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Abstract. Recent Cosmic Microwave Background (CMB) observations indicate that the temperature anisotropies arise from
quantum fluctuations in the inflationary scenario. In the simplest inflationary models, the distribution of CMB temperature
fluctuations should be Gaussian. However, non-Gaussian signatures can be present. They might have different origins and thus
different statistical and morphological characteristics.
In this context and motivated by recent and future CMB experiments, we search for, and discriminate between, different
non-Gaussian signatures. We analyse simulated maps of three cosmological sources of temperature anisotropies: Gaussian
distributed CMB anisotropies from inflation, temperature fluctuations from cosmic strings and anisotropies due to the kinetic
Sunyaev-Zel’dovich (SZ) effect both showing a non-Gaussian character. We use different multi-scale methods, namely, wavelet,
ridgelet and curvelet transforms. The sensitivity and the discriminating power of the methods is evaluated using simulated data
sets.
We find that the bi-orthogonal wavelet transform is the most powerful for the detection of non-Gaussian signatures and that
the curvelet and ridgelet transforms characterise quite precisely and exclusively the cosmic strings. They allow us thus to
detect them in a mixture of CMB + SZ + cosmic strings. We show that not one method only should be applied to understand
non-Gaussianity but rather a set of different robust and complementary methods should be used.
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1. Introduction

The search for non-Gaussian signatures in the Cosmic
Microwave Background (CMB) temperature fluctuation maps
furnished by MAP1 (Komatsu et al. 2003), and to be furnished
by PLANCK2, is of great interest for cosmologists. Indeed, the
non-Gaussian signatures in the CMB can be related to very fun-
damental questions such as the global topology of the universe
(Riazuelo et al. 2002), super string theory, topological defects
such as cosmic strings (Bouchet et al. 1988), and multi-field
inflation (Bernardeau & Uzan 2002). The non-Gaussian sig-
natures can, however, have a different but still cosmological
origin. They can be associated with the Sunyaev-Zel’dovich
(SZ) effect (Sunyaev & Zeldovich 1980) (inverse Compton ef-
fect) of the hot and ionised intra-cluster gas of galaxy clusters
(Aghanim & Forni 1999; Cooray 2001), with the gravitational
lensing by large scale structures (Bernardeau et al. 2003), or
with the reionisation of the universe (Aghanim & Forni 1999;
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Castro 2003). They may also be simply due to foreground emis-
sion (Jewell 2001), or to non-Gaussian instrumental noise and
systematics (Banday et al. 2000).

It has now become clear that the detection of non-Gaussian
signature is important and feasible (e.g. De Troia et al. 2003;
Komatsu et al. 2003). Nevertheless, even if a non-Gaussian sig-
nal is detected the question of its origin might still be posed
(e.g. Banday et al. 2000). Hence, it remains to separate between
several non-Gaussian contributions. This is the most crucial is-
sue for the use the non-Gaussian signatures as cosmological
tools.

It is therefore not surprising that a large number of studies
have recently been devoted to the subject of the detection of
non-Gaussian signatures. Many approaches have been investi-
gated such as the Minkowski functionals and the morpholog-
ical statistics (Novikov et al. 2000; Shandarin 2002), the bis-
pectrum (Bromley & Tegmark 1999; Verde et al. 2000; Phillips
& Kogut 2001), the trispectrum (Kunz et al. 2001), or wavelet
transforms (Aghanim & Forni 1999; Forni & Aghanim 1999;
Hobson et al. 1999; Barreiro & Hobson 2001; Cayón et al.
2001; Jewell 2001). Different wavelet methods have been stud-
ied, such as the à trous algorithm (Starck et al. 1998) and the
bi-orthogonal wavelet transform (Mallat 1998).
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A series of recent papers (Candès & Donoho 1999a,b;
Starck et al. 2002), however, argued that wavelets and related
classical multi-resolution techniques are based on a limited dic-
tionary made up of roughly isotropic elements present at all
scales and locations. We view as a limitation the fact that those
dictionaries do not exhibit highly anisotropic elements and that
there is only a fixed number of directional elements, indepen-
dent of scale. Despite the success of the classical wavelet view-
point, there are objects, such as filamentary structures or cos-
mic strings, that do not exhibit isotropic scaling and thus call
for other kinds of multi-scale representations. Following this,
new multi-scale systems like curvelets and ridgelets (Candès
& Donoho 1999b) have been introduced which are very dif-
ferent from wavelet-like systems. Curvelets and ridgelets take
the form of basis elements which exhibit very high directional
sensitivity and are highly anisotropic. In two dimensions, for
instance, curvelets are localised along curves, in three dimen-
sions along sheets, etc.

The goal of the present study is to compare these new
multi-scale representations to standard wavelet methods on a
set of simulated maps representing two generic families of non-
Gaussianities (spherical-like and string-like sources), and to
answer the following questions:

1. Are there multi-scale methods that are better suited to de-
tect the non-Gaussian signatures in CMB data?

2. Can we go beyond the detection and extract some informa-
tion about the nature of the non-Gaussian signal?

The second point is particularly important and it will repre-
sent the heart of our present study. A non-Gaussian character
can be due to many effects: topological defects, the SZ effect,
calibration problems, or even a combination of them. Here, we
perform a study based on the idea that a given multi-scale trans-
form is optimal to detect features which have the shape of its
basis elements (this is quite similar to the matched filter ap-
proach). Consequently, if different multi-scale methods are able
to detect a non-Gaussian signal, one of them will outperform
the others since the shape of the non-Gaussian features con-
tained in the data will be close to its basis elements. In partic-
ular, using wavelet-like systems and curvelet and ridgelet-like
systems, we expect to differentiate between the spherical-like
and string-like sources of non-Gaussianity.

Sections 2 and 3 briefly review the different transforms
and simulated maps considered in our analysis. We present the
analysis together with our main results in Sect. 4 and discuss
them in Sect. 5. We provide the main conclusions in Sect. 6.

2. Multi-scale transforms

2.1. Bi-orthogonal wavelet transforms

The most commonly used wavelet transform algorithm is the
decimated bi-orthogonal wavelet transform (OWT). Using the
OWT, a signal s can be decomposed as follows:

s(l) =
∑

k

cJ,kφJ,l(k) +
∑

k

J∑
j=1

ψ j,l(k)w j,k (1)

with φ j,l(x) = 2− jφ(2− jx − l) and ψ j,l(x) = 2− jψ(2− jx − l),
where φ and ψ are respectively the scaling and the wavelet
functions. J is the number of resolutions used in the decom-
position, w j the wavelet coefficients (or details) at scale j, and
cJ is a coarse or smooth version of the original signal s. The
present indexing is such that j = 1 corresponds to the finest
scale (high frequencies).

The two-dimensional algorithm is based on separate vari-
ables leading to prioritising of horizontal, vertical and diag-
onal directions. The scaling function is defined by φ(x, y) =
φ(x)φ(y), and the detail signal is obtained from three wavelets:

– vertical wavelet: ψ1(x, y) = φ(x)ψ(y)
– horizontal wavelet: ψ2(x, y) = ψ(x)φ(y)
– diagonal wavelet: ψ3(x, y) = ψ(x)ψ(y)

which leads to three wavelet sub-images at each resolution
level. A given wavelet band is therefore defined by its resolu-
tion level j ( j = 1 . . . J) and its direction number d (d = 1 . . .3,
corresponding respectively to the horizontal, vertical, and diag-
onal band).

The OWT presents only a fixed number of directional
elements independent of scales, and there are no highly
anisotropic elements (Candès & Donoho 1999a). For instance,
the Haar 2D wavelet transform is optimal to find features with
a ratio length/width = 2, and a horizontal, vertical, or diago-
nal orientation. Therefore, we naively expect the OWT to be
optimal for detecting mildly isotropic or anisotropic features.

2.2. The isotropic à trous wavelet transform

The à trous wavelet transform algorithm decomposes an n × n
image I as a superposition of the form

I(x, y) = cJ(x, y) +
J∑

j=1

w j(x, y),

where cJ is a coarse or smooth version of the original image I
and w j represents “the details of I” at scale 2− j (see Starck et al.
(1998, 2002) for more information). Thus, the algorithm out-
puts J + 1 sub-band arrays of size n × n. (The present indexing
is such that j = 1 corresponds to the finest scale (high frequen-
cies).)

Hence, we have a multi-scale pixel representation, i.e. each
pixel of the input image is associated with a set of pixels
of the multi-scale transform. This wavelet transform is very
well adapted to the detection of isotropic features, and this ex-
plains its success for astronomical image processing, where the
data contain mostly isotropic or quasi-isotropic objects, such as
stars, galaxies or galaxy clusters.

2.3. The ridgelet transform

The two-dimensional continuous ridgelet transform in R2 can
be defined as follows (Candès & Donoho 1999a). We pick a
smooth univariate function ψ : R → R with sufficient decay
and satisfying the admissibility condition∫
|ψ̂(ξ)|2/|ξ|2 dξ < ∞, (2)
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which holds if, say, ψ has a vanishing mean
∫
ψ(t)dt = 0. We

will suppose that ψ is normalised so that
∫ |ψ̂(ξ)|2ξ−2dξ = 1.

For each a > 0, each b ∈ R and each θ ∈ [0, 2π], we define
the bivariate ridgelet ψa,b,θ : R2 → R by

ψa,b,θ(x) = a−1/2 · ψ((x1 cos θ + x2 sin θ − b)/a). (3)

Given an integrable bivariate function f (x), we define its
ridgelet coefficients by:

R f (a, b, θ) =
∫

ψa,b,θ(x) f (x)dx.

We have the exact reconstruction formula

f (x) =
∫ 2π

0

∫ ∞
−∞

∫ ∞
0
R f (a, b, θ)ψa,b,θ(x)

da
a3

db
dθ
4π

(4)

valid for functions which are both integrable and square inte-
grable.

It has been shown (Candès & Donoho 1999a) that
the ridgelet transform is precisely the application of a
1-dimensional wavelet transform to the slices of the Radon
transform.

Local ridgelet transform

The ridgelet transform is optimal to find only lines of the size
of the image. To detect line segments, a partitioning must be in-
troduced. The image is decomposed into smoothly overlapping
blocks of side-length B pixels in such a way that the overlap
between two vertically adjacent blocks is a rectangular array of
size B× B/2; we use an overlap to avoid blocking artifacts. For
an n × n image, we count 2n/B such blocks in each direction.
The partitioning introduces redundancy, as a pixel belongs to
4 neighboring blocks.

More details on the implementation of the digital ridgelet
transform can be found in Starck et al. (2002, 2003). The
ridgelet transform is therefore optimal to detect lines of a given
size, which is the block size.

2.4. The curvelet transform

The curvelet transform (Donoho & Duncan 2000; Starck et al.
2003) opens the possibility to analyse an image with different
block sizes, but with a single transform. The idea is to first de-
compose the image into a set of wavelet bands, and to analyse
each band with a local ridgelet transform. The block size can be
changed at each scale level. Roughly speaking, different levels
of the multi-scale ridgelet pyramid are used to represent differ-
ent sub-bands of a filter bank output.

The side-length of the localising windows is doubled at ev-
ery other dyadic sub-band, hence maintaining the fundamen-
tal property of the curvelet transform, that elements of length
about 2− j/2 serve for the analysis and synthesis of the jth sub-
band [2 j, 2 j+1]. Note also that the coarse description of the im-
age cJ is not processed. In our implementation, we used the
default block size value Bmin = 16 pixels. This implementation
of the curvelet transform is also redundant. The redundancy
factor is equal to 16J + 1 whenever J scales are employed.

A given curvelet band is therefore defined by the resolution
level j ( j = 1 . . . J) related to the wavelet transform, and by the
ridgelet scale r.

This method is optimal to detect anisotropic structures of
different lengths.

2.5. Statistics from the multi-scale coefficients

Many kinds of statistics can be derived from the multi-scale
coefficients (Aghanim & Forni 1999). In the following we use
the kurtosis of the coefficients obtained by the previously de-
scribed multi-scale transforms. Several aspects have however
to be considered.

The border problem

Wavelet coefficients have been obtained by convolution with
filters, and coefficients close to the border of the image have
therefore been calculated using an extrapolation and should
not be used when calculating the excess kurtosis. For the bi-
orthogonal wavelet transform, we use the 7/9 filter, which im-
plies that coefficients at a distance from the border smaller than
three must not be taken into account. For à trous wavelet coeffi-
cients at scale j, the distance is 2 j (because it is an undecimated
wavelet transform). For the same reasons, border blocks in the
ridgelet and the curvelet transforms must also not be used.

Renormalisation of the ridgelet and the curvelet
coefficients

When using the ridgelet and the curvelet transforms, another
problem occurs. Indeed, as a coefficient is obtained by in-
tegrating along a given direction, the expectation value of
a coefficient depends on both the direction and the position
of the line. For example, coefficients relative to diagonal di-
rections integrate more values than those relative to horizon-
tal and vertical directions. A renormalisation is needed. After
applying the ridgelet transform independently to all blocks,
we obtained a set of Nt transform blocks Ti(a, b, θ) (i =
1 . . .Nt), and for each scale, orientation and position (a, b, θ),
we extract the vector Va,b,θ(i). For a stationary signal, dividing
Ti(a, b, θ) by the standard deviation of Va,b,θ leads to a good
renormalisation, but it is not our case, (cosmological signals
are not stationary) and we therefore use a robust estimator,
MAD (Median Absolute Deviation), defined by MAD(x) =
median(| x |)/0.6745 (Rousseeuw & Croux 1993). Hence, we
normalise the ridgelet coefficients by the following expression:

T̄i(a, b, θ) =
Ti(a, b, θ)

MAD(Va,b,θ)
· (5)

For the curvelet transform, this renormalisation is performed
independently on each scale.

3. Simulated astrophysical signals

The temperature anisotropies of the CMB contain the contri-
butions of both the primary cosmological signal, directly re-
lated to the initial density perturbations, and the secondary
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Fig. 1. Top, primary Cosmic Microwave Background anisotropies (left) and kinetic Sunyaev-Zel’dovich fluctuations (right). Bottom, cosmic
string simulated map (left) and simulated observation containing the previous three components (right).

anisotropies. The latter are generated after matter-radiation de-
coupling (White & Cohn 2002). They arise from the interaction
of the CMB photons with the neutral or ionised matter along
their path (Sunyaev & Zeldovich 1980; Ostriker & Vishniac
1986; Vishniac 1987).

In the present study, we assume that the primary CMB
anisotropies are dominated by the fluctuations generated in
the simple single field inflationary Cold Dark Matter model
with a non-zero cosmological constant. The CMB anisotropies
have therefore a Gaussian distribution. We allow for a contri-
bution to the primary signal from topological defects, namely
cosmic strings (CS), as suggested in (Bouchet et al. 2002).
In addition, we take into account the secondary anisotropies
due to the kinetic Sunyaev-Zel’dovich (SZ) effect (Sunyaev
& Zeldovich 1980). The SZ effect represents the Compton
scattering of the CMB photons by the free electrons of the
ionised and hot intra-cluster gas. When the galaxy cluster
moves with respect to the CMB rest frame, the Doppler shift
induces additional anisotropies; this is the so-called kinetic SZ
(KSZ) effect. As the latter fluctuations have the same spectral

signature as the primary, we add the two signals directly. The
kinetic SZ maps are simulated following Aghanim et al. (2001).
We use for our simulations the cosmological parameters ob-
tained from the WMAP satellite (Bennett et al. 2003) and a
normalisation parameter σ8 = 0.9. Finally, we obtain the so-
called “simulated observed map”, D, that contains the three
previous astrophysical components. It is obtained from D =√
αCMB +

√
1 − αCS + KSZ, where CMB, KSZ and CS are

respectively the CMB, the kinetic SZ and the cosmic string
simulated maps. α = 0.82 is a constant derived by (Bouchet
et al. 2002). All the simulated maps have 500× 500 pixels with
a resolution of 1.5 arcmin per pixel. Apart from the dominant
inflationary component which is Gaussian, all the other con-
tributions are non-Gaussian. However, KSZ and CS have dif-
ferent characteristics as the KSZ and CS induce respectively
spherical-like and string-like structures in the CMB. In order
to illustrate how difficult the task of detecting and separating
different non-Gaussian signatures is, we show in Fig. 1 a set of
simulated maps. Primary CMB, kinetic SZ and cosmic string
maps are shown respectively in Fig. 1 top left, top right and
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Fig. 2. Power spectra of the different contributions used in this study.
The solid line represents the primary CMB anisotropies from an infla-
tionary model (the fluctuations are Gaussian distributed). The dashed
line is for the kinetic SZ effect from galaxy clusters. The dotted line
stands for the power spectrum of the allowed contribution from cosmic
strings, i.e. with the parameter α = 0.82.

bottom left. The “simulated observed map”, containing the
three previous components, is displayed in Fig. 1 bottom right.
It can easily be seen from Fig. 2, which displays the power
spectra of the different components, that the primary CMB
anisotropies dominate all the signals except at very high multi-
poles (very small angular scales).

4. Analysis and results

4.1. Sky component multi-scale analysis.

On each of the three sets of maps (i.e. CMB, CS and KSZ), we
have first run the following multi-scale methods:

– à trous wavelet transform;
– bi-orthogonal wavelet transform, using the standard 7/9 fil-

ter (Antonini et al. 1992);
– local ridgelet transform with a block size equal to 16 pixels;
– local ridgelet transform with a block size equal to 32 pixels;
– curvelet transform with a block size equal to 16 pixels.

This processing has been repeated on 100 CMB and 100 KSZ
simulated maps and on the three available CS maps. In order
to estimate the sensitivity of each transform to the different
types of non-Gaussian signatures associated with the different
components individually (sharp edges for CS and point sources
for KSZ), we have calculated the mean excess kurtosis (fourth
moment) and its standard deviation on each individual reso-
lution level. In this analysis, we do not present the skewness
(third moment) since we do not expect the KSZ signal to be
“skewed” (Da Silva 2002). The comparison of the transforms
on the basis of this non-Gaussian estimator in our case would
be meaningless.

For example, the à trous wavelet transform applied to the
CMB produces 100 individual values for the excess of kurtosis
per scale (resolution level). We note Ka(i, b) the excess kurto-
sis of the ith simulated CMB map (i = 1 . . .100) at the band b.

Table 1. Table of the maximum value among all bands of the mean ex-
cess kurtosis K̄a (Col. 1), its associated scale (Col. 3) and the standard
deviation σK (Col. 2) for the primary CMB anisotropies (inflationary
model) only. Columns 4 and 5 give the maximum value for K̄a(b)/σKG

and the associated scale

Multi-scale method K̄a σK Scale K̄a
σKG

Scale

Bi-orthogonal wavelet 0.006 0.098 3, 2 0.262 1, 3

à trous WT −0.04 0.198 5 0.20 3

Local ridgelets (B = 16) 0.009 0.028 1 0.33 1

Local ridgelets (B = 32) 0.061 0.030 1 1.976 1

Curvelets (B = 16) 0.271 0.183 5, 3 3.540 4, 1

Table 2. Table of the maximum value among all bands of the mean ex-
cess kurtosis K̄a (Col. 1), its associated scale (Col. 3) and the standard
deviation σK (Col. 2) for the kinetic SZ fluctuations only. Columns 4
and 5 give the maximum value for K̄a(b)/σKG and the associated scale.

Multi-scale method K̄a σK Scale K̄a
σKG

Scale

Bi-orthogonal wavelet 46.673 35.26 1, 1 2081.41 1, 3

à trous WT 80.380 55.898 1 4354.48 1

Local ridgelets (B = 16) 18.961 8.886 2 397.85 2

Local ridgelets (B = 32) 14.715 8.446 3 229.01 2

Curvelets (B = 16) 12.360 9.475 3, 4 351.80 1, 1

For the à trous wavelet transform and the ridgelet transform,
we have b = j, where j is the scale ( j = 1 . . . J) and J is
number of scales of the wavelet transform (we used J = 5 in
our experiments). For a bi-orthogonal wavelet transform, we
have three bands per scale (b = 1 . . .3J), and b can also be
represented by the two indices ( j, d), d (d = 1 . . .3) standing
respectively for the horizontal, vertical or diagonal directions.
The same holds for the curvelet transform where b can be rep-
resented by the two indices ( j, r) where r is the scale index in
the ridgelet transform.

We derive from the ensemble of Ka obtained on the CMB
maps the mean kurtosis value K̄a(b) and the standard deviation
σK(b). Table 1 gives the maximum value of K̄a(b) (among all
bands), its associated scale and the standard deviation (Cols. 1–
3). It also gives the maximum value for the ratio K̄a(b)/σKG ,
where σKG is the standard deviation of the kurtosis in the
Gaussian set of maps, as well as the associated scale (Cols. 4
and 5). The same treatment is applied on the KSZ and the
CS components. The results are respectively given in Tables 2
and 3.

As it was expected, the à trous algorithm is better suited
to detect isotropic features such as the “quasi-spherical” KSZ
anisotropies due to galaxy clusters. Indeed, we note from
Table 2 that the multi-scale excess kurtosis for KSZ is largest
when using the à trous algorithm. Unexpectedly though, the
multi-scale excess kurtosis for CS (Table 3) is largest when
using the bi-orthogonal wavelet transform whereas the excess
kurtosis from the ridgelet and the curvelet transforms show that
both transforms seem not that well adapted to test the CS non-
Gaussian signatures. An explanation for this behaviour is that
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Table 3. Table of the maximum value among all bands of the mean ex-
cess kurtosis K̄a (Col. 1), its associated scale (Col. 3) and the standard
deviation σK (Col. 2) for the cosmic strings only. Columns 4 and 5
give the maximum value for K̄a(b)/σKG and the associated scale. Note
that only 3 maps are analysed in this case.

Multi-scale method K̄a σK Scale K̄a
σKG

Scale

Bi-orthogonal wavelet 51.36 1.90 1, 2 2059.74 1, 2

à trous WT 35.76 7.99 1 1937.78 1

Local ridgelets (B = 16) 6.98 0.95 1 243.02 1

Local ridgelets (B = 32) 3.69 0.46 1 117.67 1

Curvelets (B = 16) 10.43 1.40 1, 1 609.06 1, 1

the CS (see Fig. 1) presents not only elongated structures and
sharp edges, but also a large number of spots and spherical-
like structures along the edges and at the intersection of edges,
which contribute significantly to the non-Gaussian character.
These spots are very well detected by the wavelets.

4.2. Testing the sensitivities
to Gaussian + non-Gaussian signals

In this section, we study the relative sensitivity of the dif-
ferent multi-scale transforms to the two families of differ-
ent non-Gaussian characters when the signals are added to
a dominant Gaussian noise, i.e. the primary CMB. We use
three datasets D(1), D(2) and D(3). We have created 300 sim-
ulated maps by adding the 100 CMB realisations to the KSZ
(D(1)

i = CMBi + KSZ, and i = 1 . . .100), to the CS (D(2)
i =√

αCMBi +
√

1 − αCS), and to both the KSZ and CS compo-
nents (D(3)

i =
√
αCMBi +

√
1 − αCS + KSZ). Then we apply

our five multi-scale transforms to these 300 maps. As in the
previous section, we have calculated for each band b of each
transform and for each dataset D(l) (l = 1, 2, 3) the mean kur-
tosis value K̄D(l) (b) and the standard deviation σKD(l) ,b. In order
to calibrate and compare the departures from a Gaussian dis-
tribution, we have simulated for each image D(l)

i a Gaussian
Random Field G(l)

i which has the same power spectrum as D(l)
i .

This allows us to calculate a normalised mean kurtosis given
by:

Kl( j) =
K̄D(l) (b) − K̄G(l) (b)

σKG(l) ,b
· (6)

We give in Tables 4–6 the results in terms of the maxi-
mum values for illustration. Complete tables can be found in
Appendix A for the three datasets D(1), D(2) and D(3). The first
three columns represent maximum K̄a, standard deviation and
associated scale. The last two columns give the maximum nor-
malised mean kurtosis and associated scale.

From Tables 4–6, we note that:

– Whatever the transform, it is at the first resolution level that
the non-Gaussian character is the best detected.

– The third band of the bi-orthogonal wavelet transform (i.e.
diagonal details of the first wavelet scale) is generally the
best for detecting non-Gaussian signatures in the CMB,

Table 4. Table of maximum mean excess kurtosis K̄a, and associated
standard deviation σK and scale (first three columns). The last two
columns give the maximum normalised mean kurtosis K and associ-
ated scale for D(1) = CMB + KSZ.

Multi-scale method K̄a σK Scale K Scale

Bi-orthogonal wavelet 22.94 0.098 1, 3 1106.58 1, 3

à trous WT 0.73 0.06 1 65.79 1

Local ridgelets (B = 16) 0.013 0.029 1 0.124 1

Local ridgelets (B = 32) 0.062 0.030 1 0.114 1

Curvelets (B = 16) 0.276 0.109 4, 3 10.12 1, 1

Table 5. Table of maximum mean excess kurtosis K̄a, and associated
standard deviation σK and scale (first three columns). The last two
columns give the maximum normalised mean kurtosis K and associ-
ated scale for D(2) = CMB + CS.

Multi-scale method K̄a σK Scale K Scale

Bi-orthogonal wavelet 37.96 0.14 1, 3 1813.61 1, 3

à trous WT 5.74 0.15 1 424.15 1

Local ridgelets (B = 16) 0.174 0.033 1 5.68 1

Local ridgelets (B = 32) 0.152 0.031 1 2.84 1

Curvelets (B = 16) 2.22 0.055 1, 1 198.62 1, 1

Table 6. Table of maximum mean excess kurtosis K̄a, and associated
standard deviation σK and scale (first three columns). The last two
columns give the maximum normalised mean kurtosis K and associ-
ated scale for D(3) = CMB + KSZ + CS.

Multi-scale method K̄a σK Scale K Scale

Bi-orthogonal wavelet 26.22 0.53 1, 2 1040.54 1, 2

à trous WT 5.20 0.12 1 392.25 1

Local ridgelets (B = 16) 0.17 0.032 1 5.88 1

Local ridgelets (B = 32) 0.149 0.030 1 2.99 1

Curvelets (B = 16) 1.79 0.046 1, 1 165.68 1, 1

even if the structures are isotropic and spherical-like (see
previous section).

– The most important result is that the normalised mean
kurtosis of the ridgelets is compatible with 0 in the
case CMB+KSZ whereas it is non-zero in the case
CMB+CS. Moreover, it conserves the same value in the
case CMB+SZ+CS. For the normalised mean kurtosis of
the curvelets there is a non-zero value for the CMB+KSZ
signal but it is almost 20 times smaller than in the cases
CMB+CS and CMB+SZ+CS.

The first remark is related to the relative contributions of the
different astrophysical components. The primary CMB dom-
inates over the other components except at the first decom-
position (or wavelet) scale as can be seen from Fig. 2. At
this scale corresponding typically to 3 arcmin, the contribu-
tion from the SZ effect and the CS is of the order of, or dom-
inates, the primary CMB. The non-Gaussian signatures intro-
duced by both KSZ and CS are thus easier to detect at this scale.
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It is worth noting however, that the non-Gaussian character re-
mains detectable at larger scales (second and third decomposi-
tion scales).

The second point was already mentioned in Aghanim &
Forni (1999). In the previous section we have shown that the
spherical-like sources of non-Gaussianity were better detected
by the à trous transform when they are not mixed with a domi-
nant Gaussian signal (the CMB here). This property is not con-
served when the quasi-spherical non-Gaussianities such as the
KSZ effect are added to the primary CMB. The reason why the
so-called diagonal details are more sensitive than the other tests
is the following: In the Fourier domain, we note R(u, v) = S (u,v)

C(u,v) ,
the Signal-to-Noise ratio (SNR), where S is the power spec-
trum of the non-Gaussian signal and C is the power spectrum
of the primary CMB (Gaussian signal in our case). As the CMB
power spectrum is isotropic, we have R(u, v) = S (u,v)

C(
√

u2+v2)
. When

ρ =
√

u2 + v2 increases, the SNR increases, which explains
why the first wavelet scale presents the highest sensitivity to
the non-Gaussian features. Additionally, it becomes clear that
R(u, v) is higher for u = v = N/2 rather than for u = 0 and
v = N/2 or u = N/2 and v = 0, which implies that the diagonal
band (or details) is more sensitive than horizontal and vertical
bands, and confirms the results described in Aghanim & Forni
(1999).

The third point is undoubtedly the most important result
of this comparison. It shows that the normalised mean kurtosis
of the ridgelets is able to highlight the non-Gaussian character
of the CS buried in the CMB Gaussian signal with a mixing
ratio of 0.18 (in power). The normalised mean kurtosis of the
ridgelets are sensitive only to the string-like non-Gaussianities.
The numbers are the same for the CMB+CS and CMB+SZ+CS
cases and there is no detection in the CMB+KSZ. A similar
behaviour is also noticeable for the normalised mean kurtosis
of the curvelets. In this case, there is a detection of the non-
Gaussian character associated with the KSZ effect which is one
order of magnitude smaller than in the case of CMB+SZ+CS.
These behaviours discussed at the first decomposition scale are
true for larger scales ( j = 2).

From this last remark, we already see that we have found
a family of multi-resolution transforms, namely anisotropic
based-systems (ridgelets and curvelets) that are sensitive to a
unique family of non-Gaussian signatures, namely the string-
like structures. In the following section, we propose a strategy
based on our results to discriminate between spherical-like and
string-like contributions to the non-Gaussian signatures.

4.3. Discriminating between the non-Gaussian
signatures

If a non-Gaussian signature is detected in the CMB by a given
method, it can be due to calibration problems or to several as-
trophysical components such as KSZ or CS. Therefore, an ex-
cess kurtosis may be very difficult to interpret in terms of its
origin. While some limits can be put on the excess due to in-
strumental or calibration problems, the discrimination between
astrophysical components is not obvious.

Table 7. Product of the normalised excess kurtosis.

Kurtosis product bands CMB+CS CMB+SZ CMB+SZ+CS

KAT ∗ KCUR 1–1, 1 84248. 665.8 64990.1

1–1, 2 2225.8 0.702 2163.28

2–2, 2 57.74 0.013 66.024

2–2, 3 7.97 0.093 8.58

KAT ∗ KR16 1–1 2410.19 8.21 2307.2

2–2 8.50 0.082 9.465

KAT ∗ KR32 1–1 1204.6 3.978 1172.0

2–2 4.547 0.139 4.692

3–3 0.017 0.001 0.004

We investigate in this section a method by which the use
of several multi-scale transforms helps us in understanding the
nature of the detected non-Gaussian features. In particular, we
focus on the possibility to discriminate the case “CMB+SZ”
from the case “CMB+SZ+CS”. From Tables 4–6, we can eas-
ily see that the wavelet transforms are sensitive to both the KSZ
and the CS, while the ridgelet transform and the curvelet trans-
form are not or are less sensitive to the KSZ. However, the
numbers we obtain for the normalised mean excess kurtosis
are of the order of a few in the best cases. It is thus impor-
tant to find a better estimator of the non-Gaussian signatures.
We require an estimator that enhances the signal to noise ratio.
The product of the normalised kurtosis obtained by two differ-
ent transforms is a promising approach for our problem. We
note KAT,KCUR,KR16,KR32 the normalised kurtosis using the
à trous wavelet transform, the curvelet transform, the ridgelet
transform with a block size equal to 16 and the ridgelet trans-
form with a block size equal to 32 respectively. Table 7 gives
such products. The first column indicates the two band num-
bers used, the last three columns give the value of the product
for the cases CMB+CS, CMB+SZ and CMB+SZ+CS respec-
tively. We have given illustrative values. The whole set of val-
ues can be found in Appendix A (Table 11).

A significant detection of non-Gaussianity by the product
of wavelet-like and curvelet-like transforms must rely on com-
parable bands. More specifically, the curvelet bands noted ( j, r)
for which j and r are too different, are meaningless by con-
struction. Moreover, for the largest decomposition levels, the
number of coefficients are small and the results are thus more
sensitive to sample variance.

We see from these values that the product of the normalised
kurtosis of the wavelet transform (here the à trous transform
for illustration3) by normalised kurtosis of the curvelet trans-
form clearly discriminates between the case CMB+SZ and
CMB+SZ+CS. This is true up to the second decomposition
scale.

3 Similar results are obtained for the OWT transform but in this case
there are 3 bands per scale and many more combinations and products
are possible. The associated numbers can be obtained upon request
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5. Discussion

We tackle the problem of the separation between different
sources of non-Gaussian signatures. We are not yet able to
identify the exact contribution of the different effects but rather
we detect that there are two families of non-Gaussian features.

In “real-life” we will of course be a priori unable to sep-
arate perfectly the two contributions, KSZ and CS, from the
primary CMB. Tables such as Table 7 will therefore only con-
tain the numbers associated with the case CMB+CS+KSZ and
no relative detection will be made. However, the simulations
allow us to calibrate the method. We show (Table 7) that there
can be orders of magnitudes of difference in terms of the prod-
ucts of normalised kurtosis between cases where CS are present
and cases where they are not. We can therefore conclude from
our study that whenever the product of the normalised kurtosis
from the wavelets and from the curvelets (or ridgelets) are of
the order of a few this indicates that string-like non-Gaussian
features are present in the total signal. A larger number would
allow us to fully characterise the non-Gaussian properties of
the signals and to calibrate the method.

At this stage, the precise effects of the instrumental noise
and of the beam convolution are not taken into account and
performing such an analysis is beyond the scope of our study.
However, the non-Gaussian signals are detected not only at the
first decomposition scale but also at larger scales (up to j = 3).
The beam convolution is likely to affect the first and second
scale but present and future instruments (Planck, ACT, SPT,
ACBAR) will have better angular resolution and the beam ef-
fects are likely to be less important. As for the noise, if we
assume it Gaussian (which is the case in most studies) it will
make the non-Gaussian signatures more difficult to detect by
reducing the overall signal to noise ratio. However, the num-
bers presented in Table 7 show that the detection of CS is quite
significant and we do not expect it to vanish if white noise is
added unless the noise has similar features as a CS. More gener-
ally, in the case of any systematic effect exhibiting anisotropic
structures our method will detect them without a priori being
able to disentangle their origin from a cosmological origin like
the CS.

In this analysis, we present only the excess kurtosis as an
estimator of non-Gaussianity. We perform a comparison of the
multi-scale transforms and of their sensitivity to the signals
on the basis of the non-Gaussian character to highlight dif-
ferent contributors. Since we do not expect the KSZ signal
to be “skewed”, a comparison based on the skewness (third
moment) would be meaningless. As expected, our simulations
have shown that the skewness is indeed not as sensitive as the
kurtosis.

6. Conclusion

In the present study, we have tested the relative sensitivities
of the commonly used multi-scale transforms to the detec-
tion of non-Gaussian signatures in CMB maps. We have used
simulated maps of the primary anisotropies (assumed to be
Gaussian) and we have taken into account the contributions
from the kinetic SZ effect and the topological defects (cosmic

strings); each of them represents one family of non-Gaussian
contributors (spherical-like and string-like). The main results
are:

– the bi-orthogonal wavelet transform is the most sensitive to
the non-Gaussian signatures associated with cosmic strings
buried in the primary Gaussian CMB signal.

– The ridgelet and curvelet transforms are well adapted to
discriminate between string-like and quasi-spherical like
non-Gaussian features.

In order to study the non-Gaussian signatures in the CMB and
use them as a cosmological tool to probe the early universe or
the cosmic structures, it is not sufficient to detect them accu-
rately. The most important step is to be able to separate the
different contributions to the signal. In this context, we clearly
show that not only one method should be applied but rather a
set of different robust and well understood methods.

In the present study, we use several multi-scale trans-
forms: the isotropic wavelet transforms suited for spherical-
like sources of non-Gaussianity, and a curvelet transform rep-
resenting well sharp and elongated structures. Each provides an
adapted non-Gaussian estimator, namely the normalised mean
excess kurtosis. We show that the combination of these trans-
forms through the product of the normalised mean excess kur-
tosis of isotropic wavelet transforms by normalised mean ex-
cess kurtosis of curvelet transforms highlights the presence of
the cosmic strings in a mixture CMB+KSZ+CS. Such a combi-
nation gives information about the nature of the non-Gaussian
signals. Even though the detection power of the non-Gaussian
character by the ridgelets and curvelets is not important com-
pared to that of the wavelet, their sensitivity to a particular
shape makes them a very strong discriminating tool.

This is a first step towards the separation of the statistical
contributions to the CMB signal and it can help in the more
general context of component separation.
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Appendix A

Table 8. Table of mean excess kurtosis and standard deviation for
D(1) = CMB + KSZ.

Multi-scale method Scale K̄a σK K
Bi-orthogonal wavelet 1,1 6.305 0.188 275.096

1, 2 7.205 0.270 314.839
1, 3 22.942 0.098 1106.586
2, 1 0.068 0.058 1.788
2, 2 0.057 0.056 1.416
2, 3 1.782 0.151 47.186
3, 1 0.013 0.088 0.134
3, 2 0.009 0.098 0.040
3, 3 −0.002 0.082 0.090
4, 1 −0.038 0.180 0.013
4, 2 −0.014 0.184 0.008
4, 3 −0.005 0.175 0.064
5, 1 −0.088 0.323 0.011
5, 2 −0.111 0.466 0.023
5, 3 −0.042 0.530 0.023

à trous WT 1 0.731 0.060 65.793
2 0.018 0.031 1.209
3 −0.006 0.048 0.029
4 −0.017 0.101 0.095
5 −0.042 0.198 0.060

Local ridgelets (B = 16) 1 0.013 0.029 0.124
2 0.008 0.048 0.067

Local ridgelets (B = 32) 1 0.062 0.030 0.060
2 0.058 0.044 0.114
3 0.040 0.106 0.0394

Curvelets (B = 16) 1, 1 0.117 0.016 10.120
1, 2 0.020 0.029 0.010
1, 3 0.017 0.094 0.077
2, 1 0.064 0.023 0.207
2, 2 0.065 0.038 0.019
2, 3 0.058 0.056 0.029
2, 4 0.05 0.175 0.072
3, 1 0.060 0.034 0.084
3, 2 0.060 0.045 0.082
3, 3 0.058 0.073 0.016
3, 4 0.028 0.196 0.251
4, 1 0.257 0.073 0.009
4, 2 0.261 0.083 0.038
4, 3 0.276 0.109 0.080
4, 4 0.260 0.250 0.051
5, 1 0.262 0.146 0.016
5, 2 0.272 0.149 0.017
5, 3 0.274 0.187 0.041

Table 9. Table of mean excess kurtosis and standard deviation for
D(2) = CMB + CS.

Multi-scale method Scale K̄a σK K
Bi-orthogonal wavelet 1, 1 18.369 0.292 756.618

1, 2 37.797 0.763 1550.101
1, 3 37.960 0.139 1813.615
2, 1 1.662 0.179 36.929
2, 2 1.823 0.204 35.329
2, 3 10.051 0.380 261.331
3, 1 0.082 0.085 0.820
3, 2 0.098 0.105 1.052
3, 3 0.257 0.136 2.683
4, 1 −0.023 0.181 0.064
4, 2 0.034 0.194 0.476
4, 3 −0.001 0.165 0.032
4, 1 −0.060 0.354 0.097
4, 2 −0.111 0.463 0.059
4, 3 −0.037 0.479 0.086

à trous WT 1 5.744 0.153 424.159
2 0.250 0.049 11.003
3 0.030 0.055 0.688
4 −0.004 0.097 0.233
5 −0.032 0.191 0.271

Local ridgelets (B = 16) 1 0.174 0.034 5.682
2 0.055 0.049 0.773

Local ridgelets (B = 32) 1 0.153 0.031 2.840
2 0.082 0.047 0.413
3 0.066 0.113 0.024

Curvelets (B = 16) 1, 1 2.222 0.055 198.625
1, 2 0.157 0.044 5.248
1, 3 0.059 0.102 0.725
2, 1 0.206 0.028 7.591
2, 2 0.100 0.042 1.108
2, 3 0.072 0.062 0.265
2, 4 0.053 0.172 0.197
3, 1 0.080 0.033 0.820
3, 2 0.075 0.048 0.565
3, 3 0.067 0.082 0.127
3, 4 0.007 0.180 0.123
4, 1 0.258 0.067 0.115
4, 2 0.261 0.073 0.080
4, 3 0.278 0.108 0.153
4, 4 0.278 0.269 0.092
5, 1 0.271 0.132 0.052
5, 2 0.285 0.142 0.034
5, 3 0.290 0.186 0.023
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Table 10. Table of mean excess kurtosis and standard deviation for
D(3) = CMB + KSZ + CS.

Multi-scale method Scale K̄a σK K
Bi-orthogonal wavelet 1, 1 12.264 0.194 491.426

1, 2 26.225 0.532 1040.543
1, 3 20.180 0.069 933.862
2, 1 1.503 0.160 34.154
2, 2 1.697 0.187 33.660
2, 3 7.477 0.291 196.930
3, 1 0.092 0.089 0.922
3, 2 0.095 0.103 1.027
3, 3 0.258 0.130 2.749
4, 1 −0.025 0.182 0.073
4, 2 0.024 0.195 0.425
4, 3 −0.000 0.166 0.035
5, 1 −0.072 0.341 0.072
5, 2 −0.110 0.462 0.062
5, 3 −0.041 0.470 0.076

à trous WT 1 5.206 0.127 392.254
2 0.260 0.051 11.972
3 0.032 0.055 0.747
4 −0.004 0.098 0.233
5 −0.033 0.187 0.280

Local ridgelets (B = 16) 1 0.171 0.032 5.882
2 0.056 0.051 0.791

Local ridgelets (B = 32) 1 0.150 0.031 2.988
2 0.080 0.047 0.392
3 0.063 0.114 0.006

Curvelets (B = 16) 1, 2 0.155 0.044 5.515
1, 3 0.058 0.099 0.717
2, 1 0.197 0.029 7.426
2, 2 0.099 0.041 1.091
2, 3 0.071 0.061 0.254
2, 4 0.049 0.173 0.172
3, 1 0.079 0.033 0.803
3, 2 0.073 0.046 0.519
3, 3 0.067 0.081 0.128
3, 4 0.004 0.178 0.135
4, 1 0.258 0.068 0.121
4, 2 0.258 0.075 0.047
4, 3 0.272 0.105 0.108
4, 4 0.276 0.261 0.076
5, 1 0.270 0.133 0.053
5, 2 0.284 0.144 0.028
5, 3 0.287 0.186 0.016

Table 11. Kurtosis product.

Kurtosis product band CMB+CS CMB+SZ CMB+SZ+CS
KAT ∗ KCUR 1- 1, 1 84248.508 665.882 64990.101

1–1, 2 2225.881 0.702 2163.283
1–1, 3 307.422 5.079 281.125
2–2, 1 2185.421 12.246 1983.507
2–2, 2 57.740 0.013 66.024
2–2, 3 7.975 0.093 8.580
2–2, 4 83.517 0.251 88.906
3–3, 1 136.694 0.295 123.816
3–3, 2 3.612 0.000 4.121
3–3, 3 0.499 0.002 0.536
3–3, 4 5.224 0.006 5.550
4–4, 1 46.342 0.966 38.613
4–4, 2 1.224 0.001 1.285
4–4, 3 0.169 0.007 0.167
4–4, 4 1.771 0.020 1.731
5–5, 1 53.779 0.610 46.327
5–5, 2 1.421 0.001 1.542
5–5, 3 0.196 0.005 0.200


