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Abstract—For intelligent systems to make best use of the audio
modality, it is important that they can recognize not just speech
and music, which have been researched as specific tasks, but also
general sounds in everyday environments. To stimulate research
in this field we conducted a public research challenge: the IEEE
Audio and Acoustic Signal Processing Technical Committee
challenge on Detection and Classification of Acoustic Scenes and
Events (DCASE). In this paper, we report on the state of the
art in automatically classifying audio scenes, and automatically
detecting and classifying audio events. We survey prior work as
well as the state of the art represented by the submissions to the
challenge from various research groups. We also provide detail
on the organization of the challenge, so that our experience as
challenge hosts may be useful to those organizing challenges in
similar domains. We created new audio datasets and baseline
systems for the challenge; these, as well as some submitted systems,
are publicly available under open licenses, to serve as benchmarks
for further research in general-purpose machine listening.
Index Terms—Audio databases, event detection, machine

intelligence, pattern recognition.

I. INTRODUCTION

E VER since advances in automatic speech recognition
(ASR) were consolidated into working industrial systems

[1], the prospect of algorithms that can describe, catalogue
and interpret all manner of sounds has seemed close at hand.
Within ASR, researchers continue to advance recognition
quality, in challenging audio conditions such as distant speech
against noisy backgrounds [2]. Elsewhere, advances in Music
Information Retrieval (MIR) have brought us systems that

Manuscript received June 26, 2014; revised November 21, 2014 and March
13, 2015; accepted April 19, 2015. Date of publication May 01, 2015; date
of current version September 15, 2015. This work was supported by the
EPSRC Leadership Fellowship EP/G007144/1, by the EPSRC Research Grant
EP/H043101/1, by ANR Houle under reference ANR-11-JS03-005-01, and by
a City University London Research Fellowship, by the EPSRC Early Career
Fellowship EP/L020505/1, and by the RAEng Research Fellowship RF/128.
The associate editor coordinating the review of this manuscript and approving
it for publication was Prof. K. Selcuk Candan.

D. Stowell and D. Giannoulis are with the Centre for Digital Music, Queen
Mary University of London, London E1 4NS, U. K. (e-mail: dan.stowell@qmul.
ac.uk).

E. Benetos was with the Department of Computer Science, City University
London, London EC1V 0HB, U.K. He is now with the Centre for Digital Music,
Queen Mary University of London, London E1 4NS, U.K.

M. Lagrange is with the ADTSI, IRCCYN, Ecole Centrale de Nantes, Nantes
44321, France.

M. D. Plumbley was with the Centre for Digital Music, Queen Mary Univer-
sity of London, London E1 4NS, U.K. He is now with the Centre for Vision,
Speech and Signal Processing, University of Surrey, Guildford GU2 7XH, U.K.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMM.2015.2428998

can transcribe the notes and chords in music [3], or identify
the track title and artist from a low-quality sound snippet [4].
However, speech and music are just two of the many types of
sound that can be heard in a typical indoor or outdoor environ-
ment. Increasingly, machines deployed in diverse environments
can hear—whether they be mobile phones, hearing aids or
autonomous robots—but can they make sense of what they
hear?

Sound is often a useful complement to modalities such as
video, carrying information not otherwise present such as
information from speech and birdsong. Sound can also be
more convenient to collect, e.g. on a mobile phone. Informa-
tion gathered from a semantic audio analysis can be useful
for further processing such as robot navigation, user alerts,
or analyzing and predicting patterns of events [5]. Beyond
listening devices, the same technologies have applications in
cataloguing/searching audio archives, whose digital collections
have grown enormously in recent decades [6]. Audio archives
often contain a rich diversity of speech, music, animal sound,
urban soundscapes, ethnographic recordings and more, yet
their accessibility currently lags behind that of text archives.

In order to stimulate research in machine listening for general
audio environments, in 2012–2013 we organized a research
challenge under the auspices of the IEEE Audio and Acoustic
Signal Processing Technical Committee: the challenge on
Detection and Classification of Acoustic Scenes and Events

(DCASE). This challenge focused on two concrete but rela-
tively general types of task that a general machine listening
system would carry out: recognizing the general environment
type (the acoustic “scene”), and detecting and classifying
events occurring within a scene.

These tasks which we describe as “machine listening”
tasks can also be considered to come under the umbrella
of computational auditory scene analysis (CASA) [7]. This
nomenclature refers back to Bregman’s influential work on
human “auditory scene analysis” capabilities [8], and thus
CASA is often taken to imply an approach which aims either
to parallel the stages of processing in human audition, and/or
to mimic the observed phenomena of human audition (which
may include illusions such as the “missing fundamental”) [7,
Chapter 1]. These human-centric aims do not directly reflect
our goal here, which is to develop systems that can extract
semantic information about the environment around them
from audio data.

The purpose of this paper is to give a complete description
of the challenge, for two purposes: firstly to acquaint the reader
with the state of the art in machine listening, and secondly to
provide guidance and lessons learnt for the benefit of people
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running research challenges in future. In the following, we first
give some research background in the topic, and previous chal-
lenges that have been conducted in neighboring areas. Then
we give detail on the experimental design of the tasks we de-
signed, the approach to evaluation, and the data which we col-
lected for the tasks. We also consider some practicalities in the
conduct of the challenge. In Section V we give the results of
each task in the challenge, results which were first presented
at the IEEE WASPAA 2013 conference [9]. We discuss issues
emerging from the results such as the level of task difficulty,
and in particular we compare the “live” and “synthetic” vari-
ants of our event detection challenge. Finally we consider the
outlook for machine listening in light of the challenge: the state
of the art, future directions indicated, and the contribution that
this challenge has made. We also reflect on the organizational
structure of this and other challenges, in relation to issues such
as reproducibility and sustainability.

II. BACKGROUND

In this section we will briefly overview the tasks of acoustic
scene classification and detection of sound events within a
scene, both of which have been studied in recent literature.
We discuss their relation to other machine listening tasks,
and outline standard approaches taken. We will then discuss
recent evaluation campaigns in machine listening, which set
the context for our own campaign.

Acoustic scene classification aims to characterize the
acoustic environment of an audio stream by selecting
a semantic label for it [10]. It can be considered as a
machine-learning task within the widespread single-label
classification paradigm, in which a set of class labels is
provided and the system must select exactly one for any
given input [11, Chapter 1]. It therefore has parallels with
audio classification tasks such as music genre recognition
[12] or speaker recognition [13], and with classification tasks
in other time-based media such as video. When classifying
time-based media, a key issue is how to analyze tempo-
rally-structured data to produce a single label representing the
media object overall. There are two main strategies found in
the literature. One is to use a set of low-level features under a
“bag-of-frames” approach, which treats the scene as a single
object and aims at representing it as the long-term statistical
distribution of some set of local spectral features. Prevailing
among different features for the approach is the Mel-fre-
quency Cepstral Coefficients (MFCCs) that have been found
to perform quite well [10]. Foote [14] is an early example,
comparing MFCC distributions via vector quantisation. Since
then, the standard approach to compare distributions is by
constructing a Gaussian Mixture Model (GMM) for each
instance or for each class [10]. The other strategy is to
use an intermediate representation prior to classification
that models the scene using a set of higher level features
that are usually captured by a vocabulary or dictionary of
“acoustic atoms”. These atoms usually represent acoustic
events or streams within the scene which are not necessarily
known a priori and therefore are learned in an unsupervised
manner from the data. Sparsity or other constraints can be
adopted to lead to more discriminative representations that

subsequently ease the classification process. An example
is the use of non-negative matrix factorization (NMF) to
extract bases that are subsequently converted into MFCCs for
compactness and used to classify a dataset of train station
scenes [15]. Building upon this approach, the authors in [16]
used shift-invariant probabilistic latent component analysis
(SIPLCA) with temporal constrains via hidden Markov
models (HMMs) that led to improvement in performance.
In [17] a system is proposed that uses the matching pursuit
algorithm to obtain an effective time-frequency feature se-
lection that are afterwards used as supplement to MFCCs to
perform environmental sound classification.

The goal of acoustic event detection is to label temporal re-
gions within an audio recording, resulting in a symbolic de-
scription such that each annotation gives the start time, end time
and label for a single instance of a specific event type. It is re-
lated in spirit to automatic music transcription [3], and also to
speaker diarization, which similarly recovers a structured anno-
tation of time segments but focusses on speech “turns” rather
than individual events [18]. The majority of work in event de-
tection treats the sound signal as monophonic, with only one
event detectable at a time [19], [20]. In general audio scenes,
events may well co-occur, and so polyphonic event detection
(allowing for overlapping event regions) is desirable. However,
salient events may occur relatively sparsely and there is value
even in monophonic detection. There has been some work on
extending systems to polyphonic detection [21]. Event detec-
tion is perhaps a more demanding task than scene classifica-
tion, but at the same time heavily intertwined. For example, in-
formation from scene classification can provide supplementary
contextual information for event detection [22]. Many proposed
approaches can be found in the literature among which spectro-
gram factorization techniques tend to be a regular choice. In [23]
a probabilistic latent semantic analysis (PLSA) system, a closely
related approach to NMF, was proposed to detect overlapping
sound events. In [20] a convolutive NMF algorithm applied on
a Mel-frequency spectrum was tested on detecting non-over-
lapping sound events. Finally, a number of proposed systems
focus on the detection and classification of specific sound events
from environmental audio scenes such as speech [24], bird-
song [25], musical instrument and other harmonic sounds [26],
pornographic sounds [27] or hazardous events [28].

The issue of polyphony is pertinent to both of the above tasks,
since audio scenes are polyphonic (multi-source) in general. As
with music, it is possible to perform some analysis on the audio
signal as a whole without considering polyphony, though it is
likely that some benefit can be obtained from considering the
component sources that make up the signal. Such a compo-
nent-wise analysis is analogous to the auditory streaming that
occurs in Bregman’s model of human audition [8]. In speech
recognition applications it can often be assumed that there is
one dominant source that should be the focus for analysis [24],
but this is not the case for general audio scenes. One strategy
to handle polyphonic signals is to perform audio source separa-
tion, and then to analyze the resulting signals individually [29],
[21]. However, note that the computational equivalent of au-
ditory streaming does not necessarily require a reconstruction
of the individual audio signals—Bregman does not claim that
human listeners do this—but could work with some mid-level
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representation such as a multisource probabilistic model [30].
Source-separation for general-purpose audio is still a long way
from being a solved problem [31]. For example, the evaluation
used in recent challenges for “speech recognition in multisource
environments” did not require submitted algorithms to perform
audio source-separation: evaluation was performed on speech
transcription output. Submitted algorithms generally did not in-
volve a source-separation step, many used spatial or spectral
noise suppression in order to focus on one source rather than
separating all sources [32].

In machine listening, public evaluation and benchmarking
of systems serves a valuable role. It enables objective com-
parison among various proposed systems, and can also be
used for studying performance improvements throughout the
years. Many such challenges have been centred on speech. For
example, the DARPA EARS Rich Transcription evaluations
(2002–2009) focussed on speaker-diarization tasks, applied to
broadcast news as well as recordings of meetings [18]. The
MIREX challenges (2005–present) evaluated MIR systems for
their performance on specific musical tasks such as melody
transcription or rhythm tracking [33]. The SiSEC challenges
(2007–present) focussed on audio source separation algorithms,
both for speech mixtures and for music [31]. The CHiME
challenges (2011, 2013) focussed on speech recognition in
noisy multi-source sound environments [2]. None of the afore-
mentioned challenges directly relates to the general-purpose
machine listening tasks we consider here. Some of them use
broadly similar task outlines (e.g. classification, diarization),
but often use domain-specific evaluation measures (e.g. speech
transcription accuracy, audio separation quality). They also
attract contributions specialised to the particular audio domain.

For the present purposes, the most closely-related chal-
lenge took place in 2006 and 2007, as part of the CLEAR
evaluations conducted during the CHIL project [34]. Several
tasks on audio-only, video-only or multimodal tracking and
event detection were proposed, among them an evaluation on
“Acoustic Event Detection and Classification”. The datasets
were recorded during several interactive seminars and contain
events related to seminars (speech, applause, chair moving, etc).
From the datasets created for the evaluations, the “FBK-Irst
database of isolated meeting-room acoustic events” has widely
been used in the event detection literature; however, the afore-
mentioned dataset contains only non-overlapping events. The
CLEAR evaluations, although promising and innovative at the
time, were discontinued with the end of the CHIL project.

One further related challenge in audiovisual research is
TRECVID Multimedia Event Detection, where the focus is on
audiovisual, multi-modal event detection in video recordings
[35]. Some researchers have used the audio extracted from the
audiovisual TRECVID data in order to evaluate their systems;
however a dataset explicitly developed for audio challenges
would offer a much better evaluation framework since it would
be much more varied with respect to audio.

III. THE CHALLENGE

In the present section we describe the evaluation design for
our challenge tasks. Before this, we describe the requirements
gathering process that we conducted, and the considerations that
fed into our final designs.

A. Requirements Gathering

As described above, the tasks considered in this challenge
relate to those explored in previous experimental studies, and
to some degree to those explored in previous evaluation cam-
paigns. There is therefore a body of literature from which to
draw potential task designs. Importantly, however, the task de-
signs were developed through a period of community discus-
sion, primarily via a public email list. This was crucial to en-
sure that the designs had broad relevance to current research,
and did not unfairly penalise potential participants. An example
of the latter is in the choice of evaluation measures for event
detection: there was a debate about which evaluation measures
were most appropriate, as well as issues such as the appropriate
level of granularity in framewise evaluation. It was this discus-
sion that led to the decision to report three different evaluation
measures for event detection (see Section III-C3). Other issues
discussed included annotation data formats, the nature of syn-
thetic sequences, and the use of other existing datasets.

Our motivation was to design challenge tasks to reflect useful
general-purpose inferences that could be made in an everyday
audio environment, pertinent to a broad range of machine lis-
tening applications. Our focus was on everyday sounds beyond
speech and music, since the latter are already well-studied. We
also wished to design tasks for which performance could be im-
proved without necessarily being overly reliant on other pro-
cessing components such as high-quality source separation or
ASR. We decided to design challenge tasks separately for scene
classification and for event detection and classification, using
data relating to urban and office environments.

Many applications of machine listening relate to processing
embodied in a fixed hardware setup, such as a mobile phone or a
robot. This differs from applications such as audio archive anal-
ysis, for which a system must be robust to signal modifications
induced by variation of microphones and preprocessing across
the dataset [36]. For embodied machine listening, aspects such
as the microphone frequency response will be constant factors
rather than random factors. We chose to design our tasks each
with a fixed configuration of recording equipment.

One pertinent question was whether existing data could be
used for our evaluation, or whether it would be important to
create new datasets. Previous studies have used relatively small
datasets; further, some of these are not publicly available. Alter-
natively, online archives such as Freesound hold a large amount
of soundscape data.1 However, these vary widely in recording
conditions, recording quality and file format [6], [37], and so
were unsuitable for our experimental aim to evaluate systems
run with consistent audio front-end. Thus it was important to
make new recordings. This gave us various advantages: as well
as allowing us to control conditions such as the balance of sound
types, it also meant that we were able to create private testing
data unseen by all participants, to ensure that there was no in-
advertent overfitting to the particulars of the task data. Con-
versely, it meant we could release the public data under a liberal
open-content license, as a resource for the research community
even beyond our immediate focus.

Given that everyday sound environments are poly-
phonic—multiple sound events can occur at the same

1[Online]. Available: http://freesound.org/
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time—with varying degrees of density, and given that gen-
eral audio source separation is still a difficult problem, it
was important to design event detection task(s) so that we
could explore the effect of polyphony on event detection
systems. Such systems might be designed with a simplifying
monophonic assumption; with source separation used to feed
multiple monophonic analyses; or with full polyphonic in-
ference. There is little data available to suggest how these
different strategies perform as the event density varies. In order
to have experimental control over the event density, we chose
two parallel approaches to creating event detection audio data.
In one, we made live recordings of scripted monophonic event
sequences in controlled environments. In the other, we made
live recordings of individual events, and synthetically com-
bined these (along with ambient background recordings) into
synthetic mixtures with parametrically controlled polyphony.
We describe these approaches further in Section III-C.

In December 2012 we conducted a survey of potential partic-
ipants to characterise their preferred software platforms. This
indicated that most participants wished to use Matlab, Python,
R or C/C++ to create their submissions. However, all of these
frameworks come in multiple versions across multiple oper-
ating systems, and it can be difficult to ensure that code run-
ning on one system will run correctly on another. To minimise
the risk of such issues, we created and published a Linux virtual
machine which participants could use during development, and
which would also be the environment used to run the submis-
sion evaluations. For this we used VirtualBox software which
runs on all common operating systems, together with a disk
image based on Xubuntu 12.10 Linux.2 The disk image was
augmented by adding the public datasets into the home folder,
and also by installing Python, R and C/C++, as well as some
common audio-processing toolboxes for each environment. The
resulting disk image is available online from our research repos-
itory.3 Due to software licensing constraints we could not in-
clude Matlab in the disk image, and so we handled Matlab-based
submissions separately from the virtual machine.

We next describe the finalised design and data collection for
the scene classification task, and for the event detection tasks.

B. Scene Classification Task (SC)

Acoustic scene classification can be considered as a single-
label classification task (see Section II). Alternative designs are
possible, such as classification with hierarchical labels [38], un-
supervised clustering of audio scenes, or multi-label “auto-tag-
ging” [39]. However, single-label classification is the design
most commonly seen in prior literature in acoustic scene recog-
nition [14]–[17], [10], and also lends itself to clear evaluation
measures. We therefore designed the SC task as a train/test clas-
sification task, of similar design to previous audio classification
evaluations [33].

We created datasets across a pre-selected list of scene types,
representing an equal balance of indoor/outdoor scenes in the
London area: bus, busystreet, office, openairmarket, park, qui-
etstreet, restaurant, supermarket, tube, tubestation. The limita-
tion to the London area was a pragmatic choice, known to par-

2[Online]. Available: http://virtualbox.org/, http://xubuntu.org/
3[Online]. Available: http://c4dm.eecs.qmul.ac.uk/rdr/handle/123456789/32

ticipants. We made sure to sample across a wide range of cen-
tral and outer London locations, in order to maximise generaliz-
ability given practical constraints. To enable participants to fur-
ther explore whether machine recognition could benefit from the
stereo field information available to human listeners [7, Chapter
5], we recorded in binaural stereo format using Soundman OKM
II in-ear microphones.

For each scene type, three different recordists (DG, DS, EB)
visited a wide variety of locations in Greater London over a pe-
riod of months (Summer and Autumn 2012), and in each scene
recorded a few minutes of audio. We ensured that no systematic
variations in the recordings covaried with scene type: all record-
ings were made in moderate weather conditions, and varying
times of day, week and year, and each recordist recorded each
scene type.

We then reviewed the recordings to select 30-second seg-
ments that were free of issues such as mobile phone interfer-
ence or microphone handling noise (totalling around 50% of the
recorded duration), and collated these segments into two sep-
arate datasets: one for public release, and one private set for
evaluating submissions. The duration of 30 seconds is compa-
rable with that of other datasets in this topic, and was judged to
be long enough to contain sufficient information in principle to
distinguish the classes. The segments are stored as 30-second
WAV files (16 bit, stereo, 44.1 kHz), with scene labels given
in the filenames. Each dataset contains 10 examples each from
10 scene types, totalling 50 minutes of audio per dataset. The
public dataset is published online under a Creative Commons
CC-BY licence.4

For the SC task, systems were evaluated with 5-fold stratified
cross validation. Our datasets were constructed to contain a bal-
ance of class labels, and so classification accuracy was an appro-
priate evaluation measure [40]. The raw classification (identifi-
cation) accuracy and standard deviation were computed for each
algorithm, as well as a confusion matrix so that algorithm perfor-
mance could be inspected in more detail.
1) Baseline System for Scene Classification: The “bag-of-

frames” approach to audio classification (see
Section II) is relatively simple, and has been criticized for the
assumptions it incurs [41]. However, it is quite widely appli-
cable in a variety of audio classification tasks. Aucouturier and
Pachet [10] specifically claim that the approach
is sufficient for recognizing urban soundscapes but not for poly-
phonic music (due to the importance of temporal structure in
music). It has been widely used for scene classification among
other recognition tasks, and has served as a basis for further
modifications [17]. The model is therefore an ideal baseline for
the Scene Classification task.

Code for the bag-of-frames model has previously been
made available for Matlab.5 However, for maximum repro-
ducibility we wished to provide simple and readable code in a
widely-used programming language. The Python language is
very widely used, freely available on all common platforms,
and is notable for its emphasis on producing code that is read-
able by others. Hence we created a Python script embodying
the classification workflow, publicly available

4[Online]. Available: http://c4dm.eecs.qmul.ac.uk/rdr/handle/123456789/29
5[Online]. Available: http://www.jj-aucouturier.info/projects/mir/boflib.zip
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under an open-source licence,6 and designed for simplicity and
ease of adaptation [42].

C. Event Detection Tasks (OL, OS)

For the Event Detection tasks, we addressed the problem of
detecting acoustic scenes in an office environment, making use
of existing office infrastructure within Queen Mary University
of London, and also providing a continuation of the CLEAR
evaluations [43], which also addressed the task of event detec-
tion in an office environment. In order to encourage wide partic-
ipation, and also to explore the challenge of polyphonic audio
scenes, we designed two subtasks: event detection of non-over-
lapping sounds (Event Detection - Office Live) and event detec-
tion of overlapping sounds (Event Detection - Office Synthetic).
In both cases, systems are required to detect predominant events
in the presence of background noise.
1) Recorded Dataset (OL): After a consultation period with

members of the acoustic signal processing community, for the
Event Detection - Office Live (OL) task we created recordings
of office scenes, consisting of the following 16 classes: door
knock, door slam, speech, laughter, clearing throat, coughing,

drawer, printer, keyboard click, mouse click, object (pen, pencil,

marker) on table surface, switch, keys (put on table), phone

ringing, short alert (beep) sound, page turning.
Recordings were made in a number of office environments

at Queen Mary University of London, using rooms of different
size and with varying noise level or number of people in the
room. We created three datasets: a training, a development, and
a test dataset. Training recordings consisted of instantiations of
individual events for every class. The development (validation)
and test datasets consist of roughly 1 min long recordings of
scripted every-day audio events. Scripts were created by random
ordering of event types; we recruited a variety of participants to
perform the scripts. For each script, multiple takes were used,
and we selected the best take as the one having the least amount
of unscripted background interference. Overall, the OL training
dataset includes 24 recordings of individual sounds per class;
the development dataset includes 3 recordings of scripted se-
quences; and the test set consists of 11 scripted recordings (the
recording environments in the development and test datasets are
non- overlapping).

Regarding equipment, recordings were made using a Sound-
field microphone system, model SPS422B, able to capture
4-channel sound in B-format. The 4-channel recordings were
converted to stereo (using the common “Blumlein pair” config-
uration). B-format recordings were stored along with the stereo
recordings, with scope for future challenges to be extended to
full B-format and take into account spatial information.

Given the inherent ambiguity in the annotation process (espe-
cially for annotating offsets), we created two sets of annotations.
Annotators were trained to use Sonic Visualiser7 to use a com-
bination of listening and inspecting waveforms/spectrograms to
refine the onsets and offsets of each sound event. We then exam-
ined the two annotations per recording for consistency, and per-
formed evaluations using an average of both annotations. The

6[Online]. Available: http://code.soundsoftware.ac.uk/projects/smacpy
7[Online]. Available: http://sonicvisualiser.org/

OL training dataset8 and the development dataset,9 both con-
sisting of B-format recordings, stereo recordings, and annota-
tions, were released under a Creative Commons license.
2) Synthetic Dataset (OS): We also decided that this chal-

lenge presented a good opportunity to study the relevance of
considering artificial scenes built from a set of isolated events
different from those of the training corpus. Though we admit
that it is important to evaluate machine listening systems using
real audio recordings, the potential gains from using artificial
scenes as part of evaluation are numerous: ease of annotation,
ability to generate many scenes with similar properties in order
to gain better statistical significance, control of the complexity
in terms of events overlap, strength of the background, etc. This
will potentially help the designers of machine listening systems
to better understand the behavior of those systems.

As in other domains, using synthetic data may lead to biased
conclusions. It is for example well known that Independent
Component Analysis (ICA) approaches in microphone arrays
perform really well in separating the different sources within
an additive non-convolutive mixtures because the input signal
follows directly the mixture model assumed by those ap-
proaches. Special care was therefore taken in order to minimize
the amount of artificial regularity induced by the generating
system that could provide unrealistic benefits to some evaluated
machine listening systems.

The scene synthesizer we considered here is able to create a
large set of acoustic scenes from many recorded instances of in-
dividual events. The synthetic scenes are generated by randomly
selecting, for each occurrence of each event we wish to include,
one representative excerpt from the natural scenes, then mixing
all those samples over a natural texture-like background with no
distinctive sound events. The distribution of events in the scene
is also random, following high-level directives that specify the
desired density of events. The average Signal to Noise Ratio
(SNR) of events over the background texture is also specified
and is the same for all event types, unlike in the OL scenes.
This is a deliberate decision taken to avoid issues with the an-
notation of potentially non perceptible events drowned in the
background. In order to avoid issues with artificial spatializa-
tion, the recordings of individual events were mixed down to
mono as an initial step.

The resulting development and testing datasets consist of 12
synthetic mono sequences with varying durations, with accom-
panying ground-truth annotations. Three subsets were generated
with increasing levels of complexity in terms of event density:
4 recordings have a ‘low’ event density10 of 1.11, 4 recordings
have a ‘medium’ event density of 1.27, and 4 recordings have
a ‘high’ event density of 1.81. Three SNR levels of events over
the background texture were used: dB, 0 dB, and 6 dB.
3) Metrics: Following consultation with acoustic signal

processing researchers, three types of evaluations were
used for the OL and OS event detection tasks, namely
frame-based, event-based, and class-wise event-based evalu-
ations. Frame-based evaluation was performed using a 10 ms

8[Online]. Available: http://c4dm.eecs.qmul.ac.uk/rdr/handle/123456789/28
9[Online]. Available: http://c4dm.eecs.qmul.ac.uk/rdr/handle/123456789/30
10The average event density is calculated using 10 ms steps, using only time

frames where events are present. For the OL set, the event density for each
recording is by definition 1, because by design events did not overlap.
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step and metrics were averaged over the duration of the
recording. The main metric used for the frame-based evaluation
was the acoustic event error rate (AEER) used in the CLEAR
evaluations [43]

(1)

where is the number of events to detect for that specific frame,
is the number of deletions (missing events), is the number

of insertions (extra events), and is the number of event substi-
tutions, defined as . Additional metrics include
the Precision, Recall, and F-measure (P-R-F). By denoting as
, , and the number of ground truth, estimated and correct

events for a given 10 ms frame, the aforementioned metrics are
defined as

(2)

For the event-based metrics, two types of evaluations took
place, an onset-only and an onset-offset-based evaluation. For
the onset-only evaluation, each event was considered to be
correctly detected if the onset was within a 100 ms tolerance.
This tolerance value was agreed during the community discus-
sion via the challenge mailing list. It was argued that having
a tolerance smaller than 100 ms would lead to poor results
particularly in the case of ill-defined onsets and offsets for
non-percussive events For the onset-offset evaluation, each
event was correctly detected if its onset was within a 100 ms
tolerance and its offset was within 50% range of the ground
truth event’s offset w.r.t. the duration of the event. Duplicate
events were counted as false alarms. The AEER and P-R-F
metrics for both the onset-only and the onset-offset cases were
utilized.

Finally, in order to ensure that repetitive events did not domi-
nate the evaluation of an algorithm, class-wise event-based eval-
uations were also performed. Compared with the event-based
evaluation, the AEER and P-R-F metrics are computed for each
class separately within a recording and then averaged across
classes. For example, the class-wise F-measure is defined as

(3)

where is the F-measure for events of class . Matlab code
for the metrics can be found online.11

4) Baseline System: We created a baseline system for both
event detection tasks based on the non-negative matrix factor-
ization (NMF) framework. NMF has been shown to be useful
for modelling the underlying spectral characteristics of sources
hidden in an acoustic scene [23], and can also support overlap-
ping events, making it suitable for both the OL and OS tasks. We
chose to design a supervised method for event detection, using
a pre-trained dictionary of acoustic events [42].

The baseline method is based on NMF using the Kullback-
Leibler divergence as a cost function [44]. As a time-frequency
representation, we used the constant-Q transform with a log-fre-
quency resolution of 60 bins per octave [45]. The training data
is normalized to unity variance and NMF is used to learn a

11[Online]. Available: https://code.soundsoftware.ac.uk/projects/aasp-d-
case-metrics

set of bases for each class. The numbers of bases tested is
5,8,10,12,15,20 and , the latter corresponding to learning in-
dividually one basis per training sample, for all 20 samples.
Putting together the sets for all classes, we built a fixed dic-
tionary of bases used subsequently to factorize the normalized
input test data.

Formally, if we denote as the constant-Q spectro-
gram of a test recording ( : number of log-frequency bins; :
number of time frames), the pre-extracted dictio-
nary and , the NMF model attempts to approximate

as a product of and . In the supervised case (when
is known and kept fixed), this involves simply estimating it-
eratively until convergence using the following multiplicative
update, ensuring a non-increasing divergence between and

[44]

(4)

In order to detect sound events, we sum together the (non-bi-
nary) activations per class obtained from . Finally, a threshold

is chosen to binarize the real-valued activations per class (i.e.
for each row of ), in order to yield a sequence of estimated
overlapped events. The value of is the same for all event
classes; the optimal and values were chosen empirically by
maximizing the -measure for the two annotations on the devel-
opment set. Smoothing on the activations was also tested with
no clear improvements. The baseline event detection system
was made available to challenge participants under an open-
source license.12

D. Challenge organization

The full timeline for the challenge organization is given in
Table I. Some of the items included of the timeline will be ob-
vious to an outside observer. However there are some aspects
of the timeline and the workload which we believe merit em-
phasis, listed as follows.

• There were two periods which required the most time com-
mitment from the organizing team: creating the datasets,
and running the code submissions. In particular, as has
been remarked by organizers of related challenges [33], no
matter how many precautions are taken to ensure people
submit code that will run on the organizers’ hardware
(formal specifications, published virtual machine), it often
requires many person-hours of attention before submitted
code will run properly. This will be discussed further
below. Recording the datasets also took significant time:
this was not just the audio recording itself, but also the
supervision of annotators, and the listening sessions and
manual inspection to ensure data quality.

• We found it extremely useful to ask people to let us know of
their intentions, in order to help us plan. In December 2012
we surveyed the community for indicative data about the
level of interest in task participation, as well as the prefer-
ences for programming languages and operating systems.
This information fed directly into our design of a Linux vir-
tual machine for people to test their code. Then in March
2013 we asked participants to email us announcing their

12[Online]. Available: http://code.soundsoftware.ac.uk/projects/d-case-event
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TABLE I
TIMELINE OF DCASE CHALLENGE ORGANIZATION. THE TIMELINE IS DIVIDED INTO MAIN PHASES, AND MILESTONES ARE HIGHLIGHTED

intentions to take part (with no commitment implied). This
enabled us to plan resources, and to follow up on expected
submissions that went astray. We received 20 notifications
of intention to submit, some corresponding to multiple task
submissions; of these only three did not eventually submit.

• One aspect of the timeline that could have been improved
was the long wait between collating the results and re-
leasing them publicly. It meant that participants could not
compare and contrast results while their systems were
“fresh in their minds”. However, this was due to our
decision to co-ordinate with WASPAA 2013, which was
an ideal forum for discussion of the challenge outcomes.

Regarding the execution of code submissions, our publication
of a virtual machine as a standard platform certainly reduced the
number of compatibility issues we had to deal with. However,
there remained various software issues we encountered when
running the code submissions, listed as follows.

• A frequent issue in Matlab submissions was opening the
training annotation text files (for reading) using mode ‘ ’
(which is for reading andwriting). This fails when files are
read-only. We had set the test data as read-only, and in the
specification we had stated that submissions must not write
data in the test folder.

• One submission had been developed using Matlab on Win-
dows; when we ran it using the same version of Matlab,
but on Linux, it got rather poor results, which we initially
attributed to overfitting. It later emerged that the poor per-
formance was because a Matlab toolbox exhibited a bug
only when running on Linux.

• On the virtual machine, there were occasional problems
with version mismatch between Dynamic Link Libraries
(DLLs). Such issues were reduced but not completely elim-
inated with the use of the virtual machine, often because
participants did not fully test using the virtual machine, or
occasionally added late modifications after testing.

• One submission output space-separated results rather than
tab-separated. This was contrary to the published specifi-
cations but easy to miss in manual checking.

• Some submissions contained subtle bugs in data parsing.
One submission accidentally ignored the last line of every
text file it read, meaning that it output 19 decisions for each
testing fold rather than 20. This wasn’t detected early on
(because the output was correctly-formatted and could be
scored), but only at the point where an overall confusion
matrix was compiled. A different submission involved a
script which parsed the text output from an executable.
When the script failed to parse the text, it always decided
on the last class in the list–failure was only detected in the
large number of “tubestation” outputs.

Some of these issues (e.g. the data format issues) could have
been prevented by providing unit tests which participants must
pass before submitting.

Earlier in the process, we also encountered a data issue: after
we published the development datasets, a community member
on the mailing list alerted us to a formatting error in some of the
annotations (the text label doorknock was used in some places
rather than the official label knock). Such issues occur despite
the multiple steps of checking we performed before release. We
updated the dataset to correct the issue, re-released it and con-
firmed this to the participants.

We required each submitted system to be accompanied by
an extended abstract describing the system. We experienced no
issues in publishing these abstracts; however in future evalua-
tions we would consider explicit open-access licensing of the
abstracts for greater clarity.

IV. SUBMITTED SYSTEMS

Overall, 11 systems were submitted to the scene classification
(SC) task, 7 systems were submitted to the office live (OL) event
detection task, and 3 systems to the office synthetic (OS) event
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TABLE II
SUMMARY OF SUBMITTED SCENE CLASSIFICATION SYSTEMS

TABLE III
SUMMARY OF SUBMITTED EVENT DETECTION SYSTEMS

Fig. 1. Schematic of event detection systems (nodes with a * are not systematically used). Below, state-of-the-art design choices are given as examples.

detection task. Variants for each system were allowed, which
increased the total number of systems somewhat.

The systems submitted for the scene classification task are
listed in Table II, along with a short description of each system.
Citations are to the extended abstracts giving further technical
details about each submission. The methods for scene classi-
fication are discussed further in a tutorial article [64], while in
Section V-A we will expand on some aspects of scene classifica-
tion methods when considering which approaches led to strong
performance.

The systems submitted for the event detection tasks are listed
in Table III, along with a short description of each system.
Citations are to the extended abstracts giving further technical
details about each submission. Fig. 1 shows the processing
chain adopted by the submitted algorithms. The main pro-
cessing nodes are the feature computation and the classification

for which a variety of implementations are considered. Option-
ally, the audio data can be pre-processed for example to reduce
the influence of background noise, and the decisions given by
the classifiers can be smoothed to reduce unrealistic transitions
between events.

The system designs for each submission are now described.
• CPS: The CPS submission follows a scheme that combines

segmentation, feature extraction, and classification. Firstly,
various frequency-based and time-based features are ex-
tracted. The audio stream is subsequently segmented using
a speech segmenter that uses energy-based features. Each
segment is then assigned to a class using a generalised like-
lihood ratio test classifier.

• DHV: The DHV submission was created for both the
OL and OS tasks. It follows a generative classification
scheme using HMMs with multiple Viterbi passes. Firstly,
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Fig. 2. Mean values and confidence intervals of the accuracy of methods for SC evaluated on the DCASE private dataset using stratified 5-fold cross-validation.
The boxes enclose methods that cannot be judged to perform differently with a significance level of 95% using a sign test [65]. For example, GSR baseline, but
we cannot confirm that CHR baseline. Figure is adapted from [64].

MFCCs are extracted as features, and used as input to
continuous-density HMMs (each state corresponds to
an event class, including background noise). Polyphonic
detection is achieved by performing consecutive passes of
the Viterbi algorithm.

• GVV: The GVV submission uses a dictionary-based model
using NMF. Firstly, a dictionary is created using samples
from training set (called exemplars), using mel-magnitude
spectrograms as time-frequency representations. The input
spectrogram is projected onto the dictionary using NMF
using the Kullback-Leibler divergence. The resulting event
probability estimates are post-processed using an HMM
containing a single state per event.

• NVM: The NVM submission follows a two-step classifi-
cation scheme. At the first step, a large variety of audio
features that capture temporal, spectral or auto-correla-
tion properties of the signal are fed to two classifiers: a
two-layer HMM and a random forest classifier. Another
HMM is then used to combine the predictions.

• NR2: The NR2 submission follows a discriminative clas-
sification scheme implemented with support vector ma-
chines (SVMs). The classifier is fed with MFCCs that are
computed using either the original signal or a noise-re-
duced one. The decisions coming from the classified ver-
sions are then combined and smoothed to reduce short tran-
sitions.

• SCS: The SCS submission follows a generative classifica-
tion scheme with a 2-layer HMM decoding. The classi-
fier is fed with 2 dimensional Gabor features (Time / Fre-
quency) that allows percussive events to be nicely mod-
elled. Before feature computation, the audio signal is en-
hanced using a noise suppression scheme that estimate the
noise power spectral density and remove it in the spectral
domain.

• VVK: The VVK submission follows a generative classifica-
tion scheme with a GMM decoding. GMM models for each
class of events and the background are first trained with
MFCCs. The event models are next re-estimated in order to
reduce the impact of background frames on the model like-
lihoods. At decoding the likelihoods are smoothed using a

moving average filter and thresholded to produce the pre-
diction.

• Baseline: A detailed description of the Baseline system is
given in Section III-C.

V. RESULTS

A. SC Results

Fig. 2 shows the overall performance of submitted systems
for the scene classification task. The baseline system achieved
an accuracy of 55%; most systems were able to improve on this,
although our significance tests were able to demonstrate a sig-
nificant improvement over baseline only for the strongest four
systems. The results indicate that level of difficulty for the task
was appropriate: the leading systems were able to improve sig-
nificantly upon the baseline, yet the task was far from trivial for
any of the submitted systems. Also, the sizes of the error bars
indicate that performance across the five folds was broadly con-
sistent, indicating that the dataset was not overly heterogeneous.
However, the statistical tests did not demonstrate significant dif-
ferences between various systems (depicted by the large overlap
of boxes in Fig. 2), which implies that a larger dataset may have
enabled a more fine-grained ranking of systems. The results for
this SC task are further analyzed in a tutorial article [64]. For
that reason, here we discuss briefly the state of the art reflected
in the SC task outcomes, allowing us to expand further on the
OL/OS task outcomes in the next section.

The majority of the submitted systems used discriminative
training, with many of the strong performers using an SVM
as the final classifier. Further, most of the leading results were
obtained by those who captured medium-range temporal infor-
mation in the features used for classification. Four of the five
highest-scoring systems did this: Roma et al. [56] captured tem-
poral repetition and similarity using “recurrence quantification
analysis”; Rakotomamonjy and Gasso [55] used gradient fea-
tures from image-processing; Geiger et al. [48] extracted fea-
tures from linear regression over time; Chum et al. [46] trained
a HMM. Each of these is a generic statistical model for temporal
evolution, whose fitted parameters can then be used as features
for classification.
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TABLE IV
AGGREGATE CONFUSION MATRIX FOR SCENE CLASSIFICATION ACROSS

ALL SUBMISSIONS. ROWS ARE GROUND TRUTH, COLUMNS THE
INFERRED LABELS. VALUES ARE EXPRESSED AS PERCENTAGES

ROUNDED TO THE NEAREST INTEGER

From the perspective of CASA, it is notable that none of
the submitted systems used any kind of decomposition of each
audio scene into auditory streams. We suggest that this is not due
to any inherent difficulty in decomposing audio scenes, since
automatic classification does not require “listening-quality” out-
puts from such preprocessing. Instead it seems likely that it is
more difficult to design a classification workflow that makes
use of structured scene analysis outputs, whose data may for
example be sets of labelled intervals rather than time-series sta-
tistics. Two submissions made use of event detection as part of
preprocessing, which does yield a structured parse of the audio
scene [51], [52]. Those authors then used summary statistics
from the density/strength of event detections as features. We
propose that further refinement and development of this strategy
may be a fruitful area for future work, perhaps via more sophis-
ticated temporal summary statistics such as those noted above.

Also notable is that the submissions with the more per-
ceptually-motivated features—auditory spectrogram [54] and
cochleogram [49]—did not lead to the strongest results. Nor
did the unsupervised feature learning of [51]. The various ways
to approach audio feature design—perceptual, acoustic, statis-
tical—each have their merits. Based on the present evaluation,
we note only that the more sophisticated audio features did not
yield a decisive advantage over simpler features.

We tested a simple majority-vote classifier from the pool of
SC submissions, constructed by assigning to an audio recording
the label that was most commonly returned by other methods.
This attained a strong result, indicated as “MV” in the figure:
77% accuracy, slightly better than the leading individual sub-
mission. The strong performance of this meta-classifier is par-
ticularly notable given its simplicity—all systems are combined
with equal weights. It suggests that for around 77% of sound-
scapes some algorithms make a correct decision, and the algo-
rithms that make an incorrect classification do not all agree on
one particular incorrect label. This allows to combine the de-
cisions into a relatively robust meta-classifier. (Note that we
did not test for significance of the comparison between MV and
the other results, because the MV output is not independent of
the output of the individual submissions.) More sophisticated
meta-classifiers could perhaps extend this performance further.

Table IVshows a confusion matrix for the scene labels as
round percentages of the sum of all confusion matrices for all
submissions. Confusions were mostly concentrated over classes
that share some acoustical properties such as park/quietstreet

and tube/tubestation. Our labels contained five indoor and five
outdoor locations, and both types showed a similar level of dif-
ficulty for the algorithms.

B. OL/OS Results

Results for the event detection OL and OS tasks are summa-
rized in Tables V and VI, respectively.13 The baseline was out-
performed by most systems for both tasks. Results for the OL
task indicate the high level of difficulty in recognising sound
events (from many possible classes, with great variability) from
noisy acoustic scenes. The best performance for the OL task
using most types of metrics is achieved by the SCS submission,
which used a Gabor filterbank feature extraction step with by
2-layer hidden Markov models (HMMs) for classifying events,
followed by the NVM submission, which used a meta-classifier
combining hierarchical HMMs and random forests. Results for
each event class separately are visualized in Fig. 3, where it can
be seen that most systems had solid detection rates for clearing
throat, coughing, door knocks and speech, but had weak results
for drawers, printers, keyboards and switches.

Many of the OL/OS methods employed a decomposition step,
either expliticly (e.g. GVV) or implicitly (e.g. DHV), which
is of interest from the perspective of CASA (see Section I). It
should be noted that MFCCs were not proven as useful for the
event detection tasks as with the scene classification tasks, with
more rich and auditory model-based representations proving to
be more useful (such as Gabor filterbanks and Mel-magnitude
spectrograms). Again, contrary to the SVM-dominated scene
classification task, variants of HMMs were proven to be both the
most popular as well as reliable tools for event detection, due to
their ability to model timeseries data. Of particular interest are
submissions that were also submitted to the polyphonic OS task,
where two systems experimented with multiple Viterbi passes
(DHV, GVV) in order to handle overlapping events.

Regarding statistical significance tests in event detection sys-
tems, to the authors’ knowledge no such tests have been at-
tempted so far in the literature. As has been argued in [16] for the
multi-pitch detection problem (which is structurally similar to
sound event detection), indicators of statistical significance are
not highly pertinent for multi-class detection problems: in prac-
tice, even a small performance difference can often yield statis-
tical significance. Detailed system descriptions and detailed re-
sults per system can be found on the challenge website.14 How-
ever, for the OL task there was a large enough number of par-
ticipants that we were able to examine statistically whether the
different metrics tended to rank systems in the same order. We
applied the Kruskal-Wallis test, a nonparametric test for com-
paring whether multiple groups of data (here, the evaluation
ranks for each system) exhibit differences in distribution [66,
Section 6.2.2]. This found a significant pattern of agreement

13The original OS results published at the time of the challenge differ from
the results published here due to a systematic fault affecting a subset of the la-
bels in the original OS development and test datasets. This was found and fixed,
and the three teams who submitted systems to the OS task were contacted and
invited to revise their systems. The DHV system was re-trained on the corrected
OS development data; the configurations of the other systems (GVV, VVK, and
baseline) were not affected, and were left unchanged. All three systems were
re-evaluated on the corrected test datasets to obtain the results here. The cor-
rections to the data generally improved system performance, which is to be ex-
pected since they improved the correspondence between training and test.

14[Online]. Available: http://c4dm.eecs.qmul.ac.uk/sceneseventschallenge/
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TABLE V
RESULTS FOR THE PARTICIPATING SYSTEMS FOR THE OFFICE LIVE EVENT DETECTION TASK.

THE STRONGEST PERFORMANCE ACCORDING TO EACH METRIC IS HIGHLIGHTED IN BOLD

TABLE VI
RESULTS FOR THE PARTICIPATING SYSTEMS FOR THE OFFICE SYNTHETIC EVENT DETECTION TASK. THE

STRONGEST PERFORMANCE ACCORDING TO EACH METRIC IS HIGHLIGHTED IN BOLD. SEE FOOTNOTE 13

Fig. 3. Event detection (OL) results in class-wise (%) for each event class
separately.

among the OL rankings judged across all evaluation measures
( , ). The only systematic deviation
from consensus among the evaluation metrics was for submis-
sion GVV, which was ranked low (9th or 10th) on all F-measures
but 3rd or better on all AEER measures.

For the OS task, the best performance across most of our eval-
uation metrics is achieved by the GVV system, which used NMF
decomposition followed by HMM postprocessing. Overall rates
for each system are broadly comparable with the OL task. It
should also be noted that submitted systems performed better for
signals with lower polyphony, with the exception of the DHV
system, which had better performance with higher polyphony
levels (5.57% frame-based for low polyphony and 30.08%
for high polyphony). As expected, the onset-offset evaluation
produced worse results compared to onset-only evaluation for

both tasks, although the performance difference is rather small
(this may be explained by the percussive nature of most events).

It is also instructive to look at the correlation between the
ranking of systems that were both submitted to the Office Live
and Office Synthetic challenges. It allows us to study the con-
sistency of performance of the evaluated systems using natural
and artificial data. The OL and OS tests are not independent,
since they partly use the same audio source material, but com-
paring their outcomes gives us an indication of whether the syn-
thesis procedure for OS had a strong impact on the eventual
rankings. Let us consider results achieved using the Class-Wise
Event-Based metrics as they are more resilient to discrepancies
between datasets in terms of density of events within the scene.
Apart from a slight permutation of GVV and VVK systems, the
strong level of correlation (average of 90% over the 4 metrics in
terms of the Spearman’s rank correlation coefficient) indicates
that considering artificially synthesized sound scenes may have
some meaning for this kind of task.

VI. REFLECTIONS AND RECOMMENDATIONS

Before concluding, we wish to draw some reflections out
from the above results and from our experience of managing
the DCASE challenge, and to offer some recommendations for
future evaluation challenges. Our challenge comes in the con-
text of a series of challenges coordinated by the IEEE AASP,
such as challenges relating to distant and reverberant speech.15

Our design of the challenge involved participants submitting
code, for the organisers to execute against private datasets. This
design, in common with MIREX music audio challenges [33],
incurs resource costs as the hosts must dedicate time to running
the submissions. It also requires holding back some private data,
which cannot immediately benefit the community as open data.
However it has advantages such as ensuring participants do not

15[Online]. Available: http://www.signalprocessingsociety.org/technical-
committees/list/audio-tc/aasp-challenges/
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overfit to the test data, and ensuring that results are reproducible
in the sense of empirically verifying that the submitted software
can be run by a third party.

An interesting point of comparison is provided by sim-
ilar challenges run via the Kaggle website such as the 2013
SABIOD machine listening challenges.16 These challenges
centered around automatic classification of animal sounds. The
mode of interaction in that case was not to submit code, but
to submit system output. Further, participants could iteratively
modify their code and submit updated output, getting feedback
in the form of results on a validation dataset. This does carry
some risk of overfitting to the specifics of the challenge, and
less direct reproducibility, although the winning submission
was required to be made open-source and confirmed by the
hosts. Relative to DCASE, the SABIOD challenges appeared
to encourage a greater amount of ad-hoc participation from
independent machine-learning professionals, perhaps due to the
immediate feedback loop made possible by the online system.
The workflows represented by the DCASE and the SABIOD
challenges each have their own strengths and weaknesses, and
we look forward to further refinements in public evaluation
methodology.

We have enumerated the steps involved in running the
DCASE challenge, in particular to highlight the resource
implications for hosting such challenges. Dataset collection
and annotation was the main requirement on staff time. This
challenge was not funded explicitly by any project, and so
would not have been possible without the resources made
available by a large research group (see Acknowledgments).
This includes staff and PhD students as core organisers, data
annotators, programmers assisting with issues such as code
and the virtual machine, and infrastructure such as code- and
data-hosting facilities.

In Section III-D we described various steps we took to en-
sure that the challenge would run smoothly, such as publishing
formal task specifications, baseline code and a virtual machine.
This reduced but by no means eliminated the time required to
run and troubleshoot the code submissions received. A clear rec-
ommendation that emerges from this experience is that a formal
test for the submitted code to be run at submission time would
help greatly. This could be applied in the form of automated unit
testing, or more simply by the challenge organizers running the
submissions using public data and confirming that the results
obtained match the results that the submitters obtained on their
own system.

Community involvement was crucial to the successful con-
duct of this challenge, in particular for discussing the task spec-
ifications, but also for negotiating logistics of submission and
discussing the final results. The support of the IEEE AASP
Technical Committee and the IEEE WASPAA 2013 Conference
Committee helped us to form this community.

VII. CONCLUSION

With the DCASE challenge we aimed to frame a set of
general-purpose machine listening tasks for everyday audio, in
order to benchmark the state of the art, stimulate further work,

16[Online]. Available: http://sabiod.univ-tln.fr/

and grow the research community in machine listening beyond
the domains of speech and music. The challenge results illus-
trate tasks we designed for this had the right level of difficulty
for this: none of the tasks was trivial for any submitted system,
and a range of scores was achieved enabling comparison of the
advantages and disadvantages of systems. The strong level of
participation from a diverse set of researchers indicates that the
tasks were pertinent to current research.

For the scene classification (SC) task, the leading systems at-
tained results significantly above baseline and comparable to av-
erage results from human listeners. A strategy used by many of
the strongest systems was to use feature representations which
capture medium-scale temporal information about the sound
scene. However there is still room for improvement beyond the
highest-scoring system; we demonstrated this was possible with
a simple majority-vote metaclassifier aggregating the submitted
systems, illustrating that there is information yet present in the
audio that can drive stronger performance in future. The best
way to improve the SC task in future rounds would be through
larger dataset sizes in order to draw stronger conclusions about
the significance of differences between system performances.

For the event detection (OL/OS) tasks, the leading systems
achieved relatively strong performance, although with substan-
tial scope for improvement. This was particularly evident in the
polyphonic OS task, indicating that polyphony in audio scenes
remains a key difficulty for machine listening systems and more
development is needed in this area. However, the class-wise
analysis of results also indicates that some event types proved
harder to detect than others, even in the monophonic OL task,
indicating that the ability for one system to detect a wide range
of sound types is also a key challenge. Future event detection
challenges could be improved with further community atten-
tion to evaluation metrics and their relation to practical require-
ments. It may also be of value to evaluate systems explicitly re-
garding the correlation between their performance and the level
of polyphony in a scene.

Regarding the community formed around this research topic,
we were very encouraged by the strong level of participa-
tion, and by the decisions of various groups to publish their
submitted systems as open-source code. These, alongside the
resources which we published (open-source baseline systems;
open datasets; virtual machine disk image) provide a rich
resource for others who may wish to work in this area.17 The
community has set a benchmark, establishing that leading
techniques are able to extract substantial levels of semantic
detail from everyday sound scenes, but with clear room for
improvement in future.
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