
     I S S N  2 3 2 1 - 8 0 7 X 
          V o l u m e  1 3  N u m b e r 1  
   J o u r n a l  o f  A d v a n c e s  i n  c h e m i s t r y  
 

5933 | P a g e   

J a n u a r y  2 0 1 7                                         w w w . c i r w o r l d . c o m  

Detection and Classification of Leukemia using MPFCM Segmentation 
and Random Forest with Boosting Techniques 

T.C.Kalaiselvi  
  Assistant Professor, Department of ECE , Kongu Engineering College,Perundurai, 

Tamil Nadu, India .kalaiselvi@kongu.ac.in 

ABSTRACT:  
Identification of blood disorders is through visual inspection of microscopic blood cell images. From the identification of 
blood disorders lead to classification of certain diseases related to blood. We propose an automatic segmentation method 
for segmenting White blood cell images. Firstly, modified possibilistic fuzzy c-means algorithm is proposed to detect the 
contours in the image. The GLCM features are extracted and features are selected by MRMR. Adaptive boosting and LS 
Boosting has been utilized to classify blast cells from normal lymphocyte cells. Comparison performance of classification 
accuracy was carried out. The effectiveness of the classification system is tested with the total of 80 samples collected. 
The evaluated results demonstrate that our method outperformed the existing systems with an accuracy of 88  %. 
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1. Introduction 
The assessment of the white blood cells in the bone marrow of patients is very informative in clinical practice. Segmentation is the 
process of partitioning a digital image into multiple segments based on pixels[7]. Segmentation is a critical and essential component of 
image analysis system[8]. The result of image segmentation is a collection of segments which combine to form the entire image. Various 
techniques have been proposed for segmenting an image in a better way. From the segmentation result, geometrical features such as 
area, perimeter etc [1] were detected for the final detection of immature cells. Three different classification techniques such as Tree 
Bagger, LS Boosting and ADA boosting were employed for classification[4] [5] [6], in order to classify the lymphocyte (WBC) as healthy 
and leukemic. 

         2. Proposed Methodology           
   2.1 MPFCM Clustering Segmentation 
   Image  segmentation   is   the  process of  partitioning  
   a digital image into multiple segments. Image segmentation is typically used to locate objects and boundaries in images 
[1].MPFCM is a good clustering algorithm [2] [3] to perform classification tests because it possesses capabilities to give more 
importance to typicalities or membership values. In order to avoid the constraint corresponding to the sum of all typicality 
values of all data to a cluster must be equal to one cause problems particularly for a big data set. It produces memberships 
and possibilities simultaneously, with the usual point prototypes or cluster centers for each cluster. The objective function is 
defined by  

 

𝑖=𝑐 

                       + γi𝑐
𝑖=1          (1)  

Subject to the constraints =1 for all k and  

0≤ 𝜇𝑖𝑘,≤1. Here a>0, b>0, m >0, and >0. U is the partition matrix. T is the typicality matrix. V is a vector of cluster centers, X is 

a set of all data points, z represents a data point, n is the number of data points and c is the number of cluster centers which 
are described by s coordinates. 

2.1.1Algorithm 

Step 1: Initialize prototype  

𝑖 = (𝑎𝜇𝑖𝑘
𝑚𝑁

𝑘=1 +𝑏𝑡𝑖𝑘
𝜂

)𝑍𝑘 / (𝑎𝜇𝑖𝑘
𝑚𝑁

𝑘=1 +𝑏𝑡𝑖𝑘
𝜂

) 

       1 ≤  i  ≤ C                                               (2)  

Step 2: For each cluster compute penalty parameter 𝛾𝑖  

𝛾𝑖= K  𝜇𝑖𝑘
𝑚𝑛

𝑘=1 ||Z − 𝑣𝑖||
2                                   (3)

 Step 3: For each prototype calculate the distance  

  C , 

             1 ≤𝑘 ≤𝑁                                           (4)  

Step 4: Calculate membership and typicality values   

 , 1 ≤  i  ≤ C,  

           1 ≤𝑘 ≤𝑁                                            (5)  
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              (6) 

Step 5: Update the values of prototypes. 

 

Input CLL image 

 

 

Input CML image 

 

 

PFCM Output 

 

 

PFCM Output 

 

 

Fig.1 Input and Segmented Output of CLL & CML 

Table.1 Evaluation Parameters of PFCM 

EVALUATION  

PARAMETERS 
PFCM 

Rand Index 0.9922 

Jaccard Index 
0.9866 

 

Dice Coefficient 
2.0000 

 

2.2 Feature Extraction 

Feature extraction is a special form of dimensionality reduction [1]. When the input data to an algorithm is too large to be 
processed, then the input data will be transformed into a reduced representation set of features. Textural features based 
on the gray level co-occurence matrix (GLCM) are extracted from each image that are used to distinguish between normal 
and abnormal cancer cells. Co-occurrence matrices are calculated for four directions: 0º, 45º, 90º and 135º degrees.  

GLCM has following features: Autocorrelation, Contrast, Correlation, Cluster Prominence, Cluster Shade, Dissimilarity, 
Energy, Entropy, Homogeneity, Maximum probability , Sum of squares, Sum average, Sum variance, Sum entropy, 
Difference variance, Difference entropy, Information measure of correlation, information measure of correlation, Inverse 
difference normalized are listed in table.2 
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Table.2 Feature Extraction Result 

Features  Normal  CLL  CML  

Contrast  1.1912  2.8458  1.6078  

correlation  0.9994  0.9986  0.9987  

cluster 
prominence  

1610  2132  1171  

Cluster shade  -2510  -3092  -1976  

dissimilarity  0.2549  0.4516  0.4005  

energy  0.3964  0.423  0.3414  

entropy  -0.3278  -0.346  -0.2818  

homogeneity  0.9428  0.9304  0.8996  

Max probability  0.478  0.5347  0.5126  

Sum of squares  28.2088  38.0687  21.3773  

Sum of average  1.1912  2.8458  1.6078  

Sum of variance  0.9994  0.9986  0.9987  

Sum entropy  1610  2132  1171  

Diff variance  -2510  -3092  -1976  

Diff entropy  0.2549  0.4516  0.4005  

Info measure of 
correlation 1  

0.3964  0.423  0.3414  

Info measure of 
correlation 2  

-0.3278  -0.346  -0.2818  

Inverse diff 
normalized  

0.9428  0.9304  0.8996  

Inverse diff 
moment 
normalized  

0.478  0.5347  0.5126  

autocorrelation  28.2088  38.0687  21.3773  

2.3 Feature Selection 
Feature selection is the process of selecting a subset of relevant features for use in model construction. Features are 
selected based on MRMR and tabulated in table.3. 

2.3.1 Minimum-Redundancy and Maximum-Relevance (MRMR) 

Feature-selection method that can use either mutual information, correlation, distance/similarity scores to select features 
[10]. The relevance of a feature set S for the class c is defined by the average value of all mutual information values 
between the individual feature xi and the class c as follows        

              D =
1

 S 
 I xi ; c x i∈S                              (7) 

The redundancy of all features in the set S is the average value of all mutual information values between the feature xi and 
the feature xj : 

 R =
1

 S 2
 I(xi ; xj)x i ,x j∈S                        (8) 

The MRMR criterion is a combination of two measures given above and is defined as follows 

mRMR =     S
max  

1

 S 
 I xi ; c x i∈S −

1

 S 2
 I xi ; xj x i ,x j∈S    (9) 

 

Suppose that there are n full-set features. Let fi be the set membership indicator function for feature xi, so that fi=1 
indicates presence and fi=0 indicates absence of the feature xi in the globally optimal feature set. Let ci=I(xi;c) and 
aij=I(xi;xj). 

The above may then be written as an optimization problem 

MRMR = f∈ 0,1    n
      max  

 ci
n
i=1 fi

 fi
n
i=1

−
 aij  f i  f j

n
i ,j=1

  fi
n
i=1  

2      (10) 

 
         
 
 

http://en.wikipedia.org/wiki/Indicator_function


     I S S N  2 3 2 1 - 8 0 7 X 
          V o l u m e  1 3  N u m b e r 1  
   J o u r n a l  o f  A d v a n c e s  i n  c h e m i s t r y  
 

5936 | P a g e   

J a n u a r y  2 0 1 7                                         w w w . c i r w o r l d . c o m  

Table.3 Feature Selection Result 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.4 Classification 

Classification is the task of assigning to the unknown test vector, a label from one of the known classes. Classification 
methods aimed to find mathematical models to recognize the membership of each object to its proper class on the basis of 
a set of measurements [7]. Once a classification model has been obtained [8], the membership of unknown objects to one of 
the defined classes can be predicted. 

2.4.1 LS Boosting 

 It fits regression ensembles 

 At every step, the ensemble fits a new learner to the difference between the observed response and the 
aggregated prediction of all learners grown previously. 

 The ensemble fits every new learner to  Y n – η f (x n), Where, Y n - observed response, f (x n) - aggregated 
prediction from all grown weak learners,                                     η - learning rate(0-1) 

2.4.2 ADA Boosting 

ADA Boost is a machine learning algorithm [4] that boosts the performance of other learning algorithms, known as weak 
learners, by weighting and combining them. The basic idea is that multiple weak learners can be combined to generate a 
more accurate ensemble, known as a strong learner. Various versions of the ADA Boost algorithm [6] have proven to be 
very competitive in terms of prediction accuracy in a variety of applications. 

3. Performance Measures 

The final results of the ensemble classifiers were analyzed and its performance evaluation is done based on the results 
obtained from the confusion matrix. Also the results are compared based on the three parameters namely accuracy, 
specificity and sensitivity.  

3.1 Confusion Matrix 

A confusion matrix is a specific table layout that allows visualization of the performance of an algorithm, typically a 
supervised learning .A table of confusion, is a table with two rows and two columns that reports the number of false 
positives, false negatives, true positives, and true negatives. The table of confusion includes True Positive(Cancer 
identified as Cancer), True Negative(Cancer identified as Non Cancer), False Positive(Non Cancer identified as Non 
Cancer) ,False Negative (Non Cancer identified as Cancer) 

3.2 Performance Parameters 

The parameters are namely 

(i) Accuracy - statistical measure of how well a binary classification test correctly identifies or excludes a condition. 

 

 

 

Features Normal CLL CML 

Contrast 1.1912 2.8458 1.6078 

Cluster 
prominence 

1610 2132 1171 

Cluster shade -2510 -3092 -1976 

Sum of squares 28.2088 38.0687 21.3773 

Sum of average 6.8499 8.3153 5.2302 

Sum of variance 70.1377 101.1808 47.8642 

Sum entropy 0.8094 0.7115 1.1627 

Diff variance 1.1912 2.8458 1.6078 

Diff entropy 0.3995 0.424 0.676 

Autocorrelation 27.7618 36.7772 20.6703 

   Accuracy  =  

No of true positives + No of true negatives 

 
True positives + false positives + false negatives 

+true negatives 
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(i.e) Accuracy=(TP+TN)/(TP+FP+TN+FN) 

 

where TP-True positive, TN-true negative, 

TN-true negative, FN-false negative 

 

(ii) Sensitivity -Measures the proportion of actual positives which are correctly identified as such and it is complementary to 
the false negative rate. 

 

 

(i.e) Sensitivity=TP/ (TP+FN)     

(iii) Specificity - Measures the proportion of negatives which are correctly identified as such and is complementary to the 
false positive rate. Mathematically, this can also be written as  

 

 

(i.e.) Specificity = TN/(TN+TP) 
 

 
 
4. Results 
4.1 LS Boosting 

 

Input - CLL Image 

 

 

Input - CML Image 

 

Classification Output 

 

 

 

Classification Output 

 

 

Fig.2 Classification Result for LS Boosting 

4.2 Adaptive Boosting 

Sensitivity = 

                  Number of true positives 
 

(Number of true positives + Number of false 

negatives) 

Number of true negatives 

 
Number of true negatives + Number 

of false positives) 

Specificity = 
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Input CLL image 

 

 

Input CML image 

 

 

 

PFCM Output 

 

 

PFCM Output 

 

Fig.3 Classification Result for Adaptive boosting 

4.3. Performance Comparison 

The accuracy, specificity and sensitivity of adaptive and LS boosting is tabulated in table.4 comparison is done as shown in 
fig.4 where LS boosting has high performance 

Table.4 Performance Comparison of  ADA and LS Boosting 

 

 

 

 

 

 

 

 

 

Fig.4 Performance Comparison of Classification algorithm 
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Performance Comparison

Accuracy Specificity Sensitivity

Algorithm/Parameters Adaptive 
Boosting 

LS 
Boosting 

Accuracy 72.22% 88.88% 

Specificity 0.5833 0.8333 

Sensitivity 0.7917 0.9167 
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5.Conclusion 

Thus the modified possibilistic fuzzy c-means algorithm  approach was evaluated and tested for various blood cells. This 
algorithm gives the segmentation result of white blood cells. This algorithm begins with detecting the cells in the region. By 
using those regions, white blood cells alone segmented. Then classification algorithms such as adaptive boosting and LS 
boosting were implemented and performance is measured.   
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