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Abstract

This paper proposes the use of LASSO penalization to estimate the underlying block structure of the

spatial weight matrix of a spatial lag/error model in the absence of exogenous variables. We show that

the block structure of the spatial weight matrix is recovered, in the sense that zero blocks are estimated

as zeros with high probability. We denote such a property as “zero-block consistent”. The method in

Lam and Souza (2013) had proven sign-consistency for the elements in the spatial weight matrix only

in the presence of exogenous variables and decaying variance of the disturbance, which are not assumed

in this paper. The tool developed in this paper can be used as a verification of block structures by

applied researchers, or as an exploration tool for estimating unknown block structures. We analyzed

the US Senate voting data and correctly identify blocks based on party affiliations. Simulations also

show that the method performs well.
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1 Introduction

A spatial lag/error model allows the study of spatial dependence among individuals and find applications

in a wide array of fields. However, practitioners usually assume a known spatial weight matrix using expert

knowledge, or more often just rough proxies like the inverse of “distances” or its arbitrary powers. Unfortu-

nately, estimation accuracy of other parameters in the model depends crucially on the correct specification

of the spatial weight matrix (see, for example, Arbia and Fingleton (2008) and Pinkse and Slade (2010)).

With these concerns in mind, there are increasing number of researchers who attempt to estimate

the spatial weight matrix together with other important model parameters in a spatial lag/error model.

Pinkse et al. (2002) suggested to estimate a nonparametric smooth function for the elements of the spatial

weight matrix. Beenstock and Felsenstein (2012) suggested using a moment estimator for the spatial weight

matrix. Bhattacharjee and Jensen-Butler (2013) proposes to estimate the spatial weight matrix by first

estimating the error covariance matrix. These methods can suffer from the need to input an appropriate

distance metric, which is still determined by the user, or to estimate a large error covariance matrix, which

can be inaccurate as the dimension of the panel is large and can be close to the sample size - one of the

major characteristics of a large time series panel. There are other ad hoc approaches as well, many of which

unfortunately lack vigorous analysis of the properties of the resulting estimators. Recently, Lam and Souza

(2013) suggested to estimate jointly the spatial weight matrix and other parameters in a spatial lag/error

model through the use of adaptive LASSO penalization, which is first developed in Zou (2006) for variable

selection problems in standard regression. They provided vigorous analysis of the properties of the resulting

estimators, including the spatial weight matrix and other important parameters in the model, and the size

of the panel is allowed to be close to or even larger than the sample size.

Motivated by a US Senate voting data set, in this paper, we also focus on estimating the spatial

weight matrix. However, our aim is to study the spatial block dependence structure. For the US Senate

data, we want to explore if the Republicans and the Democrats form two major blocks based on their

Senator’s voting records. These blocks may overlap slightly if some senators from different parties have

similar voting records. One major use of such a spatial weight matrix goes to social interaction study. See

Case (1991) for more details. See also Lee (2002) and Kelejian and Prucha (2002) for the corresponding

theoretical treatments. However, these papers assume that the blocks in the spatial weight matrix are

known. Moreover, the blocks are assumed not overlapping each other, and constrained to have equal

elements inside each block.

We do not assume any prior knowledge of the spatial weight matrix in this paper, other than the fact

that it can be formed in blocks, and hence the spatial weight matrix is sparse overall, i.e. with a lot of

zero elements. The blocks can be slightly overlapping each other, and we do not know where the blocks

are formed. Since there are no obvious exogenous variables, we analyze the US Senate voting data using

a spatial lag model in the absence of them, which is essentially a spatial error model. To the best of our

knowledge, this has not been done by any researchers previously. We show that accurate within-block

estimation is not possible without any exogenous variables. However, we prove that theoretically we are

able to detect blocks, or even slightly overlapping ones in the spatial weight matrix, with probability going

to 1 as both the sample size and the panel size go to infinity.

The rest of the paper is organized as follows. In section 2, we introduce the spatial lag/error model

with blocks in the spatial weight matrix, and proposed a LASSO minimization problem for finding the
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estimator of the spatial weight matrix. Section 3 presents the concept of zero-block consistency, with

probability lower bound of such consistency for the LASSO estimator explicitly given, thus showing that

block detection is achieved with high probability. Section 4 relaxed all the previous settings and results

to overlapping blocks. Section 5 presents our simulation results as well as the complete analysis of the US

Senate voting data. Conclusion is in section 6, and all technical proofs are in section 7.

2 The Model and the LASSO Estimator

We consider a spatial lag model without any exogenous variables,

yt = W∗yt + ǫt, t = 1, . . . , T, (2.1)

where yt is an N × 1 vector of observations at time t, ǫt is a zero mean noise vector of the same size, and

W∗ is the spatial weight matrix of size N , with 0 on its main diagonal. We assume that
∥∥W∗

∥∥
∞

≤ η < 1,

where
∥∥A

∥∥
∞

= maxi
∑

j |Aij | is the L∞ norm of a matrix A. Model (2.1) is also a spatial error model,

since it can be written as

yt = (IN −W∗)−1ǫt. (2.2)

Without loss of generality, we assume the components of yt are sorted so that the weight matrix W∗ is

block diagonal, with

W =




W∗
1

. . .

W∗
G


 , ǫt =




ǫ
(1)
t

...

ǫ
(G)
t


 , (2.3)

where G is the number of blocks in W∗. An important assumption for {ǫt} is that cov(ǫ
(i)
t , ǫ

(j)
t ) = 0 for

i 6= j. Otherwise, the block structure in W∗ is not identifiable. Detailed assumptions can be found in

section 3.1. Relaxation to overlapping blocks is treated in section 4.

For recovering the block structure of the spatial weight matrix in (2.3), if there were exogenous variables,

the adaptive LASSO estimator proposed in Lam and Souza (2013) is more than sufficient, since it has

been shown that the adaptive LASSO estimator is asymptotically sign consistent for the elements in the

spatial weight matrix. In this paper, we complement their results by showing that, even in the absence

of exogenous variables, it is still possible to accurately estimate the block structure of the spatial weight

matrix Furthermore, the disturbance decay assumption in Lam and Souza (2013) is neither needed nor

feasible, or else yt would have decaying variance as well.

Before we propose our estimator, we write (2.1) as a linear regression model,

y = Zξ∗ + ǫ, (2.4)

where y = vec{(y1, . . . ,yT )
T}, ǫ = vec{(ǫ1, . . . , ǫT )T}, ξ∗ = vec(W∗T) and Z = IN ⊗ (y1, . . . ,yT )

T. The

design matrix Z contains the endogenous variables yt, and hence least square estimation will be biased.

Furthermore, when N is close to T , e.g. N = T/2, it has a serious negative effect on the accuracy of the

least square estimators since the inverse (ZTZ)−1 will be ill-conditioned.
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Since we assume there is a block structure in W∗, we know that ξ∗ is a sparse vector, that is, ξ∗

should have a lot of zeros corresponding to the zero blocks in W∗. This motivates us to propose the

LASSO penalization on the elements of ξ to obtain

ξ̃ = min
ξ

1

2T

∥∥y − Zξ
∥∥2 + γT

∥∥ξ
∥∥
1
, subj. to

N∑

j=1

wij < 1 (2.5)

where
∥∥ ·

∥∥
1

represents the L1-norm and
∥∥ ·

∥∥ represents the L2 norm. The row sum condition ensures

stability of the system. The rate for the tuning parameter γT will be discussed briefly after Theorem 3 in

section 3.2.

3 Zero-Block Consistency of the LASSO Estimator

Before presenting the main results of this paper, we introduce the notations to be used for the rest of the

paper, and the main technical assumptions.

3.1 Main assumptions and notations

(i) The spatial weight matrix W∗ is block diagonal as in (2.3), with at least one W∗
i 6= 0, and∥∥W∗

∥∥
∞

≤ η < 1 uniformly as T,N → ∞, where η is a constant. We also assume, uniformly as

T,N → ∞, ∥∥W∗
∥∥
1
≤ ηc,

where
∥∥A

∥∥
1
= maxj

∑
i |Aij | is the L1 norm of a matrix A, and ηc is a constant.

(ii) The vector ǫt can be partitioned as in (2.3), with the length of ǫ
(j)
t the same as the size of W∗

j .

Furthermore, E(ǫt) = 0 and cov(ǫ
(i)
t , ǫ

(j)
t ) = 0 for i 6= j. Also, var(ǫtj) ≤ σ2

ǫ < ∞ uniformly as

T,N → ∞, where σ2
ǫ is a positive constant.

(iii) Define dT = N
T . Then we assume dT → d ∈ [0, 1) as T,N → ∞.

(iv) The series {ǫt} is causal, with

ǫt =
∑

i≥0

Φiηt−i, Φ0 = IN ,

where ηt = (ηt1, . . . , ηtN )T, and the ηti’s are independent and identically distributed random variables

with mean 0 and variance σ2, having finite fourth moments. Furthermore, we assume that uniformly

as N, T → ∞,
∑

i≥1

∥∥Φi

∥∥ ≤ σ(1 −
√
d)− ǫ− c

σ(1 +
√
d) + ǫ

,

for some constants ǫ, c > 0.

(v) The tail condition P (|Z| > v) ≤ D1 exp(−D2v
q) is satisfied for ηti and ǫti for all integer t and

i = 1, . . . , N , for the same constants D1, D2 and q.
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(vi) There are constants w > 2 and α > 1
2 − 1

w such that for all positive integer m,

∑

i≥m

∥∥Φi

∥∥
∞

≤ Cm−α
(
max
i,j

|Jij |
)− 1

2w

,

where C > 0 is a constant (can depend on w), and Jij =The index set for the non-zero elements of

the j-th row of Φi.

Assumption (i) assumes the absolute row sum of W∗ is uniformly less than 1, which is a regularity

condition to ensure that the model is stationary and has a reduced form (2.2). Assumption (ii) is an

important identifiability condition for the block structure of W∗. Assumptions (iii) and (iv) facilitate

the bounding of the minimum eigenvalue of a sample covariance matrix of the observations using random

matrix theories. They also make bounding various terms in the proof much easier. Assumption (v) is a

relaxation to normality, allowing for sub-gaussian or sub-exponential tailed distributions. Together with

assumption (v), assumption (vi) allows us to apply the Nagaev-type inequality in Theorem 1 to determine

the tail probability of the mean of the product process {ǫtiǫtj − E(ǫtiǫtj)}. It can actually be relaxed to

allow for 0 < α < 1/2 − 1/w at the expense of more complicated rate in the Nagaev-type inequality in

Theorem 1. See Remark 1 after Theorem 1 for more details on this.

There are more notations and definitions before we move to our main results. Define the set

H = {j : ξ∗j = 0 and corresponds to the zero blocks in W∗}. (3.1)

In other words, the set H excludes those zeros within the diagonal blocks W∗
i for i = 1, . . . , G. Define

n =maximum size of Wi, i = 1, . . . , G. For the rest of the paper, we use the notation vS to denote a vector

v restricted to those components with index j ∈ S. Hence, for instance, we have ξ∗H = 0 by definition. Let

λT = cT−1/2 log1/2(T ∨N), where c is a constant (see Corollary 2 for the exact value of c). Finally, define

the set

Aǫ =
{

max
1≤i,j≤N

∣∣∣ 1
T

T∑

t=1

[ǫtiǫtj − E(ǫtiǫtj)]
∣∣∣ < λT

}
. (3.2)

3.2 Main results

We first present a theorem and its corollary concerning the probability lower bound of the set defined in

(3.2). Then we present the zero-block consistency of the LASSO estimator ξ̃, which is the main result of

the paper.

Theorem 1. With the causal representation for ǫt in assumption (iv), together with assumptions (v) and

(vi), there exists constants C1, C2 and C3 independent of T, v and the indices i, j, such that

P
(∣∣∣ 1

T

T∑

t=1

[ǫtiǫtj − E(ǫtiǫtj)] > v
∣∣∣
)
≤ C1T

(Tv)w
+ C2 exp

(
− C3Tv

2
)
.

The proof of Theorem 1 is relegated to section 7. This theorem utilizes Lemma 1 of Lam and Souza

(2013), where a functional dependence measure for a general time series is presented and discussed. With
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the causal representation of ǫt and assumptions (v) and (vi), the conditions in Lemma 1 of Lam and Souza

(2013) are satisfied, and hence the Nagaev-type inequality there can be invoked.

Remark 1. If 0 < α < 1/2− 1/w, then the inequality in Theorem 1 becomes

P
(∣∣∣ 1

T

T∑

t=1

[ǫtiǫtj − E(ǫtiǫtj)] > v
∣∣∣
)
≤ C1T

w(1/2−α)

(Tv)w
+ C2 exp

(
− C3T

βv2
)
,

where β = (3+2αw)/(1+w). Consequently, we need to redefine λT = cT−β/2 log1/2(T ∨N) and any rates

of convergence in the paper needed to be modified. For the sake of clarity we do not present those results

in the paper, but just assume α > 1/2− 1/w, as in assumption (vi).

The following corollary is an immediate consequence of Theorem 1.

Corollary 2. Assume the conditions in Theorem 1. With the same constants C1,C2 and C3 as in Theorem

1, we set the constant c in λT such that c ≥
√
3/C3. Then we have

P (Aǫ) ≥ 1− C1

(C3

3

)w/2 N2

Tw/2−1 logw/2(T ∨N)
− C2N

2

T 3 ∨N3
.

It approaches 1 as T,N → ∞ if we assume further that N = o(Tw/4−1/2 logw/4(T )).

Proof of Corollary 2. By the union sum inequality, putting v = λT in the result of Theorem 1,

P (Ac
ǫ) ≤

∑

1≤i,j≤N

P
(∣∣∣ 1

T

T∑

t=1

[ǫtiǫtj − E(ǫtiǫtj)]
∣∣∣ ≥ λT

)

≤ N2
( C1T

(TλT )w
+ C2 exp(−C3Tλ

2
T )
)

=
C1N

2

cwTw/2−1 logw/2(T ∨N)
+ C2N

2 exp(−c2C3 log(T ∨N))

=
C1N

2

cwTw/2−1 logw/2(T ∨N)
+

C2N
2

(T ∨N)c2C3

≤ C1

(C3

3

)w/2 N2

Tw/2−1 logw/2(T ∨N)
+

C2N
2

T 3 ∨N3
,

for c ≥
√
3/C3. The result follows. �

Remark 2. Assumption (vi) is satisfied, for instance, if α ≥ 1/2, |Iij | is finite uniformly for all i, j,

and ∑

i≥m

∥∥Φi

∥∥
1
≤ Cm−α.

If assumption (v) is also satisfied, we can actually set w to be any constant larger than 2, so that the

condition N = o(Tw/4−1/2 logw/4(T )) is satisfied for a large enough constant w. In light of Remark 1, we

can allow for α < 1/2 as well, with more complicated rate for the lower bound of P (Aǫ).

It turns out that the probability lower bound in Corollary 2 is the same as the probability lower bound

for the LASSO estimator ξ̃ in (2.5) to be zero-block consistent.
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Theorem 3. Under assumptions (i) to (vi), if λT = o(γT ) and n = o({γT /λT }2/3), then for large enough

T,N , the LASSO solution ξ̃ in (2.5) is such that

P (ξ̃H = 0) ≥ P (Aǫ),

which approaches 1 as T,N → ∞ if N = o(Tw/4−1/2 logw/4(T )). If γT → 0, then for large enough T,N ,

P (ξ̃Hc 6= 0) = 1.

The proof of Theorem 3 is relegated to section 7. In words, this theorems says that a zero-block con-

sistent estimator for the spatial weight matrix exists and is given by the LASSO estimator with probability

going to 1. The estimator is also a useful one in detecting block structure of the spatial weight matrix, in

the sense that the diagonal blocks are estimated to be non-zero at the same time with probability 1, as

long as the tuning parameter γT goes to 0.

With γT → 0, the condition for the maximum block size n = o({γT /λT }2/3) implies that we need

n = o(T 1/3 log−1/3(T ∨N)). In practice, the method performs well even if the maximum block size is

relatively large compared to T ; see section 5 for simulation results. In theory, γT should be chosen to be

small in order to align with γT → 0. Yet if γT is too small, it will not allow for a block with reasonable

size. And of course, γT cannot be set too large also, or the whole weight matrix is shrunk to zero, which is

useless albeit still being zero-block consistent. In our simulations, we balance these concerns by considering

γT =
C√

log(T ∨N)
,

where C is a constant to be chosen, and C = 0.5 is recommended in section 5. We choose this form of γT

since this function indeed goes to 0 as T,N → ∞, has nice computational results in practice, and allows

for a larger maximum block size in theory since it goes to 0 slowly. In practice this gives excellent results

if detection of block structure is the main concern. See section 5 for an alternative using cross-validated

tuning parameter, which geared towards within-block sensitivity more on top of blocks detection.

4 Relaxation for Overlapping Blocks

The spatial weight matrix in (2.3) and the theories presented in section 3 do not include the case where

some of the blocks are overlapping. Yet in many practical cases, some or all of the blocks are slightly

overlapping despite the non-overlapping majority.

Suppose there are G ≥ 2 non-overlapping sets I1, . . . , IG ⊂ {1, . . . , N} such that w∗
ij = 0 for i ∈ Ia and

j ∈ Ib with a 6= b. Then I1, . . . , IG form G groups for the components of yt, with G(G− 1) corresponding

zero blocks in the spatial weight matrix W∗ if we order the components so that those in a set Ij are grouped

together. We introduce extra conditions in this section so that the zero-block consistency in Theorem 3 is

valid for the estimator of these zero blocks.

Define the set

H ′ = {j : ξ∗j = 0 and corr. to one of the G(G− 1) zero blocks in W ∗}. (4.3)
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This set corresponds to H in (3.1) when the blocks are non-overlapping. Consider two additional assump-

tions below:

(i)’ The spatial weight matrix W∗ is such that, for i ∈ Iq , q = 1, . . . , G, we have uniformly as T,N → ∞,

∑

j 6∈Iq

|π∗
ij | ≤ cπλT ,

where cπ is a constant, and π∗
ij denotes the (i, j)-th element of Π∗ = (IN −W∗)−1.

(Rii) Define the set I ′ = {1, . . . , N}/
⋃G

i=1 Ii. The vector ǫt can always be partitioned as

ǫt = (ǫT

I1 , . . . , ǫ
T

IG , ǫ
T

I′)T.

Then we assume cov(ǫIi , ǫIj ) = 0 for i 6= j, and cov(ǫti, ǫtj) ≤ cǫλT for i ∈ Iq, q = 1, . . . , G and

j ∈ I ′, uniformly as T,N → ∞, where cǫ > 0 is a constant. Also, var(ǫti) ≤ σ2
ǫ < ∞ uniformly as

T,N → ∞, where σ2
ǫ is a positive constant.

Assumption (i)’ is an additional assumption on top of (i) in section 3.1. It says that the matrix (IN−W∗)−1

should also have approximately the same block structure as W∗, where the elements corresponding to the

zero blocks in W∗ should be close to 0, with order specified. This assumption is likely to be true when the

blocks are only slightly overlapping, which is what we are concerned with. Assumption (Rii) is to replace

(ii) in section 3.1. It says that the noise series for those components not in any blocks should have only

weak correlation with those noise series in blocks. Between blocks, the correlation should still be 0 for

identifiability of block structure.

We are now ready to present a version of Theorem 3 for overlapping blocks.

Theorem 4. Suppose there are overlapping blocks in W∗. Under assumptions (i), (i)’, (Rii) and (iii) -

(vi), if λT = o(γT ) and n = o({γT /λT }2/3), then for large enough T,N , the LASSO solution ξ̃ in (2.5) is

such that

P (ξ̃H′ = 0) ≥ P (Aǫ),

which approaches 1 as T,N → ∞ if N = o(Tw/4−1/2 logw/4(T )). If γT → 0, then for large enough T,N ,

P (ξ̃H′c 6= 0) = 1.

This theorem is in parallel with Theorem 3. Zero-block consistency continues to hold even when there

are overlapping blocks in the spatial weight matrix.

5 Practical Implementation

We use the Least Angle Regression algorithm (LARS) of Efron et al. (2004) to implement the minimization

in (2.5). A unique solution is guaranteed since the minimization problem in (2.5) is convex. The LARS is

very fast since the order of complexity of the algorithm is the same as that for ordinary least squares.

The choice of γT is a delicate issue. We have discussed the choice γT = C/
√
log(T ∨N) in section

3.2, which is excellent for blocks detection. Even though accurate estimation of within-block elements is
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not supported by theories, from our simulation results, we can achieve a higher within-block sensitivity

by using cross-validation for finding an optimal γT , with prediction error as the criterion. Performance of

block detection is slightly hindered, but the within-block non-zero elements are estimated more accurately

using the cross-validated tuning parameter. Truly zero elements are more often estimated as non-zeros

though. See section 5.1 for more details.

To find a tuning parameter by cross-validation, we first split the sample into a test set Ta with con-

secutive time points, and the rest as the validation set. We compute the LASSO solutions ξ̃a,γ using the

LARS algorithm on a grid of values of γ for the test set. Then we solves

γCV = argmin
γ

∑

a

∑

t∈T c
a

∥∥yt − W̃a,γyt

∥∥2,

where W̃a,γ is the spatial weight matrix recovered from ξ̃a,γ . In the simulations to follow, we compare the

performance of using these two different tuning parameters.

5.1 Simulation Results

In this paper, we focus on block detection, and there are no theoretical supports for accurate estimation of

elements of W∗ in the non-zero diagonal blocks. We measure the performance of block detection using the

across-block specificity, defined as the proportion of true zeros in the non-diagonal zero blocks estimated as

zeros. For the sake of completeness and independent interest, we include other measures as well to gauge

the overall performance of estimating W∗. One is the within-block sensitivity, defined as the proportion

of true non-zeros estimated as non-zeros, and the within-block specificity, defined as the proportion of true

zeros in the diagonal blocks estimated as zeros. We also use the L1 error bound
∥∥ξ̃ − ξ∗

∥∥
1
/(N(N − 1))

and the L2 error bound
∥∥ξ̃ − ξ∗

∥∥/
√
N(N − 1) for comparing the overall estimation performance across

different T,N combinations.

We generate the data using the model yt = W∗yt + ǫt for a given triplet (T,N, κ), where κ is the

sparsity parameter controlling the overall sparsity of W∗. We generate W∗ by randomly selecting the

number of blocks between 5 and 10 with uniform probability on their start and end points. Within all

blocks, we choose [(1 − κ)N(N − 1)] elements to be non-zeros with value 0.3. It means that a larger

κ represents a sparser W∗. Note that a relatively sparse W∗ may have dense blocks, as the sparsity

level is defined for the overall matrix W∗. To ensure stationarity, each element w∗
ij of W∗ is divided by

1.1×max
(
1,
∑N

j=1 w
∗
ij

)
. The covariance matrix for {ǫt} is defined in the same way, with the same sparsity

κ. Hence the within-block pattern of spatial correlation is very general. In each iteration of the simulation,

we generate both W∗ and the data in order to ensure that the simulation is carried over a wide range of

true models. Thus, the results are not influenced by a particular choice of W∗.

Table 1 shows the simulation results with tuning parameter γT = 0.5/
√
log(T ∨N). It is clear that

on average the estimator is zero-block consistent, since the across-block specificity is always close to 99%

in all cases. While within-block accuracy is not guaranteed, the within-block specificity and sensitivity are

quite good when T is large. The overall sparsity level is close to κ in all cases.

Table 2 shows the simulation results with cross-validated tuning parameter. While zero-block consis-

tency is not as good as when using γT = 0.5/
√
log(T ∨N), it is still satisfactory. Moreover, the within-block
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Table 1: Baseline Simulations.

κ = 0.90 κ = 0.95
T = 50 T = 100 T = 200 T = 50 T = 100 T = 200

Within-Block Specificity 64.49% 58.32% 49.32% 88.20% 72.57% 71.84%
Within-Block Sensitivity 76.20% 85.08% 91.55% 46.35% 77.02% 80.99%

N = 25 Across-Block Specificity 98.36% 98.86% 99.03% 99.77% 98.46% 99.86%
L1 0.0165 0.0139 0.0124 0.0113 0.0111 0.0101
L2 0.0771 0.0566 0.0447 0.0635 0.0510 0.0459

Sparsity 89.17% 88.42% 87.63% 96.39% 92.23% 93.28%
Within-Block Specificity 69.11% 64.22% 58.20% 86.80% 73.74% 73.57%
Within-Block Sensitivity 61.13% 73.34% 83.18% 43.28% 75.83% 81.72%

N = 50 Across-Block Specificity 99.27% 99.34% 98.76% 99.89% 97.92% 99.59%
L1 0.0140 0.0120 0.0109 0.0106 0.0106 0.0094
L2 0.1126 0.0823 0.0643 0.1092 0.0859 0.0740

Sparsity 90.96% 89.41% 87.30% 96.17% 91.12% 92.26%
Within-Block Specificity 71.61% 67.20% 63.28% 78.76% 77.57% 74.53%
Within-Block Sensitivity 51.01% 63.37% 74.31% 55.49% 65.95% 79.17%

N = 75 Across-Block Specificity 98.31% 98.67% 98.77% 98.33% 99.42% 99.43%
L1 0.0120 0.0104 0.0090 0.0102 0.0088 0.0082
L2 0.1211 0.0893 0.0675 0.1267 0.1007 0.0829

Sparsity 91.00% 89.68% 88.39% 92.93% 93.11% 92.06%

Notes: Penalization parameter selected as γT = c/
√

log (T ∨N) with c = 0.5. Simulation size is 1,000.

sensitivity is increased in all cases. Basically, cross-validation is being conservative in penalization. Hence

truly zero elements are estimated as non-zeros more often, so that both across-block and within-block

specificity suffer, while within-block sensitivity increases due to less penalization from the cross-validated

tuning parameter. It may worth identifying the zero blocks first using γT = c/
√
log(T ∨N), then using a

cross-validated one for within block estimation.

5.2 Analysis of US Senate bill voting

How polarized is the United States Congress? Do congressmen vote exclusively along partisan lines or are

there moments when partisanship gives way to consensus? To shed light on these questions, we use model

2.1 to analyze the voting records for the bills enacted and proposed by the United States Senate from

1993 to 2012, period from the first presidency of Bill Clinton to the first four years under Barack Obama.

Polarized voting pattern should give at least two blocks in the spatial weight matrix, one corresponding to

the Republicans, and another to the Democrats.

We use data compiled by GovTrack.us, a web site that freely keeps track of voting record in both

houses. Vote is recorded as 1 for "yes", -1 for "no" and 0 for absent for all bills that were proposed in

the period under study. To evaluate the evolution of polarization, we estimate the model within windows

of each calendar year, representing the first half or second half of a particular meetings of the biannual

legislative branch1. The composition of the Senate and the number of voting instances can be found in

Table 3.

1Congresses begin and end at the third day of January in odd-numbered years. Bills voted in the first two days of January
of odd years, if any, are discarded.
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Table 2: Baseline Simulations with Cross Validation.

κ = 0.90 κ = 0.95
T = 50 T = 100 T = 200 T = 50 T = 100 T = 200

Within-Block Specificity 52.90% 48.79% 44.93% 73.33% 62.87% 56.89%
Within-Block Sensitivity 86.02% 90.15% 93.44% 73.05% 86.56% 96.62%

N = 25 Across-Block Specificity 93.08% 93.63% 93.57% 93.72% 92.22% 91.34%
L1 0.0177 0.0159 0.0153 0.0152 0.0144 0.0136
L2 0.0732 0.0577 0.0514 0.0680 0.0558 0.0483

Sparsity 83.54% 82.93% 81.83% 87.93% 85.26% 83.83%
Within-Block Specificity 64.76% 60.38% 57.55% 76.43% 71.31% 68.58%
Within-Block Sensitivity 65.51% 75.78% 84.50% 63.85% 80.63% 90.38%

N = 50 Across-Block Specificity 95.93% 96.07% 96.55% 95.82% 94.38% 94.36%
L1 0.0151 0.0135 0.0118 0.0127 0.0123 0.0111
L2 0.1135 0.0887 0.0674 0.1080 0.0917 0.0745

Sparsity 87.44% 85.81% 85.03% 90.12% 87.46% 86.80%
Within-Block Specificity 69.09% 66.53% 63.57% 75.71% 74.57% 71.41%
Within-Block Sensitivity 54.56% 63.24% 73.56% 60.10% 71.27% 83.60%

N = 75 Across-Block Specificity 96.84% 97.18% 97.52% 96.48% 96.70% 96.64%
L1 0.0126 0.0109 0.0095 0.0110 0.0098 0.0090
L2 0.1243 0.0921 0.0710 0.1298 0.1011 0.0843

Sparsity 89.46% 88.26% 87.33% 91.03% 90.02% 89.17%

Notes: Tuning parameter γT chosen by five-fold Cross-Validation. Simulation size is 250.

Estimation is conducted in absolute disregard of party affiliation, and the tuning parameter γT is

chosen by cross validation. Hence, specificity can slightly suffer here in light of the simulation results in

section 5.1. Thus we are being conservative in drawing the conclusion that the spatial weight matrix has

a block structure. The outcome for year 2012 is displayed in Figure 1. The estimated non-zero pairwise

links are displayed as a solid line in grey, length of which does not carry any information on its intensity

or direction and are purely determined by ease of visualization. The nodes are colored according to party

affiliations: Democrats are represented by blue, Republicans by red, and Independents by white.

It is immediately clear from Figure 1 that the Senate behaves as two almost exclusive blocks or groups,

defined exclusively along partisan lines, where the Independents behave most similarly to the Democrats.

It seems that the two blocks slightly overlap each other, and the results in Theorem 4 can be applied. One

Republican forms a block him/herself. Bear in mind that we are using a cross-validated tuning parameter,

and hence we are being conservative already in concluding a block structure in the spatial weight matrix.

It is of interest to visualize the number of political collaborations and its evolution throughout the

years. To achieve this, we build two measures of cross-partisanship association for a given year. The

first is based on the ratio of links with ends on Senators from different parties to the overall number of

links. We name this as "Cross-Party Connections". As seen in Figure 2, it is under 4% for all years

under study. The second measure is the number of Senators who are the starting points of directed links

towards colleagues from different parties, who are generically named "brokers". Both measures represent

the number of Senators and links that appear in the frontier and, therefore, could represent collaborative

cross-partisan political connections. Both measures show very limited collaboration if compared to the

overall legislative activity2. It is concluded, therefore, that political affiliations are strong determinants of

group identity. It also appears that frontier between the groups and scope for collaborative legislative work

is very limited throughout the recent Senates history.

2For year 2012, the brokers were identified as Sen. Susan Collins [R, ME], Sen. Lisa Murkowski [R, AK], Sen. Jim DeMint
[R, SC], Sen. Claire McCaskill [D, MO], Sen. Scott Brown [R, MA], Sen. Joe Manchin [D, WV], Sen. Rand Paul [R, KY]
and Sen. Mike Lee [R, UT]. Other years available upon request.
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Figure 1: Visualization of the estimated spatial weight matrix for voting, 2012.

Figure 2: Cross-party collaboration.
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Table 3: Senate Composition.

Year Congress Rep Dem Ind Votes

1993
103rd 46 55 0

395
1994 329
1995

104th 53 46 1
613

1996 306
1997

105th 54 45 1
298

1998 314
1999

106th 55 45 1
374

2000 298
2001

107th 49 50 1
380

2002 253
2003

108th 51 48 1
459

2004 216
2005

109th 54 45 1
366

2006 279
2007

110th 49 50 2
442

2008 215
2009

111th 41 61 2
397

2010 299
2011

112th 47 51 2
235

2012 251

6 Conclusion

We developed the LASSO penalization for detecting block structure in a spatial weight matrix, when the

size of the panel can be close to the sample size. One distinct feature of our model is the absence of

covariates, which is motivated by the US senate voting data example analyzed in this paper. Also, there

is no need for the decay of variance of the noise series, like Lam and Souza (2013) does. One contribution

of the paper is the derivation of the probability lower bound for the LASSO estimator to be zero-block

consistent - a concept that an estimator correctly estimates the non-diagonal zero blocks as zero. We also

proved that the diagonal blocks of the estimator are not all zero with probability 1, so that block structure

becomes apparent in the estimator. We use the LARS algorithm for practical computation, which is well-

established for solving LASSO minimization efficiently, with computational order the same as ordinary

least squares iterations. The estimated spatial weight matrix is visualized by a graph with directional

edges between components. The absence of edges between two groups of components indicates two blocks.

We also allow for the fact that blocks sometimes can overlap slightly, and develop the corresponding theories

to show that zero-block consistency still holds in the case of overlapping blocks. The US senate voting

data example demonstrates clearly the case of slightly overlapping blocks.

Our proofs utilize results from random matrix theories for bounding extreme eigenvalues of a sample

covariance matrix, as well as a Nagaev-type inequality for finding the tail probability of a general time

series process. These results can be useful for the theoretical development of other time series researches.

7 Appendix

Proof of Theorem 1. For a random variable z, define the norm
∥∥z

∥∥
a
= [E|z|a]1/a. We need to show that

13



there are some constants µ,C > 0, w > 2 and α > 1/2− 1/w such that

max
1≤j≤N

∥∥ǫtj
∥∥
2w

≤ µ, (7.1)

∞∑

t=m

max
1≤j≤N

∥∥ǫtj − ǫ′tj
∥∥
2w

≤ Cm−α, (7.2)

where ǫ′t has exactly the same causal definition as ǫt as in assumption (iv) with the same values of Φi’s

and ηj’s, except for η0, which is replaced by an independent and identically distributed copy η′
0. With

(7.1) and (7.2), we can use Lemma 1 of Lam and Souza (2013) for the product process {ǫtiǫtj −E(ǫtiǫtj)}
to complete the proof.

To prove (7.1), by the Fubini’s Theorem and assumption (v),

E|ǫtj |2w = E

∫ |ǫtj |
2w

0

ds =

∫ ∞

0

P (|ǫtj | > s1/2w) ds ≤
∫ ∞

0

D1 exp(−D2s
q/2w) ds

=
4wD1

q

∫ ∞

0

x4w/q−1e−D2x
2

dx =
2wD1

qD
2w/q
2

Γ(2w/q) = µ2w < ∞, (7.3)

so that max1≤j≤N

∥∥ǫtj
∥∥
2w

≤ µ < ∞ for any w > 0. This proves (7.1).

To prove (7.2), denote φT

ij the j-th row of Φi. Then using the causal definition in assumption (iv),

|ǫtj − ǫ′tj | = |φT

tj(η0 − η′
0)| ≤

∥∥φtj

∥∥
1
max
i∈Jtj

|η0i − η′oi|,

where Jtj is the index set of non-zeros in φtj as defined in assumption (vi). Hence by assumption (v) on

η0i and the calculations in (7.3),

∥∥ǫtj − ǫ′tj
∥∥
2w

≤
∥∥φtj

∥∥
1

[
E
{
max
i∈Jtj

|η0i − η′0i|2w
}] 1

2w

≤
∥∥φtj

∥∥
1
|Jtj |

1

2w max
i∈Jtj

∥∥η0i − η′0i
∥∥
2w

≤
∥∥φtj

∥∥
1
|Jtj |

1

2w (max
i∈Jtj

∥∥η0i
∥∥
2w

+ max
i∈Jtj

∥∥η′0i
∥∥
2w

)

≤ 2µ
∥∥φtj

∥∥
1
|Jtj |

1

2w ,

so that by assumption (vi), using the same w > 2 in the assumption,

∞∑

t=m

max
1≤j≤N

∥∥ǫtj − ǫ′tj
∥∥
2w

≤ 2µ
∞∑

t=m

max
1≤j≤N

∥∥φtj

∥∥
1

max
1≤j≤N

|Jtj |
1

2w

≤ 2µmax
t,j

|Jtj |
1

2w

∞∑

t=m

∥∥Φt

∥∥
∞

≤ 2µmax
t,j

|Jtj |
1

2wCm−α
(
max
t,j

|Jtj |
)− 1

2w

= 2µCm−α,

which is (7.2) since µ,C are constants. This completes the proof of the theorem. �
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Proof of Theorem 3. Define the set

D = {j : j 6∈ H, ξ∗j does not correspond to the diagonal of W∗},

and define J = D ∪H . Hence J contains indices for ξi not corresponding to the diagonal of W∗.

The KKT condition implies that ξ̃ is a solution to (2.5) if and only if there exists a subgradient

g = ∂|ξ̃| =




g ∈ R

2N2

:





gi = 0, i ∈ Jc;

gi = sign(ξ̃i), ξ̃i 6= 0;

|gi| ≤ 1, otherwise.





such that, differentiating the expression to be minimized in (2.5) with respect to ξJ ,

1

T
ZT

JZJ − 1

T
ZT

Jy = −γTgJ ,

where the notation AS represents the matrix A restricted to the columns with index j ∈ S. Using

y = ZJξ
∗
J + ǫ, the equation above can be written as

1

T
ZT

JZJ (ξ̃J − ξ∗J )−
1

T
ZT

Jǫ = −γTgJ .

For ξ̃ to be zero-block consistent, we need ξ̃H = 0, implying ZJ (ξ̃J − ξ∗J ) = ZD(ξ̃D − ξ∗D). Hence, the

KKT condition implies that ξ̃ is a zero-block consistent solution if and only if

1

T
ZT

HZD(ξ̃D − ξ∗D)− 1

T
ZT

Hǫ = −γTgH ,

1

T
ZT

DZD(ξ̃D − ξ∗D)− 1

T
ZT

Dǫ = −γTgD, (7.4)

which can be simplified to

∣∣∣ 1
T
ZT

HZD

( 1

T
ZT

DZD

)−1( 1

T
ZT

Dǫ− γTgD

)
− 1

T
ZT

Hǫ

∣∣∣ ≤ γT , (7.5)

since gH has elements less than or equal to 1.

We now show that, on the set Aǫ as defined in (3.2), (7.5) is true for large enough T,N , thus completing

the proof of zero-block consistency of ξ̃. To this end, there are four terms we need to bound. Define

I1, . . . , IG ⊂ {1, . . . , N} to be the index sets for the G groups of components as in (2.3). Then, consider on

the set Aǫ,

∥∥∥ 1

T
ZT

Hǫ

∥∥∥
max

= max
i∈Iq ,j 6∈Iq

∣∣∣∣∣
1

T

T∑

t=1

ytiǫtj

∣∣∣∣∣ = max
i∈Iq ,j 6∈Iq

∣∣∣∣∣∣

∑

s∈Iq

π∗
is

(
1

T

T∑

t=1

ǫtsǫtj

)∣∣∣∣∣∣

≤ λT max
1≤i≤N

N∑

s=1

|π∗
is| ≤

λT

1− η
, (7.6)

where we used (2.2) and yti =
∑

j∈Iq
π∗
ijǫtj for i ∈ Iq for some q, with π∗

ij being the (i, j)-th element of

Π∗ = (IN −W∗)−1. The last line follows from assumption (ii) that cov(ǫti, ǫtj) = 0 if i and j correspond
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to different groups, so that on Aǫ, |T−1
∑T

t=1 ǫtsǫtj | ≤ λT . We also used assumption (i) to arrive at

max
1≤i≤N

N∑

s=1

|π∗
is| =

∥∥Π∗
∥∥
∞

≤
∥∥IN

∥∥
∞

+
∑

k≥1

∥∥W∗
∥∥k
∞

≤ 1 +
∑

k≥1

ηk =
1

1− η
.

A potentially larger term is, by similar calculations on Aǫ,

∥∥∥ 1

T
ZT

Dǫ

∥∥∥
max

= max
i∈Iq ,j∈Iq′

∣∣∣∣∣∣

∑

s∈Iq

π∗
is

(
1

T

T∑

t=1

ǫtsǫtj

)∣∣∣∣∣∣
≤ σ2

ǫ + λT

1− η
, (7.7)

where we used assumption (ii) that var(ǫtj) ≤ σ2
ǫ . We also have, on Aǫ,

∥∥∥ 1

T
ZT

HZD

∥∥∥
∞

≤ n max
i∈Iq ,j 6∈Iq

∣∣∣∣∣
1

T

T∑

t=1

ytiytj

∣∣∣∣∣ = n max
i∈Iq,j∈Iq′

q 6=q′

∣∣∣∣∣∣

∑

s∈Iq ,ℓ∈Iq′

π∗
isπ

∗
jℓ

( 1

T

T∑

t=1

ǫtsǫtℓ

)
∣∣∣∣∣∣
≤ λTn

(1− η)2
. (7.8)

Finally, let σmax(A) = λ
1/2
max(ATA) denotes the maximum singular value of the matrix A, and σmin(A) the

smallest one. Then

∥∥∥
( 1

T
ZT

DZD

)−1∥∥∥
∞

≤ n1/2λ−1
min

( 1

T
ZT

DZD

)
≤ n1/2λ−1

min

( 1

T
ZTZ

)
= n1/2λ−1

min

( 1

T

T∑

t=1

yty
T

t

)

= n1/2λ−1
min

(
Π∗

( 1

T

T∑

t=1

ǫtǫ
T

t

)
Π∗T

)
≤ n1/2σ−2

min(Π
∗)λ−1

min

( 1

T

T∑

t=1

ǫtǫ
T

t

)
. (7.9)

To bound (7.9), we have

σ−2
min(Π

∗) = σ2
max(IN −W∗) ≤ (1 + σmax(W

∗))2 ≤
(
1 +

∥∥W∗
∥∥1/2
1

∥∥W∗
∥∥1/2

∞

)2 ≤ (1 + η1/2η1/2c )2, (7.10)

where we used assumption (i) for bounding
∥∥W∗

∥∥
1

and
∥∥W∗

∥∥
∞

.

Also, the conditions assumed in assumption (iv) for the ηti’s ensure that Theorem 5.11 on the extreme

eigenvalues of a sample covariance matrix in Bai and Silverstein (2010) can be applied. Hence, for each

integer i ≥ 0, we have

lim
T→∞

λmin

( 1

T

T∑

t=1

ηt−iη
T

t−i

)
= σ2(1−

√
d)2, lim

T→∞
λmax

( 1

T

T∑

t=1

ηt−iη
T

t−i

)
= σ2(1 +

√
d)2

almost surely, where d is specified in assumption (iii). For each i, let Ui be the almost sure set such that

the above limits hold. Then on the almost sure set U =
⋂

i≥0 Ui, the above limits hold for all integers

i ≥ 0. Hence on U , for large enough T,N , we have

λ
1/2
min

( 1

T

T∑

t=1

ηtη
T

t

)
≥ σ(1−

√
d)− ǫ, λ1/2

max

( 1

T

T∑

t=1

ηtη
T

t

)
≤ σ(1 +

√
d) + ǫ,
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where the constant ǫ is as in assumption (iv). Therefore, on U , for large enough T,N , we have

λmin

( 1

T

T∑

t=1

ǫtǫ
T

t

)
= σ2

min

(
T−1/2

∑

i≥0

Φi(η1−i, . . . ,ηT−i)
)

≥



σmin

(
T−1/2(η1, . . . ,ηT )

)
−
∑

i≥1

σmax

(
ΦiT

−1/2(η1−i, . . . ,ηT−i)
)




2

≥



λ

1/2
min

( 1

T

T∑

t=1

ηtη
T

t

)
−
∑

i≥1

∥∥Φi

∥∥λ1/2
max

( 1

T

T∑

t=1

ηt−iη
T

t−i

)




2

≥



σ(1 −

√
d)− ǫ− (σ(1 +

√
d) + ǫ)

∑

i≥1

∥∥Φi

∥∥




2

≥ c2, (7.11)

where c > 0 is a constant as in assumption (iv). Combining (7.10) and (7.11), on U and for large enough

T,N , (7.9) becomes
∥∥∥
( 1

T
ZT

DZD

)−1∥∥∥
∞

≤ n1/2(1 + η1/2η
1/2
c )2

c2
. (7.12)

Hence combining the bounds (7.6), (7.7), (7.8) and (7.12), on Aǫ ∩ U , for large enough T,N , we have

∣∣∣ 1
T
ZT

HZD

( 1

T
ZT

DZD

)−1( 1

T
ZT

Dǫ− γTgD

)
− 1

T
ZT

Hǫ

∣∣∣

≤
∥∥∥ 1

T
ZT

HZD

∥∥∥
∞

∥∥∥
( 1

T
ZT

DZD

)−1∥∥∥
∞

∥∥∥ 1

T
ZT

Dǫ− γTgD

∥∥∥
max

+
∥∥∥ 1

T
ZT

Hǫ

∥∥∥
max

≤ λTn
3/2(1 + η1/2η

1/2
c )2

(1 − η)2c2

(
σ2
ǫ + λT

1− η
+ γT

)
+

λT

1− η

= O(λTn
3/2) = o(γT ),

by the assumption n = o({γT /λT }2/3). Hence on Aǫ ∩U , (7.5) is satisfied for large enough T,N , so that ξ̃

is zero-block consistent, i.e. ξ̃H = 0. It is clear then for large enough T,N , Aǫ ∩U ⊆ {ξ̃H = 0}, and hence

P (ξ̃H = 0) ≥ P (Aǫ ∩ U) = P (Aǫ),

since U is an almost sure set. The part where P (Aǫ) → 1 if N = o(Tw/4−1/2 logw/4(T )) is given by the

results of Corollary 2. This completes the proof of the first half of Theorem 3.

For the second half, suppose ξ̃D = 0. Then using (7.4), we have

gD =
1

γT

( 1

T
ZT

Dǫ+
1

T
ZT

DZDξ∗D

)
=

1

γT

( 1

T
ZT

Dy
)
.

One of the element of gD is, for some j, with T,N large enough and on U ,

1

γT

( 1

T

T∑

t=1

y2tj

)
=

1

γT

( 1

T

T∑

t=1

π∗T

j ǫtǫ
T
t π

∗
j

)
≥

∥∥π∗
j

∥∥2

γT
λmin

( 1

T

T∑

t=1

ǫtǫ
T
t

)
≥ c2

γT
,

where πT

j is the j-th row of Π∗, with
∥∥π∗

j

∥∥ > 1, and we used (7.11). Since γT → 0, we have just proved

that this particular element goes to infinity as T,N → ∞, which is a contradiction since all elements in
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gD are less than or equal to 1 in magnitude. Hence we must have ξ̃D 6= 0 for large enough T,N . This

completes the proof of the theorem. �

Proof of Theorem 4. Define the set

D′ = {j : j 6∈ H ′, ξj does not correspond to the diagonal of W∗}.

Then the proof of this theorem is almost exactly the same as that for Theorem 3 by replacing D with D′

and H with H ′. The only differences are the bounds in (7.6) and (7.8). Consider, on Aǫ,

∥∥∥ 1

T
ZT

H′ǫ

∥∥∥
max

= max
i∈Iq ,j 6∈Iq

∣∣∣∣∣
1

T

T∑

t=1

ytiǫtj

∣∣∣∣∣ = max
i∈Iq ,j 6∈Iq

∣∣∣∣∣∣

∑

s∈Iq

π∗
is

( 1

T

T∑

t=1

ǫtsǫtj

)
+

∑

s6∈Iq

π∗
is

( 1

T

T∑

t=1

ǫtsǫtj

)
∣∣∣∣∣∣

≤ max
s∈Iq ,j 6∈Iq

∣∣∣ 1
T

T∑

t=1

ǫtsǫtj

∣∣∣
∥∥Π∗

∥∥
∞

+ max
s6∈Iq ,j 6∈Iq

∣∣∣ 1
T

T∑

t=1

ǫtsǫtj

∣∣∣max
i∈Iq

∑

s6∈Iq

|π∗
is|

≤ λT + cǫλT

1− η
+ (σ2

ǫ + λT )cπλT = O(λT ), (7.13)

where we used assumption (Rii) that cov(ǫts, ǫtj) ≤ cǫλT when s ∈ Iq for some q and j 6∈ Iℓ for any ℓ, and

assumption (i)’ that
∑

j 6∈Iq
|π∗

ij | ≤ cπλT for i ∈ Iq. Also, on Aǫ,

∥∥∥ 1

T
ZT

H′ZD′

∥∥∥
∞

≤ n max
i∈Iq,j 6∈Iq

∣∣∣∣∣∣

∑

s∈Iq

π∗
js

( 1

T

T∑

t=1

ytiǫts

)
+

∑

s6∈Iq

π∗
js

( 1

T

T∑

t=1

ytiǫts

)
∣∣∣∣∣∣

≤ n

(
σ2
ǫ + λT

1− η

)
cπλT + nλT

(
1 + cǫ
1− η

+ cπ(σ
2
ǫ + λT )

)
1

1− η
= O(λTn), (7.14)

where we used (7.13) in the last line. The rates in (7.13) and (7.14) are the same as (7.6) and (7.8)

respectively, and hence the results in Theorem 3 follows. �
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