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ABSTRACT 
Segmenting a MRI images into homogeneous texture regions representing disparate tissue types is 

often a useful preprocessing step in the computer-assisted detection of breast cancer. That is why we proposed 
new algorithm to detect cancer in mammogram breast cancer images. In this paper we proposed segmentation 
using vector quantization technique. Here we used Linde Buzo-Gray algorithm (LBG) for segmentation of MRI 
images. Initially a codebook of size 128 was generated for MRI images. These code vectors were further 
clustered in 8 clusters using same LBG algorithm. These 8 images were displayed as a result. This approach 
does not leads to over segmentation or under segmentation. For the comparison purpose we displayed results of 
watershed segmentation and Entropy using Gray Level Co-occurrence Matrix along with this method.  

Keywords - MRI, Texture features, Vector Quantization, Encoding. 

1. INTRODUCTION 
Magnetic resonance imaging (MRI) is primarily a medical imaging technique most commonly used 

in Radiology to visualize the structure and function of the body. It provides detailed images of the body in any 
plane. MRI provides much greater contrast between the different soft tissues of the body than does computer 
tomography (CT), making it especially useful in neurological (brain), musculoskeletal, and oncological (cancer) 
imaging. Unlike CT it uses no ionizing radiation, but uses a powerful magnetic field to align the nuclear 
magnetization of (usually) hydrogen atoms in water in the body. Radiofrequency fields are used to 
systematically alter the alignment of this magnetization, causing the hydrogen nuclei to produce a rotating 
magnetic field detectable by the scanner. This signal can be manipulated by additional magnetic fields to build 
up enough information to reconstruct an image of the body.The advantages of magnetic resonance imaging 
(MRI) over other diagnostic imaging modalities are its high spatial resolution and excellent discrimination of 
soft tissues. MRI provides rich information about anatomical structure, enabling quantitative pathological or 
clinical studies [1]; the derivation of computerized anatomical atlases [2]; as well as pre and intra-operative 
guidance for therapeutic intervention [3, 4]. Such information is also valuable as an anatomical reference for 
functional modalities, such as PET [5], SPECT, and functional MRI [6]. Advanced applications that use the 
morphologic contents of MRI frequently require segmentation of the imaged volume into tissue types. This 
problem has received considerable attention. Such tissue segmentation is often achieved by applying statistical 
classification methods to the signal intensities [7, 8]. In the ideal case, differentiation between white and gray 
matter in the brain should be easy since these tissue types exhibit distinct signal intensities. In practice, spatial 
intensity inhomogeneities are often of sufficient magnitude to cause the distributions of signal intensities 
associated with these tissue classes to overlap significantly. In addition, the operating conditions and status of 
the MR equipment frequently affect the observed intensities, causing significant inter-scan intensity 
inhomogeneities that often necessitate manual training on a per-scan basis. While reported methods [9, 10, 11, 
12, 13, 14] have had some success in correcting intra-scan inhomogeneities, such methods require supervision 
for the individual scan. 

    The best approach to image segmentation may vary between different applications. The choice 
between manual, semiautomatic or fully automatic methods depends on the quality of the images, the number of 
objects needs to be segmented, the amount of available user time, and the required accuracy of the 
segmentation. The segmentation process is usually based on gray level intensity, color, shape or texture. Texture 
can be characterized by local variations of pixel values that repeat in a regular or random pattern on the object 
or image. It can also be defined as a repetitive arrangement of patterns over a region. A wide variety of texture 
segmentation techniques have been reported in the literature [15,16, 17-23,24]. We decided to choose a set of 
existing texture features [25-28] which can provide us good discriminating power and are easy to compute as 
compare to GLCM [29].   
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The work we have done is to propose a segmentation process which identifies on a MRI the opaque 
areas, suspect or not, present in the image using vector quantization which consumes moderate time but provide 
good accuracy with less complexity. Watershed algorithm has a drawback of over-segmenting the image 
making it obscure for identification of tumor. Segmentation using gray level co-occurrence matrix required 
huge time for tumor demarcation with less accuracy. 

1.1 Vector Quantization 
Vector Quantization (VQ) [30-38] is an efficient technique for data compression and has been 

successfully used in various applications such as index compression [39, 40]. VQ has been very popular in a 
variety of research fields such as speech recognition and face detection [41, 42]. VQ is also used in real time 
applications such as real time video-based event detection [43] and anomaly intrusion detection systems [44], 
image segmentation [45-48], speech data compression [49], content based image retrieval CBIR [50] and face 
recognition [51]. 

Vector Quantization (VQ) techniques employ the process of clustering. Various VQ algorithms differ 
from one another on the basis of the approach employed for cluster formations. VQ is a technique in which a 
codebook is generated for each image.  A codebook is a representation of the entire image containing a definite 
pixel pattern which is computed according to a specific VQ algorithm. The image is divided into fixed sized 
blocks that form the training vector. The generation of the training vector is the first step to cluster formation on 
these training vectors clustering methods is applied and codebook is generated. The method most commonly 
used to generate codebook is the Linde-Buzo-Gray (LBG) algorithm which is also called as Generalized Lloyd 
Algorithm (GLA). 

The rest of the paper is organized as follows. Section II describes Gray Level Co-occurrence 
Matrix(GLCM),  Watershed algorithm and  Linde Buzo Gray algorithm (LBG) algorithm used for image 
segmentation of MRI images. Followed by the experimental results for MRI images for comparison in section 
III and section IV concludes the work. 

2. ALGORITHMS FOR SEGMENTATION 
 In this section we explain segmentation by Gray level co-occurrence matrix [29], basic watershed 

algorithm [52-56] and Linde Buzo Gray algorithm (LBG) which are used for comparative performance of tumor 
detection. 
2.1 Gray Level Co-occurrence Matrix 

Haralick suggested the use of gray level co-occurrence matrices (GLCM) for definition of textural 
features. The values of the co-occurrence matrix elements present relative frequencies with which two 
neighboring pixels separated by distance d appear on the image, where one of them has gray level i and other j. 
Such matrix is symmetric and also a function of the angular relationship between two neighboring pixels. The 
co-occurrences matrix can be calculated on the whole image, but by calculating it in a small window which 
scanning the image, the co-occurrence matrix can be associated with each pixel. By using gray level co-
occurrence matrix we can extract different features like probability, entropy, energy, variance, inverse moment 
difference etc. Using co-occurrence matrix the major textural features are defined as:  
 Maximum Probability: max(Pij)                   (2.1)                                                                                 
 Variance: 
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Correlation:  
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where µx and µy  are means and σx , σy are standard deviation 
Entropy: ∑∑

j
ijij

i
PP )log(                           (2.4) 

Amongst all these features entropy has given us the best results. Hence in this paper we  extracted 
entropy  using gray level co-occurrence matrix and  the results are displayed in Fig.6a alongwith that of  
watershed and LBG algorithms for comparison.  
2.2 Watershed algorithm 

Watershed segmentation [52] classifies pixels into regions using gradient descent on image features 
and analysis of weak points along region boundaries. The image feature space is treated, using a suitable 
mapping, as a topological surface where higher values indicate the presence of boundaries in the original image 
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data. It uses analogy with water gradually filling low lying landscape basins. The size of the basins grows with 
increasing amount of water until they spill into one another. Small basins (regions) gradually merge together 
into larger basins. Regions are formed by using local geometric structure to associate the image domain features 
with local extremes measurement. Watershed techniques produce a hierarchy of segmentations, thus the 
resulting segmentation has to be selected using either some apriory  knowledge or manually. These methods are 
well suited for different measurements fusion and they are less sensitive to user defined thresholds. We 
implemented watershed algorithm for MRI images as mentioned in [56].Results for MRI images are displayed 
in Fig 6(b). 

1.2 Linde Buzo and Gray (LBG)[29, 30] 
For the purpose of explaining this algorithm, we are considering two dimensional vector space as 

shown in Fig.1. This is obtained by considering two consecutive pixel values as x and y co-ordinates so that 
each pair is represented by point in x,y plane.  In this algorithm centroid is computed as the first codevector C1 
for the training set. In Fig. 1 two vectors v1 & v2 are generated by adding constant error to the codevector. 
Euclidean distances of all the training vectors are computed with vectors v1 & v2 and two clusters are formed 
based on nearest of v1 or v2. Procedure is repeated for these two clusters to generate four new clusters. This 
procedure is repeated for every new cluster until the required size of codebook is reached or specified MSE is 
reached. 
 

 
Fig.1. LBG for 2 dimensional case 

 
 

In this paper initially we have selected 128 as codebook size using 12 dimensional vector space. Thus 
the image is divided into 128 clusters which were further reduced to 8 by using requantization. The 8 clusters 
thus obtained were mapped onto the image generating 8 different images representing them. On all these images 
Canny’s operator was used to obtain the edge maps. These edge maps were superimposed on the original image 
giving clear demarcation of the tumor. The very first cluster gives the best results. However the other clusters 
also give comparatively better results as compare to watershed and GLCM algorithm.  

3. RESULTS 
Defects in the metabolic system can lead to waste build-up that can cause altered levels of 

consciousness (ALC). Drug exposure is a common cause for ALC. Drug-induced ALC can result from an 
overdose of either over-the-counter or illegal drugs. Alcohol intoxication is probably the most common cause of 
drug-induced ALC. Structural abnormalities of the brain can lead to ALC [Figure 2a]. Tumors (benign or 
malignant) can form and crowd out the normal structures of the brain. As a result, weakness in the walls of the 
blood vessels in the brain (aneurysms) may begin to swell, or may even break, causing blood to pool inside the 
head and push the brain against the bony wall of the skull. The resulting damage can then cause ALC. For this 
image we generate codebook of size 128 using LBG algorithm and converting them  to 8 segmented images are 
shown in Fig.2(b)-(i). After using Canny’s operator the results are displayed  in Fig.3(a)-(h). Edge detected 
images Fig.3(a)-(h) were superimposed on original  MRI tumor image Fig.2(a) and displayed as Fig.4(a)-(h) 
respectively which indicate textural variation as we move from one code-vector to the next. Fig.5(a) shows 
result for probability using GLCM and equalized probability is displayed in Fig 5(b).Extracted Entropy using 
GLCM  as shown in Fig.5(c) with equalized entropy in Fig.5(d). Fig.6(a) shows superimposed edge map on 
original  image  for  equalized Entropy using GLCM, Fig.6(b) displays similarly constructed image  using  
watershed algorithm and Fig.6(c) indicates result for superimposed image for first code-vector amongst 8 code-
vectors using LBG algorithm.  
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(a)Original Image 

                                                         
                                         (b)                                   (c)                                   (d)                                  (e) 

                                                            
                                        (f)                                    (g)                                        (h)                               (i) 

Fig. 2: (a) Original brain tumor image,(b) Image for first code-vector, (c)-(i) Image for second -eighth code-vector, 
      

                                                               
                                           (a)                                   (b)                                       (c)                                  (d) 

                                                              
                                         (e)                                    (f)                                        (g)                                   (h) 
                          Fig.3: (a)-(h) Edge detected images for Fig.2(b)-(i) respectively. 

                                                               
                                         (a)                                    (b)                                        (c)                                     (d) 
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                                    (e)                                        (f)                                         (g)                                    (h)                          

                          Fig.4: (a)-(h) Superimposed images of Fig.3 (a)-(h) respectively on original image Fig.2(a) 

                                                                
                                        (a)                                   (b)                                     (c)                                       (d) 
                            Fig. 5 : (a) Extracted Probability using GLCM of Fig 2a, (b) Equalized Probability for Fig.5a, 
                                         (c) Entropy using GLCM for Fig.2a,(d) Equalized Entropy for Fig.5c. 

                                                                            
                                                   (a)                                          (b)                                            (c)                 

Fig.6: (a) Segmented image for entropy using GLCM, (b) Segmented image using watershed algorithm, 
                               (c) Segmented image using proposed algorithm. 

                      

4. CONCLUSION 
Here we used Gray Level Co-occurrence Matrix, watershed algorithm and LBG algorithm for tumor 

detection and demarcation for MRI images. Initially a codebook of size 128 was generated for these images. 
These code vectors were further clustered in 8 clusters using same LBG algorithm. These 8 images were 
displayed as a results in Fig 2(b)-(i). From results (Fig.6) it is observed that GLCM, watershed gives over 
segmentation while LBG shows far better results for the same. This approach does not lead to over 
segmentation or under segmentation with less complexity. 
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