it is almost impossible to

directly differentiate between these factors (Chen et al.,

2014). Using traditional statistical approaches, several

previous studies have highlighted the important role of

climate change on the change in vegetation growth

(Myneni et al., 2007; Zhou et al., 2001; Piao et al., 2004;

Peng et al., 2011). For example, Kaufmann et al. (2002)

applied multiple linear regression using growing-sea-

son NDVI as the dependent variable and the corre-

sponding precipitation and temperature as

(a)

(b) (d)

(c)

Fig. 4 Relationship of trend in LAIGS and the residual of LAIGS trend (RLT) calculated as satellite observation minus model

simulation considering the effects of climate change, rising CO2 concentration and nitrogen deposition with ratio of forest-area

change for each province to the corresponding province area and ratio of crop-yield change for each province to the corre-

sponding province area. (a) Relationship between LAIGS trend and forest-area change; (b) Relationship between LAIGS trend

and crop-yield change; (c) Relationship between RLT and forest-area change; (d) Relationship between RLT and crop-yield

change.

© 2014 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12795
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independent variables. They suggested that global

warming was the primary driving force for the

enhanced vegetation growth over the Northern Hemi-

sphere. Through considering atmospheric CO2 concen-

tration as another independent variable in addition to

temperature and precipitation, however, Ahlbeck

(2002) pointed out that the fertilization effect of rising

atmospheric CO2 concentration was the major contribu-

tor to the Northern Hemisphere greening trend. This

CO2 fertilization effect has been demonstrated by Free-

Air Carbon dioxide Enrichment (FACE) experiments

that show that vegetation productivity is significantly

increased in response to rising ambient CO2 concentra-

tion (Norby et al., 2005). Our model estimates suggest

that at the country scale, China’s greening was chiefly

driven by rising atmospheric CO2 concentration (con-

tributing 85%), although the dominant factor varies

across different provinces (Fig. 3).

In this study, we also quantify the contribution of

nitrogen deposition to the greening trend in China.

Multiple lines of evidence suggest that vegetation

growth in the Northern Hemisphere is generally nitro-

gen-limited (Melillo et al., 2002; Janssens et al., 2010),

and the enhanced nitrogen deposition driven by fossil

fuel combustion and agricultural fertilization is

thought to significantly enhance vegetation growth

(Thomas et al., 2009; Fleischer et al., 2013). Our model

estimates suggest that current nitrogen deposition con-

tributed about 41% of the satellite-observed average

trend of LAIGS at country scale, although this contribu-

tion can more clearly be seen in southern China rather

than in the north (Fig. 3). This result is consistent with

the spatial patterns of the magnitude of nitrogen depo-

sition in China (Jia et al., 2014). Over the last three dec-

ades, most of southern China has experienced

extensive nitrogen deposition, with typical rates higher

than 20 kg ha�1 yr�1 (Jia et al., 2014). It has been sug-

gested that these high rates of deposition have

increased terrestrial ecosystem net carbon uptake in

this region (Reay et al., 2008; Yu et al., 2014a). Indeed,

evidence has accumulated of significant contributions

of subtropical China’s land area to the global uptake of

anthropogenic CO2 (Piao et al., 2009; Yu et al., 2014a).

For instance, both atmospheric inverse models and

inventory data support the postulate that China’s ter-

restrial ecosystem carbon sink is also mainly located in

southern China (Piao et al., 2009).

In terms of climate change impact alone, the five

models show divergent trends of LAIGS at the country

scale. For example, one model (VEGAS) shows a signif-

icantly increasing trend, while significantly decreasing

trends appears in two other models (CABLE and LPJ).

In spite of the discrepancy in trend of LAIGS at the

country scale, the models generally agree that climate

change alone can result in decreased LAIGS over north

China and Inner Mongolia (Fig. 3 and Figure S3). Such

negative impacts of climate change are probably driven

by the increase in drought in these regions over the past

decades (Piao et al., 2010; Peng, 2012; Liu et al., 2013;

Yu et al., 2014b). Recent studies based on records of

tree-ring widths also suggest that tree growth has

declined over the last two decades in Inner Asia due to

the growing-season water stress driven by warming-

induced increases in atmospheric moisture demand

and decreased precipitation (Liu et al., 2013). In con-

trast, all the models show a positive impact of current

climate change on vegetation growth in the Qinghai–
Xizang plateau (Fig. 3 and Figure S3), where the most

drastic climatic warming has occurred over the past

decades (Piao et al., 2010; Yao et al., 2012). Evidence

from a field warming experiment has demonstrated

that rising temperature can enhance vegetation growth

over the plateau (Wang et al., 2012), because vegetation

growth in this region is generally limited by the low

temperature. It should be noted that for southern China

the different models appear to disagree on the impact

of climate change on LAIGS. This divergence of model

results is due to the different parameterizations of the

climate sensitivity of vegetation productivity and soil

moisture across different models (Piao et al., 2013).

More research is needed to solve this discrepancy.

Additionally, human activities such as afforestation

and agricultural management can potentially contribute

to the satellite-observed greening in China’s vegetation

over the last three decades (Pan et al., 2011). Our results

show that in 25 of 31 provinces, the average trend of

satellite-observed LAIGS is larger than the trend of

LAIGS estimated by process models considering the

effects of climate change, rising CO2 concentration and

nitrogen deposition (Fig. 3). This effect may be partly

explained by activities, such as afforestation. For exam-

ple, there is a large difference in Hunan province, where

forest area has dramatically increased by more than

50% over the last three decades. Furthermore, provincial

forest area change tends to be significantly correlated

with the trend of LAIGS across different provinces

(P < 0.05). In addition, there is also marginally signifi-

cant correlation between the residual of LAIGS trend

and change in forest area across different provinces

(P = 0.07) (Fig. 4). Thus, our results not only highlight

the important role of China’s afforestation activity in

explaining the spatial patterns of trend in vegetation

growth, but also strongly suggest that those current car-

bon cycle models that do not account for land-use

change cannot accurately quantify the ecosystem carbon

balance in China, particularly in southern China (Piao

et al., 2009; Yu et al., 2014a). In addition, despite the spa-

tial correlations between RLT and crop-yield change

© 2014 John Wiley & Sons Ltd, Global Change Biology, doi: 10.1111/gcb.12795
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across different provinces being not statistically signifi-

cant, there is some evidence that intensive agricultural

management is having an effect. For example, in some

provinces, such as Hebei and Henan, the effect of cli-

mate change, rising CO2 concentration and nitrogen

deposition cannot explain the satellite-observed

increase in LAIGS, and relatively high RLT appears.

Crop-yield data from the National Agriculture Database

(Statistics Bureau of China http://www.stats.gov.cn/

tjsj/) suggest that crop yield in these two provinces has

increased by more than 6 million tonnes during the

study period. Finally, it should be noted that in the Qin-

ghai-Xizang Plateau the satellite-observed increasing

trend of LAIGS is smaller than model estimates driven

by climate change, rising CO2 concentration and nitro-

gen deposition. This negative value of RLT may reveal

to a certain extent the negative effects of grazing on the

plateau ecosystem (Xie et al., 2007; Babel et al., 2014),

and further studies are required to investigate it.

In summary, to our knowledge, this study is the first

to comprehensively detect and attribute a widespread

greening trend in China. While some general goals

have been achieved, there are a few points that should

be addressed in the future. First, both satellite-observed

and model-estimated trends of LAIGS show large

uncertainties, which are critical when attempting to

accurately identify the change in vegetation growth

and the contribution of different factors (Hegerl et al.,

2010). Accordingly, reducing the uncertainties of both

satellite observation and model estimation should be

the priority of further study. Second, the current study

does not fully taken into account the interactions

between different factors. For example, only two of the

five models consider the effect of nitrogen deposition,

although there is increasing evidence that nitrogen lim-

itation strongly decreases the CO2 fertilization effect

(Hickler et al., 2008; Norby et al., 2010; Piao et al., 2013).

In addition, the interaction between climate change

and rising atmospheric CO2 is not also considered

when estimating contribution of rising atmospheric

CO2 concentration. Finally, the effects of land-use

change have not been fully quantified in this study and

further work is needed to characterize the roles of

changes such as afforestation, agricultural management

and grazing. To do so, spatially and temporally explicit

historical information needs to be applied to process-

based models accounting for forest age, irrigation and

grazing management.
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