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Detection and characterization of lung cancer using
cell-free DNA fragmentomes
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Non-invasive approaches for cell-free DNA (cfDNA) assessment provide an opportunity for

cancer detection and intervention. Here, we use a machine learning model for detecting

tumor-derived cfDNA through genome-wide analyses of cfDNA fragmentation in a pro-

spective study of 365 individuals at risk for lung cancer. We validate the cancer detection

model using an independent cohort of 385 non-cancer individuals and 46 lung cancer

patients. Combining fragmentation features, clinical risk factors, and CEA levels, followed by

CT imaging, detected 94% of patients with cancer across stages and subtypes, including 91%

of stage I/II and 96% of stage III/IV, at 80% specificity. Genome-wide fragmentation profiles

across ~13,000 ASCL1 transcription factor binding sites distinguished individuals with small

cell lung cancer from those with non-small cell lung cancer with high accuracy (AUC= 0.98).

A higher fragmentation score represented an independent prognostic indicator of survival.

This approach provides a facile avenue for non-invasive detection of lung cancer.
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L
ung cancer is the most lethal cancer worldwide1. The 5-year
survival rate is <20%2 largely due to the late stage at diag-
nosis where treatments are less effective than at earlier

stages, and the incidence of lung cancer continues to increase3.
Although large randomized trials have demonstrated that lung
cancer screening using chest low dose computed tomography
(LDCT) decreases mortality in high-risk individuals4,5, LDCT
remains underutilized, with <6% of at-risk individuals screened,
due to concerns of potential harm from false-positive imaging
results, radiation exposure, and morbidity from invasive diag-
nostic procedures6–8.

There is an urgent unmet clinical need for development of
non-invasive approaches to improve cancer screening for high-
risk individuals and ultimately the general population. Biomarker
development for the early detection of lung cancer has broad
clinical applications in screening as well as for distinguishing
cancer from noncancerous pulmonary nodules on chest imaging9.
Investigation of proteins10–12, autoantibodies13, gene expression
profiles14 and microRNAs15 in the blood or airway epithelium
have yielded promising biomarker candidates for early detection
of lung cancer, although some may be confounded by age,
inflammation from exposure to smoking, or other comorbid
conditions such as autoimmune diseases, and none are approved
for clinical use15.

The rapid technological and analytical advancements in liquid
biopsy analyses have identified cancer-related features in the
cfDNA fragments in peripheral blood and have provided a new
avenue for non-invasive detection of cancer. We and others have
previously shown that mutations or methylation in circulating
tumor DNA (ctDNA) can be directly detected in early-stage lung
cancer patients without prior knowledge of these alterations in
tumors16–21. Given the relatively small number of sequence or
epigenetic alterations that can be assessed by targeted high cov-
erage sequencing, many individuals with cancer may be missed by
such approaches and may also require sequencing of white blood
cells (WBCs) to eliminate changes that result from clonal
hematopoiesis17,18,22, although whole-genome cfDNA methyla-
tion analyses may overcome some of these issues21. To increase
the sensitivity of detection of early-stage cancers we have devel-
oped a genome-wide approach for analysis of cfDNA fragmen-
tation profiles called DELFI (DNA evaluation of fragments for
early interception)23. This approach provides a view of cfDNA
“fragmentomes”, permitting evaluation in any individual of the
size distribution and frequency of millions of naturally occurring
cfDNA fragments across the genome. As a cfDNA fragmentome
can comprehensively represent both genomic and chromatin
characteristics, it has the potential to identify a large number of
tumor-derived changes in the circulation. In this study, we have
used this methodology for lung cancer detection and character-
ization in a prospectively collected real-world cohort comprising
patients with malignant and benign pulmonary nodules as well as
non-cancer individuals, including those with other clinical con-
ditions (Fig. 1 a, b). Through this effort, we provide a framework
for incorporating non-invasive liquid biopsies in the clinic,
combining cfDNA fragmentation profiles with other markers and
LDCT for lung cancer detection.

Results
We examined patient blood samples from a prospective obser-
vational trial of 365 individuals examined consecutively at Bis-
pebjerg Hospital in Copenhagen, Denmark (LUCAS cohort)
during a seven-month period. The majority of subjects in the
cohort were symptomatic individuals at high risk for lung cancer
(age 50–80 and smoking history >20 pack-years) (Table 1, Sup-
plementary Table 1). The cohort included 323 subjects (90%)

with pulmonary, non-pulmonary or constitutional symptoms,
with the majority having common smoking-related symptoms
such as cough or dyspnea. The remainder were asymptomatic at
enrollment, with an incidental chest image finding by X-ray or
CT that was suspicious for lung malignancy. At the time of the
patient’s clinic visit, an additional chest CT or 18F-PET/CT was
performed to assess the identified nodule or infiltrate (Supple-
mentary Fig. 1). Of the 365 individuals studied, 129 were deter-
mined to have lung cancer a few days after the time of the blood
collection (median 9.5 days, range 0–44) while the remainder had
histologically proven benign nodules (n= 87) or were not biop-
sied due to low clinical and radiographic suspicion for cancer
(n= 149) (Supplementary Fig. 1). Standard algorithms for the
management of pulmonary nodules, including the Fleischner
Society pulmonary nodule recommendations24–26, were used to
determine clinical management.

We isolated 2–4 ml of plasma from each patient in the LUCAS
cohort and examined the extracted cfDNA using the DELFI
approach with experimental and bioinformatic improvements. As
PCR is known to affect the representation of amplified genomic
fragments depending on GC content and fragment length, we
evaluated DELFI genome-wide fragmentation profiles using
genomic libraries created without amplification or with 4 or 12
cycles of PCR. We found that libraries created with 4 cycles of
PCR had profiles that were similar to those without any ampli-
fication, while 12 cycles led to substantial biases (Supplementary
Fig. 2a, b). We developed a novel fragment-based GC correction
method that simultaneously accounts for preferential amplifica-
tion by fragment length and/or GC content (see “Methods”). We
examined whether this approach among 4 cycle libraries would
further minimize GC biases compared to a commonly used bin-
based approach27 and found that the fragment-based approach
was closest to the libraries without amplification (Supplementary
Fig. 2c). We therefore used a 4 cycle amplification to generate
genomic libraries, and sequenced the genomic fragments using
shallow whole-genome sequencing (~2x coverage) with an aver-
age of 40 million paired reads per sample (Fig. 1, Supplementary
Table 2). To examine genome-wide cfDNA fragmentation pat-
terns, we used the fragment-based GC corrected sequence data to
evaluate fragmentation profiles across the genome in 473 non-
overlapping 5 MB regions with high mappability, each region
comprising ~80,000 fragments, and spanning approximately 2.4
GB of the genome.

The resulting fragmentation profiles were remarkably con-
sistent among non-cancer individuals, including those with non-
malignant lung nodules (Fig. 2a, b). In contrast, cancer patients
displayed widespread genome-wide variation (Fig. 2a, b).
Remarkably, the fragmentation profile differences could be
observed in multiple regions throughout the genome for the
majority of cancer patients, including across stages and histolo-
gies. We employed a machine learning model to examine whether
cfDNA profiles had characteristics of an individual with or
without lung cancer. Due to the high dimensionality of our
genome-wide fragmentation profiles relative to the number of
patients analyzed, we performed a principal component analysis
(PCA) to identify linear combinations of our fragmentation fea-
tures that explained at least 90% of the variance. We incorporated
this dimensionality reduction step into a machine learning model
and estimated the performance characteristics by repeated five-
fold cross-validation, generating a score for each individual as an
average over the cross-validation repeats (DELFI score). Analysis
of the features incorporated in the machine learning models and
corresponding measures of variable importance revealed frag-
mentation and chromosomal changes that were altered in cancer
patients and predictive of cancer risk (Fig. 2c). The importance of
these features were consistent across the training folds
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(Supplementary Fig. 3). Among the genomic changes incorpo-
rated in the model, chromosomal arms that were increased or
decreased in cfDNA representation corresponded to those com-
monly gained or lost in lung cancer as seen in previous TCGA
large-scale genomic studies for lung adenocarcinoma (n= 518)
and squamous cell carcinoma (n= 501) (Fig. 2c). These included
increased cfDNA levels of 7q, 12p, and 20q, or decreased levels of
1p, 3p, 8p, and 17p, all known to be gained or lost, respectively, in
a variety of lung cancers28–30.

As clinical characteristics may affect tumor biomarkers, we first
sought to investigate whether non-malignant nodules, demo-
graphic parameters such as age or smoking history, or the pre-
sence of chronic obstructive pulmonary disease (COPD) or
autoimmune diseases were associated with DELFI scores (Sup-
plementary Table 1). An unbiased analysis of these characteristics
was possible because of the prospective observational trial col-
lection of the LUCAS cohort. We observed no difference in the
DELFI score when comparing non-cancer individuals with or

LUCAS cohort 

n = 368 pa�ents 

(129 with cancer and 239 non-cancer)

Whole genome sequencing of cfDNA
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Samples not 
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chromosomal changes in 365 pa�ents

Independent valida�on cohort
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Cross valida�on of machine learning model 

Cancer predic�on in LUCAS cohort Cancer predic�on in independent cohort
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(n=0)

Genome-wide fragmenta�on profile and 

chromosomal changes in 431 pa�ents

DELFI model for lung cancer screening

a b

Fig. 1 Schematic of overall approach. a Schematic representation of DNA fragmentation and release from apoptotic lung cancer cells and WBCs.

Nucleosomal DNA with variable length of linker DNA is preserved in the circulation with cancer cell cfDNA fragments having a more aberrant profile

compared to the cfDNA fragments arising from the WBCs. Mapping of the cfDNA fragments along the genome reveals distinct patterns in cancer patients

compared to non-cancer individuals. b Outline of the DELFI approach for early detection of lung cancer. 365 patients from the LUCAS diagnostic cohort

were analyzed to derive genome-wide fragmentation profiles that were used to train and evaluate the diagnostic performance in this cohort using a cross-

validated machine learning model. A fixed model was used to validate the performance in an independent cohort of 46 lung cancer patients and 385 non-

cancer individuals. QC, quality control.

Table 1 Patient demographics and clinical information in LUCAS cohort.

Patient Characteristic Non-cancer individuals

n= 236

Lung cancer patients

n= 129

P-value* Lung lesion histology n

Age Benign 87

Mean 63 69 <0.001 Adenocarcinoma 62

Range 19–96 33–94 Squamous cell carcinoma 29

Sex Small cell 11

Male 125 61 0.3 Adenosquamous 3

Female 111 68 NSCLC, not otherwise specified 3

Smoking pack-years Mixed small cell and NSCLC 1

Mean 26 42 <0.001 Mesothelioma 1

Range 0–110 0–150 Neuroendocrine 1

Never smoker 45 7 0.004 Metastasis from other organ 15

Current smoker 71 51 Unknown 3

Quit >6 months 96 55 Stage

Quit <6 months 24 13 IA 11

Unknown – 3 IB 4

History of cancer IIA 2

None 183 94 0.31 IIB 5

Prior cancer (<5 yrs) 23 16 IIIA 17

Prior cancer (>5 yrs) 27 13 IIIB 15

Prior cancer (<5 yrs and >5 yrs) 4 6 IIIC 3

Prior lung cancer 2 5 IV 72

*P-values were calculated to compare data from individuals with and without lung cancer for the following variables: mean ages and smoking pack years using Student’s unpaired two-tailed t-tests, sex

distribution using a χ2 test, and smoking status and history of cancer using one-way ANOVAs.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24994-w ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:5060 | https://doi.org/10.1038/s41467-021-24994-w |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


without benign lung lesions (median DELFI score 0.16 vs 0.21,
p= 0.99, Wilcoxon rank sum test, Fig. 3a). We also did not
observe changes in the DELFI score among age groups (F statistic
= 1.65, p= 0.20), among current, prior, and never-smokers
(F statistic= 1.3, p= 0.27), and across pack-years in non-cancer
individuals (F statistic= 0.67, p= 0.57) (Supplementary Fig. 4).
Similarly, we did not observe differences between patients with or

without COPD (p= 0.26) or patients with or without auto-
immune diseases (p= 0.38). Finally, we did not observe a cor-
relation between the levels of the inflammatory markers CRP or
IL-6 and DELFI score in cancer-free individuals, consistent with
the notion that cancer-specific fragmentation is not affected by
the presence of acute or chronic inflammatory conditions (Sup-
plementary Fig. 5).

Fig. 2 Cell-free DNA fragmentation profiles of lung cancer patients and non-cancer individuals. a The ratio of short to long cfDNA fragments in 5 Mb

bins across the genome was evaluated in plasma samples of lung cancer and non-cancer individuals from the LUCAS cohort. The non-cancer

individuals had similar fragmentation profiles while lung cancer patients exhibited significant variation. b Heatmap representation of the deviation of cfDNA

fragmentation features across the genome for patients with lung cancer or non-cancer individuals compared to the mean of non-cancer individuals. Overall

DELFI score and clinical characteristics are indicated to the left of the fragmentation deviation heatmap. c Heatmap representation of principal component

eigenvalues of the fragmentation profile features. The relative importance of the features are shown at the top (fragmentation changes) and right

(chromosomal arm changes) of the heatmap, with colors indicating increases (red) or decreases (blue) of the coefficient of cancer risk. TCGA derived

observations of chromosomal arm gains (red) and losses (blue) in lung adenocarcinoma (LUAD) (n= 518) and squamous cell cancers (LUSC) (n= 501)

are indicated at the right margin. Agreement between the color of the variable importance bar in LUCAS and the TCGA copy number data indicates a

correspondence between higher cancer risk due to decreases (blue) or increases (red) in chromosomal arm level representation in LUCAS and copy

number amplifications (red) and copy number deletions (blue) in TCGA, respectively.
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We next examined the relationship between DELFI scores and
cancer stage and histology. While the DELFI score for non-cancer
individuals was low (median DELFI scores of 0.16 or 0.21 for
those without a biopsy or with benign lesions, respectively),
patients with cancer had significantly higher median DELFI
scores (DELFI scores for stage I= 0.35, stage II= 0.75, stage
III= 0.90, and stage IV= 0.99) (p < 0.01 for Stages I, II, III, or IV,
Wilcoxon rank sum test) (Fig. 3a). A receiver operator char-
acteristic (ROC) curve representing sensitivity and specificity of
the DELFI approach to identify cancer patients in the LUCAS
cohort revealed an area under the curve (AUC) of 0.90 (95%
CI= 0.86–0.94) (Fig. 3b). Stage I disease was more difficult to
identify (AUC= 0.76) but stage II, III, and IV disease had
similarly high performances (AUCII= 0.89, AUCIII= 0.92,
AUCIV= 0.92, respectively). When considering the detection of
individuals without a prior history of cancer, consistent with the
inclusion criteria of other cancer screening studies4,5, we observed
a higher performance overall (AUC= 0.93, 95% CI= 0.90–0.97)
as well as for individual stages (AUCI= 0.89, AUCII= 0.89,
AUCIII= 0.93, AUCIV= 0.95) (Fig. 3b). Similarly, analyses of the
subset of individuals in this group that were considered at high
risk for lung cancer (50–80 years old, smoking history ≥20 pack-
years) revealed an overall AUC of 0.94 (Fig. 3b). Analyses of
different histologic subtypes of lung cancer showed that small cell
(SCLC) and squamous cell (SCC) lung cancers were more easily

detected than lung adenocarcinoma (Fig. 3b). To evaluate the
robustness of a prior multi-cancer DELFI approach, we examined
the features and machine learning approach of Cristiano et al.23

in the current study and identified similar performances (AUC=
0.87, 95% CI= 0.82–0.91, for all patients, and AUC= 0.90, 95%
CI= 0.86–0.94 for patients without a prior history of cancer)
(Supplementary Fig. 6a). Other whole-genome analyses, such as
ichorCNA31 which only includes copy number changes, and
analyses of overall median cfDNA fragment lengths provided
substantially weaker performance with overall AUCs of 0.76,
(95% CI= 0.70–0.82) and 0.61 (95% CI= 0.54–0.67), respectively
(Supplementary Fig. 6b).

To externally validate the predictive performance of DELFI in
an independent group of individuals with or without lung cancer,
we first developed a single fragmentation-based machine learning
model using the non-cancer individuals and patients with base-
line lung cancer in the LUCAS study and determined the DELFI
score cutoff required to achieve specificities ranging from 70 to
85%. Next, we used the fixed model from LUCAS to compute
DELFI scores in an independent validation cohort comprised of
individuals without cancer (n= 385) or predominantly early-
stage cancer (n= 46) (Supplementary Tables 3 and 4). Using the
previously established cutoffs, we predicted the cancer status for
individuals in the validation set according to whether their DELFI
score was above or below the cutoff. The sensitivities and

Fig. 3 Performance of DELFI analyses for lung cancer patients and non-cancer individuals. a DELFI score distribution across non-cancer individuals and

cancer patients, stratified by stage and histology groups in the LUCAS cohort. The box-plot shows the median DELFI score and the inter-quartile range with

the individual sample values overlaid as dots. The non-cancer cases with or without benign lesions have a lower DELFI score compared to cancer cases and

there is a stepwise increase in DELFI score by stage. The highest median DELFI score is observed in SCLC cases. Green curves indicate all individuals in the

LUCAS cohort, orange represents patients without prior history of cancer, and blue indicates patients without prior history of cancer, age 50–80, and with

≥20 pack-year smoking history. The center line in the boxplots represents the median, the upper limit of the boxplots represents the third quantile (75th

percentile), the lower limit of the boxplots represents the first quantile (25th percentile), the upper whiskers is the maximum value of the data that is within

1.5 times the interquartile range over the 75th percentile, and the lower whisker is the minimum value of the data that is within 1.5 times the interquartile

range under the 25th percentile. b ROC analyses of the overall LUCAS cohort as well as by stage and histology. The dotted vertical line in the ROC figures

represents an 80% specificity as a decision boundary. c Analysis of a DELFI fixed model and score cutoff of 0.344 determined from the LUCAS cohort was

applied in the validation cohort. The performance of this classifier in the independent cohort was similar to LUCAS in both specificity (left) and sensitivity

(right) across all tumor stages. The number of samples in the training and validation sets are indicated in the labels of the horizontal axis. The intervals

presented reflect a 90% confidence interval. Additional analyses at other specificities are indicated in Supplementary Fig. 6.
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specificities of this model in the validation cohort were similar to
those observed in the LUCAS cohort at different stages of the
disease and among different histologic subtypes (Fig. 3c, Sup-
plementary Fig. 7). Overall, these analyses suggest that the DELFI
approach is generalizable across different lung cancer cohorts,
including across different stages and histologic subtypes.

To evaluate multimodal approaches for cancer detection in
combination with our multi-feature cfDNA analyses, we first
assessed the serum levels of carcinoembryonic antigen (CEA), a
secreted protein that has been proposed as a lung
biomarker12,15,32,33 (Supplementary Table 5). Patients with lung
cancer had higher CEA levels compared to patients without
cancer, with more than 20% of stage I–III and the majority of
stage IV cancer patients having levels >7.5 ng/ml, while only ~4%
of non-cancer patients fell above this threshold12,15,34 (p < 0.001)
(Supplementary Fig. 8). CEA levels increased with stage, and
patients with adenocarcinoma and SCLC subtypes showed higher
levels compared to those with SCC or metastases to the lung
(Supplementary Fig. 8). As clinical characteristics have been
proposed as risk factors for lung and other cancers35, we com-
bined our genome-wide cfDNA fragmentation features with CEA
levels, age, smoking history, and presence of COPD in a multi-
modal model (DELFImulti) (see “Methods”). We used repeated
cross-validation to predict whether these multimodal features
represented characteristics of non-cancer individuals or cancer
patients. Assessment of performance of the DELFImulti revealed an
overall AUC of 0.93, for individual stages (AUCI= 0.78, AUCI I=
0.95, AUCIII= 0.94, AUCIV= 0.95), and across histologic sub-
types (AUCadeno= 0.91, AUCSCC= 0.95; AUCSCLC= 0.96) (Sup-
plementary Fig. 9). Although we could not evaluate this approach
in the validation cohort, these analyses suggest that the combi-
nation of DELFI with a serum protein and clinical risk factors may
improve DELFI performance compared to those obtained through
fragmentation profiles alone.

To examine the relationship between fragmentation profiles
and lung tumor progression we assessed whether the size of the
lung cancer lesion or other clinical or radiological findings were
related to aberrant fragmentation profiles. While previous studies
suggest small tumors (e.g., ~1 cm3) may be missed by mutation-
based approaches given the limited number of ctDNA molecules
at specific locations and limits of detection with these methods of
~0.1%20, genome-wide approaches may allow for more sensitive
detection of such changes. With a DELFI approach that inter-
rogates ~40 million fragments, we would expect that ~40,000
fragments across the genome would be tumor derived in a patient
with a small tumor having a 0.1% ctDNA contribution, thereby
increasing the chances of detection. Interestingly, in the LUCAS
cohort, eight of the nine tumors less than two cm in size (T1a)
had DELFI scores higher than the median non-cancer population
(median DELFI score of 0.40 vs. 0.16) (Fig. 4a). Analyses of
DELFI scores and T stage in patients with localized disease
showed a stepwise increase of the DELFI scores from T1 to
T4 stages (median DELFI scores for T1= 0.32, T2= 0.56, T3=
0.77, T4= 0.94; T1 vs T4, p < 0.001, Wilcoxon rank sum test). In
addition, lung cancer patients without nodal involvement (N0)
had a significantly lower DELFI score compared to patients with
lymph node metastases (Fig. 4a, p < 0.001, Wilcoxon test). A
stepwise increase in DELFI scores was also observed when
assessing T and N stages in affected patients (Fig. 4b, p= 0.005).
These observations indicate a direct relationship between lung
tumor size and aberrant fragmentation profiles in the circulation
and suggest that even relatively small tumors may be detectable,
including in cases that were undetectable using deep-targeted
sequencing (~30,000×)23.

Fig. 4 Relationship of size and invasiveness of lung cancer with DELFI

score. a DELFI scores of non-metastatic patients with lung cancer

categorized by T stage or N stage in the LUCAS cohort. We observe an

incremental increase of the DELFI score by T stage from T1 to T4 (p < 0.01,

Kruskal–Wallis, df= 3, two-sided) (n: T1= 14, T2= 12, T3= 4, T4= 26).

Lung cancer patients without involvement of lymph nodes had a

significantly lower DELFI scores compared to patients with nodal spread

(Wilcoxon rank sum test, p < 0.001, two-sided) (n: N0= 27, N 1–3= 29). b

The stepwise increase in DELFI score by T and N stage was maintained

when considering both T and N stages in each patient (Kruskal–Wallis, df

= 6, p < 0.01, two-sided) (n: T1N0= 10, T1N(1–3)= 4, T2N0= 6, T2N

(1–3)= 6, T3N(0–3)= 4, T4N0= 9, T4N(1–3)= 17) c Patients with

primary lung cancer were stratified in two groups based on a DELFI cutoff of

0.5 (n= 93). Patients with a DELFI score > 0.5 (red) had a significantly

worse cancer-specific survival compared to patients with DELFI score < 0.5

(blue) (P= 0.003, Log-rank test, two-sided). The center line in the

boxplots represents the median, the upper limit of the boxplots represents

the third quantile (75th percentile), the lower limit of the boxplots

represents the first quantile (25th percentile), the upper whiskers is the

maximum value of the data that is within 1.5 times the interquartile range

over the 75th percentile, and the lower whisker is the minimum value of the

data that is within 1.5 times the interquartile range under the 25th

percentile.
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The long clinical follow-up of the LUCAS cohort (7–8 years)
enabled an analysis of the association between DELFI scores
and survival. These analyses revealed that higher DELFI scores
(>0.5) were associated with a decreased overall survival com-
pared to DELFI scores below this threshold (P < 0.001, Fig. 4c).
In a multivariable analysis using a Cox proportional hazards
model, the association of DELFI scores with survival was
independent of cancer histology and stage with a hazard ratio
(HR) of 2.53 (p= 0.001, Supplementary Fig. 11b; Supplemen-
tary Table 6). Similar results were obtained when analyzing a
homogenous population of patients with stage IV adenocarci-
noma (p= 0.004, Supplementary Fig. 11a), or when using
DELFI score thresholds ranging from 0.3 to 0.9. The DELFI
score remained an independent prognostic factor even when
considering differences in therapy among these individuals
(P= 0.04, HR= 2.3) or when excluding patients that had a
short survival (Supplementary Table 1). These results sub-
stantiate the relationship between fragmentation patterns and
tumor burden or aggressiveness, and may provide clinical
insights into long-term lung cancer outcomes.

Given the important differences in biologic characteristics and
clinical management of SCLC and non-small cell lung cancer
(NSCLC), we evaluated whether genome-wide fragmentation
profiles could be used to non-invasively distinguish between these
cancer types. We utilized publicly available TCGA RNA-seq data
from lung cancer subtypes to identify transcription factors with
the highest differential expression between SCLC (n= 79) and
NSCLC (n= 1046) or WBC (n= 755) samples, and identified
ASCL1 (Achaete-Scute Family basic helix-loop-helix Transcrip-
tion Factor 1) as the gene most highly differentially expressed
(>960 fold compared to NSCLC and WBC) (Fig. 5a). ASCL1 is a
pioneer transcription factor in neuroendocrine cells, the pro-
genitor cell type of SCLC, and has been identified to be over-
expressed in the majority of SCLCs30. As expected, a subset of the
genes with ASCL1 binding sites were differentially expressed
between SCLC and NSCLC (Fig. 5b). Given the reported differ-
ences in cfDNA coverage at regions of transcription factor
binding36, we evaluated whether fragment coverage and size
across the observed 13,693 genome-wide binding sites of ASCL1
were altered in cfDNA of SCLC patients. We observed a

Fig. 5 Genome-wide fragmentation profiles can distinguish SCLC from NSCLC. a Expression of ASCL1 transcription factor in TCGA RNA-seq analyses of

SCLCs (n= 79) is high compared to NSCLC (n= 1046) or WBC (755) samples. TPM transcripts per million. The center line in the boxplots represents the

median, the upper limit of the boxplots represents the third quantile (75th percentile), the lower limit of the boxplots represents the first quantile (25th

percentile), the upper whiskers is the maximum value of the data that is within 1.5 times the interquartile range over the 75th percentile, and the lower

whisker is the minimum value of the data that is within 1.5 times the interquartile range under the 25th percentile. b Unsupervised clustering analyses of

gene expression in TCGA lung cancer cohorts show that genes with ASCL1 binding sites are differentially expressed between SCLCs and NSCLCs.

Genome-wide cfDNA fragmentation analyses at ASCL1 binding sites in LUCAS cohort patients reveal a decrease in coverage near transcription factor

binding sites of SCLC patients compared to non-cancer individuals (c) or DELFI positive patients with SCLC compared to other individuals (e). These

molecular features can distinguish SCLC patients (n= 11) from non-cancer individuals (n= 158) (d, AUC= 0.92) and DELFI positive SCLC patients (n=

10) from NSCLC patients and others (n= 115) (f, AUC= 0.98), with high accuracy.
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remarkable and consistent decrease in aggregate fragment cov-
erage at regions containing the ASCL1 binding sites (±200 bp) of
patients with SCLC compared to non-cancer individuals or those
with other cancer types (Fig. 5c). In contrast, at distances further
from ASCL1 binding sites (>2000 bp), the fragment coverage for
patients with SCLC and other patients were similar. cfDNA

fragment sizes in regions of ASCL1 binding were larger, pre-
sumably reflecting the decreased contribution of the tumor-
derived cfDNA at these regions23 (Supplementary Fig. 10a, c).
Using fragment information in the ASCL1 binding regions, we
created a classifier that could be used to accurately detect 10 of 11
SCLCs (91% sensitivity, 95% CI= 65–99%) compared to 158
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non-cancer individuals at >99% specificity (95% CI= 98–100%)
(AUC= 0.92) (Fig. 5d). In addition, when considering DELFI
positive cases (DELFI score > 0.34 corresponding to an 80%
specificity), we classified SCLC patients compared to other DELFI
positive cases without SCLC with high accuracy (100% sensitivity,
95% CI= 78–100% at 95% specificity, 95% CI= 90–98%,
AUC= 0.98) (Fig. 5e, f). Despite the limited number of SCLC
cases, these findings suggest that fragmentation profiles can
reflect cell type-specific genome-wide transcription factor binding
and provide a non-invasive approach for distinguishing lung
cancers with different histologic subtypes.

Analyses of patients with a previous history of cancer who were
in clinical remission at the time of the DELFI baseline assessment
identified 25 patients, five who recurred, and four who ultimately
died from this disease (Supplementary Table 7). These included
three patients with head and neck cancers, one with colon cancer,
and one with malignant melanoma. Patients with subsequent
recurrence had significantly higher DELFI scores than those
individuals without recurrence (median DELFI scores 0.65 vs
0.19, p= 0.005) (Supplementary Fig. 12a). In addition, patients
who scored positive on the DELFI test (DELFI score > 0.34) had
significantly shorter relapse-free survival (time from blood draw
to relapse) compared to patients with negative DELFI test scores
(p < 0.01, Supplementary Fig. 12b). These results support the
notion that the DELFI approach can be used for the detection of
disease recurrence after treatment.

In addition, the longitudinal clinical follow-up available in the
LUCAS cohort enabled an analysis of fragmentation profiles in
individuals who were deemed cancer-free at baseline but who
developed a new cancer after baseline assessment. Of the 17 study
subjects with a subsequent cancer diagnosis within two years
(excluding localized skin tumors), four patients had DELFI scores
>0.5 at the time of enrollment, ranging from 0.5 to 1.0 within
33–481 days after enrollment (Supplementary Tables 1 and 8).
The malignancies identified comprised one case of NSCLC, as
well as three non-pulmonary malignancies including chronic
lymphocytic leukemia (CLL) and two B cell lymphomas. These
data suggest that elevated DELFI scores may identify the emer-
gence of cancers that were clinically undetected.

To evaluate the theoretical impact of a non-invasive molecular
blood test on lung cancer detection, we examined the perfor-
mance of the DELFI score or the multimodal DELFImulti score
followed by standard diagnostic CT imaging in the LUCAS
cohort. This would allow us to examine the scenario where high-
risk individuals would first have a DELFI blood test as a pre-
screen and, depending on the results of the cfDNA analyses,

individuals follow the pathway of either having an LDCT if the
DELFI test is positive or not having an LDCT if the test is
negative (Fig. 6a). Analysis of the performance of LDCT alone in
the LUCAS cohort demonstrated high sensitivity (>95%) and a
low specificity (58%). In a model where the DELFI score would
have been used to prescreen patients, and only those that were
positive were further evaluated by LDCT, the observed sensitivity
of the combined DELFI/LDCT approach would be 90% (stage
I= 80%, stage II= 86%, stage III= 94%, and stage IV= 90%)
and provide an increase in specificity to 80% (Fig. 6b). The
DELFImulti approach followed by LDCT would have improved the
sensitivity to 94% overall (stage I= 87%, stage II= 100%, stage
III= 97%, and stage IV= 96%) at the same specificity, and would
have decreased the number of unnecessary procedures from 67
with LDCT alone to 32 (52% reduction) when using the com-
bined approach (Fig. 6b).

To examine how our approach would perform for the overall
detection of individuals with lung cancer at a population scale, we
evaluated the DELFI model in a theoretical population of 100,000
high-risk individuals using Monte Carlo simulations. Using the
estimated sensitivities and specificities of LDCT alone or with
DELFI as a prescreen in this hypothetical population (Fig. 6b), we
modeled the uncertainty of these parameters using probability
distributions centered at empirical estimates obtained from the
NLST and/or LUCAS cohorts (Fig. 6c, Supplementary Table 9).
The likely prevalence of lung cancer in this population using the
NLST study5 estimate of 0.91% would be 910 individuals (95%
CI, 428–1584). Despite the recommendations for LDCT screen-
ing, adherence in the US is only 5.9%7, resulting in an average of
5979 individuals tested (95% CI, 3176–9658). As blood tests offer
high accessibility and compliance, with adherence rates of
80–90% reported for blood-based biomarkers37,38, we assumed
that an average of 60% (95% CI, 39–76%) of the lung cancer
screening population would be tested using the combined
approach. Monte Carlo simulations from these probability dis-
tributions revealed that LDCT alone detected an average of 51
individuals (95% CI, 17–108) with lung cancer (Fig. 6d). Using
DELFI as a prescreen for LDCT, we would detect on average 394
additional lung cancer cases, or an ~8-fold increase (95% CI, 4.4-
to 19.6-fold increase) compared to LDCT alone (Fig. 6d). The
combined approach would not only substantially improve
detection of lung cancer, but would be expected to increase the
accuracy of the test, reduce the number of unnecessary proce-
dures, and increase positive predictive value (PPV) from 1.9% for
LDCTLUCAS and 2.6% for LDCTNLST (95% CI, 0.8–3.8%) to 3.9%
for DELFI and LDCT (95% CI, 1.8–7.9%, Fig. 6e–g). These

Fig. 6 Modeling the implementation of DELFI in lung cancer screening. a Schematic representation of current clinical practice for lung cancer screening

(top) and the proposed approach in combination with the DELFI test (bottom). In the combined approach, individuals at high-risk for lung cancer would

undergo an annual blood draw that would be assessed using the DELFI test, and individuals with a positive result would subsequently undergo an LDCT

scan for detection of lung cancer, while individuals with a DELFI negative result would repeat their screening annually. b Sensitivity of DELFI alone or DELFI

followed by LDCT for lung cancer detection were compared holding specificity for the single analysis or the joint analysis at 80%. For these analyses, we

considered individuals with lung cancer as those detected at baseline with LDCT, although three individuals were identified with lung cancer at a repeat

LDCT within a year. The number of individuals in the LUCAS cohort are as follows: stage I n= 15, II n= 7, III n= 35, IV n= 72; and individuals in the cohort

with lung adenocarcinoma comprised stage I n= 8, II n= 3, III n= 14, IV n= 37. The points colored green refer to analyses of all patients in the LUCAS

cohort, whereas orange points indicate analyses of individuals without a prior history of cancer. The number of individuals are indicated schematically by

the size of the dots and in Supplementary Table 1. The error bars represent the 90% confidence interval. c We modeled the uncertainty of sensitivity and

specificity of LDCT alone as well as DELFI followed by LDCT for screening in a theoretical population of 100,000 high-risk individuals. Predictive

distributions for the number of lung cancers detected (d), accuracy (e), rate of unnecessary procedures (f), and positive predictive values (g) among these

individuals incorporated variation in both the prevalence of lung cancer and adherence to image- and blood-based screening. The center line in the boxplots

represents the median, the upper limit of the boxplots represents the third quantile (75th percentile), the lower limit of the boxplots represents the first

quantile (25th percentile), the upper whiskers is the maximum value of the data that is within 1.5 times the interquartile range over the 75th percentile, and

the lower whisker is the minimum value of the data that is within 1.5 times the interquartile range under the 25th percentile.
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analyses suggest a significant population-wide benefit for using a
high-sensitivity blood-based early detection test as a prescreen
to LDCT for the detection of lung cancer.

Discussion
Overall, we describe an improved DELFI approach for genome-
wide fragmentation analyses for the detection of lung cancer. We
propose that facile and scalable analyses of cfDNA fragmentomes
could be used to prescreen high-risk populations for lung cancer
to increase the accessibility of lung cancer detection and decrease
unnecessary follow-up imaging procedures and invasive biopsies.
Through the analysis of the LUCAS cohort, we demonstrated that
the DELFI approach can detect lung cancer across all stages and
histologic subtypes compared to non-cancer individuals with or
without benign lung nodules. The validation of the fixed DELFI
model from the LUCAS cohort in an independent validation
cohort supports the generalizability of the approach. Similar to
observations with targeted sequencing approaches16,22,39–43, the
relationship between DELFI scores and tumor progression and
long-term mortality suggests that the blood-based fragmentation
analyses may identify occult disease not observed by imaging, or
more accurately identify the aggressiveness of the disease. The
distinction between NSCLC and SCLC may allow for non-
invasive characterization and treatment of lung cancer patients
when tissues are not available. The identification of patients by
DELFI that were only found months later to have cancer through
standard diagnostic methods shows the utility of the approach for
cancer detection, detection of recurrent disease, and the potential
for detection of cancers at earlier stages (“stage shifting”) through
lung cancer screening. The possibility of combining genome-wide
multi-feature fragmentation profile analyses with a standard
protein marker and clinical characteristics provides an avenue for
high complexity multimodal analyses that can further increase the
sensitivity of the approach.

Despite the publication of the NLST trial almost a decade ago5,
the impact of LDCT in reducing lung cancer morbidity and
mortality has been limited. Challenges for this approach have
included insufficient imaging facilities and infrastructure that can
screen large numbers of patients, the complexity of the medical
workup that requires frequent visits and shared decision making,
and repetitive radiation exposure from annual screening44. In
addition, imaging studies detect radiographic abnormalities, not
cancer, and result in biopsy-identified cancer diagnoses in only a
small minority of positive scan findings, while the majority of
false positive findings may drive invasive diagnostic procedures as
well as ongoing patient anxiety during months or years of follow-
up. Finally, while screening has been recognized as an important
step for early detection of lung cancer in high-risk individuals, a
significant percentage of lung cancer occurs in lower risk
individuals45 and current USPSTF recommendations do not
recommend LDCT screening for these patients due to the
imbalance of harms and benefits.

Although the challenges indicated above could potentially be
overcome by non-invasive fragmentation profile analyses, our
study has certain limitations. For example, the majority of
patients in the LUCAS cohort presented with symptoms that are
not fully representative of a screening population. Although
analyses of the predominantly early-stage validation cohort and
the high-risk smoking population in the LUCAS cohort resulted
in high performance, a large prospective validation in a screening
population will be necessary before clinical use. A few patients
with late-stage disease were not detected by our cfDNA analyses,
presumably due to ctDNA variation in lung cancer patients from
the effects of histology, tumor size, and other characteristics, but
the inclusion of other biomarkers as demonstrated in the

multimodal DELFI approach could mitigate this limitation. In
addition, the effect of the DELFI score on survival observed in our
analyses may not be representative in patients treated with more
recent lung cancer therapies, including immune checkpoint
blockade. Nevertheless, the analyzed cohorts represent real-world,
prospective populations, and the collection and processing of all
samples were performed in a systematic fashion, ensuring
homogeneity of pre-analytical characteristics and careful control
of experimental and analytical variables. The potential improve-
ment of the PPV in the combined LDCT/DELFI approach sug-
gests that many fewer unnecessary procedures would be
performed in individuals with positive results. In addition, the
DELFI score appears to not be affected by non-cancer conditions,
which have confounded other potential biomarkers for lung
cancer detection. The observations that scalable and cost-effective
non-invasive cfDNA fragmentation analyses can discriminate
lung cancer patients from non-cancer individuals may ultimately
provide an opportunity to evaluate not only high-risk individuals
but the general population for lung cancer.

Methods
Study population analyzed. The LUCAS cohort represents a prospectively col-
lected group of 368 predominantly symptomatic patients that presented in the
Department of Respiratory Medicine, Infiltrate Unite, Bispebjerg Hospital,
Copenhagen with a positive imaging finding on a chest X-ray or a chest CT.
Patients diagnosed with cancer with known active disease or who were under
treatment at the time of enrollment were excluded. The study was conducted over
7 months from September 2012 to March 2013, and all patients had a clinical
follow-up until death or April 2020. All patients provided written informed consent
and the studies were performed according to the Declaration of Helsinki. The
LUCAS study was approved by the Danish Regional Ethics Committee and the
Danish Data Protection Agency. All patients had blood samples collected at their
first clinic visit before the possible diagnosis of lung cancer was made. Samples
from 365 patients that passed quality control from genomic sequencing were
included in subsequent analyses. The analyzed cohort included 158 patients with
no prior, baseline, or future cancers, 129 patients with baseline lung cancer, and 78
patients without cancer at the time of blood collection, but with either earlier or
later cancers (Supplementary Fig. 1, Table 1). The validation cohort consisted of
samples from different sources. These included 385 non-cancer individuals from
two screening clinical trial cohorts for colorectal cancer in Denmark (Endoscopy
III) and the Netherlands (COCOS, Netherlands Trial Register ID NTR182946). The
protocol for the Endoscopy III Project was approved by the Regional Ethics
Committee and the Danish Data Protection Agency, and for the COCOS trial,
ethical approval was obtained from the Dutch Health Council. The inclusion cri-
teria for both the Dutch and the Danish cohorts were any individuals of age 50–75
eligible for colorectal cancer screening. All patients used had either a FIT negative
test or a negative colonoscopy result. In addition, we included 46 patients with
pathologically confirmed predominantly early-stage lung cancer from an inde-
pendent prospective collection through BioIVT (Westbury, NY) (Supplementary
Table 4). The plasma samples of the 46 lung cancer patients included in the
validation cohort originated from patients at risk for lung cancer at the time of
blood collection that were identified to have a newly diagnosed lung cancer upon
further diagnostic workup.

Sample collection and preservation. The sample collection for the LUCAS cohort
was obtained at the time of the screening visit and performed as follows: venous
peripheral blood was collected in one K2-EDTA tube and two serum gel tubes.
Within two hours from blood collection tubes were centrifuged at 2330 × g at 4 °C
for 10 min. After centrifugation, EDTA plasma and serum were aliquoted and
stored at −80 °C for cfDNA and protein analyses, respectively.

For the validation cohort, venous peripheral blood for each individual was
collected in one EDTA tube. Tubes from the COCOS and the Endoscopy III as well
as the BioIVT collections were centrifuged at low speed (1500–3000 g) for 10–15
min within two hours from blood collection. The plasma portion from the first spin
was spun a second time for 10 min. After centrifugation EDTA plasma was
aliquoted and stored at −80 °C for cfDNA analyses.

Sequencing library preparation. Circulating cell-free DNA was isolated from 2 to
4 ml of plasma using the Qiagen QIAamp Circulating Nucleic Acids Kit (Qiagen
GmbH), eluted in 52 μl of RNase-free water containing 0.04% sodium azide
(Qiagen GmbH), and stored in LoBind tubes (Eppendorf AG) at −20 °C. The
concentration and quality of cfDNA were assessed using the Bioanalyzer 2100
(Agilent Technologies).

Next-generation sequencing (NGS) cfDNA libraries were prepared for WGS
using 15 ng cfDNA when available, or the entire purified amount when <15 ng. For
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the validation cohort, available cfDNA up to 125 ng was used as input material for
library preparation. In brief, genomic libraries were prepared using the NEBNext
DNA Library Prep Kit for Illumina (New England Biolabs (NEB)) with four main
modifications to the manufacturer’s guidelines: (i) the library purification steps use
the on-bead AMPure XP (Beckman Coulter) approach to minimize sample loss
during elution and tube transfer steps; (ii) NEBNext End Repair, A-tailing and
adaptor ligation enzyme and buffer volumes were adjusted as appropriate to
accommodate on-bead AMPure XP purification; (iii) Illumina dual index adaptors
were used in the ligation reaction; and (iv) cfDNA libraries were amplified with
Phusion Hot Start Polymerase. All samples underwent a 4 cycle PCR amplification
after the DNA ligation step.

In total, 23 batches of cfDNA library preparations were performed for the
LUCAS cohort. Each batch included a combination of cancer patients and non-
cancer controls (Supplementary Tables 10, 11). All batches included a technical
replicate of nucleosomal DNA obtained from nuclease-digested human peripheral
blood monocytes (PBMCs) to assess sequencing consistency and reproducibility
across batches performed on a different date. We periodically included a negative
library control where buffer TE pH 8.0 was used instead of a DNA sample to
ensure there was no DNA contamination during the library preparation. The
validation cohort was prepared as above and the 485 samples, including cases and
controls, were spread over 33 batches (Supplementary Table 4). For the external
validation of the approach, the 33 batches in the validation cohort were processed
at temporally distinct times from the batches in the LUCAS cohort and by different
laboratory technicians.

Low coverage whole-genome sequencing and alignment. Whole-genome
libraries of cancer patients and cancer-free individuals were sequenced using 100-bp
paired-end runs (200 cycles) on the Illumina HiSeq2500 platform at 1–2x coverage
per genome. Prior to alignment, adapter sequences were filtered from reads using
the fastp software47. Sequence reads were aligned against the hg19 human reference
genome using Bowtie248 and duplicate reads were removed using Sambamba49.
Post-alignment, each aligned pair was converted to a genomic interval representing
the sequenced DNA fragment using bedtools50. Only reads with a mapq score of at
least 30 or greater were retained. Read pairs were further filtered if overlapping a
problematic region provided by the Duke Excluded Regions blacklist (https://
genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=wgEncodeMapability). To cap-
ture large-scale epigenetic differences in fragmentation across the genome estimable
from low-coverage whole-genome sequencing, we tiled the hg19 reference genome
into non-overlapping 5Mb bins (Supplementary Table 12). Bins with an average
GC content <0.3 and an average mappability <0.9 were excluded, leaving 473 bins
spanning approximately 2.4 GB of the genome (Supplementary Table 11).

Whole-genome fragment features. Ratios of the number of short (100–150 bp)
to long (151–220 bp) fragments across the 473 bins were normalized for GC-
content and library size. As GC-related biases in coverage have been largely
attributed to preferential amplification of fragments during PCR27, we developed a
non-parametric method for fragment-level GC adjustment. For each individual in
the LUCAS cohort, we assigned each fragment to one of 100 possible GC strata
between 0 and 1 (1 indicating a fragment with all G and C nucleotides), obtaining
the total number of fragments within each GC stratum. In the same manner, we
obtained a distribution of fragment counts by GC stratum for the held-out set of 54
non-cancer samples (Supplementary Table 2) as well as the median of the 54
distributions that we refer to as a target distribution. To normalize sample-to-
sample PCR biases in LUCAS, the collection of fragments in GC stratum i for a

sample in the LUCAS cohort were assigned a weight wi such that∑
N i

i¼1
wi ¼ ti , where

ti denotes the number of fragments in the target distribution, Ni the total number of
fragments in stratum i, and i =1, …100. We computed the GC-adjusted number of
short and long fragments for each 5Mb bin as the sum of the weights for the
fragments aligned to that bin, thereby normalizing both sample-to-sample varia-
tion in GC-biases as well as differences in library size. Fragmentation profiles of the
GC-adjusted short to long ratios were standardized to have mean zero and unit
standard deviation across the genome.

In addition to fragmentation profiles, we also computed z-scores for
chromosomal arms and a genome-wide summary of the overall cfDNA
fragmentation as previously described23,51 with the modifications indicated below.
We only analyzed the 39 chromosomal arms that were not acrocentric. Z-scores for
each of the 39 autosomal arms were obtained by centering and scaling the total
GC-adjusted fragment count for each arm by the mean and standard deviation of
the corresponding arm-specific counts in the 54 non-cancer samples used as a
reference set. In addition, using the published methodology31 we calculated the
ichorCNA score for each sample (Supplementary Table 2).

Analysis based on public databases from TCGA. Copy number data from the
two lung cancer cohorts in TCGA (LUAD n= 518 and LUSC n= 501) were
retrieved using the package RTCGA v1.16.052. The tumor to normal log copy ratio
values were compared to tumor type-specific thresholds53 to identify genomic
regions harboring copy gains and losses. The copy number status in each of the 5
Mb bins across the genome was determined by requiring a minimum coverage of

90% of the bin interval by segments harboring a gain or loss. The frequency of copy
gain and loss in the genomic bins were calculated for each of the lung cancer
cohorts in TCGA.

Machine learning and cross-validation analyses. We used fivefold cross-
validation to develop a predictive model for early and late-stage cancer detection
where feature selection and model development were evaluated on four of the five
folds (training set) and a fifth held-out fold was used only to assess model per-
formance (test set). The total number of samples available for training and testing
includes 158 participants with no prior, baseline or future cancer and 129 patients
with cancer at the time of the blood draw. Due to the high dimensionality of the
fragmentation features relative to the number of available samples for training, we
performed a PCA within each training set to reduce the dimensionality of the
feature space, retaining the minimum number of principal components needed to
explain 90% of the variance of the fragmentation profiles between samples. In
addition to the principal component features, we evaluated all 39 z-scores in a
logistic regression model with a LASSO penalty. The optimized LASSO penalty of
0.0017 in our analysis was obtained by resampling using the caret R package. The
DELFI score derived for each sample corresponds to the mean score across the 10
cross validation repeats. To characterize the stochasticity of our classifier across the
50 training sets (five-folds × 10 repeats) used to derive the mean score, we saved the
regression coefficients from each model (Supplementary Fig. 3).

To externally validate model performance, we first obtained a final model using
all 158 non-cancer individuals and 129 patients with baseline lung cancer in the
LUCAS study and determined the cutoffs that achieved specificities of 70–85%.
Next, in an independent cohort (validation set) of non-cancer individuals (n= 385)
and predominantly early-stage cancer (n= 46) we computed the fragmentation
features needed to compute a risk score. For analyses where the DELFI result was
indicated as positive or negative, the DELFI score cut-off of 0.34 with an 80%
specificity was used as a decision boundary. The z-scores in the validation set were
computed as previously described. For the fragmentation features, we projected the
matrix of mean-centered, scaled, and GC-corrected short fragments to long
fragments (X) onto the principal components used in the final model from the
LUCAS cohort. Denoting the 473 × 11 matrix of loadings (eigenvalues) for PCs 1
through 11 in the final LUCAS model by L, the feature for principal component k
in sample j of the validation set is given by the following formula.

Let X denote the matrix of mean-centered, scaled, and GC-corrected short
fragments to long fragments for sample in the validation cohort with rows
corresponding to genomic bin and columns corresponding to sample (dimension
473 × 43) and L the 473 × 11 matrix of loadings (eigenvalues) from the PCA used to
obtain the final model in the LUCAS cohort. The feature for principal component k
in sample j of the validation set is obtained by projecting X onto L:

PCk ¼ ∑
473

i¼1
Li;kxi;j: ð1Þ

Multiplying the features by the regression coefficients from the fixed model, we
obtained a prediction score, or log odds of cancer, for each individual in the validation
set and classified these individuals as non-cancer or cancer according to whether the
log odds >θ. As previously described the samples from the validation cohort were
entirely batch-independent from the LUCAS cohort with respect to sample collection,
library preparation, and sequencing (Supplementary Tables 4, 10).

To evaluate the sensitivity of our approach to individuals with a prior history of
cancer or future cancer, we repeated the previously described cross-validation
procedure in a cohort where prior cancer were excluded from the analysis and
patients with future cancer were considered non-cancer individuals given they had
no clinically detectable cancer at baseline. This scenario recapitulates the sample
allocation in a prospective assessment of a screening cohort. Finally, we trained a
classifier limited to individuals age 50–80 with a history of smoking ≥20 pack-
years.

To assess whether clinical and serum protein markers in addition to
fragmentation features could further improve prediction, we evaluated a
multimodal predictive model using the repeated fivefold cross-validation approach.
Fragmentation features summarized by a PCA and z-scores were evaluated as
described above such that both feature selection and estimation of model
parameters were independent of the test set. For clinical and serum protein
markers, we included age, smoking history, COPD status, and CEA. A logistic
regression model with a LASSO penalty was used to evaluate the fragmentation,
clinical, and protein biomarker features in each training fold.

Credible intervals for sensitivity estimates were based on a beta-binomial model
using a non-informative beta prior distribution with shape parameters of 0.5.

Treatment in the LUCAS cohort. All patients were evaluated after diagnosis for
eligibility for either (1) primary surgery, (2) concomitant chemotherapy and
radiotherapy with curative intent, (3) standard palliative systemic oncological
treatment (with either chemotherapy or targeted therapy), or (4) best supportive
care—all according to the Danish national treatment guidelines for lung cancer in
2012–13, which were in concordance with the ESMO guidelines54–56.

All patients were evaluated for possible primary surgery based on TNM-stage as
well as possible co-morbidities that might prevent the possibility for anesthesia.
Patients underwent primary lung surgery for a solitary lung metastasis (two
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colorectal, one testis cancer, and one breast cancer), and a subset received post-
surgery adjuvant chemotherapy according to ESMO guidelines in 2012–2013. If
patients were not eligible for primary surgery, they were then evaluated at a multi-
disciplinary team conference for concomitant chemotherapy (platinum doublet
combined with either Vinorelbine (for NSCLC) or Etoposide (for SCLC)) and
radiotherapy (either 2 Gray in 33 fractions, 5 F/W or stereotactic radiotherapy 15
Gray in 3 fractions (for NSCLC) or 2.05 Gray in 45 fractions or 3 Gray in 10
fractions (for SCLC)) with curative intent. Patients with poor ECOG performance
status and/or significant co-morbidities were precluded from having any type of
oncological treatment and were referred for supportive care. Patients with
advanced disease at the time of diagnosis were eligible for palliative chemotherapy
and/or radiotherapy. Patients with an EGFR mutation were primarily treated with
Gefitinib in first line and Erlotinib following either Gefitinib or chemotherapy and
those with ALK-translocation were treated with crizotinib. Patients from the initial
palliative treatment cohort went on to receive second line oncological treatment
after the progression of disease (typically Pemetrexed monotherapy). Only 16
patients received additional therapy after a second line treatment, with one patient
receiving a total of seven lines of treatment. Since the cohort is from 2012 to 2013
only two patients received immunotherapy (Nivolumab) in respectively 3rd and
7th line in a CheckMate protocol.

Association of clinical covariates and survival with the DELFI score. We
performed univariate analyses comparing the distribution of the DELFI score to
baseline clinical and laboratory covariates age, smoking, and serum inflammatory
markers using a Wilcoxon rank sum test. In addition, we evaluated the relationship
of the DELFI score and cancer risk with and without baseline covariates age,
smoking, and sex using logistic regression.

To assess whether the DELFI score was associated with prognosis, we
categorized high-risk lung cancer patients according to whether they were more
likely to have cancer than not (DELFI score > 0.5). To assess whether this
categorization was associated with survival among lung cancer patients in a
univariate analysis, we used a log rank test to compare survival curves
(Supplementary Table 6). While we did not optimize the 0.5 cutoff, we verified that
inference from the log rank test was robust to other possible choices that would
achieve higher or lower specificities, including a range of DELFI score cutoffs of
0.3–0.95. In addition to the univariate analysis, we evaluated whether the DELFI
score was independently associated with cancer-specific survival in a multivariable
Cox proportional hazards model that included age, histological subtypes of primary
lung cancer, clinical staging, as well as treatment modality.

Genome-wide transcription factor analyses for prediction of histological

subtype. Gene expression values were obtained as raw counts using recount3
1.0.257 and converted to transcripts per million (TPM) using recount 1.16.1 for
SCLC (n= 79)58, lung adenocarcinoma (n= 542), and lung squamous cell carci-
noma (n= 504) generated by The Cancer Genome Atlas (TCGA), and whole blood
(n= 755) generated by the Genotype-Tissue Expression (GTEx) project. The
median TPM value was computed for 1639 transcription factors (TFs)59 in each
cancer/tissue type. We identified TFs that were unexpressed (median TPM < 1) in
lung adenocarcinoma, lung squamous cell carcinoma, and whole blood, and then
ordered them from highest to lowest expression in SCLC. The top gene was ASCL1
(median TPM= 101). We then obtained chromatin immunoprecipitation followed
by sequencing (ChIP-seq) peaks for ASCL1 (n= 13,920 peaks) (GEO Sample
accession number: GSM3704421)60. For each peak in the autosomes (n= 13,693
peaks) we defined the center of the peak as position 0 and then computed the
coverage in a ±3000 bp window around each peak separately for 125 samples with a
DELFI score of at least 0.37 (corresponding to a specificity of 85%). We excluded a
small number of peaks with an average coverage of >3 across samples. The mean of
the coverages at each position (−3000 to +3000) across all peaks was computed for
each sample. For Fig. 5c, e the relative coverage for a given sample is computed by
taking the coverage at each position in the ±3000 bp window surrounding the
ASCL1 binding sites and dividing by the maximum within that sample. The SCLC
samples are plotted separately, and the samples in the ‘Other’ group are plotted as
the median relative coverage or fragment length (black line) and the 0.05 and 0.95
quantiles of the relative coverage or fragment length at each position relative to the
ASCL1 binding sites (shaded region). For the ROC curves (Fig. 5d, f), relative
coverage was computed for each sample as the mean coverage in a ±100 bp window
surrounding the center of the ASCL1 binding sites divided by the mean coverage in
a ±250 bp window surrounding 2750 bp upstream and downstream of the binding
sites. The ROC curve was generated using pROC 1.16.261. For Fig. 5b, names of 620
ASCL1 target genes was obtained62, 600 of which had a matching gene name in our
gene expression datasets. For these 600 genes, we defined a gene as ‘Overexpressed’
in a given sample when TPM value >3 standard deviations above the mean for that
gene across all samples.

Using fragments <200 bp, the mean fragment size was computed at each
position in a ±3000 bp window surrounding the ASCL1 binding sites. For
Supplementary Fig. 10a, the SCLC samples and 10 random no baseline cancer
samples are plotted separately and smoothed using the LOESS method. For
Supplementary Fig. 10a, c the relative fragment size for a given sample is computed
by taking the average fragment size at each position in the ±3000 bp window
surrounding the ASCL1 binding sites and dividing it by the minimum within that

sample. For Supplementary Fig. 10c, the SCLC samples are plotted separately and
smoothed using the LOESS method, and the samples in the ‘Other’ group are
plotted as the median relative fragment size (black line) and the 0.05 and 0.95
quantiles of the relative fragment size at each position relative to the ASCL1
binding sites (shaded region). For ROC curves (Supplementary Fig. 10b, d), relative
fragment length was computed for each sample as the mean fragment size in a
±100 bp window surrounding the center of the ASCL1 binding sites divided by the
mean fragment size in a ±250 bp window surrounding 1250 bp upstream and
downstream of the binding sites.

Modeling of DELFI performance in a screening population. To assess the per-
formance of LDCT alone and DELFI followed by LDCT in a hypothetical screening
population of 100,000 individuals, we used Monte Carlo simulations to capture the
uncertainty of unknown parameters sensitivity, specificity, adherence, and lung
cancer prevalence. Prior models of sensitivity for LUCAS alone were centered
loosely on empirical estimates from the LUCAS and NLST cohorts:

θ1;M �

π ´Nð0:96; 0:005Þ þ ð1� πÞ ´Nð0:94; 0:02ÞM

Betað93:8; 6:2ÞM

Betað85; 15ÞM

Betað91; 9ÞM

¼ LDCTLUCAS

¼ LDCTNLST

¼ DELFI; LDCT

¼ DELFImulti; LDCT

8

>

>

>

<

>

>

>

:

ð2Þ

We sampled π � Bernoullið0:5Þ.
For specificity, prior models were

θ2;M �

Betað58; 42ÞM ¼ LDCTLUCAS

Betað93:8; 6:2ÞM ¼ LDCTNLST

Betað86; 14ÞM ¼ DELFI; LDCT

Betað94; 6ÞM ¼ DELFImulti; LDCT

8

>

>

>

<

>

>

>

:

ð3Þ

The number of individuals screened in our simulated screening study depends
on adherence to screening guidelines. Letting n denote the size of our screening
study, our sampling model for n is given by

n � Binomialð105; ηÞ ð4Þ

η � betaðan;

βnÞ

For LDCT alone, shape parameters an and βn were 12 and 1887 while for
DELFImulti followed by LDCT shape parameters were 15 and 1137. Conditional on
the size of our screening study and draws of and θ2;M from their respective prior

distributions, we sampled the disease status, y, and screening results, x, conditional
on y:

yi � BernoulliðψÞ for i ¼ 1; ¼ ; n

ψ � Betað9:1; 990:9Þ

xijfyi ¼ 1; Mg � Bernoulliðθ1;MÞ

xijfyi ¼ 0; Mg � Bernoullið1� θ2;M Þ

ð5Þ

The informative prior for prevalence, ψ, in our hypothetical population ensures
that our screening study will be comprised predominantly of individuals without
cancer, but allows the true prevalence to be smaller or larger than the estimate of
0.91% from the NLST study5. The number of patients with lung cancers detected,
accuracy, false-positive rate, and PPV were calculated from the joint distribution of
x and y. We repeated the above sampling procedure 10,000 times, thereby
obtaining predictive distributions for these statistics that reflect the uncertainty of
sensitivity, specificity, adherence, and prevalence.

Bioinformatic and statistical software. All statistical analyses were performed
using R version 3.6.1. After trimming of adapter sequences using fastp (0.20.0), we
used Bowtie2 (2.3.0) to align paired end reads to the hg19 reference genome. PCR
duplicates were removed using Sambamba (0.6.8) and the remaining aligned read
pairs were converted to a bed format using Bedtools (2.29.0). We used the R
package data.table (1.12.8) for manipulation of tabular data and binning fragments
in 5Mb windows along the genome. The R packages caret (6.0.84) and gbm (2.1.5)
were used to implement the classification by gradient boosted trees and resampling.

Statistics and reproducibility. Computer code, software versions, and the com-
puting environment for reproducing results from this study are provided as a
GitHub repository (https://github.com/cancer-genomics/reproduce_lucas_wflow).

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
Sequence data and clinical variables generated in this study have been deposited at the

database of European Genome-Phenome Archive (EGA) under accession code:

EGAS00001005340. The publicly available gene expression measurements from RNA-seq

data used in this study can be accessed using the create_rse function in version 1.0.2 of
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the recount3 R/Bioconductor package [https://bioconductor.org/packages/release/bioc/

html/recount3.html] by providing the project IDs SRP045225 (for SCLC), LUAD (for

lung adenocarcinoma samples generated by TCGA), LUSC (for squamous cell lung

cancer samples generated by TCGA), and BLOOD (for whole blood samples generated

by GTEx). The raw sequencing data for the SCLC samples used in this study is available

through the Sequence Read Archive using accession number SRP045225. Access to

primary sequencing data generated by GTEx and TCGA can be obtained through dbGaP

using accession numbers phs000424 and phs000178. The publicly available ChIP-seq

data used in this study are available in the GEO DataSets database under accession code

GSM3704421. Segmented copy number data, determined by analysis of the Affymetrix

genome-wide human SNP array 6.0, were retrieved from Broad Institute TCGA Genome

Data Analysis Center, (2016-01-28 release date, using RTCGA package, version 1.16.0).

The remaining data are available within the Article, Supplementary Information or

Source Data file.

Code availability
Scripts for reproducing tables and figures in the manuscript are available in the following

GitHub repository (https://github.com/cancer-genomics/reproduce_lucas_wflow) under

the GNU GENERAL PUBLIC LICENSE Version 3.
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