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 
Abstract—In this paper, we present the concept of Moment 

Invariants. Objects can be detected with the help of Moment 

Invariants.  Different Moment Invariants are discussed in this 

paper. The pitfalls of Fourier-Mellin Invariants and Legendre 

Moment Invariants are discussed. Two Dimensional Moments 

of 𝐍 × 𝐍 images are sampled and proved that 2D Geometrical 

Moment Invariants are far better than the other Invariants in 

terms of the object detection. 

 
Index Terms—Image function, algebraic invariants, polar 

coordinates, affine groups, information redundancy, 

fourier-mellin invariants, legendre moment invariants, 

counter-based shape descriptors, geometric moment invariants.  

 

I. INTRODUCTION 

Moment Invariants are commonly used for identification 

and inspection of shapes of images. Moment Invariants plays 

a vital role in many applications of computer vision and 

pattern recognition. The basic idea of Moment Invariants is to 

describe the objects by a group of features which provide 

discrimination power to identify objects from different 

groups. The 2D Moment Invariants were firstly introduced by 

Hu [1] in 1962. Who used the results of theory of algebraic 

invariants and derived seven known invariants to rotation of 

2D objects. Dudani [2] and Belkasim [3] explained their 

work on applications of aircraft silhouette recognition. Li [4] 

and Wong [5] exploded the invariants order to fine and fire 

respectively. Flusser and Suk[6] employed moment 

invariants in template matching and recognition of satellite 

images. Wang [7] proposed illumination invariants suitable 

for feature classification. Resis [8] revised some of the 

geometrical proofs of Hu. Teague [9] proposed the use of 

orthogonal moments based on the history of orthogonal 

polynomials. Different types of Image Moments, like 

Geometrical Moments, Legendre Moments, Zernike 

Moments, Fourier- Mellin Moments, Pseudo-Zernike 

Moments, Complex Moments were developed based on the 

capability of image description, noise sensitivity etc.,     

Wallin [10] discussed an algorithm for the formation of 

moment invariants of any order. Flusser [11] discussed the 

independence of Two Dimensional Rotational Moments via 

Complex Moments. He also constructed 2D moment 

invariants basis and its independence and completeness. Van 
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Gool [12] introduced affine-photo metric invariants of gray 

level and color images. Flusser and Suk [13] derived 

invariants to convolution which an arbitrary PSF. But these 

descriptions were invariants to translation only. 

 

II. THE CONCEPT OF MOMENT INVARIANTS  

Moment invariants were first introduced by the Hu. By 

image functions we understand any real function f x, y ∈𝐿𝑖 having a bounded support and a non-zero integral. 

Translation and scale variance of a dimension moment 

invariants are easy to be eliminated. Let 𝑚𝑝1…𝑝𝑛 represent the 

n-dimension  𝑝1 + ⋯ + 𝑝𝑛 th order moment of a piecewise 

continuous density function 𝑕 𝑥1, … . , 𝑥𝑛 , it can be defined 

as 𝑚𝑝1…𝑝𝑛 = …. 𝑥1
𝑝1……𝑥𝑛𝑝𝑛 𝑕 𝑥1 ,….,𝑥𝑛  𝑑𝑥1 ,….,𝑑𝑥𝑛 

∞
   (1) 

The scale variants can be eliminated based on the concept 

of algebraic invariants [14] as follows. 𝜂𝑝1…𝑝𝑛 =
𝜇𝑝1…𝑝𝑛𝜇0…0

 𝑝1+⋯+𝑝𝑛  𝑛+1                     (2) 

A. Expression for Moment-Based Rotation Invariants 

Rotation invariant is achieved by using Zernike’s moment 
invariants, wavelet moment invariants and Li’s moment 
invariants.  

Let 𝑓(𝑥, 𝑦) represent a two dimensional binary image 

object in the  (𝑥, 𝑦)  coordinate and Let 𝑓(𝑟, 𝜃)  be its 

corresponding polar coordinate. Then the relationship 

between 𝑓(𝑥, 𝑦) and 𝑓(𝑟, 𝜃) is specified as  𝑥 = 𝑟 cos(𝜃), 𝑦 = 𝑟 sin(𝜃). 

To derive rotation invariant moments, the following 

general expression is used  𝑓𝑝𝑞 =  𝑓 𝑟, 𝜃 𝑔𝑝 𝑟 𝑒𝑗𝑞𝜃 𝑟 𝑑𝑟 𝑑𝜃 

where 𝑓𝑝𝑞  is the 𝑝𝑞order moment, 𝑔𝑝 𝑟 is a function of 

radial variable 𝑟, and 𝑃 and 𝑞 are integer parameters. 

 

III. FOURIER-MELLIN INVARIANTS 

The optical research community was introduced the 

Fourier-Mellin transform in 1970s. These transforms are 

used now-a-days in Digital Image and Signal Processing. The 

main concept of Fourier-Mellin transform is with the study of 

similarity transformations. Ghorbel [15] work focused on the 

Fourier transform defined on 2D and 3D parameterization. 

Tursci [16] explained some Fourier transforms for sub groups 
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of the affine group. 

Let 𝑓 denote a function representing a gray level image 

defined over a compact set of ℝ2 . The standard 

Fourier-Mellin Transform of 𝑓 is given by  

        ∀ 𝑘, 𝑣 ∈ ℤ × ℝ, 𝜇𝑓 𝑘, 𝑣 = 

1

2𝜋   𝑓 𝑟, 𝜃 𝑟−𝑖𝑟𝑒−𝑖𝑘𝜃𝑑𝜃 𝑑𝑟𝑟2𝜋
0

∞
0

                (3) 𝑓 Is assumed to be Summable over ℝ+
∗ × 𝑆1  under the 

measure  
𝑑𝑟𝑟  , ie 

   𝑓 𝑟, 𝜃 𝑟−𝑖𝑟𝑒−𝑖𝑘𝜃  𝑑𝜃 𝑑𝑟𝑟2𝜋
0

∞

0

= 

    1𝑟 𝑓 𝑟, 𝜃 𝑑𝜃 𝑑𝑟   < ∞2𝜋
0

∞
0

                      (4) 

 

IV. LEGENDRE MOMENTS 

Legendre moments were introduced by Teague [17]. Tel 

and chain [18] stated that orthogonal Legendre moments can 

be used to represent an image with a minimum amount of 

information redundancy. 

The two dimensional Legendre moments of order (𝑝 + 𝑞) 

for image intensity function 𝑓(𝑥, 𝑦) are defined as 𝐿𝑝𝑞 =
(2𝑝+1)(2𝑞+1)

4
  𝑝𝑝 𝑥 𝑝𝑞 𝑦 𝑓 𝑥, 𝑦 𝑑𝑥 𝑑𝑦1−1

1−1
   (5) 

where 𝑝𝑝 𝑥  is the 𝑝𝑡𝑕 order Legendre polynomial Legendre 

descriptors of the third and fourth order are used to test the 

invariance. 

Third order descriptions are 𝜙
1=

35
8

𝜂3,0
 𝜙

2=
45
8

𝜂2,1
 𝜙

3=
45
8

𝜂1,2
 𝜙

4=
35
8

𝜂0,3
 

Fourth order descriptions are 𝜙5 =
9

4
 35

8
𝜂4,0 − 30

8
𝜂2,0 +

3

8
𝜂0,0  𝜙

6=
105

8
𝜂3,1

 𝜙7 =
25

4
 9

4
𝜂2,2 − 3

4
𝜂2,0 − 3

4
𝜂0,2 +

1

4
𝜂0,0  𝜙

8=
105

8
𝜂1,3

 𝜙9 =
9

4
 35

8
𝜂0,4 − 30

8
𝜂0,2 +

3

8
𝜂0,0  

 

V. PROPOSED WORK  

The proposed work in this paper used geometric moment 

invariants and formed to be superior compare Fourier-Mellin 

invariants and Legendre moments. 

A. Geometric Moment Invariants 

The Geometric Moment Invariants produce a group of 

features vectors that are invariants under shifting, rotation 

and scaling. Regular moment invariants are most popular 

counter-based shape descriptions derived by Hu. Geometric 

moment invariants were first introduced by Hu, which are 

derived from the theory of algebraic invariants.  

Geometric moment were successfully applied on the 

alphabet A shown in different shapes. The alphabet image A 

is used to get the range of invariant. The comparison of 

invariants feature vectors are shown in the table. 

Two dimensional moments of a digitally sampled  𝑁 × 𝑁  Image has gray function  𝑓(𝑥, 𝑦) , (𝑥, 𝑦 =

0 … . . 𝑁 − 1) 

And is given by  𝑚𝑝𝑞 =    𝑥 𝑝 𝑦 𝑞𝑓(𝑥, 𝑦)
𝑦=𝑁−1𝑦=0

𝑥=𝑁−1𝑥=0    (6) 

where 𝑝, 𝑞 = 0,1,2 … .. 

The moments 𝑓(𝑥, 𝑦) translated by an amount (𝑎, 𝑏) are 

defined as 𝜇𝑝𝑞 =    𝑥 + 𝑎 𝑝 𝑦 + 𝑏 𝑞𝑓(𝑥, 𝑦) 𝑦 𝑥       (7) 

 

VI. RESULTS  

The alphabet A in different shapes (I1, I2, I3 etc.,) has been 

adopted as the text image and the simulate results of average 

invariants   𝜙1, 𝜙2, 𝜙3𝑎𝑛𝑑 𝜙4   are compared with 

Fourier-Mellin, Legendre and Geometric Invariants as shown 

in table 1. 

 

 
        I1            I2         I3      I4            I5           I6           I7  

 

Fig. 1. Test images of the alphabet A 

 

TABLE I: INVARIANTS FEATURES FOR COMPARISON  

Image Fourier- Mellin Legendre Geometrical 

I1 0.16134 0.182431 0.24321 

I2 0.19169 0.05681 0.19928 

I3 0.23912 0.22141 0.26815 

I4 0.278236 0.18149 0.28816 

I5 0.284915 0.28551 0.29912 

I6 0.205873 0.22121 0.26124 

I7 0.351478 0.32114 0.368194 

 

 

Fig.2. Performance comparison of fourier and legendre moment invariants 

with geometrical moment invariants 

 

Result shows that the Geometric Moment Invariants are 

more superior in all aspects. The first order Invariants of 

Geometric Moments are compared with Fourier and 

Legendre Moments and are shown with bar chart. 

 

VII. CONCLUSION 

Different Moment Invariants are compared. The first order 
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Invariants of Fourier, Legendre and Geometric Moment 

Invariants comparison shows that Geometric Moment’s 
Invariants are best suitable for object detection. 
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