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Detection and Classification of Vehicles
Surendra Gupte, Osama Masoud, Robert F. K. Martin, and Nikolaos P. Papanikolopoulos, Member, IEEE

Abstract—This paper presents algorithms for vision-based de-
tection and classification of vehicles in monocular image sequences
of traffic scenes recorded by a stationary camera. Processing is
done at three levels: raw images, region level, and vehicle level.
Vehicles are modeled as rectangular patches with certain dynamic
behavior. The proposed method is based on the establishment
of correspondences between regions and vehicles, as the vehicles
move through the image sequence. Experimental results from
highway scenes are provided which demonstrate the effectiveness
of the method. We also briefly describe an interactive camera
calibration tool that we have developed for recovering the camera
parameters using features in the image selected by the user.

Index Terms—Camera calibration, vehicle classification, vehicle
detection, vehicle tracking.

I. INTRODUCTION

T RAFFIC management and information systems rely on
a suite of sensors for estimating traffic parameters. Cur-

rently, magnetic loop detectors are often used to count vehicles
passing over them. Vision-based video monitoring systems offer
a number of advantages. In addition to vehicle counts, a much
larger set of traffic parameters such as vehicle classifications,
lane changes, etc., can be measured. Besides, cameras are much
less disruptive to install than loop detectors. Vehicle classifica-
tion is important in the computation of the percentages of ve-
hicle classes that use state-aid streets and highways. The current
situation is described by outdated data and often, human oper-
ators manually count vehicles at a specific street. The use of
an automated system can lead to accurate design of pavements
(e.g., the decision about thickness) with obvious results in cost
and quality. Even in large metropolitan areas, there is a need for
data about vehicle classes that use a particular street. A classifi-
cation system like the one proposed here can provide important
data for a particular design scenario.

Our system uses a single camera mounted on a pole or other
tall structure, looking down on the traffic scene. It can be
used for detecting and classifying vehicles in multiple lanes
and for any direction of traffic flow. The system requires only
the camera calibration parameters and direction of traffic for
initialization.
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The paper starts by describing an overview of related work,
then a description of our approach is presented, a camera cali-
bration tool developed by our group is described, experimental
results are presented, and finally conclusions are drawn.

II. RELATED WORK

Tracking moving vehicles in video streams has been an
active area of research in computer vision. In [2], a real
time system for measuring traffic parameters is described. It
uses a feature-based method along with occlusion reasoning
for tracking vehicles in congested traffic scenes. In order to
handle occlusions, instead of tracking entire vehicles, vehicle
subfeatures are tracked. This approach however is very com-
putationally expensive. In [6], a moving object recognition
method is described that uses an adaptive background subtrac-
tion technique to separate vehicles from the background. The
background is modeled as a slow time-varying image sequence,
which allows it to adapt to changes in lighting and weather
conditions. In a related work described in [10], pedestrians are
tracked and counted using a single camera. The images from
the input image sequence are segmented using background
subtraction. The resulting connected regions are then grouped
together into pedestrians and tracked. Merging and splitting of
regions is treated as a graph optimization problem. In [11], a
system for detecting lane changes of vehicles in a traffic scene
is introduced. The approach is similar to the one described
in [10] with the addition that trajectories of the vehicles are
determined to detect lane changes.

Despite the large amount of literature on vehicle detection
and tracking, there has been relatively little work done in the
field of vehicle classification. This is because vehicle classifi-
cation is an inherently hard problem. Moreover, detection and
tracking are simply preliminary steps in the task of vehicle clas-
sification. Given the wide variety of shapes and sizes of vehicles
within a single category alone, it is difficult to categorize vehi-
cles using simple parameters. This task is made even more dif-
ficult when multiple categories are desired. In real-world traffic
scenes, occlusions, shadows, camera noise, changes in lighting
and weather conditions, etc. are a fact of life. In addition, stereo
cameras are rarely used for traffic monitoring. This makes the
recovery of vehicle parameters—such as length, width, height
etc., even more difficult given a single camera view. The in-
herent complexity of stereo algorithms and the need to solve the
correspondence problem makes them unfeasible for real-time
applications.

In [9], a vehicle tracking and classification system is de-
scribed that can categorize moving objects as vehicles or
humans. However, it does not further classify the vehicles into
various classes. In [7], an object classification approach that
uses parameterized 3-D models is described. The system uses a
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3-D polyhedral model to classify vehicles in a traffic sequence.
The system uses a generic vehicle model based on the shape of
a typical sedan. The underlying assumption being that in typical
traffic scenes, cars are more common than trucks or other types
of vehicles. The University of Reading has done extensive work
in three-dimensional tracking of vehicles and classification
of the tracked vehicles using 3-D model matching methods.
Baker and Sullivan [1] and Sullivan [13] utilized knowledge
of the camera calibration and that vehicles move on a plane in
their 3-D model-based tracking. Three-dimensional wireframe
models of various types of vehicles (e.g., sedans, hatchbacks,
wagons, etc.) were developed. Projections of these models were
then compared to features in the image. In [15], this approach
was extended so that the image features act as forces on the
model. This reduced the number of iterations and improved
performance. They also parameterized models as deformable
templates and used principal component analysis to reduce
the number of parameters. Sullivanet al. [14] developed a
simplified version of the model-based tracking approach using
orthographic approximations to attain real-time performance.

III. OVERVIEW

The system we propose consists of six stages.

1) Segmentation: in this stage, the vehicles are separated
from the background in the scene.

2) Region Tracking: the result of the segmentation step is
a collection of connected regions. This stage tracks re-
gions over a sequence of images using a spatial matching
method.

3) Recovery of Vehicle Parameters: to enable accurate clas-
sification of the vehicles, the vehicle parameters such as
length, width, and height need to be recovered from the
2-D projections of the vehicles. This stage uses informa-
tion about the camera’s location and makes use of the fact
that in a traffic scene, all motion is along the ground plane.

4) Vehicle Identification: our system assumes that a vehicle
may be made up of multiple regions. This stage groups
the tracked regions from the previous stage into vehicles.

5) Vehicle Tracking: due to occlusions, noise, etc., there is
not necessarily a one-to-one correspondence between re-
gions and vehicles, i.e., a vehicle may consist of multiple
regions and a single region might correspond to multiple
vehicles. To enable tracking of vehicles despite these dif-
ficulties, our system does tracking at two levels—region
level and the vehicle level.

6) Vehicle Classification: after vehicles have been detected
and tracked, they are classified.

The following sections describe each of these stages in more
detail.

IV. SEGMENTATION

The first step in detecting vehicles is segmenting the image
to separate the vehicles from the background. There are var-
ious approaches to this, with varying degrees of effectiveness.
To be useful, the segmentation method needs to accurately sep-
arate vehicles from the background, be fast enough to operate

in real time, be insensitive to lighting and weather conditions,
and require a minimal amount of initialization. In [6], a seg-
mentation approach using adaptive background subtraction is
described. Kalman filtering is used to predict the background
image during the next update interval. The error between the
prediction and the actual background image is used to update
the Kalman filter-state variables. This method has the advantage
that it automatically adapts to changes in lighting and weather
conditions. However, it needs to be initialized with an image
of the background without any vehicles present. In [5], a prob-
abilistic approach to segmentation is described. They use the
expectation maximization (EM) method to classify each pixel
as moving object, shadow or background. Another approach
to segmentation is time differencing, (used in [9]) which con-
sists of subtracting successive frames (or frames a fixed interval
apart). This method is also insensitive to lighting conditions and
has the further advantage of not requiring initialization with a
background image. However, this method produces many small
regions that can be difficult to separate from noise.

We use a self-adaptive background subtraction method for
segmentation. This is similar in principle to the method de-
scribed in [5]. However we use a much simpler and more robust
method for updating the background. In addition, our method
automatically extracts the background from a video sequence
and so no manual initialization is required.

Our segmentation technique consists of three tasks:

• Segmentation;
• Background update;
• Background extraction.

A. Segmentation

For each frame of the video sequence (referred to ascurrent
image), we take the difference between the current image and
the current background giving thedifference image. The differ-
ence image is thresholded to give a binaryobject mask. The ob-
ject mask is a binary image such that all pixels that correspond
to foreground objects have the value 1, and all the other pixels
are set to 0.

B. Adaptive Background Update

The basic principle of our method is to modify the back-
ground image that is subtracted from the current image (called
the current background) so that it looks similar to the back-
ground in the current video frame. We update the background
by taking a weighted average of the current background and the
current frame of the video sequence. However, the current image
also contains foreground objects. Therefore, before we do the
update we need to classify the pixels as foreground and back-
ground and then use only the background pixels from the current
image to modify the current background. Otherwise, the back-
ground image would be polluted with the foreground objects.
The binary object mask is used to distinguish the foreground
pixels from the background pixels. The object mask is used as a
gating function that decides which image to sample for updating
the background. At those locations where the mask is 0 (corre-
sponding to the background pixels), the current image is sam-
pled. At those locations where the mask is 1—corresponding to
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Fig. 1. Computation of the instantaneous background.

foreground pixels—the current background is sampled. The re-
sult of this is what we call theinstantaneous background. This
operation described above can be shown in diagrammatic form
as in Fig. 1.

The current background is set to be the weighted average of
the instantaneous and the current background

CB IB CB (1)

The weights assigned to the current and instantaneous back-
ground affect the update speed. We want the update speed to be
fast enough so that changes in illumination are captured quickly,
but slow enough so that momentary changes (due to, say the
AGC of the camera being activated) do not persist for an unduly
long amount of time. The weight has been empirically deter-
mined to be 0.1. We have found that this gives the best tradeoff in
terms of update speed and insensitivity to momentary changes.

C. Dynamic Threshold Update

After subtracting the current image from the current back-
ground, the resultant difference image has to be thresholded
to get the binary object mask. Since the background changes
dynamically, a static threshold cannot be used to compute the
object mask. Moreover, since the object mask itself is used in
updating the current background, a poorly set threshold would

result in poor segmentation. Therefore we need a way to up-
date the threshold as the current background changes. The dif-
ference image is used to update the threshold. In our images, a
major portion of the image consists of the background. There-
fore the difference image would consist of a large number of
pixels having low values, and a small number of pixels having
high values. We use this observation in deciding the threshold.
The histogram of the difference image will have high values for
low pixel intensities and low values for the higher pixel inten-
sities. To set the threshold, we need to look for a dip in the
histogram that occurs to the right of the peak. Starting from
the pixel value corresponding to the peak of the histogram, we
search toward increasing pixel intensities for a location on the
histogram that has a value significantly lower than the peak
value (we use 10% of the peak value). The corresponding pixel
value is used as the new threshold.

D. Automatic Background Extraction

In video sequences of highway traffic it might be impossible
to acquire an image of the background. A method that can auto-
matically extract the background from a sequence of video im-
ages would be very useful. Here we assume that the background
is stationary and any object that has significant motion is consid-
ered part of the foreground. The method we propose works with
video images and gradually builds up the background image
over time.
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(a) (b)

(c) (d)

(e)

Fig. 2. Background adaptation to changes in lighting conditions. (a) Initial background provided to the algorithm. (b) Image of the scene at dusk. (c)Current
background after 4 s. (d) Current background after 6 s. (e) Current background after 8 s.

The background and threshold updating described above is
done at periodic update intervals. To extract the background, we
compute a binarymotion maskby subtracting images from two
successive update intervals. All pixels that have moved between
these update intervals are considered part of the foreground. To
compute the motion mask for frame , the binary object
masks from update interval and update interval

are used. The motion mask is computed as

(2)

This motion mask is now used as the gating function to com-
pute the instantaneous background as described above. Over a
sequence of frames the current background looks similar to the
background in the current image.

E. Self-Adaptive Background Subtraction Results

Fig. 2(a)–(e) shows some images that demonstrate the
effectiveness of our self-adaptive background subtraction
method. The image (a) was taken during the day. This was
given as the initial background to the algorithm. The image

(b) shows the same image at dusk. The images (c), (d), and (e)
show how the background adaptation algorithm updates the
background so that it closely matches the background of image
(b). Fig. 3(a)–(e) demonstrates how the algorithm copes with
changes in camera orientation.

V. REGION TRACKING

A vision-based traffic monitoring system needs to be able to
track vehicles through the video sequence. Tracking eliminates
multiple counts in vehicle counting applications. Moreover, the
tracking information can also be used to derive other useful in-
formation like vehicle velocities. In applications like vehicle
classification, the tracking information can also be used to refine
the vehicle type and correct for errors caused due to occlusions.

The output of the segmentation step is a binary object mask.
We perform region extraction on this mask. In the region
tracking step, we want to associate regions in framewith the
regions in frame . This allows us to compute the velocity
of the region as it moves across the image and also helps in the
vehicle tracking stage. There are certain problems that need
to be handled for reliable and robust region tracking. When
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(a) (b)

(c) (d)

(e)

Fig. 3. Background adaptation to changes in camera orientation. (a) Initial background provided to the algorithm. (b) Image of the scene after cameraorientation
has changed. (c) Current background after 4 s. (d) Current background after 6 s. (e) Current background after 8 s.

considering the regions in frameand frame the following
problems might occur:

• A region might disappear. Some of the reasons why this
may happen are as follows.

• The vehicle that corresponded to this region is no
longer visible in the image, and, hence, its region
disappears.

• Vehicles are shiny metallic objects. The pattern of
reflection seen by the camera changes as the vehicles
move across the scene. The segmentation process
uses thresholding, which is prone to noise. At some
point in the scene, the pattern of reflection from a
vehicle might fall below the threshold and, hence,
those pixels will not be considered as foreground.
Therefore the region might disappear even though
the vehicle is still visible.

• A vehicle might become occluded by some part of
the background or another vehicle.

• A new region might appear. Some possible reasons for this
include the following.

• A new vehicle enters the field of view of the camera
so a new region corresponding to this vehicle ap-
pears.

• For the same reason as that mentioned above, as the
pattern of reflections from a vehicle changes, its in-
tensity might now rise above the threshold used for
segmentation, and the region corresponding to this
vehicle is now detected.

• A previously occluded vehicle might no longer be
occluded.

• A single region in framemight split into multiple regions
in frame because of the following reasons.

• Two or more vehicles might have been passing close
enough to each other that they occlude (or are oc-
cluded) and, hence, are detected as one connected
region. As these vehicles move apart and are not oc-
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(a) (b)

(c) (d)

(e)

Fig. 4. Detected regions and their resultant association graph. (a) Frame i-1. (b) Frame i. (c) Previous regions P. (d) Current regions C. (e) The association graph
shows thatP has split intoC andC .

cluded, the region corresponding to these vehicles
might split up into multiple regions.

• Due to noise and errors during the thresholding
process, a single vehicle that was detected as a
single region might be detected as multiple regions
as it moves across the image.

• Multiple regions may merge. Some reasons why this may
occur include the following.

• Multiple vehicles (each of which were detected as
one or more regions) might occlude each other and
during segmentation get detected as a single region.

• Again, due to errors in thresholding, a vehicle that
was detected as multiple regions might later be de-
tected as a single region.

The region tracking method needs to be able to robustly handle
these situations and work reliably even in the presence of these
difficulties. We form an association graph between the regions
from the previous frame and the regions in the current frame.
We model the region tracking problem as a problem of finding
the maximal weight graph. The association graph is a bipartite
graph where each vertex corresponds to a region. All the ver-
tices in one partition of this graph correspond to regions from

the previous frame, and all the vertices in the other partition
correspond to regions in the current frame,. An edge be-
tween vertices and indicates that the previous region is
associated with the current region. A weight is assigned
to each edge . The weight of edge is calculated as

(3)

i.e., the weight of edge is the area of overlap between region
and region . The weight of the graph is defined as

(4)

A. Building the Association Graph

The region extraction step is done for each frame resulting in
new regions being detected. These become the current regions,

. The current regions from framebecome the previous re-
gions in frame . To add the edges in this graph, a score
is computed between each previous regionand each current
region . The score is a pair of values . It is a
measure of how closely a previous regionmatches a current
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Fig. 5. A conflict component.

region . The area of intersection betweenand is used
in computing

(5)

(6)

This makes the scoreindependent of the actual area of both
regions and .

B. Adding Edges

Each previous region is compared with each current region
and the area of intersection betweenand is computed.

The current region that has the maximum value for
with is determined. An edge is added betweenand .
Similarly, for each region , the previous region that
has the maximum value for with is determined. An
edge is added between vertices and .

The rationale for having a two-part score is that it allows us to
handle region splits and merges correctly. Moreover, by always
selecting the region that has the maximum value
for we do not need to set any arbitrary thresholds
to determine if an edge should be added between two regions.
This also ensures that the resultant association graph generated
is a maximal weight graph. An example is shown in Fig. 4.

C. Resolving Conflicts

When the edges are added to the association graph as de-
scribed above, we might possibly get a graph of the form shown
in Fig. 5. In this case, can be associated with or , or
both and (similarly, for ). To be able to use this graph
for tracking we need to choose one assignment from among
these. We enforce the following constraint on the association
graph—in every connected component of the graph only one
vertex may have degree greater than 1. A graph that meets this
constraint is considered a conflict-free graph. A connected com-
ponent that does not meet this constraint is considered a con-
flict component. We need to remove edges from a conflict com-
ponent so that it becomes conflict free. different conflict
free components can be generated from a conflict component
having vertices. One possibility is to generate each of the
connected components and select the one with the maximum
weight. This is the method used in [10]. However, this can be
computationally quite expensive. We use a different method for
resolving conflicts. For each conflict component we add edges
in increasing order of weight if and only if adding the edge does
not violate the constraint mentioned above. If adding an edge

will violate the constraint, we simply ignore the edge and
select the next one. The resulting graph may be suboptimal (in

Fig. 6. Camera calibration tool.

terms of weight), however, this does not have an unduly large
effect on the tracking and is good enough in most cases.

VI. RECOVERY OFVEHICLE PARAMETERS

To be able to detect and classify vehicles, the location,
length, width and velocity of the regions (which are vehicle
fragments) needs to be recovered from the image. Knowledge
of camera calibration parameters is necessary in estimating
these attributes. Accurate calibration can therefore significantly
impact the computation of vehicle velocities and classification.
Calibration parameters are usually difficult to obtain from the
scene as they are rarely measured when the camera is installed.
Moreover, since the cameras are installed approximately 20–30
feet above the ground, it is usually difficult to measure certain
quantities such as pan and tilt that can help in computing
the calibration parameters. Therefore, it becomes difficult
to calibrate after the camera has been installed. One way to
compute the camera parameters is to use known facts about the
scene. For example, we know that the road, for the most part,
is restricted to a plane. We also know that the lane markings
are parallel and lengths of markings as well as distances
between those markings are precisely specified. Once the
camera parameters are computed, any point on the image can
be back-projected onto the road. Therefore, we have a way of
finding the distance between any two points on the road by
knowing their image locations.

We have developed a camera calibration tool specifically for
the kind of traffic scenes that we are frequently asked to ana-
lyze. This interactive tool has a user interface that allows the
user to point to some locations on the image (e.g., the endpoints
of a lane divider line whose length is known). The system can
then compute the calibration parameters automatically. The pro-
posed system is easy to use and intuitive to operate, using ob-
vious landmarks, such as lane markings, and familiar tools, such
as a line-drawing tool. The graphical user interface (GUI) al-
lows the user to first open an image of the scene. The user is
then able to draw different lines and optionally assign lengths
to those lines. The user may first draw lines that represent lane
separation (solid line, Fig. 6). They may then draw lines to des-
ignate the width of the lanes (dashed line, Fig. 6). The user may
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Fig. 7. (a) Previous regions 5 and 10 merge to form current region 14. (b) Final outcome where all these regions merge to create vehicle 4.

also designate known lengths in conjunction with the lane sep-
aration marks. An additional feature of the interface is that it
allows the user to define traffic lanes in the video, and also the
direction of traffic in these lanes. Also, special hot spots can
be indicated on the image, such as the location where we want
to compute vehicles’ speeds. The actual computation of camera
calibration from the information given by the GUI is fully out-
lined in [12]. This GUI proved to be much more intuitive than
the methods we previously used. The only real difficulty arose
with respect to accuracy in determining distances in the direc-
tion of the road. Some of these inaccuracies arise because the
markings on the road themselves are not precise. Another part of
the inaccuracy depends on the user’s ability to mark endpoints in
the image. In general, however, in spite of the inaccuracies dis-
covered, this method of calibration proved to be much quicker
than those previously used, more accurate, and more adaptable
to generic scenes.

VII. V EHICLE IDENTIFICATION

A vehicle is made up of (possibly multiple) regions. The ve-
hicle identification stage groups regions together to form vehi-
cles. New regions that do not belong to any vehicle are con-
sideredorphan regions. A vehicle is modeled as a rectangular
patch whose dimensions depend on the dimensions of its con-
stituent regions. Thresholds are set for the minimum and max-
imum sizes of vehicles based on typical dimensions of vehicles.
A new vehicle is created when an orphan region of sufficient
size is tracked over a sequence of a number of frames (three in
our case).

VIII. V EHICLE TRACKING

Our vehicle model is based on the assumption that the scene
has a flat ground. A vehicle is modeled as a rectangular patch
whose dimensions depend on its location in the image. The di-
mensions are equal to the projection of the vehicle at the corre-
sponding location in the scene.

A vehicle consists of one or more regions, and a region might
be owned by zero or more vehicles. The region tracking stage
produces a conflict-free association graph that describes the re-
lations between regions from the previous frame and regions
from the current frame. The vehicle tracking stage updates the

location, velocity and dimensions of each vehicle based on this
association graph. The location and dimensions of a vehicle are
computed as the bounding box of all its constituent blobs. The
velocity is computed as the weighted average of the velocities
of its constituent blobs. The weight for a region vehicle
is calculated as

(7)

is the area of overlap between vehicleand region
. The vehicle’s velocity is used to predict its location in the

next frame.
A region can be in one of five possible states. The vehicle

tracker performs different actions depending on the state of each
region that is owned by a vehicle. The states and corresponding
actions performed by the tracker are:

1) Update: a previous region matches exactly one current
region . The tracker simply updates the ownership re-
lation so that the vehicle that owned now owns ;

2) Merge: regions merge into a single region .
The area of overlap between each vehicle assigned to

is computed with , if the overlap is above a
minimum threshold, is assigned to that vehicle;

3) Split: region splits into regions . Again the
area of overlap between each vehicle is computed
with . If it is greater than a minimum value, the
region is assigned to;

4) Disappear: a region is not matched by any
. The region is simply removed from all the vehicles that

owned it. If a vehicle loses all its regions, it becomes a
phantomvehicle. Sometimes a vehicle may become tem-
porarily occluded and then later reappear. Phantoms pre-
vent such a nonoccluded vehicle from being considered a
new vehicle. A phantom is kept around for a few frames
(3), and if it cannot be resurrected within this time, it is
removed;

5) Appear: a region does not match any . We
check with the phantom vehicles. If a phantom vehicle
overlaps new region(s) of sufficient area, it is resurrected.
If the region does not belong to a phantom vehicle and is
of sufficient size, a new vehicle is created.
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Fig. 8. (a) Previous region 1 splits into current regions 3 and 4. (b) The tracker correctly associates both the new regions with the same vehicle.

IX. CLASSIFICATION

To be useful, a vehicle classification system should categorize
vehicles into a sufficiently large number of classes. However as
the number of categories increases, the processing time required
to do the classification also increases. Therefore, a hierarchical
classification method is needed which can quickly categorize
vehicles at a coarse granularity. Then depending on the applica-
tion, further classification at the desired level of granularity can
be done.

We use vehicle dimensions to classify vehicles into two cat-
egories: cars (which constitute the majority of vehicles) and
noncars (vans, SUVs, pickup trucks, tractor-trailers, semis and
buses). Separating, say SUVs from pickup trucks would require
the use of more sophisticated, shape-based techniques. How-
ever, doing a coarse, dimension-based classification at the top-
level significantly reduces the amount of work that needs to be
done at a lower level. The final goal of our system is to be able
to do a vehicle classification at multiple levels of granularity
but currently, we classify vehicles into the aforementioned cat-
egories (based on the needs of the funding agency).

Since classification is done based on the dimensions of ve-
hicles, we compute the actual length and height (Section VI)
of the vehicles. Due to the camera orientation, the computed
height is actually a combination of the vehicle’s width and
height. It is not possible to separate the two using merely
vehicle boundaries in the image and camera parameters. The
category of a vehicle is determined from its length and this
combined value. We took a sample of 50 cars and 50 trucks
and calculated the mean and variance of these samples. We
used the combined width/height value for the vehicle height
computed using the camera calibration parameters. From these
samples, we were able to compute a discriminant function that
can be used to classify vehicles.

The average dimensions of a truck are only slightly larger
than the dimensions of the average car. In some cases, cars may
actually be longer and wider than trucks (i.e., a Cadillac versus
a small pickup). This ambiguity allows some error to enter the
system when we define a decision boundary.

X. RESULTS

The system was implemented on a dual Pentium 400 MHz PC
equipped with a C80 Matrox Genesis vision board. We tested
the system on image sequences of highway scenes. The system
is able to track and classify most vehicles successfully. In a 20
minute sequence of freeway traffic, 90% of the vehicles were
correctly detected and tracked. Of these correctly tracked ve-
hicles, 70% of the vehicles were correctly classified. The pro-
cessing was done at a frame rate of 15 frames/s. Figs. 7–9 show
some results of our system. With more optimized algorithms, the
processing time per frame could be reduced significantly. Errors
in detection were most frequently due to occlusions and/or poor
segmentation. Because of imperfections in updating the back-
ground, noise can be added or subtracted from the detected ve-
hicles. At times, the noise is sufficient enough to cause the de-
tected object to become too large or too small to be considered a
vehicle. Also, when multiple vehicles occlude each other, they
are often detected as a single vehicle. However, if the vehicles
later move apart, the tracker is robust enough to correctly iden-
tify them as separate vehicles. Unfortunately, the two vehicles
will continue to persist as a single vehicle if the relative motion
between them is small. In such a case, the count of vehicles is
incorrect. Another thing to note is that the images we used are
grayscale. Since our segmentation approach is intensity based,
vehicles whose intensity is similar to the road surface are some-
times missed, or detected as fragments that are too small to be
reliably separated from noise. This too will cause an incorrect
vehicle count. Classification errors were mostly due to the small
separation between vehicle classes. Because we only used size
as our metric, it is impossible to correctly classify all vehicles.
To further improve our performance in classification rates, we
would need to investigate additional cues.

Although our data consisted of traffic moving in only one di-
rection, the tracking algorithm is general enough to work with
multiple traffic directions. Also, our data was acquired on an
overcast day thus removing the problem of shadows. As de-
scribed, our system does not handle shadows although prelimi-
nary investigations into shadow handling have been positive. We
intend to further test the system on more complex scenes and
under a wider variety of illumination and weather conditions.
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Fig. 9. Snapshots of different car/truck classification results. Cars are shown surrounded by their bounding box; noncars are marked by drawing the diagonals of
the bounding box. Notice how in (g), the two vehicles were grouped and considered a truck because of large combined size. In (h), the car was misclassified as a
truck due to large size.

We are also currently exploring various techniques to deal with
the problems mentioned above.

XI. CONCLUSIONS ANDFUTURE WORK

We have presented a model-based vehicle tracking and clas-
sification system capable of working robustly under most cir-
cumstances. The system is general enough to be capable of de-
tecting, tracking and classifying vehicles while requiring only
minimal scene-specific knowledge. In addition to the vehicle
category, the system provides location and velocity information
for each vehicle as long as it is visible. Initial experimental re-
sults from highway scenes were presented.

To enable classification into a larger number of categories, we
intend to use a nonrigid model-based approach to classify vehi-
cles. Parameterized 3-D models of exemplars of each category
will be used. Given the camera calibration a 2-D projection of
the model will be formed from this viewpoint. This projection
will be compared with the vehicles in the image to determine
the class of the vehicle.
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