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Abstract
The western part of Guizhou is located in the second step of East Asia. Although the area is
stratigraphically continuous and the surface is dominated by hard limestone and sandstone, catastrophic
landslides often occur, seriously threatening residents' lives and the safety of property. Accurate
identification of landslides and analysis of their developmental patterns are vital to prevent and reduce the
threat of geological disasters. No active landslide survey data cover this region, so this paper identifies the
active landslides in the western part of Guizhou by combining surface deformation information,
multitemporal optical remote sensing images, geological lithology, and geomorphic features to obtain
deformation information from multisource synthetic aperture radar surface data. This process increases
the accuracy and reliability of identifying unstable slopes in areas with dense vegetation and steep terrain.
By processing 283 Sentinel-1 and PALSAR-2 synthetic aperture radar data, 588 active landslides, 18 of
which are high-risk large-scale landslides (landslide groups), are delineated for the first time in a range of
4.64x104 km2 in the study area. The active landslides mainly include resurrected ancient landslides,
reservoir/riverbank landslides, and mining-induced landslides, accounting for 2.4%, 4.1%, and 91.8%,
respectively. The spatial distribution of landslides is banded along the cuesta at the edge of an outcrop of
coal strata. Landslides are mainly distributed at elevations of 1800–2000 m, with an elevation difference
of 50 ~ 100 m and a slope range of 35°~40°. The landslides are characterized by steep slopes, small
scales, mass occurrences, and no dominant slope direction, classifying them as cuesta landslides induced
by mining disturbance. Furthermore, nuanced remote sensing interpretation of the disaster elements, such
as cuesta cliff, tensile cracks, deep and sizeable tensile channels, isolated rock masses, and collapse
debris, and their processes of change, reveals that coal mining-disturbed landslides in this region have
experienced four primary stages: natural unloading, mining disturbance, displacement acceleration, and
slope failure. This is of great significance for understanding the genetic mechanism and developmental
patterns, as well as the risk assessment, of this region.

1 Introduction
The Yunnan-Guizhou Plateau and its surrounding areas are the largest karst areas in the world (Huang and
Cai 2007). In this area, Triassic hard sandstone and limestone overlie coal-bearing strata of the Permian
Longtan Formation and Emeishan basalts, and their mechanical properties are prominently hard in the
upper strata and soft in the lower strata. Because this area is located in the sloped transitional region
between the first step of the Qinghai-Tibet Plateau and the third step of the hilly eastern plain, the
interaction between tectonic activity and dissolution is strong, and cuesta landforms with steep upper and
shallow lower slopes are widely distributed in this region (Li et al. 2020). The fragile geological
environment and increasingly frequent human engineering activities have led to a wide distribution of
geological disasters in this area, and heavy casualties occur periodically. For example, in 2010, the Gangwu
landslide in Guanling County caused 99 deaths (Xing et al. 2015); in 2017, the Puasa landslide in Nayong
County caused 26 deaths (Fan et al. 2019b); in 2019, the Jichang landslide in Shuicheng County caused 43
deaths (Zhao et al. 2020); and in 2004 and 2019, the Zuojiaying landslide in Nayong County caused a total
of 47 deaths (Wang et al. 2020). These disasters are located in inaccessible high-altitude areas with steep
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slopes, and early signs of disasters (range of deformation, surface cracks, etc.) are not easy to find;
however, the process of slope failure is very intense and results in disaster bodies moving great distances,
thereby posing a severe threat to the peripheral settlements. Therefore, it is vital to identify landslides
accurately and analyze the pattern of development of landslides in this area to reduce and prevent the
threat of geological disasters.

Existing research in the western Guizhou area has focused on disaster investigations only in areas with
better observation conditions, or research has studied the failure mechanism (Carlà et al. 2018; Wang et al.
2021; Qu et al. 2021), movement process (Kang et al. 2017; Chen et al. 2020), and stability (Li 2019; Chen
et al. 2021) of a single landslide. There is a lack of systematic surveys and investigations on the
distribution characteristics, deformation patterns, and causes of landslide disasters in the western Guizhou
region.

At present, optical remote sensing identification and synthetic aperture radar differential interferometry are
reliable means for regional geological hazard investigation. Deformation markers, such as cracks, steep
sides, uplifts, and subsidence, that are extracted from optical remote sensing can be used to quickly
identify landslides that have experienced overall instability or have significant deformation markers (Xu et
al. 2014; Li et al. 2019; Fan et al. 2019a). However, remote sensing image resolution limitations and cloud
cover problems in Southwest China all bring challenges to optical remote sensing recognition. Synthetic
aperture radar (SAR) differential interferometry can effectively detect the moving boundary and
deformation rate of unstable geological bodies by calculating the phase differences of SAR images at
different times in the same area and obtaining accurate deformation information within time intervals.
Researchers have widely recognized the outstanding advantages of interferometric SAR (InSAR) in the field
of landslide investigation and displacement monitoring. (Yao et al. 2017; Shi et al. 2020; Liu et al. 2021).
However, in practice, the interference and incoherence caused by long temporal and spatial baselines,
vegetation cover, and atmospheric delay all limit the use of differential InSAR (D-InSAR) technology.

This paper combines surface deformation information, multitemporal optical remote sensing imagery,
lithology, and geomorphological features to map active landslides in western Guizhou, bridging the
limitations of optical remote sensing and InSAR measurement techniques to identify landslides in areas
with dense vegetation and steep terrain. The corresponding relationships between different types of active
landslides and remote sensing spots are established, and their development and patterns of distribution
are revealed. The use of multisource radar data overcomes the problem of missing recognition caused by
shadowed areas in single orbit data. Multisource radar data increase the accuracy and reliability of the
identification of unstable slopes. A comprehensive analysis of geological and geomorphic data and InSAR
deformation results provides criteria for identifying landslide types. In addition, nuanced remote sensing
interpretation of disaster elements, such as cuesta cliff, tensile cracks, deep and sizeable tensile channels,
isolated rock masses, and collapse debris, and their processes of change, reveals that coal mining-
disturbed landslides in this region have experienced four primary stages: natural unloading, mining
disturbance, displacement acceleration and slope failure.
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2 Study Area
The study area is located on the eastern side of the Yunnan-Guizhou Plateau in China and includes
Lupanshui city and Bijie city in Guizhou Province (Fig. 1). The area's topography is high in the west and low
in the east, with an elevation range of 1600–2700 m. The study area is characterized by significant river
erosion and is a mid-mountain landscape. Geotectonically, it is part of the Yangtze Fold Belt. The study
area has experienced complex tectonic activity and has been transformed by the Caledonian, Yanshan, and
Xishan movements and the main existing tectonic traces are in the NW, NNE, and EW directions.

Proterozoic, Paleozoic, and Mesozoic strata are exposed in the study area (Fig. 2), in which limestone,
sandstone, dolomite, and shale of Permian and Triassic shallow marine facies are the primary strata in this
area.

The Permian strata are composed of medium-thick limestone, argillaceous siltstone, and coal. Among
them, the Permian Longtan Formation (P2l) is the primary coal-bearing strata in Southwest China; it
contains 9–82 layers of coal that are interspersed between thin layers of chert limestone and argillaceous
siltstone (Fig. 2). Coal mining activities are frequent in this area. In addition, under the influence of the
Emeishan large igneous province, a set of thick-bedded massive basalts and basaltic volcanic breccia
developed at the bottom of the Permian system in this area, and this set is mainly distributed in parts of
Weining County in the western part of the study area and Panxian County in the southern part of the study
area (Ali et al. 2005). The Triassic strata are composed of calcareous dolomite, medium-thick limestone,
purplish-red sandstone and mudstone. Under different weathering conditions, the upper part of the strata
forms a high steep slope or cliff, and the lower part forms a gentle slope; this pattern comprises the
common upper steep and lower gentle landforms in Southwest China.

The study area has a subtropical monsoon climate with abundant water vapor, and rainfall is concentrated
from May to September, which accounts for more than 80% of the annual rainfall. Affected by topography
and circulation, precipitation decreases from southeast to northwest. The annual precipitation in the
Liupanshui region in the southern part of the study area is 1300–1500 cm, while the Hezhang and Weining
regions in the northern part of the study area are the low-rainfall areas in the province; these regions have
annual rainfall totals of only 850–1050 cm, and the distribution of precipitation is extremely uneven.

3 Data And Methods

3.1 Data
Due to the severe shadows and layovers caused by topographic relief, SAR images in three observation
directions are used to obtain ground deformation information to avoid landslide omission and
misjudgment caused by spatiotemporal decorrelation to a great extent. The C-band Sentinel-1 ascending
orbit images cover the period from January 9, 2019, to May 15, 2020, and consist of 4 screens with a total
of 166 images. Sentinel‐1 descending orbit data cover the period from January 11, 2019, to March 30,
2020, and consist of 2 screens with a total of 74 images. Sentinel‐1 ascending and descending orbit data
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cover the entire study area. The L-band PALSAR-2 image coverage period is from April 16, 2017, to August
19, 2018, and includes 6 screens with a total of 43 images. The blue rectangle marks the image coverage
of PALSAR-2 radar in Fig. 1, and the SAR image parameter information used in the study area is shown in
Table 1.

The one arc-second digital elevation model obtained by the Shuttle Radar Topography Mission (SRTM) is
used for phase simulation, geocoding, shadow overlay analysis, and topographic factor (aspect, slope,
elevation difference, and isoline data) generation of the whole terrain in the study area. The Google Earth
platform provides optical remote sensing images at 0.3 m resolution for multiple periods between 2013 ~ 
2015 for extracting surface landform features in the study area. Optical images (0.1 m resolution) acquired
by unmanned aerial vehicle (UAV) aerial photography on December 20, 2019, were used for remote sensing
identification of mining landslide deformation patterns. The lithologic, fault, and rock unit data are
obtained from the 1:200000 geological map provided by the China Geological Survey.

Table 1
Radar image data parameters used in the study

SAR
Sensor

Direction Waveband Spatial
resolution

Angle of
incidence

Heading
angle

Image
number

Temporal

coverage

Sentinel-
1

Ascending C 2.32 ×
13.98

39.6 -12.6 166 2019/01/04-
2020/05/15

Sentinel-
1

Descending C 2.32 ×
13.98

39.6 192.6 74 2019/01/11-
2020/03/30

PALSAR-
2

Ascending L 1.43 ×
2.12

36.1 -10.5 43 2017/04/16-
2018/06/10

3.2 Methods
Catastrophic landslides often occur in cliff areas of cuestas disturbed by mining, which poses a severe
threat to the villages and engineering facilities below. Therefore, accurate identification is needed. However,
InSAR can identify only the mining deformation area but cannot accurately delineate the position, size, and
outline of landslides in the subsidence area. Therefore, the InSAR annual deformation strength (Yao et al.
2020), annual deformation rate, optical remote sensing information, and geomorphological features are
integrated to identify active landslides in this study.

First, multisource synthetic aperture radar images were collected and processed to obtain the annual
deformation strength and velocity information in the study area. Second, optical remote sensing images
were used to extract the position information of the landslide back wall, strewn steep ridge, and
accumulation body. Finally, a deformation strength map of the study area, deformation positions extracted
from optical remote sensing, and slopes in the study area were matched in the same coordinate system.
Based on the annual average deformation strength, geomorphic features, and topographic data, the active
landslides were identified, and the regional development patterns were analyzed.

3.1 Stacking-InSAR processing
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Stacking-InSAR is a method for calculating the weighted average, unwrapping the differential interference
phases and improving the deformation accuracy by minimizing atmospheric errors, noise phases and
digital elevation model (DEM) errors (Strozzi et al. 2000). Unlike traditional D-InSAR, stacking-InSAR
obtains the average shape variable within the stacking time baseline by phase stacking after obtaining
multiple unwrapped differential interferograms. The basic assumption is that the atmospheric perturbation
of each interference pattern is random, and the regional deformation is linear (Werner et al. 2003). This
study aims to identify the potential range of activity in the study area but does not aim to obtain an
accurate time series displacement curve of the point position. Therefore, in this study, the interferogram
stacking method is used to obtain the annual deformation in the interference period.

The processing of stacking-InSAR proceeds as follows: first, images covering the study area are registered
to the main image, and the interference combination is adjusted by setting time and space thresholds
according to the band features of InSAR data to generate differential interferograms. PALSAR-2 images are
in the L-band and are more favorable against the incoherence caused by large gradient deformation than
the C-band Sentinel-1 image. To obtain high-quality differential interferograms, PALSAR‐1 and Sentinel‐1
image time baselines are set to 200 d and 60 d, respectively, with a spatial baseline value of 300 m for
both. Second, the adaptive filtering algorithm is used to reduce the phase noise, and the terrain information
and SAR data incidence angle are used to generate a shadow overlay to mask the interference data. The
possible unwrapping errors are eliminated, and the minimum cost flow (MCF) algorithm is used to expand
the phase value. Finally, the phase information within the stacking time baseline is obtained by stacking
the phases of multiple differential interferences, and the phase information is converted into deformation
quantity values to obtain the annual deformation rate in the study area.

4 Results And Analysis

4.1 Average deformation strength
Figure 3 shows the line-of-sight (LOS) annual deformation strength of the radar in the study area obtained
from Sentinel-1 ascending orbit data. The distribution of deformation in the study area is extremely uneven.
The deformation is concentrated in the central and southern parts, and several elliptical or banded
deformation zones with lengths and widths greater than 1 km are developed. By comparing the three
deformation strength results, the correlation coefficients of the ascending Sentinel-1 deformation rate,
descending Sentinel-1 rate, and ascending PALSAR-2 rate are 0.417 and 0.375, respectively. The positive
correlation of the three data indicates that the detection results have similar deformation patterns, and the
overall movement direction is the same.

There are three main reasons for the low correlation. First, different observation angles lead to a significant
difference in slope deformation values. Second, various bands have different InSAR measurement results
for different deformation amplitudes; the L-band has a better measurement effect for large deformations,
and the C-band may underestimate the deformation amount (Hu et al. 2014). Finally, there are differences
in data coverage time. PALSAR-2 ascending orbit images cover the time from April 16, 2017, to June 10,
2018, and Sentinel-1 images cover January 2019 to May 2020 and January 2018 to March 2020. In
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addition, coal mining activities in this region were interrupted for a short time in 2018, inevitably leading to
differences in deformation values observed by different SAR data. Moreover, the primary purpose of this
study is to effectively identify active landslides in the study area rather than monitor them. Therefore, the
difference in deformation strength of the three datasets does not affect the interpretation results.

The Panxian area in the southern part of the research area has intense deformation (Fig. 4a, where a
positive value indicates the direction of the surface close to the radar line-of-sight, and a negative value
means that it is far away). The annual deformation rate illustrated by the cross-section of a typical banded
deformation zone in this region shows that the maximum deformation is located in the center of the
banded deformation zone and gradually decreases toward the edge, showing funnel-shaped settlement
deformation (Fig. 4b and Fig. 4c) (Samsonov et al. 2013; Li et al. 2015). This deformation area is highly
consistent with the distribution area of the primary coal strata in Southwest China—the Permian Longtan
Formation (Fig. 2 and Fig. 3). Therefore, the banded or nearly elliptical deformation signals detected in the
study area are identified as subsidence areas induced by underground coal mining.

4.2 Identification of active landslides
A total of 588 active landslides were identified within the study area of 4.64x104 km2 by combining
multisource SAR deformation maps, multitemporal optical remote sensing images, and slope information
(Fig. 5); the spatial density was 0.0127 landslides/km2. Among these landslides, 18 are high-risk
landslides/landslide groups with large deformation rates (Table 2), which seriously threaten the residents
below and require further investigation and monitoring. The unstable slopes identified in this study are
consistent with those identified by other researchers in the study area (Wang et al. 2021). According to the
distribution location, deformation characteristics, and lithology, active landslides can be classified into
three types: resurrected ancient landslides, reservoir/riverbank landslides, and mining-induced landslides.

(1) Resurrected ancient landslides. This type of landslide is mainly distributed in the Weining-Liupanshui
area in the northwestern part of the study area, and they have a slope range of 10°~20°. The primary
lithology of the slip source is Permian Emeishan basalt. After intense weathering, the basalt surface layer
in this region is characterized by surface loessification, shallow block cracking, and fissure opening due to
weathering, which easily develop integral slip (Gao et al. 2020). The annual deformation rate of the annual
deformation strength in 2019 ~ 2020 reveals an apparent armchair-shaped structure, and the overall
deformation is mostly tongue-shaped. The long duration of deformation can be effectively recognized in
multiphase interference images. Predisposing factors are rainfall or artificial activity. The deformation
scale is large, the length is generally more than 800 m, and the width is more than 300 m. Figure 6 is the
multisource recognition image of the Sanjiacun landslide, a typical resurrected ancient landslide in the
study area, with coordinates of 103.82195° and 26.59618°. The Sanjiacun landslide is tongue-shaped on
the plane, with two gullies developed on both sides and apparent armchair-shaped structural features at
the back (Fig. 6c). Combined with the annual deformation maps (Figs. 6a, 6b), the landslide is identified as
a resurrected ancient landslide. The Sentinel-1 ascending and descending orbit data show that there are
apparent deformation traces in the middle and rear sources of the landslide. Field investigations reveal that
there are tensile fractures in the back of the slope (Fig. 6d), and multiple tensile fractures (Fig. 6e, 6g) and
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steep dips are developed in the middle of the slope (Fig. 6f). The locations of steep cracks correspond well
with the results of InSAR deformation. A total of 14 resurrected ancient landslides are identified in the study
area.

(2) Reservoir or riverbank landslides. This type of landslide is mainly distributed along the banks of the
Sancha River and the Liuchong River in the middle of the study area. This type has a slope range of
10°~20° and relatively gentle terrain. The primary lithology of the slip source is the purplish-red mudstone
developed in the Triassic system and the overlying Quaternary soil. Slope sliding as a whole occurs due to
fluctuating river and reservoir levels. According to the annual deformation rate of 2019–2020, the
deformation contours are mostly fan-shaped, and the deformation distribution is relatively concentrated.
Large deformation gradients occur near the riverbank, and the multiphase image comparison shows that
the deformation is greatly affected by the change in the water level. Figure 7 is the multisource recognition
image of the Kuiqiao landslide, a typical reservoir landslide in the study area, with coordinates of
105.37868° and 26.541179°. In the middle of the landslide, vegetation is abundant, and the leading edge is
the impounding area of the Pingzhai Reservoir. The optical image shows no apparent signs of deformation
in this area (Fig. 7c). The landslide is located in the shadowed region of Sentinel-1 descending data, and no
effective interference results are obtained. However, both the Sentinel-1 and ALOS PALSAR-2 ascending
orbit data show significant landslide deformation. The annual deformation indicates that deformation of
the overall slope is apparent, and the north side's deformation rate is more prominent (Fig. 7a, 7b). The field
investigation reveals that a fault broke the road on the upper part of the north slope with a height of
approximately 2 m (Fig. 7d). Several tensile fractures are developed along the road through the middle of
the slope, with an extended length of 100–200 m (Fig. 7e, 7g). The front edge of the landslide is deformed
at a considerable rate, and a deep and long extensional groove of approximately 1 m in width has
developed on it, cutting through the main body of the landslide to form a dangerous landslide body (Fig.
7f). There is a good correspondence between the larger deformation location and the InSAR deformation
pattern. In the study area, 24 reservoirs/riverbank landslides are identified.

(3) Mining-induced landslides. This type of landslide is mainly distributed in the Nayong-Shuicheng-
Panxian area in the central and southern parts of the study area. Its spatial distribution is consistent with
underground coal strata (Fig. 2 and Fig. 5), and this type is mainly caused by underground coal mining
activities. The lithologies of the source are primarily sandy mudstone of the Triassic Feixianguan
Formation and tuffs of the underlying Permian Longtan Formation. The sliding source is high and steep,
with a slope range of 30°-70°. The annual deformation strength of this type is elliptical or banded and does
not have an obvious landslide boundary. The deformation area usually spans the ridge or valley and is
distributed along the mountain direction (Fig. 8a). The maximum deformation is concentrated in the middle
of the area of deformation and is primarily located on high and steep faces of cuesta (Fig. 8b, 8c, and 8d).
The deformation rate of this landslide type is higher than the two types mentioned above; the spatial
distribution is dense and highly correlated with the distribution of mining subsidence areas. Landslide
boundaries should be identified by optical remote sensing and field investigations.

Figure 8a shows the annual deformation strength of a typical mining-induced landslide. The annual
deformation strength shows that the deformation area shows a striped pattern and is distributed along the
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mountain direction. The deformation area spans mountain ridges and valleys, and there is no apparent
landslide profile, so it is a typical mining deformation area. The deformation rate in the cliff area is
relatively high, but the internal landslide morphology and boundary cannot be distinguished only by the
annual deformation rate or annual deformation strength. Based on optical images and field investigation,
37 surface slides are developed in this area, 12 of which are deformed to varying degrees (Fig. 8b).

A total of 147 mining subsidence deformation areas are identified in the study area by optical remote
sensing and annual deformation data, among which 37 mining-induced landslide groups are present, and
540 mining-induced landslides are developed, accounting for 91.8% of the total number of identified
landslides.
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Table 2
Statistics of 18 high-risk landslides in western Guizhou

No. Landslide
name

Longitude
(°)

Latitude
(°)

Length
(m)

Width
(m)

Maximum
LOS rate
(mm/a)

Landslide type

1 Tuojiyuanzi 104.6280 26.6633 750 710 45.000 Other

2 Xiamatian 103.8730 26.8815 918 770 39.000 Reactivated
ancient landslide

3 Wujiapingzi 103.8290 26.8810 650 310 53.000 Reactivated
ancient landslide

4 Sanjiacun 103.8210 26.5963 946 375 100.000 Reactivated
ancient landslide

5 Laoyaying 104.0550 26.6948 1271 425 35.000 Reactivated
ancient landslide

6 Kuaqiao 105.3860 26.5402 500 904 194.000 Reservoir
landslide

7 Shiweicun 105.5590 27.0172 1728 1215 91.000 Reservoir
landslide

8 Fumushan 104.9510 26.1865 635 195 65.000 Reservoir
landslide

9 Duchuanzhai 104.9420 26.1758 1160 895 59.000 Reservoir
landslide

10 Yangliucun 105.7650 27.5758 1881 816 118.000 Reservoir
landslide

11 Yanjiaozhiai 105.5680 26.8608 480 575 79.000 Reservoir
landslide

12 Zongling 105.2410 26.7141 7000 3000 208.000 Mining-induced
landslide group

13 Yushe 104.7660 26.5022 2100 730 153.000 Mining-induced
landslide group

14 Xinchang 104.5560 26.0529 4300 1700 286.000 Mining-induced
landslide group

15 Songhe 104.6270 26.0383 5800 2500 188.000 Mining-induced
landslide group

16 Luna 104.7870 25.9501 2000 850 126.000 Mining-induced
landslide group

17 Baoshan 105.3050 26.7341 3890 1000 139.000 Mining-induced
landslide group

18 Faer 104.8560 26.5316 1100 520 174.000 Mining-induced
landslide group
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4.3 Disaster distribution characteristics
The slope, aspect, elevation, and height difference of active landslide disasters in the study area are
quantitatively analyzed by 30 m resolution DEM data (Fig. 9). The percentage of landslides number in each
section and the percentage of natural area in each section are defined as LNP and NAP, respectively (Yao et
al. 2020).

Landslide disasters in the study area are mainly developed at elevations of 1000 m-2200 m (Fig. 9a). In the
range of 1000 m to 2000 m, the active landslide number increases with elevation. The percentage of active
landslides decreases above an elevation of 2000 m. Therefore, the dominant elevation range in which
landslides develop is established at an altitude of 1800 m-2000 m, and its LNP is 37.78%.

The relative height difference can reflect the relief degree of the study area and is the factor controlling the
development of landslide disasters. With 500 m × 500 m as the calculation grid, the height difference
between the highest point and the lowest point in each grid is taken as the overall height difference. The
elevation difference is classified according to 50 m intervals, and the distribution map of the landslide
elevation difference and the elevation difference of the whole area is obtained (Fig. 9b). When the elevation
difference is greater than 50 m, the percentage of active landslides decreases with elevation. The
proportion of landslides in the elevation difference range of 50–100 m is the highest, and the LNP and NAP
are 34.36% and 30.39%, respectively.

The topographic slope is the dynamic condition that affects the occurrence of landslide disasters. A higher
topographic slope provides favorable landslide transport conditions. Slopes in the study area are grouped
(greater than 45° is one group, and the rest are grouped according to 5° spacing). The landslide percentage
is evenly distributed in all sections between 5° and 25°, but the proportion is small (Fig. 9c). In the 25°-40°
range, the LNP increases with increasing slope, reaching a peak in the 35°-40° range, and then decreases
with increasing slope. In the 35°~40° region, LNP and NAP are 26.69% and 4.08%, respectively.

The slope direction can reflect the distribution of heat and rainfall in the region and then affect the
distribution of landslides. The slope direction of the study area is zoned according to eight directions: N,
NE, E, SE, S, SW, W, and NW. W-directed slopes account for a minor proportion, with LNP and NAP at 6.41%
and 10.98%, respectively. Landslide hazards are relatively well developed in areas with slope directions of S
and SE, and their LNPs are 15.77% and 15.42%, respectively (Fig. 9d).

The lithology and its characteristics form the material basis of landslide formation and occurrence.
Different rock and soil bodies have different mechanical properties, and different lithologic combinations
and slope structure types have different stabilities (Dai and Deng 2020). In the study area, landslides are
mainly developed in the Triassic Feixianguan Formation (LNP of 28.07%) and Permian Dalong Formation
(LNP of 24.21%), with small amounts distributed in the Carboniferous Datang Formation (LNP of 0.53%)
and Maping Formation (LNP of 0.35%) (Fig. 9e).
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According to the above statistics, the distribution of cuestas along edges of outcrops of coal strata, with
elevations of 1800 ~ 2000 m, an elevation difference of 50 ~ 100 m, and slopes of 35°~40°, is the
dominant geological and geomorphic combination for the development of active landslides. The landslides
are characterized by a steep slope, small scale, mass occurrence, and no prevailing slope direction,
reflecting the characteristics of cuesta landslides induced by mining disturbance.

4.4 Remote sensing recognition of the deformation mode of
mining-induced landslides
Mining-induced landslides are the primary landslide type in the study area, accounting for 91.8%. Among
them, the Zongling landslide group is characterized by a concentrated development and severe threat.
Historically, many catastrophic landslides, with a total of 47 deaths, have occurred in the study area.
Taking the Zongling landslide group as an example, the deformation mode of mining-induced landslides is
identified by remote sensing.

The Zongling landslide group is located in Nayong County in the central part of the study area. It is a
cuesta with a length of approximately 7 km, a height difference of 100 ~ 300 m, and a slope range of 60 ~ 
80°. The strata lithologies from bottom to top are the Permian Longtan Formation (P2l) and Changxing
Formation (P2c) coal, the Dalong Formation (P2d) medium-thick limestone, the Triassic Feixianguan
Formation (T1f) dark purplish-pink siltstone, and tight limestone. Due to the mechanical properties of this
lithologic combination, which are "soft at the bottom and hard at the top", cliffs formed in the upper part of
the mountain under the effect of differential weathering, and a large number of cut and broken structural
planes developed in the middle part of the mountain, while gentle slopes formed in the lower part. Such
strata are widely distributed in Southwest China and are prone to landslides (Yin et al. 2011). Most
importantly, the Longtan Formation stratum P2l produces collapse zones due to repeated mining
processes, inducing the formation of fracture zones and surface collapse in upper rock masses, which
intensifies the deformation and damage of the slopes.

Due to the conditions of high susceptibility to ground disasters and long-term mining, active landslides are
developed intensively in the Zongling area, which presents deformation and failure characteristics in
various stages. Through high-resolution aeronautical data, details of disasters in the Zongling area were
obtained (Fig. 10). Four stages of slope deformation were extracted and summarized: natural unloading
(Fig. 11a), mining disturbance (Fig. 11b), displacement acceleration (Fig. 11c) and slope failure (Fig. 11d).

(1) Natural unloading stage. Under the influence of tectonic deformation, river erosion, and differential
weathering, the upper part of the coal strata formed a cliff terrain with gentle and steep slopes (Fig. 10a,
10b). In the process of cliff formation, stress redistribution occurs on the surface of the slope body, surface
rock body springback deformation occurs during unloading, a tensile stress area is formed at the top of the
slope, and a plastic extrusion area is formed at the toe of the slope body; these characteristics form the
internal factors of slope body deformation (Huang 2007). Some factors that accumulate in geological
history are not conducive to slope stability (such as hard and soft lithologic combinations and gravity
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stress) and cause the internal structural plane of the rock mass to develop considerably; as a result, the
rock integrity declines, and the slope begins slowly deform.

(2) Mining disturbance stage. Underground coal mining causes argillaceous siltstone at the upper part of
the goal roof to produce compressive stress concentrations, and the principal stresses on both sides of the
coal wall are different. The adjustment and redistribution of such stress causes tension deformation of the
overlying rock in the goaf (Zheng et al. 2015). The rock mass in the upper part of the roadway shears and
slips along the structural plane and cracks, and vertical cracks develop in a small range in the upper rock
mass of the roof. Under the influence of coal mining disturbance, the stress concentration at the top of the
slope becomes more intense, and tensile cracks begin to appear on the surface to cut the slope rock mass
(Fig. 10c, 10d).

(3) Displacement acceleration stage. With the continuous increase in the mining deformation area, large-
scale caving occurs inside the goaf and forms a collapse zone (Chen et al. 2021). The upper rock mass of
the roof is further compacted and gradually produces bending deformation, and the structural plane is
further expanded. Vertical fractures develop in large numbers in the overburden and rapidly expand in the
upper rock mass, and the internal structure of the slope appears loose. The tensile stress at the top of the
slope is further concentrated, and the crack width at the top of the slope increases and continues to expand
downward. At the top of the slope, cut and broken dangerous rock masses are gradually formed (Fig. 10e,
10f). With the increase in the horizontal displacement velocity of the fracture, the slope deforms as a
whole, and the high and steep transit surface is accompanied by rockfall and minor collapse.

(4) Slope failure stage. Partial collapse occurs in the rock overlying the goaf, and there are still some deep
and large grooves in the trailing edge (Fig. 10g, 10h). At this time, the crack at the top of the mountain
expands inward and connects with the inner structural plane of the rock mass, and the dangerous rock
mass enters the limit equilibrium state. The occurrence of a large amount of rainfall is a critical
inducement of the overall slope instability (Zhu et al. 2019). Water enters the slope body along the surface
cracks, softening the mudstone and sandstone and increasing the hydrostatic pressure inside the rock
mass, leading to instability failure of the rock mass in the ultimate equilibrium state and forming collapse
deposits in the gentle slope body at the bottom of the cliff (Fig. 10g, 10h).

5 Discussion
Due to the steep terrain in the study area, oblique beam irradiation of the surface causes shadows and
layover to appear in the radar images, resulting in an invalid recognition area (Hu et al. 2014). In this study,
multidirectional data were used to identify landslides; to some extent, this method compensated for the
overlay and shadow problems caused by a single incident direction. However, omission and misjudgment
caused by shadow and layover is still inevitable. The 30 m DEM data were used to carry out a quantitative
calculation on the shadow area generated by the three data points used in this study. The shadow overlay
area accounted for 0.9%. That is, there was still an area of approximately 419.4 km2 that could not be
effectively identified.
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Second, there are many cuestas and steep terrain in the study area. When two adjacent points in an SAR
image are located at the top and bottom of a cliff, the interference phase produces a jump greater than π,
resulting in an unwrapped error (Mondini et al. 2021). The phenomena of large gradient deformation and
rapid deformation caused by mining can also produce interference and incoherence, resulting in
mistranslation.

Finally, SAR adopts the side-view imaging mode, making the SAR system's sensitivity in the direction of
satellite orbit very low. For landslides with slope directions similar to the azimuth, it is difficult to measure
their movement along the slope direction using InSAR (Cascini et al. 2010). The data trajectory used in this
study is nearly north-south because InSAR is less sensitive to landslide movement in the north-south
direction. All of these factors can cause the omission of landslides.

6 Conclusion
In this paper, stacking-InSAR technology is used to identify active landslides in the western Guizhou area.
On this basis, combined with the analysis of geomorphic features and geological conditions of a coal
seam, the corresponding relationship between different types of active landslides and remote sensing
images is established, their development and distribution patterns are revealed, and the following
conclusions are drawn.

(1) Using InSAR technology and optical remote sensing images, 588 active landslides were identified in an
area of 4.64 × 104 km2 in western Guizhou. Active landslide disasters can be classified as resurrected
ancient landslides, reservoir/riverbank landslides, and mining-induced landslides. Among them, 540 coal
mining-induced landslides are identified, which are the main landslide types in this area.

(2) Landslides are mainly distributed at elevations of 1800 m-2000 m, with an elevation difference of 50 ~ 
100 m and a slope range of 35°~40°. The landslides are characterized by steep slopes, small scales, mass
occurrences, and no dominant slope direction, reflecting the characteristics of cuesta landslides induced by
mining disturbance. Strengthening monitoring during the mining disturbance stage is the key to mining-
induced landslide prevention and control.

(3) The combination of InSAR and optical remote sensing has great potential in the application of unstable
slope boundaries and location identification in southwest mountainous areas. However, there is still an
area of approximately 419.4 km2 that cannot be effectively identified due to the shadow-overlying problem
in mountainous regions. Multiband, multiangle and multiperiod high-resolution radar can effectively
increase the comprehensiveness, dynamics, and accuracy of landslide identification and reduce landslide
omission and misinterpretation.

(4) The disaster details of the Zongling landslide group were obtained through high-resolution UAV aerial
photography data by extracting disaster elements, such as cuesta scarps, tension cracks, deep and large
tension channels, isolated rock masses, and collapse debris, revealing that the coal mining-induced
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landslides in the area experience four stages: natural unloading, mining disturbance, displacement
acceleration, and slope failure.
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Figure 1

Location of the study area and data coverage
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Figure 2

Geological map of the study area
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Figure 3

Annual deformation strength from 2019-2020; (a) in study area; (b) in the Pan County area; (c) in the
Shuicheng County area
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Figure 4

a; Annual deformation rate in 2019-2020 in Panxian; (b, c) profiles showing the deformation rate of typical
mining subsidence in Panxin
Note: To better display the deformation results, the display range of the color
bar in panel A is -321~150 mm/a, but the deformation still reaches 510 mm/a in some locations.
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Figure 5

Active landslides distribution map
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Figure 6

Multisource recognition image of the resurrected ancient landslide (taking Sanjia village as an example);
(a) annual deformation rate derived from the Sentinel-1 ascending orbit; (b) annual deformation strength
derived from the Sentinel-1 ascending orbit; (c) panorama; (d~g) field photos of points 1 to 4
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Figure 7

Multisource recognition image of reservoir or riverbank landslides (taking Kuiqiao as an example); (a)
annual deformation rate derived from the Sentinel-1 ascending orbit; (b) annual deformation strength
derived from the Sentinel-1 ascending orbit; (c) panorama; (d~g) field photos of points 1 to 4
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Figure 8

Annual deformation strength of a typical mining-induced landslide; (b, c, and d) field survey photos of
typical landslide groups in the study area
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Figure 9

Statistics of geomorphological elements of active landslides in the study area; distribution ratio of (a)
elevation; (b) relative elevation; (c) slope; (d) aspect; (e) stratum
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Figure 10

Deformation mode of mining-induced landslides identified by remote sensing and field verification; (a)
remote sensing identification of the natural unloading stage; (b) field verification of the natural unloading
stage; (c) remote sensing identification of the mining disturbance stage; (d) field verification of the mining
disturbance stage; (e) remote sensing identification of the displacement acceleration stage; (f) field
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verification of the displacement acceleration stage; (g) remote sensing identification of the slope failure
stage; (h) field verification of the slope failure stage

Figure 11

Deformation pattern of a mining-induced landslide; (a) natural unloading stage; (b) mining disturbance
stage; (c) displacement acceleration stage; (d) slope failure stage


