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Abstract—Intelligent vision-based traffic surveillance systems
are assuming an increasingly important role in highway moni-
toring and road management schemes. This paper describes a
low-level object tracking system that produces accurate vehicle
motion trajectories that can be further analyzed to detect lane
centers and classify lane types. Accompanying techniques for
indexing and retrieval of anomalous trajectories are also derived.
The predictive trajectory merge-and-split algorithm is used to
detect partial or complete occlusions during object motion and
incorporates a Kalman filter that is used to perform vehicle track-
ing. The resulting motion trajectories are modeled using variable
low-degree polynomials. A K-means clustering technique on the
coefficient space can be used to obtain approximate lane centers.
Estimation bias due to vehicle lane changes can be removed using
robust estimation techniques based on Random Sample Consensus
(RANSAC). Through the use of nonmetric distance functions and
a simple directional indicator, highway lanes can be classified into
one of the following categories: entry, exit, primary, or secondary.
Experimental results are presented to show the real-time applica-
tion of this approach to multiple views obtained by an uncalibrated
pan–tilt–zoom traffic camera monitoring the junction of two busy
intersecting highways.

Index Terms—Lane detection, motion trajectory, scene inter-
pretation, vehicle tracking.

I. INTRODUCTION

R ISING traffic levels and increasingly busier roads are a

common feature across the globe. Consequently, there is

an increasing requirement to develop intelligent traffic surveil-

lance systems that can play an important role in highway mon-

itoring and road management systems. Their purpose, among

other things, is to provide real-time statistical data on traffic

activity and to signal potentially anomalous situations, e.g.,

accident detection or dangerous driving.

This paper addresses the problem of lane detection and

classification through an analysis of vehicle trajectories using

standard installation traffic surveillance cameras. These are

operator-controlled nonstationary cameras and usually of the
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pan–tilt–zoom (PTZ) variety, which allows for multiple views.

They are capable of covering larger road scenes compared

to static cameras. Lane detection and classification is an im-

portant first step in building a semantic scene description of

the highway. This can lead to generation of statistical data

on traffic activity, such as vehicle density, lane changes, and

detection of anomalous situations (e.g., accidents, congestion,

and dangerous driving).

We demonstrate that accurate vehicle trajectories can be ob-

tained by object segmentation, tracking, and screening of partial

and complete occlusions. An occlusion reasoning approach is

used to detect and count the number of overlapped objects

present in a segmented region. Trajectory points are then clas-

sified according to whether they are generated by a single or

overlapped object. Trajectory paths are then represented using

low-order polynomials for dimensionality reduction.

Cluster analysis can be performed on the coefficient space

to build a self-consistent aggregation of many individual tra-

jectories. By taking into account vehicle lane changes, lane

geometry can be estimated from uncalibrated but stable video

sequences. The use of nonmetric distance functions permits a

classification of lane systems based on simple heuristics into

different categories, e.g., entry, exit, primary, or secondary.

The method that we present here is independent of camera

viewpoint and requires no special a priori calibration of the

image sequences. Although lane width is not constant across

the image because of perspective effects, all that the method

requires is a crude estimate of the “average” lane width in

pixel coordinates. The ability to overcome the need for camera

calibration is especially advantageous, as it permits the use

of standard traffic camera installations without the burden of

performing tedious calibration procedures.

The remainder of the paper is organized as follows. We

review some related work on vehicle tracking and analysis

of motion trajectories in Section II. Section III describes our

algorithm for generating vehicle trajectories with attention paid

to occlusion handling. Techniques for cluster analysis and

trajectory representation are described in Section IV. These are

applied to a description of lane geometry and lane categoriza-

tion. An experimental evaluation of the proposed techniques

is presented in Section V, and the paper concludes with a

discussion and summary in Section VI.

II. RELATED WORK

The starting point for previous works in motion tracking

and analysis is the segmentation of moving objects based on
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background subtraction techniques [1], [2]. A recent survey of

different environment modeling approaches applicable to visual

surveillance applications can be found in [3].

Typically, each pixel is modeled using a Gaussian distri-

bution built up over a sequence of individual frames, and

segmentation is then performed using an image differencing

strategy. It is particularly important to employ a background

model update strategy in uncontrolled outdoor environments.

Shadow detection and elimination strategies have been com-

monly employed to remove extraneous segmented features

[4]–[7].

It is also important to handle partial and complete occlusions

in the video data stream [8]–[10]. Occlusion detection can be

performed using an extended Kalman filter (KF) that predicts

the position and the size of object bounding regions. Any

discrepancy between the predicted and measured areas can be

used to classify the type and extent of an occlusion [9], [10].

Applications of vision-based surveillance techniques to

higher level traffic analysis systems have also been devel-

oped specifically for accident detection at road intersections

[10], [11], estimation of traffic speed [12], [13], and accident

prediction [14]. More general techniques for object path de-

tection, trajectory classification, and indexing have also been

proposed [15]–[17].

In [12], an algorithm to estimate mean traffic speed us-

ing uncalibrated cameras is presented. It employs geometric

constraints in the image, interframe vehicle motion, and dis-

tribution of vehicle lengths. Although vehicle speed can be

determined using operator-controlled PTZ cameras, the algo-

rithm only works on straight roads and does not handle vehicle

lane changes. Traffic flow histograms and calculation of the

image vanishing points are used in [13] to measure mean speed

but with limitations similar to those in the previous approach.

The importance of analyzing object trajectories for the in-

formation that they convey on motion understanding is increas-

ingly realized. Recent contributions to motion data mining and

clustering have been made [18]–[21], although this work is

not particularly directed at understanding traffic flow, which is

typically highly constrained by road geometry.

The contribution of our paper is stated as follows. We attempt

to achieve a higher level road description than that presented in

[12] and [13] through processing of vehicle trajectories from

uncalibrated video sequences. This paper is partly inspired by

[9] in which vehicle trajectories are approximated by cubic

polynomials using least squares (LS). However, it is shown that

the effects of vehicle lane changes and outliers in the tracking

process can be minimized using the RANSAC estimator [22].

However, we choose to cluster these trajectories to build a

model of the lane geometry using nonmetric distance func-

tions. The only a priori information needed is an approximate

estimate of the average lane width, in image coordinates, to

disambiguate the zoom level used.

Trajectory clustering and classification has been previously

applied in [23] to provide a natural language description of

vehicle activity in a scene, e.g., vehicle turns left at junction

with low speed. We are looking for higher level semantics that

can be used to describe overall highway lane geometry and

traffic behavior.

III. OBJECT TRACKING WITH THE PREDICTIVE

TRAJECTORY MERGE-AND-SPLIT (PTMS) ALGORITHM

The proposed system uses a multistage approach to deter-

mine the vehicle motion trajectories and eventually the lane

geometry. An overview of the system is shown in Fig. 1. First,

we build a background model to segment foreground objects.

Then, the PTMS algorithm is used to achieve two goals, namely

1) predicting the position of the detected vehicles, by means

of a KF [24] and 2) performing a time-consistent analysis

(grouping) of the detected blobs, possibly merging and split-

ting detected blobs due to partial or complete occlusions. This

process permits the identification of blobs composed of multi-

ple vehicles that should not be used as input to the trajectory

clustering algorithm, because the position estimation may be

unreliable.

A. Vehicle Detection (Segmentation)

The initial vehicle detection stage is based on the adaptive

smoothness method [1] to build a background model. This

model is updated continuously, at every time instant, based on

those pixels that were not detected as moving regions. This

approach assumes that the camera is static, whereas in outdoor

scenarios, cameras are frequently subject to small motion dis-

turbances (e.g., due to wind). In this case, more sophisticated

background modeling techniques can be used, e.g., employing

multiple background models instead of only one.

Moving objects are extracted through background differ-

encing. Detected blobs having an area smaller than a certain

predefined minimum number of connected pixels (Kmin) are

deemed to be noise and disregarded. Erode and dilate mor-

phological operations are used to eliminate small holes within

blobs. Although shadow removal is not incorporated in the

detection process, the background update module uses a double

thresholding operation to attenuate self-shadowing.

B. Steady-State KF

If we wish to build complete motion histories for each

tracked object, it is necessary to filter the position estimates

over time and solve tracking instabilities caused by near and

partial occlusions, shadows, and image noise. In the case of

multiple simultaneous object tracking, if we lose track of one

vehicle and another vehicle is suddenly detected nearby, there

is an obvious danger of mistaken vehicle identification.

The KF was used to estimate the target trajectory. The KF is

based on a dynamical model of the system that seeks to explain

how the system state and observations change with time, and

how they are affected by noise. Let x(k), v(k), and a(k) be

the position, velocity, and acceleration of the blob centroid at

time k along one of the image directions. Even when a vehicle

moves at constant velocity, its image velocity will vary over

time due to camera perspective effects. To account for such

velocity variation, we model the vehicle image dynamics as

a constant acceleration dynamic system. Both the vehicle ma-

neuvers (i.e., changes in velocity) and the effect of perspective

will be modeled as a (local) acceleration term and an external
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Fig. 1. Overview of the proposed vehicle tracking and lane classification system.

noise source. We further assume that the tracker provides noisy

measurements Y(k) of the vehicle image position. Denoting the

system state vector by S(k) and combining the position, veloc-

ity, and acceleration, the system dynamics and observations can

then be described as follows:

S(k) = ΦS(k−1) + ξ Y(k) = CTS(k) + η

with

S(k) = [x(k) v(k) a(k) ]T

Φ =





1 τ τ2/2
0 1 τ
0 0 1





CT = [ 1 0 0 ] (1)

where ξ and η are independent zero-mean Gaussian-distributed

random vectors with covariances Q and R, matrix Φ is the tran-

sition matrix, vector C indicates that the system observations

are the position estimates, and τ is the system sampling period.

The KF has a prediction and a filtering step. In the prediction

step, the problem consists of determining the estimate of the

state vector at time k + 1, given only the information available

at time k, S(k+1|k). Then, once a new measurement is available

at time k + 1, the filtering step plays the role of updating the

current estimate to reflect the new information contained in the

new measurement S(k+1|k+1) as follows:

Prediction :

S(k+1|k) =ΦS(k|k)

Update/filtering :

S(k+1|k+1) =S(k+1|k) +Kk

(

Y(k+1) − C
TS(k+1|k)

)

.

(2)

In the standard formulation of the KF, the so-called Kalman

gain Kk is a time-varying gain that depends on the noise co-

variance matrices Q and R. This would require computing the

covariance matrices of the tracking error and solving a discrete

Riccatti equation at each frame. Instead, we have adopted to

use the steady-state version of this filter, which is obtained by

computing the Kalman gain over time and using the values

of the gains reached for the steady state. The computation is

much simpler, and the system becomes time invariant, thus
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simplifying the analysis. Still, the steady-state version of the

constant acceleration filter, which is often called the α− β − γ
filter, requires the evaluation of (constant matrices) R and Q.

Instead, as proposed in [24], we computed the Kalman gain

as a function of one single parameter—the maneuverability

index—which quantifies the noise ratio between the system

state equation and the observations. Following [24], we have

Kk = K = [α β/τ γ/τ2 ]T

with

α = 1 − θ3 β = 1.5(1 − θ2)(1 − θ) γ = (1 − θ)3 (3)

where the parameter 0 < θ < 1 is the maneuverability index,

which can be adjusted so that the filter’s transient response

is critically damped [24]. The analysis in the second image

direction y can be done in the same way or both x and y compo-

nents integrated into a single six-dimensional state vector and

a two-dimensional observation vector. When an occlusion is

detected, the KF is not updated with the new value of the target

position, x(k).

In the following section, we will see how to maintain the

temporal consistency (data association) of the tracked blobs,

e.g., in detecting the vehicle occlusions.

C. Temporal Consistency and Classification of Tracking

Points With Heuristic Merge-and-Split Rules

The presence of shadows or “near” occlusions caused by

traffic congestion can seriously degrade the accuracy of blob

detection. Typically, several vehicles may be misdetected as

one single vehicle with consequent problems for generating

an object trajectory. Approaches based on spatial reasoning

use more complex object representations such as templates or

trained shape models. However, this is dependent on image

resolution and only works under partial occlusion. A better

approach is to use a temporal smoothness constraint in checking

vehicle positions under different types of occlusion. Here, we

propose a set of temporal heuristics that can easily complement

a spatial approach.

The algorithm works as follows: First, we define a blob as

a connected region resulting from the background subtraction

process. Then, use (2) to predict the most likely position of

the blob in the next frame. In addition to its size and position,

a blob is characterized by its number of components (i.e.,

grouped vehicles). At the beginning, the number of components

of each blob is initialized to one, and this increases each time a

merge situation is detected. The algorithm description is stated

as follows:

Temporal Grouping Algorithm

For each frame and for every blob, do the following.

1) Determine whether there is a one-to-one correspondence

between the blobs in consecutive frames by comparing

their sizes and positions. This condition is met when the

tracking system succeeds in keeping individual tracks

for each vehicle. The positions and sizes are updated

over time.

2) If the blob size has increased above a percentage thresh-

old Ω (typically of the order of 25%), this may correspond

to a merge situation. If the previous image contains

multiple blobs in the area under analysis, the number of

components of the new blob is increased by the number

of blobs found in that area.

3) If the blob size has decreased below a certain percentage

threshold Ω between two frames, this may be due to a pos-

sible split. Determine whether any new blobs appeared in

the vicinity of the predicted blob position, provided that

the original blob consisted of a number of components

greater than 1. If so, decrease the number of components

in the new blobs, originating from the split of the blob

found in the previous image.

4) Check if there are any new blobs in the next image.

The algorithm works reasonably well for most of the time.

The principal drawback is when the initial blob is composed

of several objects. In this case, it will be misdetected as a single

object. To tackle this problem, a spatial grouping algorithm

could be applied to the initial blobs to determine whether they

are composed of one or more objects. The results of applying

the PTMS algorithm are presented in Section V.

IV. LANE DETECTION USING CLUSTERING OF

VEHICLE TRAJECTORIES

In a previous work, lane detection has been undertaken using

feature extraction on static images, e.g., by use of Hough trans-

form [13]. Inasmuch as this might be feasible using stationary

cameras in conditions of good visibility and low traffic density,

it is difficult to achieve in practice when using uncalibrated

traffic cameras and image quality is low. In highly constrained

environments such as highways, it is tempting to use vehi-

cle trajectories rather than image analysis of static scenes to

detect lanes. The trajectory-based approach has a number of

advantages.

1) It enables use of operator-controlled PTZ cameras rather

than calibrated static cameras.

2) Techniques based on object trajectories are more robust

to scale and viewpoint transformations.

3) Motion data are more robust than static scene analysis

with respect to light variation and sensor noise.

4) Although tracking in cluttered scenes is quite a chal-

lenging problem, one can still gather sufficient statistical

evidence over a large number of frames to be able to

compute reliable information about motion trajectories.

This is because we can afford to discard ambiguous data

and keep only very reliable (trajectory) estimates for the

clustering step.

Using motion trajectories does not require a priori knowl-

edge of the number of lanes or road geometry, e.g., whether a

particular section of highway is straight or curved. Due to image

perspective, the lane width will change with image position.

The method assumes that the “average” lane width tw in image

coordinates is known in advance to disambiguate the overall

image scale or camera zoom level. This information will allow
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us to discard ambiguous trajectory estimates (e.g., those close to

the vanishing point). The parameter tw can be easily estimated

by an operator and does not need to be extremely precise.

A. Trajectory Modeling

We choose to model the vehicle motion path with a low-

degree polynomial. The output of the PTMS algorithm is a

set of tracked points (xij , yij), 1 ≤ i ≤ nj for each vehicle

trajectory Sj , 1 ≤ j ≤ N . The trajectory can be approximated

by a polynomial Pm(x) of degreem < nj as follows:

y ≈ Pm(x) = a0 + a1x+ · · · + amx
m. (4)

The unknownm+ 1 coefficients {ai} can be determined using

LS by minimizing the function E with respect to a0, a1, . . . as

follows:

E(a0, a1, . . . , am) =

nj
∑

i=1

[yi − (a0 + a1x+ . . .+ amx
m
i )]2 .

(5)

By preprocessing the trajectory point set {Sj}, we can dis-

cover the main direction of traffic flow and determine which in-

dependent coordinate increases/decreases monotonically. This

will lead to a choice of either Pm(x) or Pm(y) as trajectory

models. This process can be performed by aggregating the

slopes from the start and end points of each trajectory. A similar

result can be obtained using principal component analysis on

the tracked points. This is also used to determine the direction

of the traffic nearest to the camera. In more general situations,

one can resort to higher level curve parameterizations, such as

piecewise-defined polynomials or B-splines [28]. The choice

of parameterization does not play a critical role (apart from

singularities) in the remaining processing modules. The simple

parameterization we have chosen has proved sufficient for the

scenarios where we conducted tests.

Preprocessing is also used to remove obvious data incon-

sistencies caused by tracking errors, sensor noise or unstable

camera motion, e.g., high winds. We discard short or partial

trajectories and those whose point separations are greater than

some predetermined threshold.

We then fit a LS polynomial of degree m for each trajectory

Sj in the chosen coordinate direction. Starting fromm = 1, we

use the average fitting error to ascertain the optimal value ofm.

If the error is greater than some predetermined threshold, m is

increased by 1, and the trajectory is refitted. For all the highway

scenes tested, we have found that low-degree polynomials up to

order 3 were sufficient to describe the lane curvature. Assuming

that for short sections of highway, vehicle lane changes can

constitute any percentage of the overall trajectories, a RANSAC

estimator [22] was used in conjunction with LS to eliminate

outliers such as lane changes or tracking errors. These would

otherwise bias the results for the detection of lane centers.

RANSAC is robust to outlier trajectories produced by frequent

vehicle lane changes, undetected overlapped vehicles and noise

in the video sequence. The use of robust estimators is critical in

achieving the improvements in overall system performance.

Fig. 2. Interpretation of the distance functions dmax and dmin between
trajectory approximations of S1, S2, and S3.

B. ModifiedK-Means Algorithm for Trajectory Clustering

A robust K-means clustering algorithm that works in the

polynomial coefficient space for improved speed and efficiency

is now described. An upper bound is set on the maximum num-

ber of trajectories that can belong to each cluster. The cluster

centers correspond approximately to detected lane centers.

We propose a set of nonmetric distance functions to be

used for cluster analysis of trajectories. Nonmetric distance

functions d(P,Q) satisfy the usual conditions of nonnegativity

d(P,Q) ≥ 0, identity d(P,Q) = 0 iff P = Q, and symmetry

d(P,Q) = d(Q,P ) but fail to satisfy the triangle inequality

d(P,Q) ≤ d(P,R) + d(R,Q). However, visual observations

of similarity judgements can often be shown to violate metric

axioms [25], and there is a good case for relaxing the triangle

inequality constraint in certain application domains. Given two

trajectories Q and S with LS polynomial approximations PQ,

PS , we can define the following maximum, minimum, and root

mean square (rms) distance functions:

dmax(PQ, PS) = arg max
x∈X

|PQ(x) − PS(x)|

dmin(PQ, PS) = arg min
x∈X

|PQ(x) − PS(x)|

drms(PQ, PS) =

√

√

√

√

√

1

x2 − x1

x2
∫

x1

(PQ(x) − PS(x))2 dx (6)

whereX is the interval over which distance is calculated. Here,

it is assumed that the x-coordinate is monotonic. A geometric

interpretation of dmax and dmin is given in Fig. 2. The distance

drms in (6) represents a quantity related to the area between PQ

and PS , normalized with respect to the length of the interval of

integration, and can be evaluated as a closed-form expression,

e.g., in [26], for m = 3. The distance functions dmax and dmin

can be evaluated through a line search technique. Note that we

always have dmin(PQ, PS) ≤ drms(PQ, PS) ≤ dmax(PQ, PS).
In a previous work, the cluster distances were calculated using

the Hausdorff distance [23]. Although this works with arbitrary

trajectory point sets, it is expensive to compute as it requires

0(n1n2) operations, where n1 and n2 denote the number of

points in sets Q and S. It is also sensitive to outlier points



MELO et al.: DETECTION AND CLASSIFICATION OF HIGHWAY LANES USING VEHICLE MOTION TRAJECTORIES 193

that can dominate the distance calculation. However, it is a

useful baseline calculation for comparison purposes, as we shall

later see.

K-means [27] is a very simple and effective clustering

algorithm, which requires specifying the number of sought

clusters in advance (parameter K). First, K points are chosen

at random as initial cluster centers. Data measurements are

assigned to their closest cluster center according to the distance

measured by a suitable metric. In the following step, the mean

of all data points in each cluster is calculated. These means are

taken as the new centroids for the various clusters. Finally, the

whole process is repeated with the new cluster centers. This

iterative process continues until the same points are assigned

to each cluster in consecutive rounds. At this point, the clusters

centers have stabilized and will remain the same thereafter. This

process converges to a local minimum only, as different final

cluster centers can arise by choosing a different initialization.

The modified K-means algorithm proposed here will deter-

mine the number of clusters automatically and has the following

overall structure. The initial clusters are built from a set of

trajectories {Sj} by searching for those Sk that maximize

dmin(Si, Sj). The clustering loop then iterates by assigning tra-

jectories Sj to those clusters that minimize the dmax(Sj , Ck),
where Ck denotes the cluster centroids. The distance dmax in

(6) is used as an auxiliary distance to sort Sjs within each

cluster. The cluster points are represented by the (m+ 1)-
dimensional vector of polynomial coefficients, where m is the

degree of the polynomial. The following steps are used to build

an initial set of trajectory clusters:

Cluster Initialization Algorithm

1) Create a reference trajectory SR at the edge of the image

parallel to the main orientation of traffic flow.

2) Select a second trajectory, Sj , which maximizes

drms(Sj , SR), provided that it exceeds some predeter-

mined threshold and subject to the constraint #{Sj} >
tminA, where #{Sj} denotes the number of points in the

trajectory. A sensible choice of threshold on drms is the

“average” lane width tw.

3) Select the next Sk that maximizes distance dmin(Sj , Sk)
to all other trajectories present in the set, provided that

dmin(Sj , Sk) > tw and #{Sk} > tminA.

4) Repeat step 3) until no further trajectories can be added.

Trajectory Clustering Algorithm

1) Compute the distances between each trajectory and clus-

ter centers dmax(Sj , Ck).
2) Associate trajectories Sj to the nearest cluster using

metric dmax(Sj , Ck), provided that dmax(Sj , Ck) < tw
and #{Sj} > tminB . These constraints ensure that short

and partial trajectories are excluded.

3) The cluster means (i.e., polynomial estimate represen-

tative of the cluster) are updated after five trajectories

have been associated to each cluster, using RANSAC to

eliminate outliers.

4) The process stops when 20 trajectories have been added

to each cluster.

For the cluster initialization, we try to choose the longest

trajectories, and for the trajectory clustering, we try to exclude

very short trajectories, such that tminA > tminB.

It is found that use of dmax(Sj , Ck) discards most trajectories

representing lane changes. RANSAC then removes the few

remaining outliers erroneously added to the cluster. Once the

cluster means Ck have become stable, we regard these as the

lane centers. The distance functions (6) can now be reused for

the purpose of categorizing lanes, as we shall see in the next

section.

C. Lane Classification

Quite often, highway traffic monitoring is done with PTZ

cameras, which raises the issue of determining which direction

the camera is looking at. Here, we achieve this objective by

using additional contextual information such as the number of

lanes in a certain highway or the number of roads crossing

at the observed region. The camera orientation is established

by calculating a linear approximation to the main direction of

traffic flow. This gives the approximate angle between the main

highway and the direction in which the camera is pointing. The

main orientation of traffic flow is classified as right or left. Each

trajectory has a direction that is classified as positive or negative

by inspecting the dominant (∆x,∆y) increments. If positive

values of ∆x predominate, the direction is classified as positive,

otherwise, it is negative.

The cluster centers representing lanes are classified into one

of the following categories: primary, entry, exit, or secondary.

For the sake of simplicity, we assume that every highway has

at least four primary lanes, two in each direction of flow. In ab-

normal situations such as temporary roadworks and contraflow,

this assumption may be violated. The four primary lanes in the

center of the highway are found by searching for neighboring

lanes having opposite directional flow. The distance measures

are initially applied to the first two lanes having the same

direction.

We use li to index a particular lane and L to represent the set

of all lanes found in the scene. The lane classification scheme

can be expressed by the following set of rules:

For all l ∈ L,

“primary,” if dmax(li, l) ≤ δ

“secondary,” else if dmin(li, l) > δ

“entry ∨ exit,” otherwise.

The choice of entry or exit is determined by the angle between

the analyzed lane and the previously classified lane, taking into

consideration whether the direction of traffic flow is positive or

negative.

D. Traffic Flow Analysis, Trajectory Indexing, and Retrieval

Having parameterized the trajectories and defined the clus-

ters and distance metrics between trajectories, we can index

the trajectories according to their polynomial coefficients. In

this way, we can pose queries about trajectories of interest by

specifying a reference query Q and performing a similarity
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Fig. 3. Interpreting the categorization of vehicle lane changes. S2 will be
classified as a lane change and S1 represents a vehicle remaining in l1.

search over {Sj} using one of the distance functions d(Q,Sj).
The distances are then sorted, and the k-nearest neighbors can

be easily determined.

We will describe an example of querying the number of

trajectories associated with a given lane. Obviously, this query

should exclude trajectories of overlapping vehicles, which are

discarded in the tracking phase. Using a previously classified

lane as a query trajectory, we build a set Ω containing all

trajectories that are closer to the query lane (using dmax) than

to all the neighboring lanes. Note that all lane changes are

discarded, because the maximum distance to the query lane is

greater than the minimum distance to other lanes. This situation

is shown in Fig. 3. Here, S1 will be categorized as a vehicle

associated to lane l1, whereas S2 represents a lane change

trajectory. The set Ωl contains only those vehicle trajectories

travelling in lane l only. In the following, L is the set of lanes

and S the set of trajectories. Then, for a given query trajectory

l, the set Ωl is formed as follows:

Ωl = {Sj ∈ S : dmax(l, Sj) < dmin(lk, Sj)}

for all lk ∈ L and lk �= l.

In the presence of strong perspective and very irregular tra-

jectories, this condition may be too conservative. Consequently,

some trajectories that do not correspond to lane changes may

be discarded. Although such cases are normally quite rare, a

less conservative test can be designed by replacing the use

of dmin(lk, Sj) with the distance between lk and the point in

Sj that is most distant to lane l. Under normal circumstances,

the set of vehicle trajectories representing lane changes can be

inferred from the aforementioned scheme by the principle of

mutual exclusivity. In other words, the set Ωl contains trajec-

tories within the lane l, whereas its complementary set Ωc
l can

be used to determine those trajectories corresponding to lane

crossings. As another example of the type of query that we can

perform with this methodology, we might wish to retrieve all

vehicle trajectories that stray into the emergency stopping lane.

V. EXPERIMENTS

The algorithm was tested on two different highway sur-

veillance sequences. The first was recorded with a stationary

camera having a resolution of 176 × 144 pixels and a video

Fig. 4. Left: Sample of video sequence with detected moving objects. Right:
Vehicles tracked using the Kalman filter and segmented objects. A cross is
placed in the predicted vehicle position when tracking is lost.

Fig. 5. Tracking and occlusion handling. The two cars on the left are detected
as a single overlapping blob. A cross is placed in the segmented region’s
bounding box to indicate that it corresponded to a single region in the previous
frame.

Fig. 6. Tracking result from the previous frame in sequence. Note that the two
cars on the left are detected as separate objects in this frame.

capture rate of 10 frames/s. The second sequence was taken

using a higher resolution camera having 352 × 288 pixels

at 25 frames/s. The camera was positioned 15 m above the

highway. Unfortunately, the recording of the second sequence

was made on a very windy day, and unstable camera motion

often resulted in poor tracking results and fragmented trajec-

tories. Nevertheless, this presented us with a challenging data

set. In the first sequence, the tracking module generates quite

satisfactory results. The tracking can be improved in the future

by considering a more sophisticated background model that

may include several images, thus accounting for variations due

to camera motion disturbances, foliage, etc.

A. Output of Tracking and PTMS Algorithm

In Figs. 4–6, we show the results of applying background

subtraction and foreground object segmentation using grayscale

video sequences. Fig. 4 shows a sample of the foreground

detected moving objects.

Color-coded bounding boxes can be used to distinguish

segmented objects from successfully tracked vehicles. When
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Fig. 7. Vehicle trajectories generated through hybrid tracking PTMS algo-
rithm. These are drawn from the same sequence shown in Figs. 5 and 6.

Fig. 8. Initialization of cluster means. Solid lines denote cluster centers and
dots represent individual vehicle trajectories.

tracking of one vehicle is lost, we place a cross to highlight the

position predicted by KF. In this sequence, the results did not

vary significantly whether or not KF prediction was employed.

Due to the camera viewpoint, most of the lost vehicles occur

very near to the camera, where interframe dislocation is large.

On the other hand, vehicles that are farthest from the camera

are almost always successfully tracked due, in large part, to

the effectiveness of background modeling. In about half the

situations, where vehicles are moving away from the camera

(i.e., large interframe motion), the KF has insufficient time to

initiate the tracking process and in the initial frames tracking

is lost. Success of KF is sometimes dependent on the camera

viewpoint, it is particularly effective when parallel to the traffic

flow. This situation requires further investigation and could

benefit from the use of higher sampling frequency (reducing

interframe displacement) as well as a more careful design of

the filter parameters.

Fig. 5 shows the result of occlusion reasoning applied to a

different sequence. The two cars in the left side of the image

are detected as a single blob. With the PTMS algorithm, we can

determine that it corresponds to two cars in the previous frame

seen in Fig. 6. The detected blob is displayed with a cross in the

middle of its bounding box.

In Fig. 7, we display the point trajectories generated by the

use of KF and PTMS algorithm applied to the same sequence

from which Figs. 5 and 6 were drawn. For vehicles previously

detected and whose tracking is subsequently lost, the trajectory

points are predicted using the KF output.

Fig. 9. (a) Final clustering result of lane center detection without using
RANSAC estimation. (b) Final result using RANSAC estimation. Note that
there is insufficient trajectory data to accurately represent the entry lane farthest
from the camera.

Fig. 10. (a) Trajectory points of single tracked vehicles containing outliers.
(b) Lane centers estimated by the output of the modified K-means clustering
algorithm.

B. Cluster Analysis

The point trajectories of single vehicles are used to create an

initial set of clusters shown in Fig. 8 to estimate the lane centers

for a straight segment of the highway. We have used an initial

set with a total of 237 partial trajectories and clustered 30 trajec-

tories per lane to estimate the centers shown in Fig. 9. We make

no compensation for the height of the vehicles, and thus, the es-

timation of lane centers is biased by a factor in proportion to the

average vehicle height. However, this does not affect the count-

ing operations for calculation of flow density. The results of

applying the initialization of the clustering algorithm described

in Section IV-A are shown in Fig. 8. Initial cluster means are

represented by solid lines and original trajectory points by dots.

The stable clusters produced after termination of the algo-

rithm are illustrated in Fig. 9. The final number of trajecto-

ries added to each initial cluster are also labeled. Fig. 9(a)

and (b) shows a comparison of the result with and without

the RANSAC approach. It shows that RANSAC leads to an

improved estimate of the lane center on the inner lane farthest

from the camera. Lane changes are caused by vehicles moving

to the outer lane to avoid new vehicles entering the highway

from the entry lane farthest from the camera.

The clustering approach has also been tested on curved

sections of highway. From a total of 175 partial trajectories

in the video sequence, the modified K-means algorithm uses

30 trajectories per lane to estimate the centers. Again,

RANSAC can be used to make the clustering stage robust to

lane changes. Fig. 10 demonstrates the algorithm can work with

any type of road geometry.
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Fig. 11. (a) Execution time taken by clustering loop for straight section of
highway shown in Fig. 9. (b) Execution time taken for the curved section of
highway shown in Fig. 10.

The processing times for each frame in the sequence are

shown in Fig. 11. For curved sections of the highway, the

time taken to perform clustering loop is longer, as the order

of the polynomial is successively incremented up to m = 3. In

each case, the algorithm starts with zero clusters and adds two

new trajectories per frame. This experiment demonstrates the

potential for real-time performance of lane detection.

C. Lane Classification and Traffic Analysis

We applied the lane classification scheme to a relatively

complex highway scene near Lisbon, Portugal. A single PTZ

camera observes two intersecting highways—the junction of

A5 and Circular Regional Interior de Lisboa (CRIL). CRIL has

four primary lanes, two entry lanes, and one exit lane in the field

of view closest to the camera, whereas A5 has seven primary

lanes and four exit lanes. The traffic is usually heaviest on A5.

In this case, the sequences were recorded on a very windy day,

resulting in unwanted camera motions. This motion can reach a

maximum of 5 pixels and represents a challenging test scenario.

Typical camera views and a schematic of the road layout are

shown in Figs. 12 and 13. The main directions and numbers of

lanes are summarized in Table I.

Using the information displayed in the schematic representa-

tion of Fig. 13 and the data in Table I, the goal is to determine

the direction in which the camera is viewing and categorize the

lanes and lane directions. Each lane is classified into one of

the following categories: highway lane, entry, or exit. For each

Fig. 12. PTZ camera views for each of the four main directions of traffic flow.
(a) and (b) are opposite views of highway CRIL. (c) and (d) are opposite views
of highway A5.

Fig. 13. Schematic layout of the highway intersection for A5/CRIL in the
vicinity of the PTZ camera.

TABLE I
SUMMARY OF TOTAL NUMBERS OF LANES AND DESTINATIONS

FOR MAIN DIRECTIONS OF TRAFFIC FLOW

lane, the vehicle trajectories are counted and this information is

displayed on the images.

The camera orientation is easily found by estimating the

angle between the main direction of traffic flow and the hor-

izontal axis. To determine which highway is currently being

viewed, we use the number of detected lanes together with the



MELO et al.: DETECTION AND CLASSIFICATION OF HIGHWAY LANES USING VEHICLE MOTION TRAJECTORIES 197

Fig. 14. Lane detection and classification result for (a) and (b) highway CRIL
and (c) and (d) highway A5. The numbers of trajectories are also shown. The
camera viewing and traffic flow direction are displayed at the top of the image.
The traffic flow directions are distinguished by the color of the highlighted lane
centers. (a and b) black—toward Amadora; white—toward Queijas. (c and d)
black—toward Cascais; white—toward Lisbon. Exit or entry lanes are marked
as black and white striped in (a), (b), and (d).

information presented in Table I. After the camera orientation is

found, the destination IDs can also be established from the ta-

ble. This is the only calibration information required to perform

the lane classification once the lane detection is completed. The

classification of entry or exit lanes can be retrieved from the

trajectory data. The algorithm performs well when the lanes are

nearly straight, e.g., CRIL highway. Here, the number of vehi-

cles in each lane/direction and number of lane changes can be

successfully calculated. This information is very useful for au-

tomated traffic flow analysis. The results are shown in Fig. 14.

The results obtained for the A5 highway, which are shown

in Fig. 14(c)–(d), are not as good, especially when the camera

is looking right. There are several reasons for this. A greater

number of lanes means that vehicle resolution is smaller, and

hence, vehicle detection is more sensitive to camera motion.

Furthermore, when the camera is looking right, the zoom level

is greater than when looking left, and this produces a degraded

result. The success of the classification scheme is highly

dependent on the quality of the lane modeling, which, in turn,

is dependent on the output of vehicle tracking module. Hence,

the results tend to be better for straight roads. Further results of

detection and classification of lanes with color images can be

found at: http://vislab.isr.ist.utl.pt/inteltraf/.

D. Trajectory Indexing and Retrieval

We present some retrieval results for a user-defined query

trajectory. The aim is to detect the vehicles that change lane

in a dangerous situation or enter a prohibited zone. The user

first specifies a queryQ simply by sketching a straight line on a

representative background scene. In this case, the user wishes to

Fig. 15. Performing a similarity search under the dmin distance function with
a user-specified query. Retrieved vehicle trajectories are displayed.

Fig. 16. Retrieved sequence for vehicle trajectory that satisfies similarity
query search at the (a) beginning, (b) middle, and (c) end of the video clip.
Note that the white vehicle in the top left quadrant of image (a) does cross the
boundary marking of the entry and highway lanes. It can be seen just leaving
the camera view in image (c).

detect those vehicles crossing the boundary between the entry

lane and first lane in Fig. 12(b), which is shown in the upper

left image quadrant. The trajectories database is then queried

for a specific time duration to restrict the number searched.

We specify a search for all Sj that satisfy dmin(Q,Sj) < 1.

The result of performing this query is shown in Fig. 15. For

verification purposes, we calculate the ground truth using each

tracking point as a key index to the original video sequence.

The position of a tracked vehicle during the beginning,

middle, and end of a retrieved trajectory is shown in Fig. 16.

It can be verified that the vehicle trajectory intersects the user-

specified query and, indeed, crosses the lane boundary between

entry and outer highway lanes. However, one of the retrieved

trajectories for this example query posed is a misdetection.

This can arise due to two factors. The PTMS algorithm does

not correct for the object height (parallax), and therefore, some

high-sided vehicles such as trucks will generate a heavily biased

trajectory. Furthermore, the algorithm sometimes classifies
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TABLE II
SUMMARY OF RETRIEVAL RESULTS FOR EXAMPLE QUERY

convoys of vehicles traveling together as a connected blob

and labels it as a single vehicle. This produces an incorrect

blob centroid localization error. However, an advantage of this

approach is that search and retrieval of trajectories of interest

can be performed in real time due to the low computational cost

incurred by indexing polynomial coefficients. This would not

be possible using the Hausdorff distance metric.

The overall results for this particular query are summarized

in Table II.

VI. DISCUSSION

As stated previously, the algorithm performs best when the

lanes are nearly straight, e.g., CRIL highway. Here, the number

of vehicles in each lane/direction and number of lane changes

can be successfully calculated. In Fig. 14(b), it is seen that the

lane detection is accurate apart from lane 3 on the left side of the

image heading towards Queijas, which is estimated as a straight

road. This is due to a number of factors, including unstable

camera motion, presence of a lighting pole, and overall distance

from the camera. This degrades the performance of the tracking

algorithm. Similarly, the vehicles joining the highway from the

entry lane just appear in the camera view for only a few frames

making initialization of the KF state vector difficult for predic-

tion stage. In general, KF tracking performs worse for curved

road segments, possibly due to a conservative adjustment of the

maneuverability index (see Section III-A). A similar problem

occurs in Fig. 14(a) with the road on the right side of the image

heading towards Queijas. The result is not very accurate due to

incomplete vehicle tracking. Furthermore, the unstable camera

motion due to high winds causes a strong blurring effect in the

background model. This blur is especially apparent in the upper

right quadrant of Fig. 14(a). As the background model is built

from 150 frames in the sequence, any motion present during this

period will blur the captured tracking sequence. Alternatively,

one could use multiple background models to cope with some

motion variability, as in [29].

The lane geometry estimated in Fig. 14(d) is relatively good,

although the accuracy is much higher in the image region closer

to the camera than those regions farther away. The detection on

the right half of the image is not good due to small appearance

of vehicle size. This results in misclassification of lane types

carrying traffic towards Lisbon. The algorithm misclassifies

these lanes as two entry lanes rather than a correct labeling

as exit lanes. Furthermore, the detection of lane centers is

also poor due to uncontrolled camera motions and high local

curvature of the lanes in the upper half of the image. This causes

a degradation of tracking performance with consequent effects

on trajectory clustering.

We can summarize the traffic scene interpretation data con-

tained in all four PTZ camera views, i.e., approximate num-

bers of detected vehicle trajectories per lane, where each lane

Fig. 17. Summary of the traffic flow in each lane derived from an analysis
of vehicle trajectories and lane classification using multiple views from a
stationary PTZ camera.

direction is classified and labeled, as shown in Fig. 17. It can

be concluded that the present study provides a useful basis

for traffic flow analysis from multiple views obtained using

standard traffic monitoring cameras.

VII. CONCLUSION

First, the paper proposes an algorithm for vehicle tracking

with the following characteristics: temporal integration with

a KF, time-consistent merging-and-splitting of overlapped de-

tected blobs, aggregation of trajectory data to estimate lane

centers, and removal of the need for calibrated cameras. The

results demonstrate the feasibility of using uncalibrated station-

ary or PTZ cameras to analyze traffic behavior in real time.

The algorithm is viewpoint independent and does not make

any a priori assumption regarding lane geometry. The results

can be used as input to higher level traffic monitoring systems

for estimating traffic speed, frequency of lane changes, accident

detection, and classification of anomalous driver behavior. We

use some limited assumptions regarding camera zoom and im-

age scale. One drawback of the clustering approach is that due

to occlusions, vehicle trajectories are sometimes misdetected,

and hence, partitioned into erroneous cluster sets. It is often

difficult to distinguish these from genuine lane changes at the

postprocessing stage.

Second, an algorithm that performs lane detection and clas-

sification for highway scenes using only vehicle trajectory data

and a basic knowledge of the road layout is described. This can

be used to generate a higher level scene description, which is

useful for automated traffic flow analysis. The method works

with both uncalibrated PTZ and static road traffic cameras

and can cope with variable lane geometry. The lane detection

stage is robust to vehicle lane changes and missing or incom-

plete trajectory data through use of robust estimators based on

RANSAC. The classification scheme works well in the case of

straight (or almost straight) roads but performs poorly when

road curvature is high. This could be due to instability in ve-

hicle tracking leading to incomplete trajectories, or unsuitable

distance metrics.

This paper can be extended in multiple directions. First, we

can improve the vehicle detection and tracking by relying on

more flexible models for the background. Second, data associa-

tion and detection of merge and split situations can be improved
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by better tuning of the KF or using the time-varying version of

the filter. We also aim to explore other clustering algorithms

such as self-organizing maps [30], which have been used to

improve vehicle tracking. Finally, to deal with strong perspec-

tive effects, we could envisage an iterative process whereby

the estimated lane centers are used to determine a projective

planar transformation that would make these lanes parallel in

the image. The corrected image would be used for reestimating

the highway lanes, and hence, improve classification.

To conclude, we modestly hope that this paper has demon-

strated the power of motion analysis for high-level semantic

description of highway structure and traffic understanding and

that the use of robust estimation over extended periods of

time (as opposed to static image analysis) allows designers

and engineers to achieve the desired levels of accuracy and

robustness in future traffic surveillance systems.
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