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ABSTRACT This paper investigates the problem of detection and classification of unmanned aerial

vehicles (UAVs) in the presence of wireless interference signals using a passive radio frequency (RF)

surveillance system. The system uses a multistage detector to distinguish signals transmitted by a UAV

controller from the background noise and interference signals. First, RF signals from any source are

detected using a Markov models-based naïve Bayes decision mechanism. When the receiver operates at

a signal-to-noise ratio (SNR) of 10 dB, and the threshold, which defines the states of the models, is

set at a level 3.5 times the standard deviation of the preprocessed noise data, a detection accuracy of

99.8% with a false alarm rate of 2.8% is achieved. Second, signals from Wi-Fi and Bluetooth emitters,

if present, are detected based on the bandwidth and modulation features of the detected RF signal. Once

the input signal is identified as a UAV controller signal, it is classified using machine learning (ML)

techniques. Fifteen statistical features extracted from the energy transients of the UAV controller signals

are fed to neighborhood component analysis (NCA), and the three most significant features are selected.

The performance of the NCA and five different ML classifiers are studied for 15 different types of UAV

controllers. A classification accuracy of 98.13% is achieved by k-nearest neighbor classifier at 25 dB

SNR. Classification performance is also investigated at different SNR levels and for a set of 17 UAV

controllers which includes two pairs from the same UAV controller models.

INDEX TERMS Interference, machine learning, Markov models, RF fingerprinting, unmanned aerial

vehicles (UAVs), UAV detection and classification.

I. INTRODUCTION

UNMANNED aerial vehicles (UAVs), or drones, are

becoming ubiquitous in modern society. The recent

popularity of UAVs is mainly due to the advancement in

micro-electro-mechanical systems-based precision sensors,

such as inertial motion units and gyroscopes, which are used

for guidance, navigation, and control of UAVs. Consequently,

UAVs have become relatively cheap and affordable. They are

finding new applications in areas such as surveillance, smart

policing, search and rescue missions, infrastructure inspec-

tions, package delivery, and precision agriculture [2]. Judging

by the current trend in UAV applications, it is expected

that UAVs will become an integral part of modern society.

However, there are security and privacy issues associated

with the ubiquity of UAVs.

In recent times, UAVs have been used in ways that intro-

duce a threat to public safety [3]. There have been several

instances where hobby drones have been used to transport

illegal drugs across prison walls. In addition, drones have car-

ried out espionage attacks which pose serious risk to public

safety. Recently, drones operated by dissidents have flown

into sensitive national infrastructures like nuclear reactors

and airports [4]. Moreover, drones are becoming tools for

cyberattack and terrorism. For instance, Wi-Fi sniffing UAVs
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can eavesdrop on smartphone users and steal sensitive data

without being detected [5], [6].

Considering the security and privacy issues associated with

UAVs, accurate detection and classification of these vehicles

are vital to public safety and national security. One promis-

ing technique for UAV detection is based on the analysis of

radio frequency (RF) signals from UAV controllers. In [7],

drone pilots are identified by analyzing RF signals captured

from the drone controllers. The pilots’ behavioral biometrics

can be identified from the captured signals using machine

learning (ML) techniques. The ML algorithms are trained

using the RF signals when the controller is handled by

the legitimate owner of the device. That way, it is possi-

ble to identify different drones and their pilots. However,

while the behavioral biometrics of drone pilot is an impor-

tant information for drone detection, an adversary could be

anyone whose behavior metrics we have no prior knowledge

of. Therefore, in order to accurately detect and identify an

adversary drone, one should focus on identifying the intrin-

sic signature of the drone controller itself. These intrinsic

signatures can be extracted from the RF signals transmitted

by the UAV controllers and referred to as the RF fingerprints

of the controllers.

Since the communication signals of most commercial and

hobby grade UAVs are transmitted in the same frequency

band as Wi-Fi and Bluetooth transmissions, it becomes chal-

lenging to detect and identify RF signals from the UAV

controllers in the presence of these interferers. Moreover,

surveillance and electronic warfare systems should be

able to differentiate UAVs from different manufacturers.

For instance, the identity of a UAV can provide useful

information about the payload, operational range, control

signal characteristics (e.g., for jamming such signals), and

the threat capability of the associated UAV. Accurate identi-

fication of UAVs is also important in digital forensic analysis

of aerial threats.

In this work, we propose a multistage UAV detection and

an ML-based classification system for identifying 17 differ-

ent UAV controllers in the presence of wireless interference,

i.e., Wi-Fi and Bluetooth devices. The multistage UAV detec-

tion system consists of two detectors. The first detector

employs a two-state Markov model based naïve Bayes algo-

rithm in deciding if the captured data contains RF signals or

not. Once an RF signal is detected, the second stage detec-

tor decides if the signal comes from a UAV controller or

an interference source. Given that the detected RF signal is

from an interference source, the source class is identified

as Wi-Fi or Bluetooth. On the other hand, if the detected

signal is from a UAV controller, the signal is transferred to

the ML-based classification system to determine the make

and model of the UAV controller. In an earlier work [1], the

authors proposed a system for detecting and classifying 14

different UAV controllers. The system design assumes the

absence of interference signals. However, this assumption is

not always correct. The contributions of the current work

are summarized as follows.

1) The paper investigates the problem of detecting and

classifying signals from UAV controllers in the pres-

ence of co-channel wireless interference. We consider

interference from Wi-Fi and Bluetooth sources and

describe a methodology to detect the UAVs. The

interference detection ensures the proposed UAV detec-

tion system is robust against false alarms and missed

target detection. In addition, in [1], we used two fixed

thresholds, positioned at ± 3σ , to transform the cap-

tured signal into three-state Markov models, where σ

is the standard deviation of the noise signal in the

environment. However, in the current work, we use a

single threshold to transform the captured signal into

two-state Markov models, which reduces overall com-

plexity. We also define a procedure to determine the

optimum threshold value based on the available train-

ing data. It turns out that better detection accuracy

can be achieved when a single but properly selected

threshold is used to generate the Markov models. At an

SNR of 10 dB, the current work achieves a detection

accuracy of 99.8% using a threshold that is 3.5 times

the standard deviation. However, in [1], the detec-

tion accuracy is 84% under the same SNR condition.

Besides, in the current study, we evaluate the detection

performance for different thresholds based on the false

alarm rate (FAR).

2) We introduce the concept of energy transient for the

extraction of RF-based features and show how effective

it is for the classification of the UAV controller signals.

The energy transient is computed using the repre-

sentation of the RF signals in energy-time-frequency

domain. From the energy transient, 15 statistical fea-

tures are extracted for the UAV classification. The

performance of five different ML algorithms are com-

pared using the proposed RF fingerprinting technique.

In addition, we investigate the neighborhood compo-

nent analysis (NCA) as a practical algorithm for feature

selection in the classification problem. The classifica-

tion results using the three most significant features,

selected by the NCA, are compared with those when

all the 15 RF features are used. We also evaluate the

classification performance at different signal-to-noise

ratios (SNRs). For an SNR of 25 dB, the results show

that the k-nearest neighbor (kNN) and random forest

(RandF) machine learning algorithms are the best per-

forming classifiers, achieving accuracy of 98.13% and

97.73%, respectively, when the three most significant

RF-based features are used for the classification of

15 UAV controllers. In comparison, the kNN classifier

achieves an accuracy of 96.3% when used to classify

14 UAV controllers [1]. Furthermore, in the current

work, for the case of 15 UAV controllers, DA and NN

classifiers achieve an average accuracy of 94.43% and

96.13%, respectively. However, in [1], DA and NN

achieve an average accuracy of 88.15% and 58.49%,

respectively, when used to classify 14 UAV controllers.
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3) We study the confusion that results when attempting

to classify UAV controllers of the same make and

model. This is important in digital forensic analy-

sis and detecting decoys in surveillance systems. To

investigate this confusion, we included two pairs of

identical UAV controllers to a pool of 13 different

UAV controllers. That is, we capture control signals

from 17 UAV controllers and evaluate the ability of

the proposed classification system at different SNRs.

For an SNR of 25 dB, kNN and RandF achieve accu-

racy of 95.53% and 95.18%, respectively, when the

three most significant RF features are used. To the

best of our knowledge, past studies on UAV classifi-

cation using RF techniques considers only a limited

number of different make and model UAV controllers,

often less than 10 [8], [9].

The remainder of the paper is organized as follows:

Section II provides a brief overview of the related work.

Section III describes the multistage detection system, and

Section IV introduces the methodology to detect Wi-Fi and

Bluetooth interference signals. Feature extraction and the RF

fingerprinting-based UAV classification system are explained

in Section V. The experimental setup and data capture tech-

nique is described in Section VI while the detection and

classification results are presented in Section VII. The paper

is concluded in Section VIII.

II. RELATED WORK

UAV detection and classification through RF signals can

be grouped into two major headings: RF physical layer

features-based and RF medium access control (MAC) layer

features-based techniques. In general, these techniques use an

RF sensing device to capture the RF communication signal

between a UAV and its controller.

A. RF PHYSICAL LAYER FEATURES-BASED
TECHNIQUES
Most of the techniques classified within this category rely

on the physical layer characteristics of the RF transmission

from a UAV to its controller (or vice versa), such as the

amplitude envelope or the spectrum of the RF signal. These

techniques are sometimes referred to as RF fingerprinting

techniques because they utilize the unique characteristics of

the RF signals for the detection and classification of the

UAVs. Experimental investigations show that most of the

commercial UAVs have unique RF signatures which is due

to the circuitry design and modulation techniques employed.

Therefore, RF fingerprints extracted from the UAV or its

remote controller signals can be used as a basis for the

detection and classification of the UAVs.

In [10], RF fingerprints of the UAV’s wireless control

signals are extracted by computing the amplitude envelope

of the signal. The dimensionality of the processed sig-

nal is reduced by performing principal component analysis

(PCA), and the lower-dimensional data is fed into an aux-

iliary classifier Wasserstein generative adversarial networks

(AC-WGANs). The AC-WGANs achieves an overall classi-

fication rate of 95% when four different types of UAVs are

considered.

In [11], drones are detected by analyzing the RF back-

ground activities along with the RF signals emitted when

the drones are operated in different modes. Afterward, RF

spectrum of the drone signal is computed using the discrete

Fourier transform (DFT). The drone classification system is

designed by training a deep neural network with the RF spec-

trum data of different drones. The system shows an accuracy

of 99.7% when two drones are classified, 84.5% with four

drones, and 46.8% with ten drones.

In [12], an industry integrated counter-drone solution

is described. The solution is based on a network of dis-

tributed RF sensors. In this system, RF signals from different

UAV controllers are detected using an energy detector.

Afterward, the signals of interest are classified using RF

spectral shape correlation features. Besides, distributed RF

sensors make it possible to localize the UAV controller

using time difference of arrival (TDoA) or multilatera-

tion techniques. However, this industrial solution is quite

expensive.

B. RF MAC LAYER FEATURES-BASED TECHNIQUES
There are many UAVs that use Wi-Fi protocol for video

streaming and control. The techniques categorized under this

heading use MAC layer features, such as packet statistics, for

detection and classification of the Wi-Fi controlled UAVs.

These techniques are sometimes referred to as Wi-Fi finger-

printing techniques. Thus, the RF detection system consists

primarily of a Wi-Fi packet-sniffing device, which can inter-

cept the Wi-Fi data traffic between a UAV and its remote

controller. In [9], unauthorized Wi-Fi controlled UAVs are

detected by a patrolling drone using a set of Wi-Fi statisti-

cal features. The extracted features include MAC addresses,

root-mean-square (RMS) of the Wi-Fi packet length, packet

duration, average packet inter-arrival time, among others.

These features are used to train different ML algorithms

which perform the UAV classification task. In [9], the ran-

dom tree and random forest classifiers achieve the best

performance as measured by the true positive and false

positive rates.

In [13], drone presence is detected by eavesdropping on

Wi-Fi channels between the drone and its controller. The

system detects drones by analyzing the impact of their unique

vibration and body shifting motions on the Wi-Fi signals

transmitted by the drone. The system achieves accuracy

above 90% at 50 meters.

In general, a major concern with the Wi-Fi fingerprinting

techniques is the privacy. This is because the same Wi-Fi

detection system can spoof Wi-Fi traffic data from a smart-

phone user or a private Wi-Fi network. In addition, only a

limited number of commercial drones employ Wi-Fi links

for video streaming and control. Most commercial drones

use proprietary communication links.
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FIGURE 1. The scenario of the RF-based UAV detection system. The passive RF surveillance system listens for the signal transmitted between the controller and the UAV. The

environment contains signals from Wi-Fi and Bluetooth interference devices which operate in the same frequency band with the UAV and its remote controller.

Besides RF and Wi-Fi fingerprinting techniques, several

other techniques have been investigated for UAV detec-

tion, including radar-based techniques, acoustic techniques,

and computer vision techniques [14]. However, as discussed

in [14], traditional radar systems are not so effective in

detecting UAVs with small radar cross sections, and acoustic

and computer vision-based techniques are greatly impaired

by ambient environmental conditions. In contrast, RF tech-

niques are not limited by these problems. We start by

describing the design of the multistage detector of our

proposed RF-based system.

III. MULTISTAGE UAV SIGNAL DETECTION

We consider the scenario shown in Fig. 1, where a passive RF

surveillance system listens for the control signals transmitted

between a UAV and its remote controller. The main hard-

ware components of the surveillance system are 2.4 GHz RF

antenna and a high-frequency oscilloscope, which is capa-

ble of sampling the captured data at 20 GSa/s. Instead of

an oscilloscope, a standard software-defined radio like the

universal software radio peripheral (USRP) can also be used

for data capture. In order to avoid aliasing, the data capture

device should be able to sample the captured data above

the Nyquist rate. In this study, since we are interested in

capturing RF data in the 2.4 GHz band, the data capture

device should be able to sample at a rate of at least 5 MSa/s.

Besides, if the RF surveillance system is passive as described

in Fig. 1, then it increases the stealth attribute of the detection

system. This implies, the system shown in Fig. 1 can detect

an adversary UAV while itself remaining undetected by the

UAV. This stealth attribute is vital in electronic warfare envi-

ronments where low probability of intercept (LPI) emitters

are very valuable. Furthermore, the passive RF detection

system has an advantage over a radar system in terms of

the maximum detection range. This is because why a radar

would have to transmit pulses and listen for the backscat-

tering (echo) from the target, the passive RF detector only

needs to listen for the signals from the target.

Since most commercial UAVs operate in the 2.4 GHz

band, the passive RF surveillance system is designed to

operate in this frequency band. However, this also cor-

responds to the operational band of Wi-Fi and mobile

Bluetooth devices. Therefore, in real wireless environment,

signals from these wireless sources will act as interference to

the detection of the UAV control signals. Also, in such real

environment, the presence of noise may further reduce the

chance of correctly detecting the UAV signals when present.

Given the scenario in Fig. 1, the passive RF surveil-

lance system has to decide if the captured data comes

from a UAV controller, an interference source, or back-

ground noise. In the case where the captured data comes

from a UAV controller, the detection system should be able

to correctly classify the UAV controller. However, if the

detected signal is from an interference source, the detec-

tion system should be able to correctly identify the source,

i.e., a Wi-Fi or a Bluetooth device. Therefore, the detection

problem is a multi-hypothesis problem. For such problems,

it is well known that computational complexity increases as

the number of hypothesis increases. Consequently, the multi-

hypothesis detection problem can be simplified by using a

multistage sequential detector. In this system, each detection

stage is a simple binary hypothesis test which is much easier

to solve.

Fig. 2 illustrates sample RF signals captured from eight

different UAV controllers and four different UAVs (on flight).

The figure shows each signal has different characteristics,

which can be exploited for identifying the source UAV con-

troller. The flowchart in Fig. 3 provides a high-level graphical

description of the entire system. The first step in detecting

and identifying a UAV controller is data capture. Usually, the

captured raw signal has a large size and is often very noisy.

Therefore, before detection and classification, the signals are

first pre-processed using multiresolution analysis. Next, the

processed signals are transferred to the multistage detection

system, which consists of two stages. In the first stage, the

detector employs naïve Bayesian hypothesis test in deciding

if the captured signal is an RF signal or noise. If the decision

is positive, the second stage detector is activated to decide

if the captured RF signal comes from an interference source

or a UAV controller. This detector uses bandwidth analysis
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FIGURE 2. RF signals captured from eight different UAV controllers and four different UAVs while on flight: (a) Graupner MC-32, (b) Spektrum DX6e, (c) Futaba T8FG, (d) DJI

Phantom 4 Pro, (e) DJI Inspire 1 Pro, (f) JR X9303, (g) Jeti Duplex DC-16, (h) FlySky FS-T6, (i) DJI Matrice 600 UAV, (j) DJI Phantom 4 Pro UAV, (k) DJI Inspire 1 Pro UAV, (l) DJI

Mavic Pro.

and modulation-based features for interference detection. If

the detected RF signal is not from a Wi-Fi or Bluetooth

interference source, it is presumed to be a signal transmit-

ted by a UAV controller. Consequently, the detected signal is

transferred to an ML-based classification system for accurate

identification of the UAV controller.

A. PRE-PROCESSING STEP: MULTIRESOLUTION
ANALYSIS
Captured RF data are pre-processed by means of wavelet-

based multiresolution analysis. It has been established

that multiresolution decomposition using discrete wavelet

transform (DWT) like the Haar wavelet transform is effec-

tive for analyzing the information content of signals and

images [15].

In this work, multiresolution decomposition of the cap-

tured RF data are carried out using the two-level Haar

transform as shown in Fig. 4. Using this transform, the raw

input signal is decomposed into subbands, and important

time-frequency information can be extracted at different reso-

lution levels [16]. In the first level, the input RF data are split

into low- and high-frequency components by means of the

half band low-pass (h[n]) and high-pass (g[n]) filters, respec-

tively. This process is followed by a dyadic decimation, or

downsampling, of the filter outputs to produce the approx-

imate coefficients, a1[n], and detail coefficients, d1[n]. In

the second level, a1[n] coefficients are further decomposed

in a similar manner, and the generated d2[n] coefficients

are taken as the final output (yT[n]). Then, yT[n] is input

to the multistage detection system. Moving from left to

right in Fig. 4, we get coarser representation of the cap-

tured RF data. The output RF data will have fewer samples

due to the successive downsampling of the input RF data.

This reduces the computational complexity of the overall

process. Multiresolution analysis is also useful in detect-

ing weak signals in the presence of background noise and

removing the bias in the signals, leading to a higher detection

accuracy, which is required in applications like UAV threat

detection.

Fig. 5 shows the effect of the Haar wavelet decomposition

on a sample signal captured from the controller of the DJI

Phantom 4 Pro UAV. It is clear from the figure that the

wavelet transform removes the bias in the signal alignment

and reduces the data size. It will be shown in Section V,

the transformation also preserves the characteristics of the

original waveform. After the pre-processing step, the data is

transferred to the first stage of the detection system, where

we decide if the captured data is an RF signal or noise.
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FIGURE 3. The system flowchart providing a graphical description of information

processing and flow of data through the system.

FIGURE 4. The two-level discrete Haar wavelet transform for pre-processing of the

captured raw data.

FIGURE 5. (a) The sampled raw data y[n] captured from the remote controller of a

DJI Phantom 4 Pro UAV using an oscilloscope with a sampling rate of 20 GSa/s, and

(b) the transformed data yT[n] obtained at the output of the two-level Haar wavelet

filter. Due to successive downsampling, yT[n] has about 3.8 × 106 fewer data samples

than y[n].

B. NAÏVE BAYES DECISION MECHANISM FOR RF
SIGNAL DETECTION
In this stage, we first model the pre-processed RF data, yT[n],

using two-state Markov models for “RF signal” and “noise”

classes. This allows us to compute the likelihood that the

captured data come from either the signal or noise class.

According to the Bayesian decision theory, the optimum

detector is the one that maximizes the posterior probability.

Mathematically, let C ∈ {0, 1} be an index denoting the class

of the pre-processed RF data yT[n], where C = 1 when the

captured raw signal y[n] is an RF signal, and C = 0 oth-

erwise. Let SyT = [SyT(1), SyT(2), . . . , SyT(N)]⊤ be the state

vector representation of the given test data yT[n] containing

N samples, with SyT(i) ∈ {S1, S2}, i = 1, 2, . . . ,N, and S1

and S2 being the two states in the Markov models. Then,

the posterior probability of the RF signal class given SyT is

P
(
C = 1|SyT

)
=
P
(
SyT |C = 1

)
P(C = 1)

P
(
SyT

) , (1)

where P(SyT |C = 1) is the likelihood function conditioned

on C = 1, P(C = 1) is the prior probability of the RF

signal class, and P(SyT) is the evidence. A similar expres-

sion holds for the posterior probability P(C = 0|SyT). In

practice, since the evidence is not a function of C, it can

be ignored. Therefore, we are only interested in maximizing

the numerator in (1). That is,

Ĉ = arg max
C

P
(
SyT |C

)
P(C). (2)

We decide that the captured signal belongs to an RF signal

(i.e., C = 1), if

P
(
SyT |C = 1

)
P(C = 1) ≥ P

(
SyT |C = 0

)
P(C = 0). (3)

For the detection experiment, we collected an equal number

of RF and noise signals. Therefore, it is rational to assume

the prior probabilities of the RF signal and noise classes are

equal, then the decision rule in (3) reduces to

P
(
SyT |C = 1

)
≥ P

(
SyT |C = 0

)
. (4)

Therefore, for a given test data, we need to compute and

compare the likelihood probabilities P(SyT |C = {0, 1}). First,

in order to compute the likelihood probability for the RF

signal and noise classes, we use large amount of training

data captured from multiple UAV controllers, Wi-Fi routers,

mobile Bluetooth emitters, and background noise. This train-

ing data set is stored in a database as shown in Fig. 3. Since

the captured RF data (after sampling) is a discrete time-

varying waveform, we can model it as a stochastic sequence

of states/events. The likelihood probability of such a state

sequence can be computed based on the transitions between

the states of the generated Markov models.

A two-state Markov model for a given signal yT[n] can

be generated by mapping each sample in the signal to one

of the two states (S1 and S2). The samples whose absolute

amplitudes are less than or equal to a predetermined thresh-

old δ are considered as in state S1, while the samples with

absolute amplitude greater than δ are considered as in state

S2. Mathematically, the state transformation is performed as

follows:

SyT(n) =

{
S1, |yT[n]| ≤ δ

S2, |yT[n]| > δ.
(5)
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FIGURE 6. Two-state Markov model and associated state transition probabilities

using δ = 3.5σ for (a) the RF signal class, and (b) the noise class.

Based on the above rule, it is straightforward to transform

yT[n] into the state vector, SyT . Once SyT is obtained, the

probability of a transition between any two states is cal-

culated. Note that the state vector is generated based on

the amplitude of the signal samples in the wavelet domain.

The choice of δ in (5) depends on the operating SNR

of the system and will be discussed in Section VII-A. The

transition count matrix, TN , and the transition probability

matrix, TP, are defined as follows:

TN =

[
N11 N12

N21 N22

]
,TP =

[
p11 p12

p21 p22

]
=

TN∑
i,j Nij

, (6)

respectively, where Nij is the number of transitions from state

Si to Sj among all samples of yT[n], and pij = P(Si → Sj)

is the probability of a transition from state Si to Sj. The

matrix TP is obtained by normalizing the TN matrix with

the total number of samples in the signal. It is expected

that the transition probabilities generated for the signal class

(UAV, Wi-Fi, and Bluetooth) and the noise class will be sig-

nificantly different at modest SNR levels. Also, the choice

of δ in (5) dictates the transition probabilities for both

the signal and noise class. In Section VII-A, the threshold

δ is expressed in terms of the estimated standard devi-

ation (σ ) of the preprocessed noise data captured from

the environment. Moreover, during the experiments, data is

captured within a short time window (0.25 ms), thus we

assume the environmental noise is stationary during this

interval.

Fig. 6 shows the two-state Markov models for the RF

signal and noise classes obtained from the training data using

δ = 3.5σ . From Fig. 6(a), we see that for the signal class, p22

is significantly higher than p11, p12, and p21. On the other

hand, from Fig. 6(b), we see that for the noise class, p11

is significantly higher than the other transition probabilities.

Based on these observations, the differences between the

state transition probabilities of each class can be utilized to

determine the class of a captured test signal.

Consequently, the likelihood of the test signal being an

RF signal can be calculated as follows:

P
(
SyT |C = 1

)
=

N−1∏

n=1

p
(
SyT(n) → SyT(n+ 1)|C = 1

)

=
∏

i,j={1,2}

T
TN (i,j)
PC=1

(i, j)

=
∏

i,j={1,2}

p
Nij
ij;C=1. (7)

The product of the conditional transition probabilities in the

above equation gives the likelihood of obtaining the state

vector SyT given the hypothesis C = 1 is true. The log-

likelihood of the above expression is:

log
(
P
(
SyT |C = 1

))
=

∑

i,j={1,2}

Nij log
(
pij;C=1

)
. (8)

Similarly, the log-likelihood of the signal coming from a

noise class is calculated by

log
(
P
(
SyT |C = 0

))
=

∑

i,j={1,2}

Nij log
(
pij;C=0

)
. (9)

The decision will be favored to C = 1, if log(P(SyT |C =

1)) ≥ log(P(SyT |C = 0)); otherwise, C = 0. We discuss

the detection results in Section VII-A. If the captured test

signal belongs to the RF signal class, then the second stage

detector is invoked to identify UAV controller-type signals.

Otherwise, the system continues sensing the environment for

the presence of signals as shown in Fig. 3.

IV. DETECTION OF WI-FI AND BLUETOOTH

INTERFERENCE

In recent times, there has been interest in detecting Wi-Fi and

Bluetooth signals [17]. In [18], a new technique is proposed

for classifying Wi-Fi and Bluetooth interference signals in

the 2.4 GHz band. The technique uses the Hidden Markov

Model (HMM) to model sequences or periodicity in the cap-

tured signal. The expectation-maximization (EM) algorithm

is used to learn the parameters of the HMM models. The

proposed system achieved accuracy above 88%. The major

drawback is the fact that the EM algorithm often converges

to a local maximum. Therefore, the EM algorithm might

fail in computing a consistent estimate of the parameters of

the model. Besides, in the context of RF-based UAV detec-

tion in urban environments, where the Wi-Fi and Bluetooth

signals are considered as interference, there has been min-

imal research efforts. Fortunately, these interference signals

are well standardized and can be identified by using the

knowledge of their specifications. Table 1 provides a brief

summary of the specifications for Wi-Fi and Bluetooth trans-

missions. It is obvious that the signal bandwidth and the

modulation type are two important features for identifying

the Wi-Fi and Bluetooth signals. The second stage detec-

tor exploits these features for detecting these interference

sources.
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FIGURE 7. Bandwidth analysis of (a) Wi-Fi signal, (b) Bluetooth signal from Motorola e5 cruise, and (c) Spektrum DX5e UAV controller signal.

TABLE 1. Specifications of the Wi-Fi and Bluetooth standards.

The first step in deciding if the detected signal is a wireless

interference or not is to perform bandwidth analysis. This

is because Wi-Fi signals can be easily identified by their

bandwidth. According to Table 1, Bluetooth 2.0 signals have

a bandwidth of 1 or 2 MHz, Wi-Fi signals have a bandwidth

of 20 MHz (or more) while all the UAV controller signals in

our database have bandwidth less than 10 MHz. Therefore,

if the detected RF signal has a bandwidth equal or greater

than 20 MHz, it is classified as a Wi-Fi signal. Bandwidth

analysis is performed by taking the Fourier transform of the

resampled signal. Fig. 7 shows the result of the bandwidth

analysis of a typical Wi-Fi, a Bluetooth (from Motorola e5

cruise), and a UAV (Spektrum DX5e) controller signal.

If the detected signal has a bandwidth less than 20 MHz,

it is assumed to be transmitted either from a Bluetooth

interference source or a valid UAV controller. Since most

mobile Bluetooth devices employ Gaussian frequency shift

keying GFSK/FSK modulation, it is reasonable to detect and

discriminate these devices by means of modulation features.

In this study, two GFSK/FSK modulation features, namely,

frequency deviation and symbol duration, will be used to

discriminate Bluetooth signals. Frequency deviation is a mea-

sure of the maximum difference between the peak frequency

in the GFSK/FSK signal and the center frequency. On the

other hand, symbol duration is the minimum time interval in

the observed Bluetooth waveform or pulse. Therefore, using

a GFSK/FSK demodulator, these features can be extracted

and used as the basis for Bluetooth signal detection.

We consider a zero-crossing GFSK/FSK demodulator. It

is known that the Bluetooth GFSK/FSK signal is transmitted

in burst consisting of M data bits dm ∈ {−1,+1}, each bit

having a period Tb and average energy per bit Eb [19]. A

general model for such a signal is given as:

s(t) =

√
2Eb

Tb
. cos(2π fot + ϕ(t, α) + ϕo) + n(t), (10)

where ϕ(t, α) is a phase modulating function, ϕo is an arbi-

trary phase constant, fo is the operational frequency, and n(t)

is the channel noise component. The zero-crossing demodu-

lator considered herein for Bluetooth interference detection

is able to detect the time instants at which the signal s(t) is

equal to zero and has a positive slope, i.e., the zero-crossings.

When a Bluetooth device transmits at the basic rate using

the standard GFSK/FSK modulation, one symbol represents

one bit. Therefore, the time interval between consecutive

zero-crossings is a measure of the symbol duration of the

Bluetooth signal.

Fig. 8 shows the results of the zero-crossing demodulation

of a Bluetooth signal from Motorola e5 cruise. The cap-

tured Bluetooth signal and its fast Fourier transform (FFT)

are shown in Fig. 8(a) and Fig. 8(b), respectively. From

Fig. 8(b), we see that the transmit frequency of the Bluetooth

device is 2.4 GHz. Afterward, the signal is shifted and resam-

pled by 1/2000. The FFT of the resampled signal is shown

in Fig. 8(c). This figure shows that the bandwidth of the

Bluetooth signal is around 2 MHz, which is far less than

20 MHz. Next, the resampled signal is demodulated by tak-

ing the derivative of its phase angle, and the start point of

the demodulated signal is estimated using the Higuchi algo-

rithm [22]. The Higuchi algorithm detects the start point

of the signal by measuring the fractal dimensions of the

signal. Once the start point is detected, the frequency devi-

ation is estimated as one half the peak-to-peak frequency

of the demodulated signal. Fig. 8(d) shows a plot of the

demodulated signal and the estimated start point which is

obtained using the Higuchi algorithm. From the figure, the

peak to peak frequency of the demodulated signal is esti-

mated as 551.12 kHz, and therefore, the frequency deviation

is 275.56 kHz.

In order to estimate the symbol duration, the demodu-

lated signal is converted to a binary signal by using the

mean as a threshold. Fig. 8(e) shows the binary signal,
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FIGURE 8. Extraction of the modulation features of a Bluetooth interference signal from Motorola e5 cruise mobile device using zero-crossing demodulation technique:

(a) Raw signal, (b) FFT of the raw signal, (c) FFT of the shifted and resampled signal (by 1/2000), (d) the demodulated signal showing a peak-to-peak frequency of 551.12 kHz,

(e) binary signal, and (f) histogram of the time-interval between consecutive zero-crossings in the modulated signal.

where binary one represents a positive frequency deviation,

and a binary zero represents a negative frequency devia-

tion. Then, we compute the derivative of the binary signals

to locate the zero-crossings. To ensure we accurately com-

pute the symbol duration, we compute the histogram of the

time intervals between consecutive zero-crossings. This is

necessary because channel distortions will cause some devi-

ation in these intervals. Fig. 8(f) shows the histogram of the

time intervals between consecutive zero-crossings for the

Bluetooth signal. The estimated symbol duration is 0.5 µs.

To validate the joint discriminating ability of these modu-

lation features, Bluetooth signals from six mobile phones

and signals from nine UAV controllers are collected. The

mobile phones are Iphone 7, Iphone XR, LG X charge,

Motorola G Play, Motorola e5 cruise, and Samsung Galaxy

Note 9. The UAV controllers considered are Jeti Duplex

DC-16, Spektrum DX5e, Spektrum DX6e, Spektrum DX6i,

Spektrum JR X9303, FlySky FS-T6, Graupner MC-32, HK-

T6A, and Turnigy 9X. The UAV signals are frequency

modulated as well. Therefore, all the collected signals are

demodulated using the zero-crossing technique. Fig. 9 shows

the feature space of the demodulated Bluetooth and UAV

controller signals. The figure shows a clear clustering of

the Bluetooth signals from different mobile phones. All the

Bluetooth signals have a symbol duration of 0.5µs and

a frequency deviation of less than 350 kHz. Therefore,

the frequency deviation and symbol duration can be used

as features in a simple maximum likelihood classifier for

FIGURE 9. Feature space showing the symbol duration and frequency deviation of

the signals from several mobile Bluetooth devices and UAV controllers. Each UAV

controller is represented by a circular marker of a unique color.

identifying Bluetooth interference signals. If the detected sig-

nal is not from a Bluetooth interference source, it is presumed

to be an emission from a UAV controller and transferred to

the UAV classification system.

V. UAV CLASSIFICATION USING RF FINGERPRINTS

The input to the ML classifiers are the RF-based features

extracted from the energy-time-frequency domain represen-

tation of the UAV controller signals. For this representation,
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FIGURE 10. (a) The spectrogram and, (b) the energy trajectory of the UAV controller

signal shown in Fig. 5.

we use the spectrogram method. The spectrogram of any sig-

nal is computed using the squared magnitude of the discrete

time short-time Fourier transform (STFT)

Spectrogram(m, ω) =

∣∣∣∣∣

∞∑

k=−∞

yT[k]w[k − m]e−jωk

∣∣∣∣∣

2

, (11)

where yT[n] is the pre-processed signal captured by the

surveillance system, m is discrete time, ω is the frequency,

and w[n] is a sliding window function that acts as a fil-

ter. The spectrogram analysis of the captured RF signals

can reveal the transmit frequency of the signal as well as

the frequency hopping patterns. Fig. 10(a) shows the spec-

trogram of the signal captured from the remote controller

of the DJI Phantom 4 Pro UAV (the signal in Fig. 5). In

computing the spectrogram, the signal is divided into seg-

ments of length 128 with an overlap of 120 samples between

adjoining segments. Then, a Hamming window is used, fol-

lowed by a 256-point DFT. The spectrogram shows that the

transmit frequency of the signal is 2.4 GHz.

The spectrogram displays the energy distribution of the

signal along the time-frequency axis. Therefore, the energy

trajectory can be computed from the spectrogram by taking

the maximum energy values along the time-axis. From this

TABLE 2. Statistical features.

distribution, we estimate the energy transient by searching

for the most abrupt change in the mean or variance of the

normalized energy trajectory. The term transient is defined as

a sudden change in the waveform of the signal which could

be due to modulation in amplitude, frequency or phase. A

transient contains unique information of the signal and can

be exploited in classification tasks. Accurate detection of the

start point of time-domain transients is critical and highly

dependent on the environmental noise level. If the SNR is

considerably low, transient start point may not be detected

properly and this may result in extracting features that do not

represent the signal. Due to this problem, we propose to use

energy transient by using an analogy between the transients

in the time-domain and energy-time-frequency domain. For

the RF signal in Fig. 5, the normalized energy trajectory and

the corresponding energy transient are shown in Fig. 10(b).

Once the energy transient is detected, RF fingerprints (a

set of 15 statistical features) are extracted. Each feature is a

physical descriptor of the energy transients and can provide

valuable information for ML-based classification of the sig-

nals captured from different UAV controllers. Table 2 gives

the list of the extracted features used in this study. The fea-

tures extracted from 17 UAV controllers are used to train five

different ML algorithms: kNN, RandF, discriminant analysis

(DA), support vector machine (SVM), and neural networks

(NN). Since some of the features may be correlated, there-

fore redundant, we also perform feature selection to reduce

the computational cost of the classification algorithm.

A. FEATURE SELECTION USING NCA
The NCA algorithm is a nearest neighbor-based feature

weighting algorithm, which learns a feature weighting vector

by maximizing a leave-one-out classification accuracy using

a gradient based optimizer. It is a non-parametric, embedded,

and supervised learning method for feature selection. NCA

learns the weighting vector/matrix by which the primary data
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FIGURE 11. NCA ranking of all the 15 RF fingerprints extracted from 17 UAV

controllers.

are transformed into a lower-dimensional space [23]. In this

lower-dimensional space, the features are ranked according to

a weight metric, with the more important features receiving

higher weight values.

Given a set of training samples representing the different

UAV controllers, U = {(x1,Y1), . . . , (xi,Yi), . . . , (xn,Yn)},

where xi is a p-dimensional feature vector extracted from

the energy transient, Yi ∈ {1, 2, . . . ,C} are the correspond-

ing class labels, and C is the number of classes. Then the

NCA learns the feature weighting vector w by maximiz-

ing a regularized objective function f (w) with respect to the

weight of each features. The regularized objective function is

defined as:

f (w) =
1

n

n∑

i=1

⎡
⎣

n∑

j=1,i �=j

pijYij − λ

p∑

r=1

w2
r

⎤
⎦, where

pij =

{
k(dw(xi,xj))∑n

j=1,i �=j k(dw(xi,xj))
if i �= j

0, if i = j
,

Yij =

{
1, if Yi = Yj
0, otherwise,

(12)

n is the number of samples in the feature set, λ is the

regularization term, wr is a weight associated with the rth

feature, and pij is the probability with which each point

xi selects another point xj as its reference neighbor and

inherits the class label of the latter [24]. The parameter Yij
is an indicator function, dw(xi, xj) =

∑p
r=1 w

2
r |xir − xjr| is a

weighted distance function between xi and xj, and k(a) =

exp( a
σ
) is some kernel function. Thus, NCA is a kernel-based

feature selection algorithm that selects the most descriptive

and informative features by optimizing (12) using gradient

update techniques.

Fig. 11 shows the results of the NCA ranking of 15

features extracted from the 17 UAV controllers. The experi-

mental setup and structure of the captured data are described

in Section VI. In Fig. 11, we see that NCA ranks the RF

fingerprints according to their weight values. It turns out

TABLE 3. UAV catalogue.

that the shape factor is the most discriminative feature in

the feature set. The next significant feature is the kurtosis

which describes the tailedness of the energy trajectory curve.

Next are variance and standard deviation. On the other hand,

entropy, which measures the uncertainty in the data set, is the

least significant feature. Based on these results, the ML algo-

rithms can safely discard the less important features and still

achieve good (even better) classification performance. This

is because discarding the less significant features reduces

the chance of overfitting. In addition, for large-scale classi-

fication problems, there can be huge computational saving

in training and testing the classifiers with fewer number of

features.

VI. EXPERIMENTAL SETUP AND DATA CAPTURE

During the experiments, RF signals are captured from

17 UAV controllers, six mobile Bluetooth devices (smart

phones), and a Wi-Fi router. Table 3 gives the catalogue of

the UAV controllers from eight different manufacturers. All

the UAV controllers transmit control signals in the 2.4 GHz

frequency band. In particular, a pair of UAV controllers from

DJI Matrice 600 and DJI Phantom 4 Pro models are used

while only one of the other controller type is used. This is

important for forensic and security analysis to investigate the

confusion that would arise when a target recognition system

attempt to distinguish between UAV controllers of the same

make and model. For the remaining part of the study we will

refer to the pair of DJI Matrice 600 as DJI M600 Mpact

and DJI M600 Ngat. Similarly, the pair of Phantom 4 Pro

controllers will be referred to as DJI Phantom 4 Pro Mpact

and DJI Phantom 4 Pro Ngat.

Fig. 12 shows the indoor and outdoor experimental sce-

narios. In each case, the RF passive surveillance system

detects signals transmitted by the UAV controllers and the

interference sources. Due to space limitations, only the

results of the indoor experiments will be reported. The exper-

imental RF passive surveillance system consists of a 6 GHz

bandwidth Keysight MSOS604A oscilloscope with a maxi-

mum sampling frequency of 20 GSa/s, 2 dBi omnidirectional

antenna (for short distance detection), and 24 dBi Wi-Fi grid

antenna (for longer distance detection). The antennas operate

in the 2.4 GHz frequency band. Furthermore, to ensure only

signals in the 2.4 GHz band are captured, the output of the

1. A pair of these controllers is used in this study. For all other controllers,
only one of each type is considered.
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FIGURE 12. (a) Indoor and (b) outdoor experimental scenarios for UAV signal

detection.

receiving antenna is passed through a 2.4 GHz bandpass fil-

ter. The addition of a 2.4 GHz bandpass filter also removes

out of band interference signals. Therefore, only Wi-Fi and

Bluetooth interference signals are considered in this study.

Moreover, the detection range of the RF surveillance system

can be further improved by using a combination of high-gain

receive antennas and low-noise power amplifiers (LNAs).

The receiver antenna continuously senses the environment

for the presence of RF signals. During both the training and

test phases, data capture is performed in real-time followed

by breaking into windows of a specific duration. Afterward,

the captured data are automatically saved in MATLAB exten-

sion format (.mat) in a cloud database for post-processing.

We note that, for accurate detection of the RF signals, the

window length should be small enough so that the transitions

that characterize the RF signals are not dominated by those

of the noise signals. On the other hand, for the classification

process, the window length should be kept large enough such

that the energy transient can be extracted properly. Based on

these considerations, the window length is set to 0.25 ms.

For each controller, 100 RF signals, each of which contains

5000k samples (spanning a period of 0.25 ms), are collected.

During the experiment, the data was partitioned with the

ratio p = 0.2. We used 80% for training (training (60%) +

cross-validation (20%)) and 20% for testing. We set aside the

test data and performed cross-validation to train the machine

learning models. The cross validation avoids over-fitting and

helps to remove the bias in the training phase. To be specific,

we used k-fold cross-validation (with k = 5), where data is

divided into k subsets, where each time, one of the k subsets

is used as the validation/test set and the remaining k−1 sub-

sets are used for training the model. The error is averaged

over all k trials to get the total effectiveness of the model.

The final test error was recorded by averaging the test error

for different Monte-Carlo simulations.

VII. RESULTS

A. DETECTION RESULTS
Detection performance of the proposed system is assessed

for different SNRs and threshold choices, and the results

are presented in Fig. 13. The selected thresholds are func-

tions of the standard deviation (σ ) of the preprocessed noise

data and the FAR specification. The value of σ is estimated

after performing multiresolution analysis (wavelet prepro-

cessing) of a concatenation of several noise data captured

from the environment. On the other hand, FAR, also known

as the probability of false detection, is the percentage of

false alarms per the number of non-events.

Fig. 13 shows that at very low SNR, such as −10 dB, the

detection accuracy is generally very low irrespective of the

threshold. As a result, in case of low-level signals (where

signals completely buried in the noise), the probability of

missed detection increases. Besides, for a given SNR, it is

observed that the set threshold also affects the performance

of the detection system. For instance, when the system oper-

ates at an SNR of 2 dB, a threshold of δ = 0.1σ will

achieve a detection accuracy of above 99%. However, the

threshold δ = 0.1σ yields to a FAR of 100%. Therefore, a

very low threshold value will result in a high percentage of

misclassification of the noise data as signals. Furthermore,

for the given SNR of 2 dB, an increase in the threshold

value to δ = 1.1σ will reduce the detection accuracy and

FAR to 96.6% and 14.8%, respectively. Further increase in

the threshold to δ = 2.5σ will greatly reduce the detec-

tion accuracy and FAR to 40.4% and 3.2%, respectively.

Therefore, the optimum threshold depends on the operating

condition and the requirements on the FAR. Besides, the

input impedance of the oscilloscope places a fundamental

limit on the sensitivity of the passive detection system used

in this study.

In addition, Fig. 13 shows that better detection

performance (with low FAR) can be achieved if the detec-

tor operates at higher SNRs (above 8 dB) and threshold

δ ∈ [2.5σ, 4.1σ ]. For instance, when the receiver operates at

an SNR of 10 dB with a threshold δ = 3.5σ , the detection

accuracy becomes 99.8% and, FAR drops to 2.8%. Although

a continuous increase in the threshold will further reduce the

FAR, it will not always guarantee a better detection accuracy,

especially when the receiver operates at SNRs of less than

18 dB. This is because the dissimilarity between the transi-

tion matrices of the RF signal and noise classes reduces as

δ increases beyond some optimum value. Therefore, there is

a high chance of detection error as δ increases indefinitely.
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FIGURE 13. The signal detection accuracy of the Markov model-based naïve Bayesian detector versus SNR for different values of δ.

Once a signal has been detected, the bandwidth and

the modulation-based features are estimated as described

in Section IV. This information is used to decide if the

signal comes from a UAV controller or any of the known

interference sources (Wi-Fi and Bluetooth sources). Given

that the detected signal comes from a UAV controller, it

is sent to the ML-based classification system for accurate

identification. Classification results are discussed next.

B. UAV CLASSIFICATION RESULTS
For the classification problem, 15 statistical features given in

Table 2 are extracted. Feature selection is performed using

the NCA algorithm as described in Section V-A.

To validate the result efficiency of the NCA and the ML

classifiers, 10 Monte Carlo simulations are run on the test

dataset. On one hand, all the 15 features are used for the

UAV controller classification problem. On the other hand,

only three most significant features are used according to the

NCA weight ranking shown in Fig. 11. These are the shape

factor, kurtosis and variance. The classification experiments

are run separately for the case of 15 and 17 UAV controllers.

Here, the number of controllers represents the number of

classes considered. In the case of 15 controllers, all the

controllers are of a different model. However, in the case

of 17 controllers, a pair of DJI Matrice 600 (labeled as DJI

Matrice 600 Mpact and DJI Matrice 600 Ngat) and a pair

DJI Phantom 4 Pro controllers (labeled as DJI Phantom 4

Pro Mpact and DJI Phantom 4 Pro Ngat) are considered in

addition to 13 different models.

We used the Bayesian optimization method to obtain

the best hyper-parameters for our machine learning mod-

els. Bayesian optimization has become a successful tool for

hyperparameter optimization of machine learning algorithms,

such as support vector machines or deep neural networks.

The algorithm internally maintains a Gaussian process model

of the objective function and uses objective function eval-

uations to train this model. More details can be found

in [25], [26]. Some of the critical hyper-parameters for the

machine learning models (for the 17 controller case) after

the Bayesian hyperparameter optimization are listed below:

• kNN: Number of neighbors = 10, Distance metric =

mahalanobis

• DA: Type = Linear, Delta = 0.15146, Gamma =

0.00016419

• SVM: Coding: onevsone, Lambda = 3.9941e-08,

Learner = Logistic

• NN: Double layer: Number of hidden nodes (Layer 1) =

45, Number of hidden nodes (Layer 2) = 15, Learning

rate = 0.30103, Activation functions = radbas

• RandF: Bagged Ensemble with 60 bagged decision trees

Table 4 provides the classification accuracy of all five

ML algorithms. With the exception of the kNN and NN

classifiers, the table shows that the classification accuracy

is only slightly higher when all the features are used as

compared to when only the three selected features are used.

Table 4 shows that it takes each ML classifier between 18-

142 s to classify the set of test signals extracted from all

17 UAV controllers. The time taken is lesser when we use
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TABLE 4. Performance of the ML classification algorithms at 25 dB SNR. 100 sample signals from each UAV controller is captured with 80% used for training and 20% for testing

(partition ratio = 0.2). The selected RF fingerprints are: Shape factor, kurtosis, and variance.

FIGURE 14. Box plot analysis of the classification accuracy of the ML classifiers

using the three selected features (shape factor, kurtosis, and variance) with (a) 15

controllers, and (b) 17 controllers.

only the selected features obtained from the NCA algorithm.

The savings in time, though little, will scale greatly as the

number of UAVs (to be classified) increases. This time saving

may be critical in aerial surveillance systems, where the

response time to effectively neutralizing a threat is very

small. The outdoor experimental test shows that it takes less

than 0.5 s to detect and identify the RF signals from a

single UAV controller which is 200 m away. This timing

is significantly small because most commercial and hobby

grade UAVs travel at a very slow speed. For instance, the

maximum speed of DJI Phantom 3 UAV is about 16 m/s.

FIGURE 15. Classification accuracy versus SNR for kNN, RandF and DA classifiers

using the three selected RF fingerprints (shape factor, kurtosis, and variance) as

features for training and testing the ML classifiers.

This means the proposed passive detection system can detect

this UAV hundred of miles away before it gets into harm’s

way. Moreover, the complexity of the proposed system lies

only in the training phase. It took several hours to train

the system using thousands of signals captured from all 17

controllers at different SNR. Once trained, the system has

a good performance to complexity ratio. Moreover, training

is performed only once. In the test phase, only the relevant

features are used for classification. Hence, the results in

Table 4 validate the decision to perform feature selection

using the NCA algorithm.

Table 4 shows the RandF classifier yields the highest clas-

sification accuracy when all the features are used. For the

case of 15 and 17 controllers, RandF achieves an accuracy

of 98.53% and 96.32%, respectively. Therefore, when all

the features are used, RandF is the best performing classi-

fier. It is followed by the kNN classifier, which achieves an

accuracy of 97.30% and 95.62% with 15 and 17 controllers,

respectively. The DA classifier is the least optimal when all

the features are utilized. On the other hand, when only the

three selected features are used, the kNN classifier performs

2. Both the accuracy and total computation time are the average of the
10 Monte Carlo simulations.
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FIGURE 16. Confusion matrices of kNN, RandF and DA classifiers using the three selected RF fingerprints (shape factor, kurtosis, and variance). In the confusion matrices, the

colorbar is used to specify the degree of confusion in terms of the confusion probability ρ. Moving down the colorbar, the degree of confusion increases with increasing

value of ρ.

the best with an accuracy of 98.13% and 95.53% for 15 and

17 controllers, respectively. It is followed by the RandF clas-

sifier which an accuracy of 97.73% and 95.18% with 15 and

17 controllers, respectively. When only the three most signifi-

cant features are used, the least optimal classifier is SVM. We

also note that the DA classifier has the shortest computational
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time whereas the SVM classifier has the longest computa-

tional time. The DA classifier computes and decomposes

the class covariance matrices. Fortunately, MATLAB has

optimized subroutines/functions for matrix computation and

decomposition. As a result, DA is very fast and efficiently

implemented in MATLAB. However, SVM is slow because

it has several key parameters that need to be optimized to

achieve the best classification performance. SVM hyperpa-

rameter optimization searches for different kernel functions

(Sigmoid, linear, RBF, etc). This process is time-consuming.

Table 4 provides only the average classification accu-

racy results. A more detailed summary can be obtained

from a box plot analysis shown in Fig. 14. Each box

plot gives a summary of the performance of a classifier in

terms of the minimum, first quartile, median (red horizontal

line), third quartile, and the maximum accuracy values over

10 Monte Carlo simulations. Comparing the box plots in

Fig. 14(a) and Fig. 14(b), we see that the box plot metrics

for each classifier are lower in the case of 17 controllers

as compared to the case of 15 controllers. This will be fur-

ther investigated with the help of the confusion matrix. In

addition, the box plots reveal the presence of outliers in the

performance of the SVM and NN classifiers. These outliers

suggest that for a given test signal, SVM and NN classi-

fiers could produce accuracy values well below the average

values reported in Table 4. This observation raises the con-

cern about the reliability of these classifiers for the UAV

controller classification problem.

The SNR of the detected signal is an important factor that

influences the accuracy of the classifiers. Fig. 15 shows the

accuracy versus SNR for the kNN, RandF and DA classifiers.

For signals with SNR in the interval between 15 and 25 dB,

the kNN is slightly better than the RandF for the case of 15

controllers. In the same SNR region, the RandF performs

best for the case of 17 controllers. In this SNR range, the

DA classifier has the worst performance. On the other hand,

for SNR between 4 and 15 dB, the performance of the DA

classifier improves significantly, outperforming the kNN and

RandF classifiers when 15 controllers are considered. This

is an interesting observation since DA is known to have

the shortest computational time. However, for SNR between

0 to 4 dB, the RandF classifier has the best performance.

In general, the accuracy of all the classifiers increases with

SNR. Therefore, to ensure accurate identification of the UAV

controller, it is best to operate the receiver at SNR above

15 dB, in which case, kNN and RandF are the optimal

classifiers for the datasets. Fig. 15 also shows that for all

SNR, the accuracy plot is slightly lower when 17 controllers

are considered as compared to the case of 15 controllers.

The confusion matrix gives an idea of what a classifier is

getting right and the type of errors it makes. Fig. 16 shows

the confusion matrices of the classifiers: kNN, RandF and

DA for the case of 15 and 17 remote controllers. On the ver-

tical axis of each confusion matrix is the output class or the

prediction of the classifier while the horizontal is the target

class or true label. From the confusion matrices in Fig. 16,

we observe that in the case of 17 controllers, the degree of

confusion around the DJI controllers is relatively higher as

compared to the case of 15 controllers. This is because in

the former, we intentionally included two pairs of identical

DJI controllers (DJI Matrice 600 MPact, DJI Matrice 600

Ngat, DJI Phantom 4 Pro Mpact, and DJI Phantom 4 Pro

Ngat). Consequently, there are some confusions among these

four controllers leading to a slight reduction in the classifi-

cation accuracy in the case of 17 controllers. However, the

kNN and RandF classifiers still achieves an average accu-

racy of 95.53% and 95.18%, respectively. Therefore, these

classifiers are robust in identifying UAV controllers of the

same make and model. On the other hand, the DA classifier

is characterized by several more confusions among different

controllers which reduces its average accuracy to 88.12% in

the case of 17 remote controllers. Thus, while the kNN and

RandF seem to be the best classifiers, the DA classifier still

performs well for the given dataset.

VIII. CONCLUSION

In this paper, the problem of detecting and classifying RF

signals from different UAV controllers is investigated. The

detection system is designed to operate in the presence

of wireless interference from Wi-Fi and Bluetooth sources.

These interference signals are detected using a multistage

detector, which estimates the bandwidth and modulation fea-

tures of the detected RF signals. Once the signal from a

UAV controller is detected, it is identified using RF fin-

gerprints along with the ML-based classification techniques.

Reducing the number of required features with the help of

NCA, the study shows that it is possible to achieve an accu-

racy of 98.13% in classifying 15 different controllers using

only three features in a kNN classifier. It is also shown

that the proposed system can even classify the same make

and model UAV controllers without much compromising the

overall accuracy. In addition, the detection and classification

performance of the proposed system is tested for a range of

SNR levels. In each task, the system is shown to be safe

for SNR levels of above 10 dB. Future studies will present

the detection of UAVs directly from the UAV signals in out-

door scenarios and consider the potential of sensor fusion

for improved UAV detection.
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