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This work details the observation of non-Gaussian apparent

diffusion coefficient (ADC) profiles in multi-direction, diffusion-

weighted MR data acquired with easily achievable imaging pa-

rameters (b � 1000 s/mm2). A technique is described for mod-

eling the profile of the ADC over the sphere, which can capture

non-Gaussian effects that can occur at, for example, intersec-

tions of different tissue types or white matter fiber tracts. When

these effects are significant, the common diffusion tensor

model is inappropriate, since it is based on the assumption of a

simple underlying diffusion process, which can be described by

a Gaussian probability density function. A sequence of models

of increasing complexity is obtained by truncating the spherical

harmonic (SH) expansion of the ADC measurements at several

orders. Further, a method is described for selection of the most

appropriate of these models, in order to describe the data

adequately but without overfitting. The combined procedure is

used to classify the profile at each voxel as isotropic, anisotro-

pic Gaussian, or non-Gaussian, each with reference to the un-

derlying probability density function of displacement of water

molecules. We use it to show that non-Gaussian profiles arise

consistently in various regions of the human brain where com-

plex tissue structure is known to exist, and can be observed in

data typical of clinical scanners. The performance of the pro-

cedure developed is characterized using synthetic data in order

to demonstrate that the observed effects are genuine. This

characterization validates the use of our method as an indicator

of pathology that affects tissue structure, which will tend to

reduce the complexity of the selected model. Magn Reson

Med 48:331–340, 2002. © 2002 Wiley-Liss, Inc.
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Diffusion imaging, particularly diffusion tensor magnetic
resonance imaging (DT-MRI) (1) has become popular be-
cause of the insight it provides into the structural connec-
tivity of tissue (2,3). Water is a large constituent of biolog-
ical tissue, and water molecules in tissue constantly un-
dergo random, Brownian motion. Tissue also contains
rigid structures, such as the walls of cells, that form bar-
riers to diffusion, and it is this hindrance to diffusion that
allows tissue structure to be probed through measure-
ments of water mobility due to diffusion processes. In
some types of tissue, such as most gray matter in the brain,
the structure has no preferred orientation and so causes
approximately the same amount of hindrance to diffusion

in all directions. The amount of diffusion or water mobil-
ity is thus approximately equal in all directions, i.e., iso-
tropic. Other types of tissue, however, have ordered struc-
ture that hinders diffusion to different degrees in different
directions, causing diffusion anisotropy. White matter in
the brain, for example, consists of bundles of axon fibers,
and water is free to diffuse along the axis of the fibers but
is hindered in the perpendicular directions.

The diffusion of water molecules in tissue over some
time interval, t, can be described by a probability density
function, pt, on the displacement, x, of water molecules
after time t. pt reflects the underlying tissue microstruc-
ture, because it is largest in the directions of least hin-
drance to diffusion and smaller in other directions. In
white matter, for example, pt is largest in directions par-
allel to fibers, but is small in perpendicular directions and
thus reveals fiber orientations. The goal of diffusion imag-
ing is to obtain information about pt that leads to mean-
ingful inferences about the microstructure of the material
being imaged.

pt can be shown to relate to the NMR signal attenuation,
S(q), measured through a pulsed gradient spin-echo exper-
iment, via a Fourier transform (FT) with respect to q

�

�

��G k̂ (4,5):

S�q� � �pt�x
�
�exp(�iq

�

� x
�
)dx

�
. [1]

The spin-echo attenuation, S(q
�

), is defined as the nor-
malized diffusion-weighted signal, s(q

�

)/s(0), where s(q
�

) is
the NMR signal in the presence of a diffusion-weighting
gradient of magnitude G and direction k̂, and s(0) is the
signal in the absence of any such gradient. � is the length
of the gradient pulse, and � is the magneto-gyric ratio of
protons in water. We note that Eq. [1] relies on the fact that
� is negligibly small compared to t. This assumption is
rarely justified in practice, but the effect of non-negligible
� is merely to introduce a convolution over a range of
diffusion times (6) into the measurements, which gener-
ally preserves the large-scale structure and orientation of
the inferred pt.

Given enough measurements of S(q
�

) spread over a suit-
able range of q

�

, the FT can be inverted to obtain an esti-
mate of pt. A more common approach, however, is to
assume a simple model for pt the FT of which can be
related directly to the spin-echo attenuation, which allows
pt to be inferred from a much sparser set of measurements.
The simplest model for pt that incorporates second-order
statistics (anisotropy) is a multivariate, zero-mean Gauss-
ian, which has covariance 2Dt at time t:

pt�x
�
� �

1

��4�t�3�D�
exp��x

�

T D�1x
�

4t �. [2]
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This is the distribution of an initial point concentration
at x � 0, t � 0, diffusing according to the simple anisotro-
pic diffusion equation (7):

	pt

	t
� 
�D
pt�. [3]

The FT of pt is then also Gaussian, which gives rise to a
simple relationship between the parameters of pt (the ele-
ments of D) and the spin-echo attenuation:

S�q
�

� � exp��tq
�

TDq
�

� � exp��bk̂
�

T Dk̂
�
�. [4]

In Eq. [4], b is the diffusion-weighting factor given by
b � t|q

�

|2.
The simplest form of diffusion-weighted (DW) MRI (8)

models pt with a Gaussian in one dimension. A single
spin-echo attenuation measurement allows the single pa-
rameter of pt—its scalar variance—to be estimated from
Eq. [4]:

d�k̂
�

� � �
1

b
log S�q

�

�. [5]

The diffusion coefficient, d(k̂), is proportional to the
variance of the Gaussian model, which describes the root
mean squared displacement of water molecules in the
direction of the applied DW gradient k̂. In DW-MRI, the
measure of d(k̂) obtained from Eq. [5] is often called the
apparent diffusion coefficient (ADC) (1), both because it
represents a spatial average of the diffusion coefficient
over an image voxel and because it is based on this Gauss-
ian assumption, which may be unjustified.

DT-MRI extends this basic idea to 3D, where the diffu-
sion coefficient is described by a diffusion tensor (DT), D,
which is proportional to the covariance matrix of the tri-
variate Gaussian, as in Eq. [2]. D relates to the 1D diffusion
coefficient d(k̂) in any chosen direction k̂ as follows:

d�k̂
�

� � k̂
�

T Dk̂
�

. [6]

In 3D, D is a symmetric 3  3 matrix and thus has six
free parameters. A minimum of six estimates of d(k̂) in
independent directions is thus required to estimate D,
which requires six measurements of the spin-echo attenu-
ation (seven MR measurements in total) to be made with
the DW gradient applied in these independent directions.
The estimate of D obtained from such a set of measure-
ments is referred to as the apparent diffusion tensor (ADT)
(1), as in the case of the ADC.

We define the “ADC profile” to be the estimate of d(k̂)
over the range of k̂, which is the unit sphere. When pt is
Gaussian, the ADC profile is described by Eq. [6], and a
standard approach (9) to the estimation of D is to acquire
DW images in a large number of directions (many more
than six) spread evenly over the unit hemisphere. This
oversampling of the ADC profile provides a more robust
estimate of D. Note that the antipodal symmetry of pt and
hence d(k̂) is assumed, so that d(k̂) � d(�k̂) and only half
of the sphere needs to be sampled. When pt is not Gaussian

the ADC profile deviates from that described by Eq. [6],
and this kind of multiple gradient direction scheme af-
fords the possibility of observing significant deviations
should they arise.

It has long been recognized (1,10–14) that the Gaussian,
DT model is inappropriate when complex tissue structure
is found within a single image voxel. There are alternative
models for pt that can capture certain non-Gaussian effects
that occur in these circumstances. A simple alternative is
the multi-Gaussian model (10,11). This model is based on
the assumption that a voxel contains n separate compart-
ments, each containing a different tissue type in propor-
tion ai (�i ai � 1, i � 1, . . . n) and that the diffusion within
each compartment can be described by a Gaussian pt with
DT, Di. The model assumes further that there is no ex-
change of molecules between these separate compart-
ments. pt then becomes a weighted sum of Gaussians and
Eq. [4] becomes:

S�q
�

� � �
i�1

n

ai exp(�bk̂
�

T Dik̂
�
). [7]

With this model for pt, the ADC profile can have shape
very different from that described by Eq. [6], which is often
modeled poorly by a single DT (10). Figure 1 shows ADC
profiles simulated from prolate, oblate, and isotropic
Gaussian pt’s, together with profiles obtained from bi-
Gaussian pt’s that combine them. Note the characteristic
peanut shape of the prolate Gaussian ADC profiles and the
“filled bagel” or red blood cell shape of the oblate Gaussian
profile, which are typical of Gaussian functions plotted
over a sphere. The contours of the corresponding Gaussian
functions in 3D have the more familiar ellipsoidal con-
tours: cigar-shaped in the prolate case, and Frisbee-shaped
in the oblate case.

Alexander et al. (10) analyzed the behavior of the ADC
profile within voxels containing multiple tissue compart-
ments. They showed how the observability of higher-order
profiles increases (their non-Gaussian shape becomes
more pronounced) with the size of the diffusion-weighting
factor, b. They used the instability of the DT and its de-
rived scalar measures, such as the mean diffusivity and
fractional anisotropy, to locate regions in the brain where
the DT description of the ADC profile is poor. Several
regions in data acquired with b � 3000 s/mm2 were high-
lighted by this approach, including the pons, corpus cal-
losum, cingulum, internal capsule, and arcuate fasciculus.

Frank (11) showed that a 4th-order SH series provides a
first approximation to the ADC profile obtained from a
multi-Gaussian pt. Frank fitted a 4th-order SH series to
ADC measurements acquired with b � 3000 s/mm2 and
showed that significant 4th-order (i.e, non-Gaussian) com-
ponents arise in locations of the human brain similar to
those highlighted in Ref. 10 (see above).

In other related work, Wedeen and Tuch et al. (12,13)
used q-space techniques (4) to measure pt. This technique
exploits the Fourier relationship between pt and the spin-
echo attenuation directly by acquiring a large number of
measurements of S(q

�

) over a wide range of q
�

in order to
obtain enough samples of the FT of pt to perform a stable
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inversion. Distinctly non-Gaussian pt’s have been ob-
served in both the human brain and heart, particularly at
locations where anisotropic fibers cross within a single
voxel.

In this work, we investigate the observability of non-
Gaussian ADC profiles in DW data acquired using acqui-
sition parameters more typical of those used clinically.
Our sequence consists of a multiple gradient direction
scheme based on the work of Jones et al. (9) using a 1.5T
scanner, with a maximum b of approximately 1000 s/mm2.
We use the spherical harmonic (SH) series to provide a
hierarchy of models for the ADC profile. In the Methods
section, an efficient and robust method for fitting the SH
series to DW-MRI data is described together with a
method, based on the analysis of variance (ANOVA) test
for addition/deletion of variables, for selecting the most
appropriate level of truncation of the series. The combined
fitting and model selection procedures developed are used
to classify the profile in each voxel as arising from isotro-
pic, anisotropic Gaussian, or non-Gaussian pt, and thus to
produce maps of where these different types of behavior
occur. Non-Gaussian behavior is most likely to arise and
be observed in regions of high tissue complexity contain-
ing distributions of fiber orientations with multiple peaks,
such as fiber intersections. The maps generated from the
model selection procedure provide extra diagnostic infor-
mation in pathologies involving neuronal loss, degenera-
tion, or demyelination, since non-Gaussian behavior will
tend to disappear in the affected areas because the com-
plexity of the tissue structure is reduced. These maps can

also be used to highlight regions in which the ADT and its
derived indices are unreliable. We apply the method to
both in vivo human brain data and to synthetic data for
performance evaluation and validation.

METHODS

Models for the ADC Profile

In this section, we describe how the SH series can be used
to model the ADC profile. We define the SH series, de-
scribe how its coefficients are computed for a given func-
tion or set of sampled data, and discuss the relationship to
more familiar models of the ADC.

SH Series

The SH series (15) is analogous to the rectilinear Fourier
series, and provides an orthonormal basis of functions on
the sphere that can be combined linearly to represent any
complex valued spherical function. It consists of a set of
functions Yl, m: S23 C, where S2 is the unit sphere in 3D,
which we parametrize by � � [0, �) and � � [0, 2�), the
angles of colatitude and longitude, respectively; C is the
set of complex numbers. l � 0, 1, 2, . . . defines the order of
the SH and m � {–l, . . ., 0, . . .l} indexes the 2l�1 SH
functions of order l.

Any spherical function, f: S2 3 C, can be written as a
linear combination of the SHs:

FIG. 1. Simulated examples of ADC profiles. Top row: profiles corresponding to Gaussian diffusion processes: (i) prolate DT oriented along

the x-axis (eigenvalues [1700, 200, 200] 10–6 mm2/s), (ii) prolate DT oriented along the z-axis (eigenvalues [200, 200, 1700] 10–6 mm2/s),

(iii) oblate DT (eigenvalues [950, 950, 200] 10–6 mm2/s), and (iv) isotropic DT (eigenvalues [700, 700, 700] 10–6 mm2/s). Bottom row: ADC

profiles corresponding to the bi-Gaussian model combining pairs of DTs from the top row in equal proportion with b set to 1000 s/mm2;

(v) combines (i) and (ii), (vi) combines (i) and (iii), (vii) combines (ii) and (iii), and (viii) combines (i) and (iv).
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f��,�� � �
l�0

�

�
m��l

l

cl,m Yl,m ��,��. [8]

The complex coefficients, cl, m, of the SHs in Eq. [8] are
given by:

cl,m � �
0

2�

�
0

�

f ��,��Y*l,m ��,��sin �d�d�. [9]

In Eq. [9] and henceforward, * denotes the complex
conjugate.

Fitting the Series to Sampled Data

In the discrete case, where we have sampled data, F � {f(�i,
�i), i � 1, . . ., n}, one way to estimate the cl, m is to replace
the integral in Eq. [9] by a summation. However, as noted
by Brechbuhler et al. (16), this approach often provides
poor estimates, and a more robust approach is to compute
the least-squares solution. We adopt a similar approach
here. First, we define an enumeration of the SH series, so
that each SH is indexed by a single, unique integer, j(l,
m) � l2 � l � m. We select a maximum order for the series,
lmax, and then define an n  j(lmax, lmax) complex matrix,
X, to be the matrix with elements Xi, j(l, m) � Yl, m(�i, �i). If
we define C to be the j(lmax, lmax) component vector of SH
coefficients, then (16):

C
�
�M F

�
, where M � (X*T X)�1 X*T. [10]

lmax can be chosen by consideration of the number of
free parameters defining the series up to each order, which
should be less than or equal to the number of sampled
points.

Modeling DW-MR Data

In its most general form, the SH series can represent any
complex-valued function of the sphere in 3D. The set of
functions required to model ADC profiles, however, is
more constrained. In particular, the ADC is real-valued
and exhibits antipodal symmetry (d(k̂) � d(�k̂)).

The real-valued constraint ensures both that the imagi-
nary part of cl, 0 is zero for all l, and that cl,m � (�1)m c*

l,�m.
The SHs of odd order all define asymmetric functions on
the sphere, whereas the even orders are all symmetric. The
antipodal symmetry of the ADC profile thus ensures that it
can be represented by a series consisting only of even-
order SHs.

These constraints dramatically reduce the number of
parameters required to describe SH models truncated at
each order. The numbers of free parameters required for a
SH series including terms up to order 2N for general spher-
ical functions is 2(2N � 1)2, which is reduced to (2N �

1)(N � 1) for our real, symmetric functions.
Equation [10] shows that the calculation of the SH coef-

ficients from the set of sampled points on the ADC profile
is a linear transformation and so can be computed very

efficiently. Moreover, the set of sampled points at each
voxel in the image correspond to the same set of direc-
tions, so that {(�i, �i), i � 1, . . . n} is fixed over the image.
The matrix M, of Eq. [10], therefore need only be calcu-
lated once in order to compute C at each voxel.

Models at Different Orders

If the SH series is truncated at order 0, the series provides
an isotropic model, since the single 0th-order SH is con-
stant over the sphere. If the series is truncated at order 2, it
provides a model that is completely equivalent to the
familiar DT model. An expression for the DT in terms of
the 0th- and 2nd-order SH coefficients can be obtained if we
express k̂ in Eq. [6] in terms of � and �, as in Eq. [8], and
equate the right sides of these two equations. When we
include higher-order members of the series, a range of
more complex shapes becomes available. In particular, at
order 4 we can obtain models with two pairs of peaks that
have similar shape to the profiles obtained from the bi-
Gaussian model, shown in Fig. 1.

Model Selection

Once we have computed the coefficients of the SH series
for a set of measurements, a hierarchy of increasingly
complex models is obtained by truncating the series at
each order, l � 0, 2, 4, , lmax (the coefficients of the SHs
above order l are set to zero). Although higher-order mod-
els are more descriptive, in many cases they are not nec-
essary to describe the underlying function from which the
measurements were taken. For example, if the underlying
function is isotropic, we only need a series up to order 0 to
describe it, and higher-order terms will only represent
noise added to the data during the imaging process.

We use ANOVA to determine whether the addition of
more parameters to the model, i.e., truncating the series at
a higher order as opposed to a lower order, significantly
changes the fit of the model to the data (17). Given a set of
N sampled points, together with a lower order model M1

with p1 free parameters and a higher order model M2 with
p2 free parameters, the appropriate statistic for the F-test of
the hypothesis that the two models are equivalent, i.e., the
lower order model is sufficient, is

F(M1, M2) �
(N � p2 � 1)(Var(M2) � Var(M1))

(p2 � p1)E(M2)
. [11]

The degrees of freedom are N – p2 – 1 and p2 – p1 (17).
In Eq. [11], Var(M) denotes the variance of model M about
its mean value, and E(M) denotes the mean squared error
between model M and the N sampled points.

The full algorithm for modeling the ADC profile in one
voxel is outlined below:

● Compute the coefficients of the even SH series up to
order lmax using Eq. [10].

● Truncate the series at order 0 to obtain model M�.
● Set i � 2 and � � 0.
● While (i � lmax),

X Truncate the series at order i to obtain model Mi.
X Compute F(M�, Mi) using Eq. [11].
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X Define the null hypothesis to be that models Mi and
M� are equivalent.

X Compute the critical value, T, for F(M�, Mi) such
that if F(M�, Mi) � T then the probability of the null
hypothesis is less than a decision threshold, ��.

X If F(M�, Mi) � T (null hypothesis is rejected)
y Set � � i.

X Set i � i � 2.

● Select model M�.

EXPERIMENTS

The central hypothesis to be tested is that ADC profiles
corresponding to non-Gaussian diffusion processes occur
in the human brain, and that their effects can be observed
in data collected with parameters typical of standard clin-
ical MR scanners, using the methods described in the
previous section. In order to verify this hypothesis we
apply our methods to a variety of synthetic data and to
human brain DW-MR data.

The synthetic data is created by a Monte Carlo simula-
tion of the imaging process. This data is first used to set the
parameters of the model selection procedure, and subse-
quently to characterize its performance in terms of the
number and type of misclassifications that occur for noisy
profiles of known order. We go on to show the results of
applying our procedure to human brain data, which ex-
hibit clusters of non-Gaussian profiles in various well-
defined regions. In order to confirm that the higher-order
regions observed in the human brain data genuinely cor-
respond to non-Gaussian behavior, we perform a final
simulation in which parameters derived from fitting
Gaussian (order 2 SH) models in these regions are used to
generate synthetic data, which is then reprocessed to show
that if the data were truly Gaussian this would have been
detected reliably. For brevity, only the most significant
results are included, but more comprehensive results can
be found in Ref. 23.

Simulation Experiments

We simulate the imaging sequence used to acquire the
human brain data described in the next section in order to
generate noisy measurements of various ideal ADC pro-
files. A range of DTs is used to provide models for profiles
corresponding to isotropic and anisotropic Gaussian dif-
fusion, and we use a bi-Gaussian model, c.f. Eq. [7], to
obtain non-Gaussian ADC profiles corresponding to mixed
tissue and fiber crossings.

For a given profile, we simulate a 128  128 2D array of
noisy measurements of the profile. Isotropic complex
Gaussian noise is added to the simulated data in the time
domain, at a level corresponding to that observed in the
scanner in the absence of any signal. Noisy magnitude
images are reconstructed from this data, which correspond
to each of the 60 DW images acquired in our sequence (see
next section) together with three unweighted images.
Spin-echo attenuation and thence ADC measurements in
each of the 60 sampled directions are then calculated, and
our procedure is applied.

The first set of experiments performed are designed to
provide appropriate settings for the decision thresholds,

��, used in the F-test in the algorithm described in the
Model Selection section. Lower settings of the ��’s cause
the null hypotheses to be more difficult to reject, which
will generally result in an increase in the proportions of
lower-order models. Higher values of the ��’s result in a
greater proportion of higher-order models, and in general
there is a trade-off between the number of overfitted and
underfitted voxels, the occurrence of both of which we
would like to minimize. We simulate the following Gauss-
ian ADC profiles for testing using typical values as given in
Ref. 3:

1. Gray matter (GM). Approximately isotropic diffusion
with eigenvalues [700, 700, 700] (10–6 mm2/s) and
the unweighted signal is chosen so that its signal-to-
noise ratio (SNR), �0 � 35, which is typical in our
scanner data.

2. Prolate white matter (WM). Eigenvalues [1700, 200,
200] (10–6 mm2/s), �0 � 35.

3. Oblate WM. Eigenvalues [950, 950, 200] (10–6 mm2/
s), �0 � 35.

We also simulate profiles from orthogonal crossing fibers
in equal proportions, where each fiber is represented by a
prolate DT with eigenvalues [1700, 200, 200] (10–6

mm2/s) and �0 � 35.
For each profile, � is varied and the number of voxels at

which each model order is selected is recorded. For each
model order �, we choose �� to be the value for which the
sum of the rate of overfitting of profiles of known order �

and the rate of underfitting of profiles of known order ��2
is minimized.

Once appropriate decision thresholds for our F-tests
have been chosen in this way, we can characterize the
performance of our procedure on a wider range of input
data, which enables us to interpret results obtained from
scanner data reliably. A series of oblate and prolate Gauss-
ian ADC profiles are tested in which the anisotropy is
increased from zero to approximately the highest levels
observed in our brain data. The classification rates of our
procedure applied to the prolate data are plotted in Fig. 2,
and similar results were obtained from the oblate profiles.
These results demonstrate that with the selected ��’s our
procedure will identify anisotropic, Gaussian profiles cor-
rectly at order 2, with a classification rate over 92%, when
the difference ratio of the largest and smallest eigenvalues
of the DT is approximately 1.5 or greater. At this lowest
level of detected anisotropy, the rate of overfitting at order
4 is around 2%, but the rate increases steadily with in-
creasing anisotropy to about 8% for the most anisotropic
DT tested. This is reasonable to expect, because highly
anisotropic DTs contain very low ADC measurements in
which the noise component is high (19) and hence more
likely to cause significant deviation from the Gaussian
profile. Misclassification at orders above 4 is negligible.
Figure 2 also demonstrates the classification of isotropic
GM profiles, which is reliably order 0—the rate of misclas-
sification at order 2 is less than 0.1%. These rates are
consistent for other isotropic DTs with larger eigenvalues.

We also simulate bi-Gaussian profiles to emulate the
behavior at crossing fibers intersecting at angles of 90°,
67.5°, 45°, and 22.5°, and in proportions 1:1 and 3:1. Each
fiber is represented by a prolate DT with eigenvalues
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[1700, 200, 200] (10–6 mm2/s) and �0 � 35. Classification
rates from these profiles are plotted in Fig. 3. Figure
3 shows that our simulated fiber intersection profiles are
classified as order 4 consistently when the fibers are in
equal proportion and are orthogonal, when only 3% of the
profiles are underfit as order 2 profiles. However, the rate
of misclassification at order 2 increases significantly as the
proportion of the two fibers becomes less balanced and as
the two fibers become more parallel. This is again reason-
able to expect, because both these effects cause the devia-
tion of the profile from Gaussian to decrease. Classification
above order 4 for all these bi-Gaussian profiles varies be-
tween 0.5% and 1%. Other results (not shown, but see Ref.
23) demonstrate that the deviation from Gaussian behavior
that is obtained by mixing isotropic and anisotropic Gauss-
ian diffusion with the bi-Gaussian model is not reliably
detected by our procedure with these imaging parame-

ters—only a minor increase in the order 4 classification
rate (from 7% to 18%) is observed for these mixed profiles.

Human Data Experiments

DW-MRI data was acquired from four healthy volunteers
using a protocol similar to that outlined by Jones et al. (9).
All subjects were scanned with the approval of the joint
National Hospital and Institute of Neurology ethics com-
mittee and gave informed, written consent. Three un-
weighted (b � 0 s/mm2) images were acquired together
with 60 DW images with different gradient directions
spread evenly over the hemisphere, with gradient pulse
width � � 0.032 s, pulse separation � � 0.04 s, and gradi-
ent strength G � 0.022 Tm–1, which gives b � 1000 s/mm2

in each case. The reconstructed image array is 128 

128 in plane with a field of view (FOV) of 220 mm, and a

FIG. 2. Proportions of SH series model orders selected for profiles of simulated measurements from prolate DTs with varying levels of

anisotropy (increasing right to left).

FIG. 3. Proportions of SH series

model orders selected for profiles

of simulated measurements of a

bi-Gaussian ADC profile from a

combination of two prolate DTs

intersecting at various angles, A.

Results are included for cases in

which there are equal proportions

(Q � 0.5) of the two tissue types,

and three times more of one type

(Q � 0.75).
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total of 42 slices evenly spaced at 2.5 mm intervals were
acquired.

The procedures described in Methods were applied to
this data. Since 60 samples are available for each ADC
profile, the maximum series order that we can fit is 8 (45
parameters). We thus compute the coefficients of all even-
order SHs up to and including order 8 and then apply the

model selection procedure described above, with the de-
cision thresholds determined from the simulated data, to
choose the appropriate level of truncation of the series.
Prior to model selection, two thresholds on �0 are applied:
if �0 � 8.5, the voxel is classified as background and no
model is assigned; if �0 � 85, we assume the voxel corre-
sponds to CSF and assign an order 0 model, since flow

FIG. 4. Order maps from human brain data (left) together with color-coded principal DT direction maps (middle) and mean diffusivity maps

(right). The key below the images refers to the order maps in the left column.
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artifacts in these regions make the measurements unreli-
able.

Figure 4 shows maps of the order chosen by our model
selection procedure (left) for three axial slices of one of our
data sets (results from the other data sets can be found in
Ref. 23), together with mean diffusivity (right) and anisot-
ropy-weighted color maps indicating the principal direc-
tion of the DT at each point (middle). In the images in the
middle column, the red, green, and blue intensities corre-
spond to the size of the x, y, and z components of the DT
principal direction unit vector, weighted by the fractional
anisotropy (2) as proposed by Pajevic and Pierpaoli (18).

A detailed anatomical analysis of the results is beyond
the scope of this work, but we will highlight some inter-
esting features. First, our procedure appears to separate
regions of isotropic and anisotropic diffusion successfully.
Regions of GM are mostly assigned order zero models,
while regions of WM, both dense and peripheral, are
mostly assigned order 2. A significant percentage of voxels
are assigned higher order models. The spatial distribution
of these voxels exhibits distinct clusters in the image,
which have clear symmetry about the midline of the brain.
The clustering and symmetry strongly suggest that the
higher-order models correspond to genuine anatomical ef-
fects.

Each slice shown in Fig. 4 contains an anatomic region
that contains clusters of higher-order voxels consistently
in each of our four data sets. In the top slice, the region
corresponding to the pons contains a dense cluster of order
4 voxels (label 1). In this region, the right–left trans-pon-
tine tracts cross the inferior-superior pyramidal tracts,
causing partial volume effects between these two orthog-
onal fibers. In the middle slice, dense clusters of order
4 voxels are found in the optic radiation on both sides of
the brain (label 2). These occur precisely at the points
where the anterior–posterior tracts of the optic radiation
cross the predominantly right–left fibers of the corpus
callosum. In the bottom slice, large clusters of order

4 voxels can be observed within the corona radiata (label
3). Again this is reasonable to expect, since the diverging
fibers of the corona radiation are crossed by U-fibers in
these areas.

Figure 5 shows typical ADC profiles from each of these
three regions, together with the order 0, 2, 4, 6, and 8 SH
models. In each case, it is clear that there is significant
difference between the order 4 and order 2 models, which
indicates significant non-Gaussian behavior. The models
with order greater than 4 do not appear to change the
overall profile shape significantly further, and serve only
to incorporate noise effects. The measurement from the
pons is particularly striking and is typical of that predicted
by the bi-Gaussian model for two orthogonally intersecting
WM fibers (see Fig. 1). The measurement from the optic
radiation is similar but oriented within the axial plane and
somewhat less pronounced, possibly due to a less bal-
anced mix between the two fibers, or a smaller angle of
intersection. The profile from the corona radiata is more
difficult to interpret, and may be the result of effects that
are not modeled naturally by a bi-Gaussian model, such as
fiber divergence or compartments with exchange.

Further Synthetic Experiments

Since the set of DTs tested in the synthetic experiments
described in the Simulation Experiments section is not
exhaustive, it is possible that the regions we observe in the
human brain data simply exhibit Gaussian diffusion pro-
cesses that are particularly prone to overfitting in our
procedure. Thus, for completeness, we include an addi-
tional set of experiments to test this assertion. In each
region, we fit the DT (rather than the full SH series) at each
voxel and model the distribution of DT eigenvalues, �1 �

�2 � �3, together with the value of �0. We then use a Monte
Carlo method to draw samples from this distribution and
test the likelihood that the corresponding Gaussian ADC
profiles are overfitted with SH models with order greater

FIG. 5. Typical measurements (left) together with SH models of orders 0, 2, 4, 6, and 8 (second from left to right) from each of the three

higher-order clusters labeled in Fig. 4. Top: measurement from the pons (order 4 model selected). Middle: measurement from the optic

radiation (order 4 model selected). Bottom: measurement from the corona radiata (order 4 model selected).
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than 2. �0 is included in this model, because the noise
levels in ADC measurements depend on �0 as well as the
magnitude of the ADC itself (19).

For each of the regions highlighted in the previous sec-
tion (the pons, optic radiation, and corona radiata), a sub-
region of the order 4 cluster was selected. A model of the
distribution of DT shapes in each subregion was obtained
by fitting a 4D multivariate Gaussian model to the distri-
bution of vectors (�1, �2, �3, and �0). Our procedure was
then applied to large numbers of samples drawn from each
of these distributions, and the rate of classification above
order 2 was found to be less than 5% in each case. These
results verify that if the underlying diffusion process had
been Gaussian, our procedure would have been effective
and assigned most profiles in these regions order 2 models.
Thus we conclude that we are observing genuine non-
Gaussian effects in these regions.

DISCUSSION

We have described methods for modeling and detection of
non-Gaussian ADC profiles and shown that such profiles
can be observed with scanning parameters typical of stan-
dard clinical DW-MRI data. The SH series up to order
8 was fit to samples of the ADC profile in each voxel,
which provides a sequence of models of increasing com-
plexity. A series of ANOVA tests was used to find the
simplest of these models that adequately describes the
data. This latter procedure classifies the profile at each
voxel as isotropic, anisotropic Gaussian, or non-Gaussian,
and allows maps of these different types of behavior to be
produced, as shown in Fig. 4.

Our procedure was applied to human brain data col-
lected with parameters typical of those used in clinical
scans, and appeared to classify isotropic (GM) and aniso-
tropic (WM) regions correctly as order 0 and order 2,
respectively. On average, 5% of profiles in voxels within
the brain were classified as order 4 or above (non-Gauss-
ian). Several regions—in particular, the pons, optic radia-
tion, and corona radiation—were found consistently to
contain dense clusters of order 4 models. Validation of our
method was performed by characterizing its performance
using synthetic data with realistic noise properties, as well
as applying it to DT models of data in regions of the brain
that were consistently classified as non-Gaussian. Al-
though results from only one data set are shown here, our
method was applied to four data sets and other results can
be found in Ref. 23. Acquisition of a larger ensemble of
data sets is currently underway, which will enable para-
metric mapping to be performed in order to allow compar-
isons to be made between the occurrence of non-Gaussian
diffusion in different population groups.

The behavior maps produced by our method provide
new insights into the complexity of tissue structure in the
brain. These maps have a number of practical applications.
As mentioned in the Introduction, one aim is to use these
maps as a stain for diagnosis of structure-reducing pathol-
ogy. Furthermore, these maps can be used in postprocess-
ing algorithms, such as tractography algorithms, which
need to identify when diffusion is anisotropic and when
the principal direction of the DT can be relied upon to
describe the orientation of the underlying tissue. Finally,

these maps indicate when a more complex model (for
example, a bi-Gaussian model) than the DT needs to be
used to describe pt adequately. Typically, such models are
more difficult to fit to data than the DT and nonlinear
fitting algorithms must be employed (see for example Ref.
21). Such procedures are computationally expensive, so it
is advantageous to be able to identify only when they need
to be performed.

It seems likely that most of the non-Gaussian behavior
we observe is due to the intersection of WM fibers with
different orientation. This kind of tissue structure gives
rise to profiles similar to those that are derived from multi-
Gaussian pt’s (22), although it is also likely that some
exchange of particles between the tissue compartments
corresponding to each fiber occurs in the timescale of the
diffusion measurement, which will cause pt to deviate
from the multi-Gaussian (22). Other types of non-Gaussian
processes almost certainly occur in the brain, caused by
restriction due to impermeable barriers (22). However, the
deviation from Gaussian that is caused by these effects is
less marked than those due to multicompartmentation, so
such behavior may not be observed reliably—particularly
at low b-values such as those used here.

The advantages of the SHs as models for ADC profiles lie
both in their generality and in the simplicity and robust-
ness of the fitting procedure. Linearity of the fitting proce-
dure is a significant advantage in terms of computational
effort, but also ensures that the fitting procedure is well
posed and is not prone to spurious erroneous results.
There is little physical justification for the use of the SHs
in this context, and there may be more appropriate sets of
basis functions that better reflect the kind of ADC profiles
that are likely to arise given the underlying physical pro-
cesses. An advantage of this series, however, is its gener-
ality: any profile can be represented, and we do not limit
ourselves to particular models of the underlying processes.
We note for clarity that when pt is non-Gaussian the shape
of the ADC profile does not relate to pt in a straightforward
way, and thus the SH shape does not provide any direct
information about the underlying tissue structure. Al-
though it is possible to extract some information of this
type from non-Gaussian profiles on the sphere (21), this
issue is beyond the scope of this work.

There are many techniques for model selection in the
literature. The use of ANOVA and the F-test for deletion of
variables has proved more successful than most in our
application, but there may be others that improve perfor-
mance to some extent. The test we used is based on an
assumption of Gaussian errors in the measurements. Al-
though this is a reasonable first approximation for our data
(23), the full analytic form of the errors in ADC measure-
ments is not Gaussian. There are tests that incorporate
noise models for the data, which may improve classifica-
tion performance, particularly in extreme cases such as
very anisotropic diffusion. We note that the same tech-
nique could be used to produce a finer classification of
diffusion profiles; for example, we could distinguish be-
tween axisymmetric (two eigenvalues equal) and nonsym-
metric (all eigenvalues unequal), anisotropic Gaussian dif-
fusion.

In the present study we used only data acquired with
common clinical imaging parameter settings, and one of
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our goals was to demonstrate that significant non-Gaussian
behavior can be observed at b-values as low as
1000 s/mm2. Recently there has been a trend to move
toward higher b-values, which can produce profiles richer
in information; in particular, non-Gaussian behavior be-
comes more pronounced (10). Our methods are equally
applicable to data acquired with higher b-values, and we
would expect to observe a higher proportion of non-Gaus-
sian profiles in such data, which may highlight other re-
gions of the brain in which non-Gaussian behavior occurs.
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