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1. INTRODUCTION 

1.1. Nature of the Problem 

Within any general class of problems there typically exist 

subclasses possessed of characteristics which can be exploited to create 

techniques · more . efficient : than general methods applied to these 

subclasses:. Two such subclasses of initial value problems in ordinary 

differential equations are stiff and oscillatory problems. Indeed, the 

subclass of oscillatory problems can be. further refined into stiff and 

nons tiff oscillatory problems. This refinement will be discussed in 

detail later. 

The efficacy of such specialized techniques can be reduced to nil 

if the user is not ·aware of the existence of the special property in his 

problem. Further, if a method of detection is postulated it would be 

desirable for this method to have the capability of determining the lack 

of the special property since using a special technique on·a problem to 

which is does not .apply cari be at best inefficient (as with stiff 

methods) or at worst impossible (as with oscillatory methods). It would . 

seem likely that within the method of detection it would be possible to 

not only detect a certain characteristic but to also accumulate 

information about the nature of the charateristic, thus enabling a 

better performance from the special technique to be aplied. 

Once a method of detection has been proposed and demonstrated to be 

feasible, a ~ontrol structure must be developed upon which a production 

code could be based. This control structure would involve such aspects 
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as interfacing the method of detection with .the special technique, and 

providing for coq.sistency of common proce.sses within the detection and 

special technique phases. This aspect of consistency is crucial since 

the method of detection must use the same criteria for evaluating the 

characteristic as the special technique does lest the method of 

detection decide the characteristic exists and the special technique 

deny it. 

This thesis addresses the problem of developing a method of 

detection for nonstiff and stiff oscillatory behavior in initial value 

problems. Given this method of detection a control structure is 

p~oposed upon which a production code could be based. An experimental 

code using this control structure will be 'described and results of 

numerical tests will be presented.-

1.2. Method of Solution 

In 1957, astronomers introduced methods for the calculalluu uf 

orbits of artificial satellites known as multirevolutionary methods. 

Details can be found in Mace and Thomas [1], Graff [2], and Graff and 

Bettis_ l3j. The first step in these methods is to identify a certain 

point on the orbit using knowledge of the physical phenomena being 

modelled. After this point is identified a small step integration takes 

place from one such reference point to the following one. The 

information obtained from this integration is used to extrapolate to 

future orbits by means of formulae similar to those discussed in section 

2. 
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Petz9ld [4] combined the idea of the multirevolutionary methods and 

~ concept she called the quasi-envelope of the solution to form a new 

strategy for highly oscillatory problems. This quasi-envelope will be 

discussed in section 2. Further, she generalized the notion of the 

period of oscillation which liberated the problem from its physical 

knowledge prerequisite and vastly increased the range of apllicable 

problems. Her definition of the period was based upon minimization of 

the integral of a norm of the difference of the function over two 

successive periods. Petzold's original definition of the period and 

possible alternatives will be discussed in section 3. This 

implementation of multirevolutionary methods, with slight modifications, 

will serve as the . special technique used once highly oscillatory 

behavior has been detected. 

Gear [5] proposed an alternate definition of the period of 

oscillation, which could be used in conjunction with Petzold's method, 

based upon zero crossings of a linear combination of the derivatives of 

the system. Using this definition of the period, he presented a method 

· of detection which· performed satisfactorily on a fairly complex 

numerical example. .Also, he implemented the suggestion of Petzold to 

generalize the backward differentiation formulae to facilitate the 

integration of stiff oscillatory equati.ons. This alternate definition 

·of the period and the generalized BDF's will be discussed in sections 3 

and 2 respectively. Lastly, Gear suggested that this method of 

detection could be used to provide a higher order start to Petzold's 



4 

method. 

The work of Gear demonstrates the feasibilty of a detection 

strategy based upon a linear·combinat~on of the derivatives. Howe~er, 

since it was only a feasibility study it did not address th~ attributes 

of a detection strategy which were deemed desirable in section 1.1. By 

using the proposed strategy of Gear as a base, it is possible to develop . . . 

a more useful and sophisticated algorithm. The .extensions explored in 

this thesis are as follows: 

1. providing up to·a third order start for the oscillatory integrator, 

2 •.. selecting initial stepsize, order, and method for the oscillatory 

integrator, ( 

3. invoking the oscillatory integrator only if it is more efficient than 

nonoseillatory technique~. 

4. reverting to nonoscillatory techniques when p~riodic behavior _is no 

longer evident or when it is no longer efficient to use oscillatory . 

techniques, 

s. providing a control struct_ure upon which a producd.on code can be 

based. 

The· numerical test results presented seem to indicate that the above 

extensions are feasible and that the control structure presented could 

be used as the basis for an efficient production code. 
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2. Nl1MERICAL INTEGRATION OF HIGHLY OSCILJ;.ATORY EQUATIONS 

In this,. section, Petzold's strategy for integrating highly 
l 

oscillator-y equations is cons-idered in ·some detail along with the 

problem ~f stiffness_in o~cillatory:problem~. Section 2.1 discusses the 

develoj;nnent and motivation of. the genenilized Adams . methods given i.n 

Petzold's thesis. Sect-ion .2. 2 covers the definition of stiffness and 

the derivation of the generalized· BDF's. Also covered .in 2.2 is the 

definition of the Jacobian of the quasi-envelope and techniques ~or its 

evaluation. 

2.1. Method of Petzold 

2.1.1. Motivation 

This section will describe 'the motivation behind the strategy which 

will be used to integrate the system of.equations. . . . 

Assume that · the system of . ordinary differential equations under 

consideration ls_known to have a solution which is nearly periodic in t. 

Further assume that the period, denoted T, is either constant or slowly 

varying with time. .Given the previous assumptions it is fairly clear 

that the r.es~lt of integrating from 0 to kT, where k is some integer, 

canfbe approximated by 

This could be written as 

where H • kT, 

T .. 
k /f(y(t),t) dt. 

0 

y(H+t) -.y(t) = Hf(t), 

(2.1) 

(2. 2) 
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1 T 
f(t) = T Jf(y(t+s),t+s)ds, 

0 . 

:S·· y(T+s,T) = f(y(T+s~T),T+s), 

y(T,T) = y(T)o 

.. If y is replaced by z in (2.2) ·the result can be viewed as one step of 

Euler'& methorl R.pplied to th~ initial value problem 

z'(t) = f(t), z(O) = y(O), (2. 3) 

where f(t) is as defined in (2.2). 

The integration of this initial value problem can be viewed as the 

approximate construction of what Petzold calls the quasi-envelope. 

Notice that each step of length H in the integration of z calls for a 

small step intesration (known as the inner lnlegration) over ono pQriod 

of the function y. In this way, the small step integration can be 
! . 

consid~red a type of derivative evaluation for the quasi-envelope z. 

Also, since it is d·esired to use this method on functioi_ls with slowly 

varying periods, it becomes necessary to develop an algorithm for 

determining the local period of the function y starting at some initial 

point on z. After integtat1ng y ovet· une period and determining the 

slope of the line connecting the two extreme y values, the value of 

z(t+H) is determined by extrapolation with the formulae of the type 

described in section 2.1.3 or 2.2.2. This extrapolation is known as the 

outer integration since, as previously noted, it resembles the 

application of an integration method to the problem (2.3). 
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2.1.2. The Quasi-envelope 

The function z of the previous section can be viewed intuitively by 

passing a smooth curve through points on y which are at intervals of 

length T. (See figure 1). Taking this view of the quasi-envelope allows 

the process of the outer integration to become ·fairly obvious. It is 

another matter entirely to present some sort of analytical definition of 

the . quasi-envelope. However, the definition of Petzold will be 

mentioned briefly to indicate some of the difficulties involved and an 

alternative definition is proposed for a case where smoothness presents 

a problem. 

· The function z can be defined in terms of its values on [0, T] by 

z(t+T) = z(t) + Tg(z,t)·, z(O) = y(O), 

where g(z,t) = i[y(t+T,t) - y(t,t)], andy satisfies· 

dds y(t+s,t) = f(y(t+s,t),t+s), _y(t,t) = z(t). 

(2.4) 

Obviously, t~e above definition only specifies·z at integer multiples of 

T. In order to complete the definition of z on [0, T] and satisfy the 

fact that z must be a smooth curve, it is necessary to define a sequence 

' 
of . functions, starting with the above function, which can be used to 

ap~roximate z. For the definition of the sequence and related theorems 

the reader is referred to Petold [4]. 

The purpose of the outer int~gration is to construct the quasi-

envelope and not to follow the underlying solution. Notice that this 

implies that the underlying function could be integrated, when 
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determining the local period, with initial conditions which are out of 

phase with ttie solution to the given problem. Hence, it is expected 

that problems.which are sensitive~to phase· changes may generate problems 

in constructing a smooth quasi-envelope. If the problem is autonomous 

this is not a problem since f(y) is phase insensitive. If, however, the 

oscillation is caused by a driving term, an attempt to integrate in the 

period algorithm from a point on z with initial conditions not in phase 

with the underlying solution ·can cause anything from nonsmoothness of z 

to the nonexistence of periodic behavior on that particular integral 

curve. 

As an example of a problem which can have trouble with the 

smoothness of the quasi-envelope consider, 

.Y' =_-y + sinAt. 

The solution of (2.5) is 

y(t) = Ce-t + ~sin~t - ~cos~t). 
lH 

(2. 5) 

Obviously, the limit cy~le of the &olution is a sluusoidal curve. 

Notice that all around this limit cycle are integral curves which are 

sinusoidal waves imposed on exponentials. Suppose that z(t) = 0 is the 

quasi-envelope of interest and is such that sin~T - ~cos~T = 0. Then, 

if the (T, y(T)) given to the. period algorithm is (T, 0) the small step 

integrator will produce a function in phase with the underlying 

solution. (In fact, this function will be identical to, the limit 

cycle). After integrating through one period the y value would once 
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again be back to y = 0, as expected. Now suppose that the period . . 

algorithm is :given initial conditions (T',O) where (T',O) is not on the 

limit cycle. This has the effect ~f placing .. the inner i.ntegrator on a 

completely different solution and after integrating for one period the y 

value will not be at zero, so the slope of the line connecting the 

extreme y values will be far from th~ zero slope prcoent on the limit 

cycle. This example shows fairly clearly how the integral curve may no 

longer be. periodic. In this case, the integral curve is imposed on an 

exponential which does not lend itself to a definition of periodicity if 

the exponential is steep enough. 

·rt seems reasonable to attempt to form a new definition of the 

quasi-envelope which will keep the driving term in phase with the 

soliltion of interest as much as possible. Problems of the above type 

can be characterized by the tact that t:.h~ uerivativco oa.n b~ sPparated 

into a nearly autonomous term and a term periodic in t. (Nearly 

autonomous is taken to mean that the partials with respect to time of 

this term are small). Assuming this has been done to the system under 

consideration, it is then possible to propose the following definition 

of the quasi-envelope. 

The derivative c.an be writl:.tHl 

where fA is nearly autonomous and fp is periodic in t. 

define z(t+~) = ~(T), where ~(s) is given by 

(2.6) 

Given z(t), 
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d9' 
ds = fA(t+s,9'(s)) + fp(s,9'(s)), 

9'(0) = z(t). 

This definition of the quasi-envelope allows the recovery of a wave form 

similar to the solution 'from any point on z. This is the same 

capability which is present when the system is autonomous anq produces a 

smooth quasi-envelope. 

Notice that the above definition of. the quasi-envelope does not 

require a special procedure to be added to the algorithm for determining 

the local peiod of the function. ·The same effect can be achieved by 

requiring that the outer.. integra tor take steps which are integral 

multiples of the period.. This forces the driving term to always start 

in the same phase as the solution being followed. Petzold called this 

mode of operation the synchronized mode. In general, it is sa.fer to run 

in the synchronized mode since it will minimize the loss of phase 

information. The nonsynchronized mode, that is allowing nonintegral 

multiples of the period to be used as outer stepsizes, can be used 

successfully for autonomous problems with slowly varying periods and 

nonautonomous problems which are not highly dependent on t. 

2.1.3. Generalized Adams Methods 

It is now time to consider exactly what type of method is to be 

used to extrapolate values of 3. As seen in the definition of z in 

formula (2.4), g can be vi.cwcd a& a t.ype of derivative. One would 

suspect that some sort of linear multistep formula could be adapted to 

perform the outer integration. This is indeed the case and one such set 
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of generalized multistep methods are the generalized Adams formulae. 

The derivation presented here is due to Petzold. The following operator 

relationships are needed. 

Vz(t) = z(t) - z(t-H) 

V = I - e-HD 

Az(t) = z(t+a) - z(t) 

HD A • e ... I 

Ez(t) = z(t+H) 

E = eHD 

where D is the differentiation operator. Formally, 

and 

TD -l 
e - I 

ZN = ( T ) gN. 

(2.7) 

Substituting the latter relation into (2.7) and using the expression for 

V yields 

TD - 1 
a - T 

~N- zN-1 = V(- T ) gN. (2.8) 

T 
Note HD = -log(I-V) , so TD = - Hlog(I-V) • Hence, 

· 1 1 T 1 2 . -1 
= (-- log(I-V) +----log (I-V) +•••) • 

H H H 21 

Combining this and (2.8) and inverting the series representation of 

TD - 1 

( e - I) i 
T g ves 
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T 1 1 T 2 2 
zN - zN_

1 
= 'i'(-I - H 2T log(I-Il) - IT (H) log (I-ll) + ••• )gN, 

. -1 
where 'i' = VH(log(I-Il)) • This can be written as 

1 12 1T 1 T2 
zN- zN-1 = H[(I- 211 - 12V -. ••) -2 HV + IT(H) I{ +• ••]gN, ( 2 • 9 ) 

which is the formula for the generalized Adams methods. 

2.2. Stiff Oscillating Problems 

2.2.1. Definition of Stiffness 

The generalized Adams formulae work well with many oscillating 

problems, however, as with conventional initial value problems, there 

are certain oscillating problems which can not be solved efficiently by . 

Adams type methods. These oscillating problems are called 'stiff'. 

This concept of generalized stiffness is ·very similar to the 

conventional concept of stiffness but it is not identical. 

Recall that a conventional stiff problem is one in which integral 

curves tend rapidly to a slowly varying solution. This forces most 

conventional integrators to use small stepsizes even though the solution 

appears to be smooth enough to allow large steps. The same type of 

behavior is possible with oscillating problems. A stiff oscillating 

problem is characterized by the fact that integral curves tend very 

rapidly to the limit cycle. This can be expressed alternately in the 

following way. If the quasi-envelope is graphed along with the quasi-

envelopco of the integr~l. ~urves of the problem the resulting graph 

would look very much like a conventional ~tiff problem since the quasi~ 

envelopes of the integral curves would tend very rapidly to the quasi-
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envelope of the solution. For a discussion of stiffness and a related 

discussion of the stabilty regions for generalized methods the 

interested reader is, once again, directed to Petzold [ 4] •. 

2.2.2. Generalized BDF's and the Jacobian 

Since the quasi-envelopes of the stiff oscillating problem look 

like the integral curves of .q conventional otiff probleu1 1L would be 

expected that a stiff osdllating problem could be handled with a 

generalized form of a conventional stiff method such as the BDF's. This 

was suggested by Petzold [4] and implemented by Gear [5]. 

The generalized BDF's are fairly easy to derive if one takes the 

viewpoint of passing an interpolating polynomial through past values on 

the quasi-envelope and then setting the forward difference over one 

period equal to g. Or more formally, let p(t) be the polynomial which 

interpolates z over k past values. Setting the forward difference of p 

over one period to g yields 

p(t +T) - p(t ) 
n n ) ---...,T,...---- = g(z , t • 

n n 

Expanding p in terms of backward differences gives, 

T 
where r = H , 

cr-1) = (-r-1)(-r-2)·. ·(-r-i) 
i . i! ' 

(2.10) 

and the backward differences are over an interval of length H. This is 

the formula for the generalized BDF's. 
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One major difficulty with the above methods is that the solution of 

the corrector equation now requires knowledge of the Jacobian, J = *' 
of t~e quasi-envelope because equation (2.10) is implicit in zn and J is 

large.. ·This Jacobian indicates how much the slope of the line 

connecting the two y values at each end of a period will change if the y 

values at the beginning of the integration over that period are changed. 

Some means of evaluating this Jacobian at occasional outer 

integration steps is required. Gear [5] used numerical differencing to 

accomplish the evaluation. This was done by perturbing each of the 

initial y's then calling the period algorithm to evaluate the g's. The 

changes in g versus the resulting changes in the y's form the Jacobian. 

Obviously, this technique is a bit expensive since it requires the 

integration of n systems, each with n equations, at each Jacobian 

evaluation. Further, the choice of the size of the perturbation is 

critical. Integral curves may be nearly periodic only when very close 

to. the os_cillatory solution and since the perlod finding is done with a 

numerical algorithm it is quite possible that it will be impossible to 

evaluate the Jacobian by differencing. ln practlc~, however, numeri~al 

differencing seems to work fairly well, albeit expensively. In the. 

section concerning the decision of whether or not to invoke oscillatory 

techniquce after fi,nding oscillatory behavior, a possible alternative to 

the uac of n•JmP.r.ical differencing for evaluating the Jacobian is 

discussed. 



16 

3. DEFINITION OF NEARLY PERIODIC BEHAVIOR 

In this section, the possible definitions for the local period 

finding algorithm ~re discussed along with the change of variables 

necessary to facilitate the integration of problems with slowly varying 

periods. 

3.1. Variable Period Alterations 

The derivations of both the general f :7.1;-d .Adamo and DDF 's assUmed 

that the problem under consideration had a constant period. Since the 

integration technique is to be used with varying· period problems also, 

some alterations must be made. Petzold provided for the integration of 

varying period problems by proposing a change of variables to an 

independent variable with a constant period. This can be accomplished 

by appending to the system an extra equation relating t to this new 

indepeudtmt variable. The constant period has been normalized to length 

one in the algorithm presented in this thesis. This was done in orner 

to allow easy preparation of information for the outer integrator in the 

detection program and to force the new independent variable to 

correspond to the ·number of periods which have been tntegr.Ated. With 

this correspondence, it seems that it might be possible, for autonomous 

problems operating in the nonsynchronized mode, to place the quasi...; 

envelope back into rhasQ ;wlth the underlying solution by forcing the 

independent variable to assume integral values in any region in which 

the phase is of interest. 

Let T(t) be the slowly varying period with respect to t and let T 
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be the new independent variable with a constant period of 1. The 

equations 

t(T+1) - t(T) = T(t(T)), 

t(O) = t 
0 

accomplish the change of variables. The system to be integrated by the 

outer integrator is now 

z(T+1) = z(T) + g(T) 

t(T+1) = t(T) + T(t(T)), 

where 

g(T) = y(t(T)+T(t(T))) - y(t(T)), 

and y is the function integrated by the period algorithm. 

3.2. Petzold'~ Definition of Nearly Periodic Behavior 

In this section, the definition of nearly periodic behavior used by 

Petzold is discussed. 

Suppose the function y is known to be periodic in t with period T. 

Then, the difference of the functions evaluated a period apart would be 

zero, so the integrals of its norm would be zero. Petzold used this 

fact as the motivation for her definition of nearly periodic and the 

algorithm to find the local period. 

The local period, in this definition, is taken to be the value of T 

which minimizes 

t+T 
n 

. I(t,T) = f 
t 

2 
lly(T+T) - y(T) 11

2 
dT 
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where T is the last estimate of the period. The m~nimization is done 
n 

by Newton's method so, 

where 

and 

T 
n 

J (y l(t) 
0 

F(T ) 
n 

F I (T ) , 
n 

N Tn 

F' (T ) = I: f yi' '(t+T)(yi(t) - yi(t+T)) - (yi' (t+T) )
2
dt. 

n i=l 0 

In her code, Petzold accomplished the evaluation of F(T) and F'(T) 

by initially integrating over one period and then for every Newton step 

integrating the function .over the ,second period and performing the 

quadrature on the differences as this integration progressed. While 

this algorithm performed satisfactorily as far as finding a period is 

concerned, it has its problems. The first of these problems is the fact 

that it is so expensive. The reintegration of the second period at each 

step is costly in time. If values were stored for the integration over 

the two periods and the quadrature performed by interpolation, the 

storage costs would rise to unacceptable levels. Secondly, the 

algorithm uses Newton's method for finding the minimum, hence, it 

requires a fairly good initial guess at the period. In the outer 

integration phase, this is acceptable since the predicted difference of 

the appended equation is the expected value of the period. However, 

,•, 
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this,~ashes all hopes of attempting to modify this algorithm into some 

sort -of dete~tion strategy. A . third point .is not really a major 

drawback but i,t can be bothersome from a user's point of view. Since 

the function values must be stored for the first period (or both if 

interpolation/quadrature is used) it is necessary to specify the 

expected number of steps to be used by the inner integrator to integrate 

over one period. This quantity may fluctu~te throughout the problem, 

hence, wasting space, or the user may have absolutely no idea as to what 

amount to use. 

3.3. A Second Definition of Nearly Periodic Behavior 

T_o motivate the next definition of . nearly periodic note the . fact 

that two points with an interval of a period between them have exactly 

the same fun~tion and first derivative values. (Obviously this is true 

for all derivatives but only up to the first will be considered since 

these values are the more accurately known than the higher derivatives 

in a numerical integration scheme). The algorithm based on this fact 

would first integrate to a point on the curve which is near t.he expected 

period. Next, it would begin comparing the function values and first 

derivative values at the present point to those at the left hand side of 

the period. When both values agree, within some tolerance, the period 

has been.found and the algorithm can return the period and the required 

g values. 

The above algorithm still requires a good ·estimate of the perio·d 

but, it does not have the time and storage expense of. Petzold's 
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algorithm. In the implementation of this algorithm which was tested, 

the values were not compared with the' end points until 0. 9 of the 

expected period was reached. (If the new period is less than 0.9 of the 

estimate, it suggests that the period is changing too· rapidly an the 

outer stepsize should be reduced). It was also found that the better 

values to compare were the first derivatives because these are periodic 

even if the y values have a superimposed linear term. 

The above comparison of derivative values can be viewed· as the 

minimization of 

n 

I(t) = E Bi(yt - Yi)
2

, 
i=l 

where Yi is the derivative value of the ith component at the p·oint 

integrated to and Yi is the corresponding derivative value at the left 

side of the interval. 

Hence, the root of 

n 
F(t)= I:By''(y'-y') 

i=1 i i i i 

must be found. 

I<:' (t) = 

n 

1: B (y'')
2 + B y'''(y' 

1=1 i i i i i 
y') 

i 

but, the term involving y''' is ignored since, for a periodic function, 
i 

the term it multiplies would be zero. Further, Yi' would be equal to 

yi' for a periodic function so, F'(t) is evaluated only at the beginning 

of the algorithm. Note that· the second derivative is needed. This is 

,. 

•, 
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taken care of .by a higher order start routine, Gear [6], and maintaining 

at least a second order integration. 

The algorithm proceeds: . 

1. Integrate to 0.9 of the expected period. 

2. Calculate I(t). 
·- p. 

3o Integrate· until I(t) begins to increase. 

4. Perform a Newton iteration to find the minimum of I(t) and hence the 

period. 

5 •. Interpolate to find the function values at the period point. 

':l'he above algorithm does not lend itself that easily to a detection 
... 

strategy. This can be seen from the fact that the algorithm is fairly :. 

dependent on the left hand endpoint· being fixed. In the detection 

process, this is not the case. So any time a new y(t) is .being 

considered it must be compared against some chosen left hand point y(s). 

Of course, the location of s is not known ahead of time and guesses at 

its location must be made. The resulting necessity of heuristic 

programming precludes the modification of this algorithm for detection 

purposes. 

3.4. A Third Definition of Nearly Periodic Behavior 

Any linear combination of a set of periodic functions, all with the 

same period, is periodic. The derivative of a periodic function must 

change sign at least twice in each period. Suppose this linear 
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combination was chosen such that its derivative was zero at the 

endpoints of the period under consideration. Obviously, such a linear 

combination could be used as the basis for an algorithm to determine the 

period of a function. 

The above linear combination can indeed be defined for a system of 

ordinary differential equations in the following way. Let u be th~;>, 

vector of function values given as the initial condi.tions of the 

equation to be integrated for one period. Define a function P as 

follows, 

P(y) = < ·c,y' > 

for y produced while integrating in the interval and P(u) = 0. 

Obviously, the key is the choice of the vector c. Since the object of 

the algorithm will be to· find a zero 'crossing of P, choose c such that 

P(u) = 0, 11 c 11 = 1, and P'(u) is maximized. It can be shown that the 

unsealed form of r. i$ 

wht:!re 

< u' u'') a = t < u', u' > 
The setting of c requires knowledge of u'' and the evaluation of P(y) 

requires y' '. A!3 before, the necessary information will be obtained 

from the higher order starting routine. 

Notice 'that' P(y) alone wilt not be sufficient to determine the 
. .. 

period of the function since even the simplest function will have two 
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crossings per period. Since P(u) is a positive going crossing, only 

positive crossings will be considered. Also, at each positive going 

crossing D(y) = 1 1 y' (t 
1 

- y' (t
2

) 1 1 will be computed, . where t
1

, and t
2 

are the crossing times.· If this norm is small the point will be 

accepted as a periodic point. · 

There are certain situations which can cause trouble for the above 

definition ·of the · c vector. If u''' = 0 the c vector is all zeros. 

This, of course, defeats the entire purpose of the algorithm. In the 

detection phase this does not cause that much trouble since it is 

possible to just continue a small step integration until the situation 

no longer exists. It is not clear what should be done if this occurs in 

the oscillatory integration phase. The easiest thing to do would be to 

merely behave as if 'no period was found and reduce the outer stepsize. 

The c ·vector will also be zero in the cases when u' and u'' are in the 

same direction or there is only ·one equation in the. system. If 

1 1 u' 1 1 = 0 then a is undefined and consequently, c is undefined. 

All of the above cases, except u'' = 0, can be handled by the 

following change to the formulation of c. Append to u' a component 

whose value is R, where R is the predicted period at this ·step. R can 

be viewed as an approximation of the derivative of the appended time 

equation. 

value is 0. 

where 

Also, since time is linear, append to u'' a· component whose 

The new forw. of P(y) is 

2 
P(y) = < c,y' > - R a, 



and a is now given by 
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a= < u' ,u'') 

R
2 

+ < u' ,u' ) 

There is another situation which can cause trouble for the 

detection and period finding routines. If there is a point in the 

interval of interest which has the same value of y' as the ini.tial point 

or last crossing and this point is not a periodic point, D(y) will not 

be able to distinguish it from a periodic point. In the case of an 

autonomous problem, this can be handled by looking at y values since 

they must differ at all but periodic points when y' is the same. 

The algorithm based on the above linear combination can be 

summarized as folows. Upon entering the algorithm, set the value of the 

vector c. (Actually this is done after the first small step integration 

which a11ows the starter to calculate the necessary derivatives). Next, 

locate a positive going sign change of P(y). After finding such a 

change, use a Newton algorithm to find the values of the function and 

its first and second derivatives at the crossing point. Compute D(y). 

If D(y) is small accept this crossing as the periodic point and 

calculate g. If it is not small find the next po8Htve crossing and 

repeat the ·process. 

The above algorithm functions well as a local period finder and it 

is possible to create a detection strategy from it, as will he sP.en in 

the next section. Note that it is much more efficient than the original 

definition proposed by Petzold since it only integrates· through one 

' 
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period and it does not require excessive amounts of extra storage. 

Also, it does not depend . upon an initial estimate of the period to 

converge to a value. The present implementation does make use of such 

an estimate, however, to terminate, when it has become apparent that the 

function is no longer periodic, inwhich case the outer stepsize should 

be reduced. 
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4. DETECTION OF NEARLY PERIODIC" BEHAVIOR-

This section concerns the' detection algorithm generated from the 

third definition of nearly periodic behavior of the last section. Each 

phase of the strategy will be discussed in its own.' subsection. 

Throughout the following discussions references will be made to key 

actions without any detail being given as to the way these actions are 

to be performed. All of these key actions, such as 'find the next zero 

crossing' 1 will be discussed in detail ·in the section dealing with 

implemenation. Any reference to a zero crossing of P(y) is understood 

to be a positive going zere> crossing. Figure 2 shows a state' diagram 

relating the phases of ~he algorithm. 

4.1. Phase 0 

This phase is a start up phase in which nothing is known or assumed 

about the behavior of P(y). The c vector is set to all ones. An 

initial integration is made and P(y) is evaluated to determine its sign. 

After this has been done, an initial zero crossing is found and control 

passes to Phase 1. 

4. 2. Ph.!!se 1 

Having found an initial zero crossing in Phase 0, it is the job of 

Phase 1 to find the first set of crossings which seem to constitute a 

period. This is accomplished in a loop which tt;!rminates once a start up 

period is found. 

The loop consists of the following actions. The next zero crossing 

is found, and information about it is saved. (Presently, up to 10 past 
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crossings are saved for u,se). The last crossing generated is then 

compared with each of the previously generated crossings by way of an 

evaluation of D(y) •. If any of the evaluations turn out to be small, 

that particular pair of crossings is taken to be·a potential period and 

information .concerning the period is initialized. Otherwise, the loop 

is repeated until such a pair of crossings is found~ 

The information on the periods which is saved includes the 

endpoints .of the periods, the first· three backward differences of 

periods generated, and the time components of the period endpoints. 

Upon initializing the above information, control passes to Phase 2. 

4.3. Phase 2 

This phase is very similar to a call to the period algorithm from 

the outer integrator. The Left endpoint of the period is fixed at the 

right endpoint of the period generated in Phase 1 and an attempt is made 

to find a period which is clm;t! Lu the previouo one. 

First, the c vector is set to the values which maximize P' and make 

the initial point a zero (or, in this case, keep it a zero). Now an 

attempt is made to produce a period with this fixed left point. If. no 

such period is found control transfers to Phase 3 B. If the search iB 

successful then the information concerning the periods generated-so far 

is updated. The backward differences of the periods are then checked to . 

see if any one is small indicating a smoothly varying period. (This is 

necessary since variable periods are allowed. If a constant period was 

expected only the first difference need be considered). If a smoothly 

l' 
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varying period is found control transfers to Phase 3 A. If the periodic 

behavior is not smooth control remains in Phase 2 and the attempt is 

repeated with the right side of this period now serving as the fixed 

left point. 

4.4. Phase 3 

As indicated in the previous section, action in this phase is 

dependent upon the result of Phase 2. · If smoothly varying periodic 

behavior has been found 3 A is invoked. If Phase 2 failed to find a 

period 3 B is invoked. 

Phase 3 A makes the decision concerning the feasibility of using 

oscillatory techniques. This is done by predicting the stepsize, order 

.and method to be used in the outer integration based upon the 

information accumulated about the last periods generated. Given the 

stepsize and method a decision is made as to whether or not the use of 

oscillatory techniques would be efficient. If efficiency is found to be 

r 

the case then information is prepared for the outer integrator and it is 

invoked. If the action is deemed not efficient then control transfers 

to Phase 2. 

Phase 3 B attempts to restore an initial period so that Phase 2 may 

be restarted. This is done by comparing the last crossing generated in 

Phase 2 to All those previously generated. (The comparison is, of 

course, an evaluation of D(y)). If a small D(y) value is found then 

( Phase 2 is restarted. If no such pairing is found then control 
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transfers to Phase 1 with the last crossing .acting as if it was 

generated in Phase 0. 

.l 
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5~ TRANSITION DECISION AND METHOD SELEGTION 

5.1. Description of the Decision Process 

Two formulae of concern in this section are 

(5.1) 

and 

1 
H ( --.,...*-' 

LIB
0

1 

where L is the Lipschitz constant of g. (Recall that T = 1 by 

definition). 

The first is the expression given 'by Petzold as the local truncat.ton 

error for a generalized method. The second is the condition on H which 

must be satisfied for functional iteration to converge. These two 

relations will serve as the basis for the transition decision .and the· 

method selection. For simplicity's sake, the second relation will be 

changed to restrict H to be less than the reciprocal of the Lipschitz 

constant. (This is a more stringent requirement on H). 

The major concern at this point is how the dection phase w.ill· use 

these relat.ions to decide when to use oscillatory techniques. After 

that question is answered,' it is necessary to consider how the outer 

integrator will decide that the detection program should be recalled or 

that stiffness has set in. The latter question is highly dependent on 

the method used to estimate the 'Lipschitz constant. This issue is 

' considered and the full strategy used in the outer integrator is 

presented in the next section. 
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The detection routine saves backward differences of the period and 

the z values for smoothness considerations. Up to four periods are kept 

in the form of the first through fourth backward difference of z. 

Therefore, all the information needed to estimate the step which could 

be taken by a generalized method via (5.1) is available. Further, if an 

e~ttm~t~ of the Lipchitz constant.were available it would be possible to 

adjust the stepsize of the generalized Adams methods to take into 

account the stiffness (or nonstiffness) of the problem. This can be 

done for both Adams and BDF methods. Hence, the order and method which 

yields the most efficient integration of the problem can be determined. 

After the proper order is chosen, the backward differences of z can be 

transformed into the form required by the particular outer integrator in 

order to provide for starting at the above order. 

The efficiency of the outer integrator is obviously dependent upon 

the outer stepsize. The minimal efficient step would be dependent upon 

the implementation and the method. In the present implementation, the 

minimal step was set to three periods for both Adams and BDF's. In 

actuality, the minimal step should be. larger for the HD.l''' s since they 

are more expensive to integrate with. The prospective efficiency of the 

chosen· Adams stepsize and BDF stepsize could then be compared by 

dividing each of them by their respective minimal stepsizes. The larger 

of the two ratios would determine which method is to be used. Further, 

the outer integrator would not be invoked if the larger ratio was not 

greater than one. 
' 
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The strategy used in the dete·ction routine to make the transition 

decision can be summarized as follows: 

1. Using the expression for the local truncation error and the stored 

backward differences of z, estimate the stepsizes for all of the 

prospective starting orders for both Adams and BDF methods. 

2. Choose the order for each method· which yields the Largest stepsize·. 

3. Adjust the Adams stepsize for stiffness by setting it to the minimum 

. 1 
of the present H and L" 

4. Divide each of the stepsizes by their·· respective minimal stepsizes 

and choose the method with the larger ratio. 

So If the chosen method has an efficiency ratio larger than one invoke 

the outer integrator, otherwise return to the detection routine. 

5.2. Estimation of the Lipschitz Constant 

In this section, ways to estimate the Lipschitz constant are 

investigated. · First, a method which would estimate ·the constant during 

the detection routine is presented. · Unfortunately, this particular 

strategy perfor:ms very poorly and is included here for the sake of 

-completeness. The second method presented is a possible analytical form 

of the outer Jacobian which may allow the estimation of the Lipschitz 

constant directly from an norm or eigenvalue calculation. The last 

subsection presents the strategy which was implemented to estimate the 
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constant and its resulting strategy for. detecting stiffness and/or 

revertin~ to nonoscillatory techniques. 

5.2.1~ First Strategy 

Recall tqat the detection . routine saves up to four periods·. to 

determine if the period is smo·othlyo varying~ · ·Associated with ea·ch of· 

these periods is, of course, a g value and a z value at the period's 

left endpoint. Civcn this information, it would seem that a cr-ude 

estimate of the Lipschitz constant might be obtained by looking at the 

change in two of the g's divided by the change in the corresponding z 

values. The implementation which tested this strategy actually computed 

all of the various first order differences of g and z and took the 

maximum quotient to be the estimate of the Lipschitz constant. 

This strategy's performance could be described as being, at best., 

dismal. The reason for this is fairly obvious. The ~act that each of 

the z values are at different times adds an extra degree of change to 

the approximation which is not present in the Jaco.bian. This change in 

time is not present in using two successive corrector g values in the 

o':lter integrator, as suggested by Gear, but, since the outer lnLegrator 

has ·not yet been invoked, no such g's exist. Hence, if a means of· 

estimating the Lipschitz cons~ant is desired in the detection routine it 

would seem that it must be based on something other than the g and z 

values generated by successive periods. 

5.2.2. An Analytical Jacobian Possibility 

Since the g and z values do not look very promising as a basis· for 
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the estimation of the Lipschitz constant in the detection phase, another 

possibility would be. to somehow estimate the Jacobian and then use an 

eigenvalue computation to give a .lower bound for the Lipschitz co.nstant 

\ or a norm. calculation to· give a local upper bound~ Numerical 

differencing is a possibility but, it is quite expensive and presents 

many implementation difficulties when taken out of the realm of the 

outer integrator and J>laced into the detection routine. Therefore, it 

seems desir~ble to get an analytical Jacobian estimate. If the system 

is autonomous then the strategy developed below seems plausible. 

~~ evaluated at some point z(t) is exactly ~~, where u = z(t). So, 

let 9"(0) = u, 9"' = f(9), and let T be the period with respect to· t. 

(Recall that the period with respect to the transformed independent 

variable is 1). 9-(t) is then the function integrated over one period by 

the period routine. The g· calculated by the period routine is dependent 

upon T and u and is defined to be 

Now consider, 

g = 9(u,T(u)) - u. 

!g_- a 9" (u,T(u)) - I. au - au 

Carrying out the differentiation yields 

ap a9 d9" ar · 
~ = au (u,T) + dT (u,T) au (\1) - I. 

Note that~~ (u,T) = f(9(T)). Hence, if W(T) = ~~ (u,T) then 

¥u · · . ar = W(T) + f(9(T)) "~L" (u) - I. 
u. ou . 

(5.2) 
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W(T) satisfies 

dw a· a 
dt = au 9'' (u, t) =. au~(9'(t)) = fy W(t) • 

Therefore, _W(T) can be approximated by integrating W' (t) while the inner 

integrator is finding the period. Using backward Euler,. W' (t) can be 

integrated one step by 

where f9' is t~e inner Jacobian and h is the inner.. stepsize. 

To find ifr _consider P{9') = cT9''. By definition, P{9'(T)) = 0. So 

differentiating with respect to u and setting the expression equal to 0 

yields· 

Nute tha1: 

Therefore, 

(5.2) gives an expression for the n by n upper left corner of the 

outer Jacobian. The partials concerning the appended time equation must 

also be considered. Since the system was assumed to be autonomous, a 

colum~ of zeros is added to the right. The remaining n elements in the 

) 
. aT 

(n+l -st row are the elements of au • 

The above strategy avoids the problem of the nUmerical algorithm 

"· 

• 
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being placed. on a nonoscillating integral curve. when the initial 

cond~tions are perturbed for numerical differencing. It is m).lch easier 

to. adapt to use in both the detection phase and in the oscillatory 

phase. Two questions which.must be considered are whether or not this 

method can be implemented more efficiently than numerical differencing 

and whether or not a simple counterpart. exists for. nonauto~omous 

problems. The present implementation did-not use this strategy. 

5.2.3. Present Strategy. 

In this section,. the strategy used in this impl~mentation. to 

estimate .. the Lipschitz constant is disct~ssed as is the stra·tegy which 

results for detecting stiffness :and the end· of oscillatory behavior. 

It was noted in the previous sections ~hat the accumulated z and g 

values in the detection phase did not lend themselves to use in 

estimating the Lipschitz .. constant. With this in mi.nd, the strategy 

implem~nted ignores the estimation problem the first time per:iodic 

behavior. is detected, and decides if the outer integrator should be_ 

invoked by looking at step estimates based only on truncation errors for 

Adams and BDF methods. Since . Adams methods have smaller error 

coeffic~ents, the Adams truncation error calculation will lead to larger 

steps and will be invoked if either BDF or Adams is possib~e. Th.e 

Huccessive corrector g' s generated by the outer integrator can then be 

used to estimate the Lipschitz constant and test for stiffness. If the 

outer integrator finds that the function can not yet be integrated 

prop~rly by osci~latory techniques, the detection routine is recalled. 
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Notice that in all subsequent calls to the detection routine an estimate 

of the Lipschitz constant is· available. The above description 'is an 

outline. Below a precise description of the estimation and general 

strategy for stiffness detection in the outer integratot is given. 

· First recall that the decision routine requires an ·estimate of the 

Lipschitz constant and estimates of the higher ordrer derivatives. The 

case of · the starting estimate ot the L1pschit2! constant for Lht:! 

detection routine has been covered above and the estimation of higher 

order derivatives· in the detection routine has been dealt with in the 

previous section so the remainder of this section will concern the use 

of the decision routine in the outer integrator. 

The outer integrator ·is a P(EC)m predictor-corrector scheme for 

l<m<3 • ·In the· case of stiff equations, the corrector is a quasi-Newton 

step. Each of the evaluation steps is a call to the· period routine and, 

when stiff methods are 'being used, there are additional calls to the 

period routine to estimate the Jacobian via numerical· differencing. 

Hence, there are ma~y places where stiffness and/or the breakdown of 

oscillatory behavior must be checked for. The following list indicates 

. situations of interest in the outer integrator. The action in each case 

w:Hl be ~nnsidered. 

1. The corrector converges on the first iteration and the error is 

satisfactory. 

2. The corrector converges on the second or third iteration and the·· 

& 

• 
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error is satisfactory. 

3. Same as 2 but the error is not satisfactory. 

4. The corrector fails to converge. 

5. The period algorithm fails on the first or second evaluation step or 

the period algorithm fails during a Jacobian evaluation. 

6. The period algorithm fails on the third evaluation step. 

The Lipschitz constant will be estimated by the difference of 

the g's of two successive corrector iterations divided by the 

difference of the corresponding z values. This implies that at least 

two evaluation steps must be successful in order to test for 

stiffness. The estimate of the (k+l)-st derivative for a k-th order 

method will be ·achieved by using the predictor-corrector difference. 

This can be done after the corrector converges. If the corrector 

does not converge the last estimate of the derivative generated is 

used. In the detection phase, th~ decision routine checks all 

possible orders for their stepsizes, but here only the present order 

of Adams and BDF will be checked. A recommended stepsize and a flag 

indicating whether or not the outer integration will be efficient are 

returned. Regardless of the case, if stiffness is detected the outer 

integrator will restart the present step with stiff methods or recall 

1., 

the detection routine depending on the flag. Further, the tests for 

stiffness will only be made if· .Adams methods are being used. The 
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question of how to detect the lack of stiffness has not been 

addressed here. 

In case 1 above, the action taken would be none at all. Indeed, 

this case implies that everything is as it should be and the outer 

integrator is allowed to proceed as normal. 

In case 2, a successful step has been taken, but the fact that 

two or three iterations were required i.mpll~a that something may be 

wrong. Estimates for the Lipschitz constant and the derivative axe 

available so the. deci·sion routine is called. If stiffness is not 

detected the integrator is allowed to proceed as normal. If 

stiffness is detected the actions described above are taken. 

All the information needed t6 call the decision routine is 

available in case 3, so it is called. If the outer integration is to 

be maintained something must be done with the stepsize. Since the 

outer integrator has provisions for such a case, it is allowed to 

reduce the stepsize on its own. 

ln case 4, the fact that the corrector has failed to converge 

indicates a bit more serious trouble than case 3. If the flag 

indicates that the outer integration should be maintained the 

stepsize is set to the stepsize recommended by the decision routine 

regardless of whether or not stiffness is detected. The step is then 

restarted with the.appropriate method. 

In case 5, an estimate for the Lipschitz constant ls not 

available. So, the stepsize is merely reduced by some factor and the 

•• 
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,, 

step is retried. If a p'eriod call does not produce a period it may 

be an indication that the stepsize is too large or that the function 

has· ceased to 'be periodic. The latter conclusion is reached only if 

the step has already been redu~ed to some minimUm outer stepsize. In 

the present implementation, this minimum was one period. 

Case 6 differs from case 5 in the fact that an estimate for the 

Lipschitz constant is available. So, if Adams methods are being used 

the deC<ision algorithm is called. If it is indicated that the outer 

integration is to be maintained the step is retried with the 

recommended stepsize and the appropriate method. 

The above actions can be summarized as follows. If Adams 

methods are being used and trouble is encountered with convergence or 

single step error control and all of the needed information is 

available then the decision algorithm is called. If it is decided 

that th~ outer integration should be terminated then the detection 

routine is reinvoked. If the outer integration is to be maintained 

then the Step is retried With the reCOI!U!lended Stepsi 7.€' and the 

appropriate method. If the period algorithm fails the step is 

reduced by a constant factor if the needed information is not 

available or, if BDF' s are being used. If Adams methods are being 

used and the decision.routine can be called, after a period failure, 

then it is called and the appropriate action with the stepsize and 

method is taken. The lack of periodic behavior is detected when, 

·after a period failure, the stepsize is reduced below some minimum. 
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This reduction below a minimum stepsize also serves as a second way 

to detecF inefficiency iri the use of oscillatory techniques, although 

it is hqped that the· decision routine would be invoked and come to 

that conclusion long before the red9ction of the stepsi_ze to the 

minimum. 

. ·~·· 

' 

··"" 
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6. IMPLEMENTATION 

6~1. An Overview 

It is desirable to have a control structure which can serve as a 

· basis for a production code. The major character~stic of the contr.ol· 

structure, in this case, is that it must provide' consistency betwe~n the 

oscillatory integrator and the detection routine.· Such a control 

structure is proposed in this section. First an overview of the 

oscillatory· integrator and the major tasks· of ·the detection 'routine is 

given. Then, each of the basic routines will be· considered in order to · 

indicate some of the details of the implementation. 

The outer integrator used here is a modified version of ·Petzold's 

DIFF [ 4] • The major modifications were ·made to ·allow the use of 
... 

information from the detection routine, the use of the generalized 

BDF~s, and the detection of stiffness. The integrator uses a modified 

Nordsieck scheme to store past information about z in vectors of the 

form 

The predictor takes the form 

~,(0) =A;-1' 

where· A is Pascal's triangle with the exception of the first row which 

contains 

where r 
1 

= H • The corrector is of the form 
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~ =._!n, (0) + vw. 

The scalar w is chosen such that z(Tn+l) - zn = g(Tn) and v is the 

conventional corrector vector with the exception of the first component 

which is a function of r. 

The outer integration proceeds much like an ordinary integrator. 

The calls to evaluate the derivatives in the ordinary integrator are 

re'placed by calls to a period routine which in turn calls an inner 

integration routine. Single step errors are cotrolled by maintaining . '• 

the stepsize such that the estimate of the local truncation error is. 

kept below some user supplied tolerance. This is, of cou~se, the same 

type of process used by the detection routine to predict the step to be 

taken by the generalized methods. The error coefficients in the 

expression for the local truncation error are functions of the stepsize 

and· if the proper for'm of these coefficients were used, a nonlinear 

equation would have to be $olved to control the local error. Petzold 

ignored ·this fact and used the constant error coefficients of the 

conventional Adams methods. This implementation does likewise for both 

the generalized Adams and BDF's. 

In the control structure, most of the processes common to the 

different phases of detection and period finding were isolated and 

implemented in their own routines. The hierarchy of control is 

presented in figure 3. A brief description of each of the routines is 

given here and the next section discusses some of the basic routines in 

detail. 
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1. DRIVE is the highest leve 1 driver. It is here that all parameters 

required of the user are set. The detection routine is called from 

here and upon detection of periodic behavior the outer integrator is 

called repeatedly until the desired time value is achieved. 

2. PERFND is the detection routine. All of the different phases have 

their control state~ents her~. 

3. DIFF is the outer integrator. It performs one step of the 

integration of the quasi-envelope and then returns to the driver. 

DIFF calls the period routine and, of course, the decision routine. 

4. PERIOD is th~ period routine. It serves as a driver for the FNDPER 

routine which does the majority of the period finding work. All of 

the weights and flags necessary for the period calculation are set in 

PERIOD and, after the local period is found, PERIOD calculates the 

values of g and returns to DIFF. 

5. GEAR is the inner integrator and can be viewed as a 'black box' which 

performs one step of the inner integration and returns to the calling 

routine. It is a minor change to Hindmarsh' s program of the same 

name (7). 

6. ZCROSS is the routine which finds the next positive going zero 

crossing of the function P(y). 

7. UPDATE is a routine which does the bookkeeping for the detection 
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ro1-1tine. It is responsible .for the management of the information of 

pa~t periods. 

8. FNDPER is called from the period routine and from phase 2 of the 

detection routine. It is a· routine which, given a fixed lefthand 

endpoint, finds the local period or decides that such a period does 

not·exist. 

9. DECIDE is the decision routine. It estimates the step which could be 

taken by the generalized. methods of various orders and decides 

whether or not oscillator.y techniques should be used. The routine 

requires an estimate of the Lipschitz constant and the appropriate 

higher order derivatives of the quasi-envelope. 

' 

10. NORDSK is the routine which converts the backward differences of z 

into estimates of the derivatives of g for use in the Nordsieck 

history vector. 

6.2. The Basic Routines 

Only three of the routlnt!S will be coneiderad in thi.s section. 

PERFND has, for all practical purposes, been descr·ibed in the discussion 

of the detection strategy. The changes to DIFF required no radical 

alteration of Petzold's implementation. ZCROSS and FNDPER are the 

routines which do the most work, hence, they shall be considered along 

with the routine NORDSK which provides the information to DIFF in the 

proper format. 

6.2.~. ZCROSS 
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This routine is the basis for the entire strategy. It is assumed 

that the c vector of weights has been set. The setting of these 

weights, i~ phase 2 of the detection routine and in the period routine, 

requires a knowledge of y' '. In the first case, the values will be 

known from the inner integration which has been done previously. In the 

second case, an initial call to the inner integrator is made and the 

higher order starter supplies the eotimates. Ou occasion, the starter 

is unable to form a higher order gtarting vector • When thlt; occurs in 

the period routine, · y'' is estimated by the first divided difference of 

the initial derivative value and the derivative value returned on the 

initial step. (This estimate has turned out to be quite adequate since 

the inner integration step is. typically fairly small). It is also 

assumed that the sign of P(y) is known at the point on y wh~te the 

inner integrator is presently situated. 

Once the above assumptions have been satisfied, the routine 

proceeds by calling the inner integrator and evaluating P(y) repeatedly. 

If a positive sign change· is found the y values and the higher 

derivatives are saved to be used in the interpolation to follow. The 

t 

actual location of the crossing of P(y) is located by a Newton iteration 

where each iterate is generated by the above mentioned interpolation. 

When the crossing is found, ZCROSS stores the information pertaining to 

the crossing and returns to the calling routine. 

Two improvements to the above strategy were implemented. First, it 

is desirable to ignore oscillations which are smaller in magnitude than 

• 
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the user specified inner integration tolerance. This being the case, a 

threshold was set on the negative side of zero such that the value of 

P(y) must cross this threshold in the negative direction before a 

positive to negative sign change was deemed to have taken place. 
I 

The second .improvement concerns the distance above zero that the 

positive P(y) may be when a crossing is detected. It is conceivable 

that the· last negative P(y) may be very close to zero thus making. it a 

much more suitable base of interpolation than the succeeding positive 

position. To detect this condition, after each step, the next value of 

P(y) is predicted by a first order extrapolation using P' (y). This 

prediction requires knowledge of y'' at the present time. If the inner 

integrator is using a first order method this ·information is not 

contained in the y vector. The desired information can be obtained by 

using the predictor-corrector difference used in the inner integrator 

for error estimation purposes. If the predicted P(y) is positive the 

present·negative position is used as the base of interpolation. Note, 

however, that just because the prediction states that·the next step will 

produce a positive P(y) there is no guarant·ee that this is the case. 

Hence, after such a positive crossing has been found, the routine 

repeatedly calls the inner integrat·or until an actual positive value of 

P(y) is found. This avoids_the rather nasty situation of having a false 

idea of what the sign of P(.y) is on the next call to ZCROSS. (The 

routine has the unfortunate tendency to find the same· crossing that was 

generated on the last call to ZCROSS when it is given false sign 
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information). 

Of cow;-se, it is possible that zero crossings no longer exist past 

a certain point on a function. This is the case if the function becomes 

nonperiodic. In order to detect this, the routine checks the value of t 

after each . inner integration against the final time the user has 

requested integration to. If t is passed the final value and the 

program is in the detection phase then execution is terminated. If the 

program is in the oscillatory phase this situation implies that a local 

period does not exist and a flag indicating such is returned to the 

period routine. 

6.2.2. FNDPER 

FNDPER· is used any time it is desired to find a. local period with a 
;\ 

fixed left endpoint. Tllis is the case in phase 2 of the detection 

r·outine and in the period routine. FNDPER must also have some means of 

deciding whether or. ·not a local period exists. 

FNDPER has the same calling assumptions as ZCROSS since its job is 

basically to interpret output from ZCROSS. It·. accomplishes this 

interpretation in the following way. After each call to ZCKOSS, the 

present and last crossings are compared. This comparison takes the form 
. 

of evaluating the function D(y), which was'mentioned in section (3.4) on 

the period routine. This D(y) is just a weighted norm of the difference 

between the values of y' at the two crossings. The weights currently 

being used are the inverses of the maximum y values of the inner 

integration. If the value of D(y) is small enough a period is said to 
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exist and a return to the calling routine· occurs·. 

fNDPER also has.· .the capability of detecting the lack of iocal 

periodic behavior. ·This task is accomplished as follows. Of course, if 

ZCROSS returns a flag stating that it ·has gone beyond the final time 

searching for a crossing, FNDPER decides that a local period does not 

exist. There are two other means used in this implementation to 

determine the lack of a period. Recall that the detection routine 

stores several back crossings for use in finding an initial period or 

restarting after. a local period is not found. This imposes a 

restriction on the number of crossings accepted per period. Since it is 

not likely that this number will change that drastically over the 

integration of. the function, it seems reasonable that if no local period 

is found within that number of crossings, 'during the oscillatory phase, 

to conclude that something is amiss and return an indication that local· 

periodic behavior of the type originally found and presently expected 'no· 

longer exists. 

The second technique is that of an · expansion test. In the 

detection routine, successive periods are always compared. FNDPER is 

called from phase 2 where a period of approximately the· same size as 

that which was just generated in phase 1 ·is expected. Likewise, in the 

oscillatory phase, an estimate for the size of the period to be found 

exists. It .is carried along as the second component of the Nordsieck 

vector of the time equation. That is, the period is the derivative of 

the. time. component with r~spect to the normalized independent variable.' 
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FNDPER uses these estimates by comparing the difference between the left 

endpoint and the location of each crossing generated that does not yield 

a small enough D(y). This difference is allowed an expansion factor 

(presently 1.1) before it is concluded that the period is expanding too 

rapidly and the proper type of periodic behavior no longer exists. 

6.2.3. NORDSK 

The Nordsieck vector used in the outer integrator contains 

derivatives of g which are not known·when the decision is made to invoke 

oscillatory techniques. Hence, some routine is needed to prepare the 

data required by DIFF in order to proyide a higher order start. NORDSK 

is the routine which performs this task • 

. When entering DIFF, the outer integrator must be poised at the left 
·' '\ \. 

endpoint of a local period which was just integrated through to supply 

starting g values. Further, if a k-th order start i~ to be accomplished 

up to the (k-1)-st derivative of g must be placed in the Nordsieck 

history vector. Also, note that the k-th derivative of g must be known 

f9r the step to be estimated. The detection routine has up to five 

values of z to work with. The fourth va-lue of z is the point where all 

of the estimation must take place. 

The. solution of the above -problem is, of course, to pass an 

interpolating polynomial through the z ·values which interpolates g at 

the fourth value of z. This is consistent with the strategy. of using 

the i-th backward difference of z as an estimate o.f the derivative 

needed at the fourth z to predict the step. For, if the interpolating 
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~\ polynomial was of order i - 1 then the i-th derivative would indeed be 
. l 

\ 

1 the i:-th backward difference. NORDSK uses this fact to· approximate the 

various derivativ~s once an order. is deci.ded upon. If an i-th order 

start is accepted it is implicit that estimates of the derivatives of g 

up to the i-th exist. Hence, up to i-th backward df.ffer'ence of z can be 

transformed into a more accurate estimate of the (i-l)....:st derivative of 

g by evaluating the proper derivative of the interpolating polynomial at 

the fourth z. The resulting estimates are then scaled by. the predicted 

step~ize and placed in the Nordsieck vector for 1,1se by DIFF. 

;.,·· 

iJ~ 
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7. EXPERIMENTAL RESULTS 

In this section, the results of the numerical testing are reported. 

The tests ranged from a simple sine-cosine system to the phase sensitive 

example discussed earlier. All examples were run in both the 

synchronized and nonsynchronized mode but,· the difference will be 

reported only when .signifi~ant. 

7 .1. Test 1 

Regardless of the sophistication of an integrator, H should be 

able to handle trivial problems.-, The simplest autonomous problem in 

oscillations is the sine-cosine system of the form 

Yl = Ay2, y1(0) = 0 

y' = AY y
2

(0) = 1. 
'J - 1 ' 

This problem is certainly not a stiff os~illatory problem, su lL wuulu 

be extremely unfortunate if th~ routine presented her~ d~clu~u to itwoke 

the generalized BDF's to solve it. 

The problem was integrated using an inner integration tolerance of 

10**-11 and an outer tolerance of 10**-3. Nonstiff methods were used in 

the inner integration. For both the synchronl:t;~d auu 1101lSYtlChi:'Ollized 

case, the integrator took one outer step consisting of approximately 

2386 periods and passed a smooth quasi-envelope.through the solution. 

7. 2. Test 2 

Petzold considered a contrived stiff oscillatory problem in her 

thesis to show the behavior of the Adams methods on such a pr~blem. The 

problem is· considered here in order to test the stiffness detection 

I 
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'.../. 
routi~e on its ability to detect rather obvious stiffne·ss. 

The problem took the form 

. 2 
r' = A(l-r ), r(O) = 1, 

8' = -~, 8(0) = 0 

in polar coordinates and 

y' = 
2 

where 

in rectangular coordinates. 

Notice that A regulates the stiffness. That is, the· larger A is the 

more stiff the problem. ~ regulates the frequency of oscillation about 

the unit circle. Petzold showed that the Adams method had trouble for 

both A = 1500 and A = 10000 The problem was run using the same 

tolerances as test 1 and A·= 10000. 

The detection routine had no trouble detecting the periodic 

behavior. The decision routine recommended a step of 967 periods. in the 

synchronized case. · (A fraction more in the nonsynchronized case). The 

first outer step succeeded, but when the integrator attempted to 

increase the step with the Adams method the decision routine called for 

the restarting of the outer integration with stiff techniques. (The 

decision routine was called after a failed period evaluation). 
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The results with the. generalized. BDF's were amazing. · The outer 

integrator passed a constant quasi-envelope through points from t = 0 to 

t = 643 in just 5 outer integrations, including the aborted second step 

with the Adams method. The stepsize reached a maximum of 78607 periods! 

7.3. Test 3 

A less contrived example of an oscillating problem, which i$ 

difficult to solve with the Adams methods, is the Van der Pol oscilator 

problem. 

yl ... Y2 

Yi ... -lyl + ~~py2(1 - y~) 

Y{(O) ... 2, y 2(0) = O. 

The magnitude of ll is the factor which determines how difficult the 

problem is to solve. Since this problem is already known to be periodic 

a detection routine is not strictly necessary. Thi.s allows comparison 

of the ability of the respective period finding routines. :. It was found 

that the routine described as the second method of finding a local 

period, in an earlier section, was unable to operate properly on the Van 

der Pol prob~em for any ll sliihtly larger than .3. 

The problem was considered with 1J = .5. Again the initial 

conditiorts place the solution almost on the limit cycle yielding the 

expectation of an almost constant quasi-envelope. While the detection 

routine had no trouble ,detecting periodic behavior, the decision routine 

required twQ calls before it could generate a step estimate larger than 

three periods. This is due to the fact tl:tat when the per·iodic behavior 
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is found immediately, a first order start is all there is information 

for, hence, if the problem is a bit more difficult more calls may be 

required to generate the necessary information for a higher order start. 

Once the outer integrator was called, two successful steps were taken. 

After the integrator attempted to. increase the stepsize, stiffness was 

detected. This time the detection routine was recalled since, the 

decision routine decided that the present information did not justify a 

large stepsize with the BDF's. After the detection routine recalled the 

decision routine a step of 1249 periods was recommended and was taken 

successfully. Indeed, the outer integrator passed a constant quasi-

envelope through points at t = .3456 to t = 41.95 in this step. 

The behavior of the decision routine recommending restarting of the 

detection routine and then on the next call recommending a large· 

stepsize can probably be. explained as follows. It seems that the outer 

integrator must ha~~~L)!o__fE_:!J:ly.,. large errors in .its ~stimates of 

-~ ··\., \ 
the derivatives of----~. · _..::...J.therefore, the stepsize predicted 

by the decision routine is suitably sma~l. Upon recieving more accurate 

information from the detection routine's integration over a local period 

of the function, it was able to see the true capability of the BDF's. 

7.4. Test 4 

Gear [5] investigated a numerical example which was not periodic 

until after an initial phase to test the detection strategy. The 

.. example was partially based on a Van der Pol problem and took the 

following form. 



The system integrated was 

-1 
(Note: Q = Q ). 

y' 

Q = 
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, -
u1 - u2 

-1 
.!.!_(0) = Q, = Q \1' 

.,...;..) 

-1 1 1 1 

1 -1 1 1 
1/2 

1 1 -1 1 

1 1 1 -1 

The present implementation was run with the same error tolera~ces 

listed for test 1. ·The fact that the third and fourth component of the 

u system have analytical solutions allowed the absolute error in these 

components to be evaluated after each outer step. Using the above 

mentioned error tolerance and error calculation, it is possible to get a 

better idea of the behav.ior of this system than was possible with the 

untuned version of Gear. 

Periodic behavior was detected much earlier than the t = 154 

reported by Gear. This was due to the tact that a much strict~r luu~r· 

integration tolerance was used. Initial periodic behavior was found at 

t = 50, but all of this behavior appeared to be fairly localized or not 

smooth enough since the detectio.n routine had to be recalled almost 

immediately after the outer integrator was invoked due to the fact that 
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the corrector diverged. ~tiffness was detected at this point. 

F.rom the point stiffness was detected until t = 94, · the decision 

routine was recalled repeatedly bu,t, it was unable to generate an 

adequatE;! starting stepsize. At t = ·94 the detection routine .was unable 

to generate successive periods which did not violate the expansion test. 

(Expansion factors of up to 12.0 were violated). This behavior is· 

expected when the graphs of the solution presented in Gear [ 5] are 

consulted. There is an area of rapid expansion of both the period and 

the amplitude of the solution from approximately t = 90 until t = 140. 

This was directly verified by the detection routine which did not call 

the decision routine again until t = 139. The outer integrator was 

finally called at t = 164 with the recommendation that a second order 

BDF be used. 

The outer integrator remained in control from t = 164 until the end 

of the integration at t = 10105. The step used ranged from the initial 

3 to a maximum of 69. periods. The · absolute error in the fourth 

component of u ranged from 0.6 * 10**-7 to 0.1 * 10**-2. A total of 48 

outer integration steps were required. In all, 169 calls to the period 

routine were made. 

The nonsynchronized case was slightly ·superior in performance. Of 

course, the detection phase proceeded in exactly the same manner, but, 

only 46 outer integration steps were required to go to t = 10357. 139 

period routine calls were required. The error in the fourth component 

was comparable to the synchronized case. The step went from 3 to 66 
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periods but, it increased faster than the synchronized case, allowing 

the improv~ment. in the num1>er of outer steps. A final interesting 

statistic is the fact that the nonsynchronized mode required only 92839 

evaluations of the systems derivatives while the synchronized case 

required well over 98000. 

7.5. Test 5 

As a last example, the function which was cited earlier as being 

phase sensitive and therefore only appropriate to be integrated in the 

synchronized mode is considered. The function is 

y' ·= -y + sin.Xt, 

.X 
- 1+.x 2 • 

y(O) = 

.X was taken to be 1000 in thiA Qxample. Not~ that Llu:! initial 

conditions place the solution on the limit cycle so the detection 

routine should have no trouble detecting periodic behavior. (Thir; ttTas 

not the case for tests run with initial conditions off the limit cycle. 

In that case, nearly periodic hP.h:hrior does not exist in a transient 

region). 

The ipitial stepsize recommended by the decision routine was 1244 

periods. 'l'wo successful steps were made with this size, HowevP.r, when 

the integrator tried an excessively large step of 3180 periods the 

stiffness detection mechanism forced a restart with stiff methods. This 

was dune solely because of the fact that the integrator wished to take a 

large step. The Lipschitz estimate was extremely small (.00626). The 

stiff method took one step at 526 per·iods and then immediately increased 

i 

.\. 
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the stepsize back to the desired 3180. A total of 4 outer integration 

steps were taken to go from t = 0 to t = 22. 9 period routine call's 

were needed. The analytical solution was used to determine the error at 

the end of the integration to be .1 * 10**-7. 

Things were not as nice with the nonsynchronized mode. The 

detection routine was recalled several times in the course of the 

.integration. There were an amazing number of period failures, as 

predicted in the earlier discussion of this function. A total of 66 

outer steps were required to cover the same interval as the synchronized 

case. 406 period evaluations were made. This result confirms the 

necessity of the synchronized mode in oscillations which are sensitive 

to phase changes, such as driving term oscillations. 

; 

' . 
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/ 
8. CONCLUSION 

In this section, a brief summary of the topics presented is given 

. . 
along with an indication of some of the topics which are in need of 

further development. 

First, a technique for integrating highly oscillatory equations was 

reviewed. This technique required the algorithmic definition of local 

nearly periodic behavior so three possible definitions were considered 

on the basis of their efficiency and possibility of generalization to 

use in a detection strategy. 

The detection strategy which resulted from the third definition of 

nearly periodic' behavior was considered in detail. This detection 

strategy was then enhanced to allow for the selection of an initial 

stepsize and method for the oscillatory integrator. Along with this 

selection mechanism, a strategy was proposed to determine the efficiency 

ot the use of oscillatory techniques and the detection routine was 

designed such that the oscillatory techniques would not be invoked 

unless deemed efficient. 

The above strategy for the calculation of efficiency and f.n:f.tial 

method selection was adapted for use in the oscillatory integrator to 

allow the detection of stiffness and loss of efficiency in the use of 

I 

oscillatory techniques. Provisions were made to change to appropriate 

methods in the case of stiffness or to revert to the detection routine 

in the case of inefficiency. ' 
A control structure was then proposed for use as a basis of an 

.... ' 
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experimental code and possibly a future production code. The control 

structure provided for the isolation into· separate routines of all 

processes common to the detection and oscillatory phases of the 

.integration. Numerical results were presented and indicated that a 

production co'de based upon the above strategy and control· structure was 

feasible •. 

The major area·of immediate interest is the efficient approximation 

of the outer Jacobian. The analytical formulation presented here is a 
: ' . 

possible starting point. Presently, a strategy: based on a mixture of 

numerical differencing and analytical approximation which avoids the 

problem of the nonexistence of nearly periodic behavior on nearby 

integral curves is under investigation. 
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and ~tiff oscillatory behavior in initial value problems. Given this method of 
detection a control structure is proposed upon which a production code could be 
based. An experimental code using this control structure will be described and 
results of numerical tests will be presented. 
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