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This study presents an attempt to utilize seagrass data 
acquired from field surveys to compare classification 
models for mapping seagrasses using Sentinel-2A  
satellite data. Out of three models tested, viz. Random 
Forest, Support Vector Machine and K-Nearest 
Neighbor; Random Forest classification model proved 
most effective in the given scenario with 0.99 model 
accuracy. Seagrasses present as deep as 21 m were de-
tected post water column correction, presenting the 
capability of Sentinel-2A satellite in detecting sub-
merged benthic habitat. 
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SEAGRASS meadows, one of the most productive ecosys-

tems on the planet, are estimated to lose 7% of their  

global area annually
1
. Spatial data analysis for seagrass 

studies towards their sustainable management and con-

servation has been an emerging field. Globally, satellite  

remote sensing tools have proven to be cost effective in 

comparison to conventional field surveys
2–8

 and tradi-

tional geospatial methods such as aerial photography
9
. 

Since, satellite sensors are repeatable in their path and are 

geometrically accurate, change detection in seagrass  

distribution over temporal scale is possible
10–12

. Landsat 

imagery has been efficiently used in seagrass and benthic 

substrate mapping, despite its spectral and spatial limita-

tions
12–15

. Multispectral imagery from compact airborne 

spectrographic imager (CASI) with satellite imagery of 

Landsat and Spot, has been shown to exhibit more  

accurate results from airborne high-resolution sensor 

compared to aerial photography in classification of sub-

merged benthic features including seagrasses
2
. 

 Sensing of submerged benthic vegetation in the coastal 

waters is achieved with multispectral observations (400–
650 nm) of reflected radiance in the visible range which 

is enhanced with finer spatial resolution
16

. Certain regres-

sion models developed for mapping benthic features have 

opened up the doors to overcome the limitations of atten-

uation of radiance within the water column
17–19

. Assum-

ing that variance in reflectance from same benthic 

substrate is primarily due to its presence at various depths 

and the diffused attenuation coefficient (Kd) is same for 

all the bands
17,18

, regression from logarithmic values of 

individual bands provides proxy attenuation coefficients 

which are independent of depth
20

. Assessment of sub-

merged sea grasses is reliable with remote sensing when 

appropriate correction (such as water depth correction) is 

applied to satellite images
21

. Medium resolution multi-

spectral satellite images from Landsat OLI were effective 

in mapping of submerged benthic features with applica-

tion of depth invariant index (DII), which is independent 

of depth effect
22

. High resolution multispectral imagery 

such as Sentinel-2A with 10 m spatial resolution has also 

proved effective to detect and estimate the cover of  

seagrass beds along the coast of Lombok in Indonesia
23

. 

The quality of results post DII when utilized for VHR 

Worldview-2 imageries was significantly high (up to 83% 

at Kotok Island in Indonesia)
24

. 

 In India, seagrass are distributed along the coastline of 

nine states and two union territories with major patches 

found along Tamil Nadu (Palk Bay and Gulf of Mannar), 

Odisha, Gujarat, Lakshadweep Islands and Andaman and 

Nicobar Islands
25

. Remote sensing for the seagrass  

detection was first initiated at Lakshadweep islands to 

study the coral reefs and seagrass beds using black and 

white aerial photographs
26

. Later, loss of seagrass habi-

tats in Gulf of Mannar group of islands due to anthropo-

genic activities was detected using LISS III satellite 

imagery
27

. Seagrass area was estimated to be around 

85.5 sq. km around the islands of Gulf of Mannar based 

on IRS-1D LISS III satellite data from 1998 (ref. 28). 

 Earlier, a few studies have utilized conventional field 

survey methods to map seagrass ecosystems in the  

Andaman and Nicobar group of islands
29–31

. One study 

used satellite geospatial data (LISS III and LISS IV) for 

the mapping across the entire Andaman islands
32

. 

Seagrass meadows in Andaman and Nicobar Islands serve 

as foraging grounds for globally threatened species such 

as dugongs, green sea turtles
33

, and act as nurseries for 

several species of fish and invertebrates and thus support  

fisheries in the islands. In the light of proposed infra-

structure developments in the islands
34

, understanding the 

extent of seagrass distribution in the islands will be use-

ful in identifying critical areas to aid their conservation 

and management. 

 In this study, we mapped the seagrass meadows at  

Ritchie’s archipelago (henceforth RA; 1146N–1219N 

and 9254E–9308E) within the Andaman and Nicobar 

group of islands using multi-spectral imager (MSI) Senti-

nel-2A satellite imagery (Supplementary Table 1).  

Ritchie’s archipelago is a group of 13 islands, east of the  

main group of Andaman islands, consisting of two 
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Figure 1. Study area map of Ritchie’ Archipelago, Andaman and Nicobar Islands with seagrass locations. 

 

 

inhabited (Havelock, now Swaraj Dweep and; Neil, now 

Shaheed Dweep) and 11 uninhabited islands (North button, 

middle button, south button, Outram, Inglis, Henry Law-

rence, John Lawrence, Wilson, Nicholson, Peel and Sir 

Hugh Ross) spread across an area of 225 sq. km (ref. 35) 

(Figure 1). Seven of these islands, viz. North button, middle 

button, south button, Outram, Inglis, Henry Lawrence and 

John Lawrence, form part of the Rani Jhansi Marine  

National Park protected area whereas Sir Hugh Ross is a 

Wildlife Sanctuary. With a tidal amplitude of 3 m during 

spring and neap tide, semidiurnal tide is seen in the region. 

 We carried out seagrass surveys using line intercept 

transects (LITs; Figure 2) at intertidal and sub tidal areas 

at various depths at RA in the month of March and April 

2018 (Supplementary Table 2). Subtidal areas were cha-

racterized using SCUBA diving whereas the intertidal  

areas were surveyed on-foot. Line intercept transects 

(50 m long; LIT) were deployed perpendicular to the 

shore to assess meadow characteristics (McKenzie and 

Yoshida 2012). At each transect, seagrass cover, species 

composition, algal cover and substrate type were record-

ed using a 50  50 cm quadrate (Supplementary Figure 1) 

along with GPS location (Garmin etrex 30) and depth 

(Aqualung i300 dive computer) for generating training 

sets for supervised classification and for training data ac-

curacy assessment of the prediction models. In addition 
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Table 1. Depth-wise segregation of seagrass locations at Ritchie’s Archipelago, Andaman and Nicobar Islands 

Island Transect points Seagrass class Depth range 
 

Shaheed Dweep NB1, NB2, NB3, NB4 LX1, LX2 Intertidal 0–2 m 

Swaraj Dweep DL1, DL2 

Shaheed Dweep AQ, BH2, BH3 Shallow 2–10 m 

Henry Lawrence HL 

Shaheed Dweep NU1, NU2, NU3, MG3, BH1 Intermediate 10–16 m 

Swaraj Dweep NR 

Hugh Ross CHN 

John Lawrence JL2 

Shaheed Dweep MG1, MG2, BB, Deep 16–20 m 

John Lawrence JL1 

 

 

 
 

Figure 2. a, Illustration of Line Intercept Transect survey method. b, 
Image showing quadrant survey along the transect line.  

 

to this, we used seagrass locations provided for RA from 

Savurirajan et al.
31

, to cross-validate the efficiency of the 

prediction models. 

 We accessed the Sentinel-2A level 1C (top of atmos-

phere radiance) imagery acquired on 22 March 2018 

(10
 
:
 
30 local time overpass) over the South Andaman  

region by European Space Agency (ESA) (http://scihub. 

copernicus.eu). The tidal range on the date of acquisition 

was 0.28–2.06 m. Atmospheric correction was done to 

‘top of surface, water leaving reflectance’ product using 
‘sen2cor’ additional plug-in

36
 on SNAP 6.0 platform by 

ESA (https://step.esa.int/main/download/snap-download/) 

for Sentinel series image processing. Visible bands (band 

2-blue, 3-green and 4-red) of 10 m spatial resolution were 

utilized considering their capability to penetrate water up 

to considerable depth
16

. We used the Lyzenga method
18

 

to obtain coefficient values to generate a normalized  

index value independent of the depth factor. Reflectance 

values from each band were extracted using ‘point sam-

pling tool’ plug-in in QGIS. Simple linear regression was 

carried out using the logarithmic values of reflectance  

between two bands. The coefficient of the slopes of 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Random Forest Classification Map of Ritchie’s archipelago 
from Sentinel 2A image. Image was acquired on 22 March 2018 at  
approximately 10 : 30 local time (satellite over-pass time). Tidal range 
on the particular day was 0.28–2.06 m. 

 

 

regression were utilized as attenuation coefficient. Three 

bands generated from original band combination (i.e. 

band blue–green, green–red and red–blue) were stacked 

to produce an RGB layer of depth invariant index. 

 We carried out supervised classification to derive four 

depth-based classes for seagrass locations obtained from 
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Figure 4. a, True colour composite of subset of Shaheed Dweep Island from Sentinel-2A image.  
b, RGB stack of depth invariant Index of bands of same image.  
 

 
 

Figure 5. Classified map of Shaheed Dweep Island from Sentinel-2A image using Random 
Forest model. 
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Figure 6. Classified map of Shaheed Dweep Island from Sentinel-2A image using K-Nearest 
Neighbor model. 

 

 
Table 2. Training data accuracy of respective models used for  

 supervised classification of Sentinel 2A images 

Classification models Overall accuracy Kappa accuracy 
 

Random forest 0.99 0.97 

Support vector machine 0.96 0.93 

K-nearest neighbor 0.96 0.93 

 

 

field surveys (intertidal: 0–2 m; shallow: 2–10 m,  

intermediate: 10–16 m and; deep: 16–20 m) and validated 

with NHO bathymetry chart (Chart 4016, NHO; see Table 

1). We used 70% of the seagrass locations obtained from 

field surveys to generate Region of Interests (RoIs) to 

train three different models (Random Forest (RF), Sup-

port Vector Machine (SVM) and K-Nearest Neighbor 

(KNN)) on Program-R (https://www.R-project.org/) using 

remaining 30% field data for model validation. For the 

cross validation of the classification models, transect 

NB3 LX2 for Intertidal, AQ for Shallow, CHN NU2 for 

Intermediate class and MG1 for Deep class were utilized. 

Classification models were run on R-studio IDE platform 

using ‘caret’, ‘rgdal’, ‘raster’, ‘e1071’ and ‘tidyverse’ pack-

ages. Further validation was done using previously pub-

lished seagrass locations
31

 for Swaraj Dweep and 

Shaheed Dweep islands. Later, classified outputs were 

presented for Shaheed Dweep to clearly illustrate segre-

gation of depth classes obtained from each model. 

 During field surveys, we recorded seagrasses at 24  

locations within the RA, namely at Henry Lawrence 
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Figure 7. Classified map of Shaheed Dweep Island from Sentinel-2A image using Support 
Vector Machine model. 

 

 

(n = 1), John Lawrence (n = 2), Swaraj Dweep (n = 3), 

Shaheed Dweep (n = 17) and Sir Hugh Ross (n = 1)  

islands. 

 RF model (Figure 3) produced highest training data ac-

curacy (0.99) for detecting seagrass in the study area fol-

lowed by SVM and KNN (0.96) (Table 2). We obtained 

better signatures for the benthic features (Figure 4) using 

the water column correction method resulting in better 

classification. Seagrasses were detected at the depth of 

20 m around Shaheed Dweep Island, complementing the 

field observations (Figure 5). Random Forest model  

(Figure 5) and K-Nearest Neighbor model (Figure 6) 

were able to detect all depth classes whereas SVM  

model was unable to detect the ‘Deep – 16 to 20 m’ class 

in addition to misclassification of land over the sea  

(Figure 7). All the models used in the study detected 

seagrasses in deep water (>25 m) which were ignored  

considering the limitations of Lyzenga Method
18

 to  

detect seagrass beyond 25 m. The results show 50%  

accuracy using the data points obtained from Savurirajan 

et al.
31

. 

 The sea around Andaman and Nicobar Islands are oli-

gotrophic waters due to less nutrient availability
37

. This  

results in low turbidity and hence deeper penetration of 

sunlight which allows seagrasses to grow at deeper re-

gions. In our study, there is a high possibility of mixed 

signals, as seagrass distribution in the Andaman Islands is 

known to be sparse and interspersed with sandy       

patches
32,33

. Moreover, the accuracy of the models might 

be affected due to seasonal shifting of seagrass with re-

spect to the sand dunes and thus their locations might 

change from previously reported studies
38,31

. In comparison 
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to previously used LISS III and IV data
4,28,32

, Sentinel-2A 

was efficient in seagrass detection at higher depths. Pre-

vious studies were restricted to a depth of 5 m only
22,32

. 

 Our results establish the efficacy of Sentinel 2A satel-

lite imagery for seagrass mapping at higher spatial scale 

as well as for deeper coastal waters. Supervised classifi-

cation using RF model method proved to be better model 

for seagrass classification in the given scenario with  

limited field data (Supplementary Figure 2). Depth  

variant index improved the classification of underwater 

features for Sentinel-2A imagery. Seagrass detection was 

successful at the ground points used for the cross valida-

tion of the classification even for the deepest locations 

mapped in the study area (~21 m). 

 Despite mounting anthropogenic pressure on seagrass 

ecosystems and its associated species across the 

world
39,40

, there is limited data on seagrass ecosystems in 

India
41,25

. With acceleration in human activities in the    

islands
34

, threats such as coastal pollution including oil 

and plastic waste, mechanical damage from vessel an-

chors, higher turbidity from vessel movement and port 

construction activities, etc. are likely to intensify in the 

near future. Spatial mapping of seagrass beds in the  

islands using high resolution satellite imagery will be 

helpful in delineating critical areas for long-term change 

monitoring at a larger spatial scale. 
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In this study, a method for retrieving ocean surface 
wind speed using C-band cross-polarization SAR  
observations has been outlined. A linear least square 
technique has been used to develop a Geophysical 
Model Function (GMF), C2P. The GMF was derived 
using NRCS observations from RISAT-1 and wind-
speed observations from ASCAT. The correlation be-
tween observed and simulated NRCS values obtained 
from C2P was 0.66, with a negative bias of 0.01 dB 
and the corresponding root mean square difference of 
1.13 dB. Subsequently, the developed GMF was tested 
with 774 RISAT-1 MRS datasets to retrieve wind 
speed along the Indian coast and also of the tropical 
cyclone ‘Megh’. The measured intensity and radius of 
maximum wind speed were 30 m s

–1
 and 16.65 km  

respectively. Subsequently, the retrieved wind speed 
was validated with ASCAT wind-speed observations. 
The statistical comparison of RISAT-1 and ASCAT 
observed wind speed showed negative biases of 0.90 
and 0.34 m s

–1
 with the corresponding RMSD of 2.11 

and 1.77 m s
–1

 respectively, for CMOD5.N and C2P. 
The developed GMF C2P showed 16% more accuracy 
than that of CMOD5.N. 
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OCEAN surface winds are highly important for numerical 

weather and ocean state forecasting, study of oceanic 

transportation and processes occurring at the air–sea in-

terface. For the last four decades, ocean surface vector 

winds at synoptic scales are operationally being retrieved 

from spaceborne scatterometers. Such observations of 

ocean surface winds are assimilated in numerical models 

for improving operational forecasts at moderate resolu-

tion. Scatterometer-based observations are available with 

coarser spatial resolution in the range 12–50 km with 

wider data gaps in the coastal regions. However, wind  

intensity of cyclones computed using Ku-band scattero-

meter data tends to underestimate the actual scenario. 

Therefore, in extreme conditions like cyclones, backscat-

tered power received by microwave scatterometers mainly 


