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 Abstract  

In this paper the nonlinear material response of damaged composite structures under 

periodic excitation is experimentally and numerically investigated. In particular, the 

nonlinear wave propagation problem was numerically analysed through a finite element 

model able to predict the nonlinear interaction of acoustic/ultrasonic waves with 

damage precursors and micro-cracks. Such a constitutive model is based on the 

Landau’s semi-analytical approach to account for anharmonic effects of the medium, 

and is able to provide an understanding of nonlinear elastic phenomena such as the 

second harmonic generation. Moreover, Kelvin tensorial formulation was used to extend 

the wave propagation problem in orthotropic materials to the 3D Cartesian space. In this 

manner, the interaction of the stress waves with the 3D crack could be analysed. This 

numerical model was then experimentally validated on a composite plate undergone to 

impact loading. Good agreement between the experimental and numerical second 



harmonic response was found, showing that this material model can be used as a simple 

and useful tool for future structural diagnostic applications. 

 

Keywords: Nondestructive Evaluation Techniques, Nonlinear Ultrasound, Finite 

Element Method, Multiscale Modelling. 

 

1 Introduction  

Composite materials are renowned for their high strength to weight ratio, 

resistance to fatigue and low thermal expansion. However, due to their fragility to 

foreign object impacts, they present challenges for damage detection as much of the 

flaw is often interlaminar and not readily detectable. Such a defect is commonly referred 

to barely visible impact damage (BVID) and, if not promptly identified, it may cause 

strength and stiffness reductions driving the structure to collapse. 

In the last few decades, a number of acoustic/ultrasonic-based Non-destructive 

(NDT) Evaluation techniques and Structural Health Monitoring (SHM) systems were 

developed to provide an early detection and warning of critical defects [1], [2]. Most of 

them analyse the variations of linear properties of the elastic waves propagating into the 

medium due to the presence of damage. Indeed, changes of the wave speed and 

amplitude can be used as a signature to access the location and severity of structural 

anomalies. However, acoustic/ultrasonic methods based on classical linear 

elastodynamic theory can be difficult to apply to inhomogeneous materials, such as 

composite laminates, and, in general, to damaged structures where the crack size is 

comparable with the wavelength (e.g. micro-cracks, delamination, inclusions, etc…) 

[3]. 



Recent studies have shown that nonlinear ultrasonic measurements are sensitive 

to low levels of defects and they can be used for detecting damages at their earliest 

stages [4], [5]. In particular, it was analytically and experimentally shown that the 

progressive degradation of the material structure and the presence of cracks create 

ultrasonic wave distortion along the wave propagation path. From a physical point of 

view, when a damage specimen is excited by an external dynamic load, the excitation 

produces compressive and tensile stresses on the edges of the crack, causing its 

“clapping” motion [6]. Hence, due to mechanical contacts between the crack interfaces, 

the wave induced response of the material generates nonlinear elastic effects such as 

higher harmonics of the excitation frequency [7].  

Therefore, nonlinear elastic wave spectroscopy (NEWS) and phase symmetry 

analysis (PSA) techniques were developed to provide an effective means to characterise 

the structural damage by investigating the magnitude of higher (even) harmonics caused 

by nonlinear material behaviour [8], [9]. Particularly, as the second harmonic is 

quadratic with the amplitude of the fundamental frequency, it can be used as a signature 

of the presence of cracks or delamination within the medium [10]. Simplified nonlinear 

elastic theories have attempted to significantly provide an understanding of the 

generation of nonlinear phenomena in metallic and composite structures, especially in 

the presence of micro-cracks [11], [12], [13], [14]. However, these analytical 

approaches are mainly 1D or 2D and they may not succeed in reproducing the whole set 

of observed phenomena. Hence, numerical models can be used as an alternative for a 

more complete analysis, including the extension to the 3D space for anisotropic 

structures [15], [16], [17], [18].  



The aim of this paper is to experimentally and numerically investigate nonlinear 

material responses of damaged composite structures. In particular, the nonlinear wave 

propagation problem was numerically analysed through a nonlinear elastic material 

model for the simulation of the acoustic/ultrasound stress waves with micro-cracks. 

Such a constitutive model is implemented in an explicit in-house finite element (FE) 

numerical software and it is based on the Landau’s semi-analytical approach to account 

for anharmonic effects of the medium. In particular, the nonlinear structural response of 

the damaged material under continuous periodic (harmonic) input is represented through 

a finite number of FE elements with varying properties defining their nonlinear stress-

strain relationship. Moreover, Kelvin tensorial formulation was used to extend the wave 

propagation problem in orthotropic materials to the 3D Cartesian space. In this manner, 

the interaction of the stress waves with the 3D crack could be analysed. As a result, it 

was possible to numerically reproduce nonlinear experimentally-observed phenomena 

such as the even (second) harmonic generation effect. This numerical model was then 

experimentally validated on a composite plate undergone to impact loading. Good 

agreement between the experimental and numerical second harmonic response was 

found, showing that this material model is able to provide an understanding of nonlinear 

elastic phenomena in composite structures with different levels of damages. 

The layout of the paper is as follows: in Section 2 the 3D nonlinear elastic model for 

composite structures is presented. Section 3 reports the numerical test case used for the 

comparison with experimental test, whilst Section 4 illustrates the experimental set-up 

and the NDT techniques (C-scan and CT-scan) used to detect and access the damaged 

area. The comparison between the numerical and experimental results is presented in 

Section 5 and then, the conclusions of the paper are discussed. 



2 Nonlinear Constitutive Model  

Linear stress-strain relationship defined in Hooke’s law is usually inadequate to 

describe the nonlinear mechanical behaviour of solids with distributed damage (micro-

cracks and micro voids) and with inelastic behaviour [19], [20]. Indeed, damaged 

materials such as aluminium, steel and composites that have atomic elasticity arising 

from atomic-level forces between atoms and molecules, exhibit classical nonlinear (also 

known as anharmonic) effects which can be described by the nonlinear elastic theory of 

Landau [21]. Particularly, the expression of the nonlinear elastic modulus KC can be 

obtained through a 1D power law expansion of the stress with respect to the strain : 

   2

0 1 KKC  (1) 

where K0 is the linear elastic modulus,  and  are classical second order and third order 

nonlinear coefficients. However, for most of solids only the first nonlinear term  can 

be sufficient to predict the material’s nonlinear response. This coefficient can be 

experimentally obtained from the measurement of the second harmonic amplitude 

generated from a single pure tone input [22]. Moreover, since Eq. (1) represents a scalar 

model, it cannot be used to investigate the 3D anisotropic material behaviour of a 

cracked sample to different types of waves (bulk waves, guided waves, etc…) (Fig. 1).  

 

Figure 1 Material nonlinear response with a 3D crack. 

 



Hence, to overcome this limitation, Kelvin notation was used to extend the standard 

Voigt stress-strain formulation in a tensorial equivalent form for the 3D Cartesian space 

[23]. Indeed, by introducing Kelvin representation, the Voigt stress-strain relationship 

for a homogeneous orthotropic elastic medium becomes: 

 εKσ ~~~   (2) 

where the new components of the 6D stress and strain vectors are: 
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where K is the stiffness matrix in Voigt formulation. The symmetric matrix K
~

 can be 

shown to represent the components of a second-rank tensor in the 6D space [24]. In 

accordance with Ciampa and Meo [25], the aim of this approach consists of determining 

the eigenmoduli  and the associated eigentensors ε~  of Eq. (2) in order to form an 

ortho-normalized basis for the stress and strain tensors of the second rank. In this 

manner, these tensors can be decomposed with respect to this basis in the 6D space. In 

other words, we seek for the eigenvalues  (known as Kelvin moduli) that satisfy the 

following equation: 

   0~~
 εΛIK . (5) 

Since the six-dimensional linear transformation K
~

 is assumed to be symmetric and 

positive definite, there will be a maximum of six positive eigenelastic constants i  

( 6,,1i ) associated to Eq. (5). In addition to the six values of Λ , also six values of 



ε~  will be associated to the problem (5), which are denoted by the vector  i
ε~  in the 6D 

space. The stresses  i
σ~  obtained by multiplying  i

ε~  by the eigenvalues i  are called 

the stress eigentensors. Therefore, a Cartesian basis in the 6D space can be constructed 

from the normalized strain eigentensors, denoted by N
~

: 

 1
~~

;~~~;~~~ 2
 NNεεεεNε . (6) 

Hence, the stress eigentensors can be written in terms of the normalized strain 

eigentensors using Eqs. (2), (5) and (6) as: 
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With respect to the 6D space, σ~ , ε~ and K
~

 have the following representation: 
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and: 
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where   indicated the tensor or dyadic product. The projection of the strain state given 

by Eq. (3) along the eigenvectors obtained using Eq. (8) defines the eigenstrain vector 

i
~ . Thereby, the total elastic modulus due to nonlinear material behaviour defined in 

Eq. (1) becomes: 

   2

,
~~1

~
iiiiTOTK  . (10) 

Once the total elastic modulus iTOTK ,

~
 ( 6,,1i ) is obtained, according to Eqs. (10) 

and (9), the 6 x 6 nonlinear stiffness matrix KTOT can be then transformed from Kelvin 



to Voigt notation and it can be used for the implementation of the explicit FE numerical 

method at each individual time step. 

 

2.1 Nonlinear Finite Element Simulation 

The application of explicit FE analysis in wave propagation problems allows computing 

the nodal forces and displacements without recourse to a factorization of the global 

stiffness matrix in a step-by-step solution. Let us consider a 3D solid domain   with 

boundary  discretized with 3D elements. The weak form of the equilibrium equations 

for the continuum   can be derived from the displacement variational principle as 

follows [26]: 

 int
FFuM  ext  (11) 

where the dots superscript denotes a second time derivative operation of the global 

displacement vector u  and the external nodal forces vector ext
F , the internal nodal 

forces vector int
F  and the (lumped) diagonal mass matrix M are: 
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where  e
L  is the Boolean connectivity matrix that gather the nodal displacement  e

d  of 

each element e to the global one over the entire domain  , eln  is the total number of 

elements,  e  and  e  are the element domain and its boundary, T
Φ  is the transpose of 

the shape function matrix, t  and b  are the surface traction and body (inertial) force of 



the element, respectively. The element stiffness matrix  eC  in Eq. (12a) can be 

expressed in terms of the nonlinear stiffness matrix KTOT as follows [27]: 

  
  
e

dTOTTe
BKBC  (13)  

whilst the element mass matrix in Eq. (12c) is: 

  
  
e

dTe
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Finally, the strain nodal displacement matrix is defined by: 

  
uBLε

e  (15) 

The global displacement at the instant of time k+1 using the central difference method 

is given by: 
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where k=0, 1, 2, … corresponds to times 0t , Tt  , Tt 2 , …, and T  is the time 

increment. To guarantee numerical stability to the method, the time increment used for 

the simulation satisfy the following condition [28]: 
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where fmax is the largest natural frequency of the system. The numerical scheme defined 

by Eq. (16) can be used by those elements that present either linear or nonlinear 

features. Whilst in the former case, the nonlinear elastic moduli are zero, in the 

nonlinear case the nonlinear stiffness matrix of the element has to be constantly updated 

at each time step due to the amplitude dependence with the material constants.  

 



3 Numerical Test Case 

The influence of nonlinear material effects on the FE model illustrated above was first 

numerically verified on a 3D composite plate with dimensions 153 x 106 x 3 mm (Fig. 

2).  

 

Figure 2 Geometry of the 3D composite plate. 

 

The mesh was made of 15000 nodes with 77322 nodes in way that the element 

length was approximately 1 mm. The mechanical properties are reported in Table 1, 

whilst the stacking sequence for a quasi-isotropic laminate is [0/45/90/-45]s. 

 

Table 1: Orthotropic Material Properties 

E11 

(GPa) 

E22 

(GPa) 

E33 

(GPa) 

G12 

(GPa) 

G23 

(GPa) 

G31 

(GPa) 

12  23 31  

kg/m3

131 9 9 5.7 5.37 5.37 0.3 0.29 0/34 1545 

 

The numerical model was meshed with tetrahedral solid elements using the 

isoparametric formulation and it was implemented in an in-house FE code developed by 

the authors. According to Fig. 2, the plate was modelled in a cantilever position so that 

it was fixed at one end, whilst the other was kept free. The plate was dynamically 



loaded with a continuous, harmonic and uniform in-plane traction force according to the 

following periodic law: 

   )2sin( 0tfAts   (18) 

where A is the amplitude of the input source and f0 is the excitation frequency. In this 

case, an amplitude A=5x103 Pa and a fundamental frequency f0=150 kHz were used. 

Such a time-dependent pressure distribution was applied from an area located at xi=90 

mm and yi=48 mm on the top surface, in way to represent the numerical model of two 

sensors operating in pitch-catch mode. The output (in-plane displacement) of the 

numerical model was measured within a time window of 3105  s and, according to 

Eq. (17), the sampling time (time step) was set to 7101 T s. 

 

4 Experimental set-up 

The experiments were carried out on a composite CFRP plate with the same 

dimensions and a lay-up sequence as in the numerical case (Fig. 3).  

 

Figure 3 Experimental set-up. 

 

A dropped-weight impact test machine with a hemispherical tip was used for hitting the 

test panel at 12 J. Such an energy level was chosen in order to inflict damage in the 

composite laminate corresponding to a BVID. In order to transmit the input source and 



measure the material nonlinear response, two different surface bonded transducers were 

used, i.e. a broadband APC sensor with diameter of 6.35 mm and thickness of 2.55 mm, 

and a MFC-P2 transducer with length of 37 mm and width of 18 mm. The APC sensor 

was employed as receiver and it was instrumented with an oscilloscope (Picoscope 

4224) with a sampling rate of 10 MHz and an acquisition window of 3105  s. To 

transmit the continuous sinusoidal waveform with a frequency f0=150 kHz, the MFC 

transducer was linked to a preamplifier and connected to an arbitrarily waveform 

generator (TTi-TGA12104). Additionally, the carbon fibre specimen was positioned on 

two foam pieces in order to reduce the environmental noise (Fig. 4).  

 

Figure 4 Set-up of the data acquisition system. 

 

4.1 Evaluation of Damaged Area 

In order to obtain a qualitative image of the delamination generated by the impact and, 

thus, to provide an indication of the damaged area, two standard NDT tests were 

performed, i.e. an ultrasonic C-Scan and an X-ray tomography (CT-Scan). In the first 

test, the “USL SCM 12X” ultrasonic C-Scan was used to image the defect (Fig. 5). 

Indeed, this linear ultrasonic test showed two damage locations with an “apparent” 

undamaged area in the middle of the composite specimen (represented by a white colour 



area). However, since a protrusion occurred as a result of impact loading, the ultrasonic 

C-scan was able to reveal only the presence of damage within the laminate, but it was 

not able to detect and access the damaged area beneath this protrusion due to poor 

acoustic impedance. 

 

Figure 5 Image of the defect using ultrasonic C-Scan. 

 

Therefore, in way to obtain a quantitative estimation of the presence of delamination 

beneath the composite surface, a second nondestructive test was performed. In 

particular, a “Nikon Metrology XT H 225 ST” computational tomography machine was 

used to take a series of 2D X-ray images of the test specimen. Fig. 6 displays the 

damaged area at various depths caused by the impact within the cross-section of the 

material.  

 

Figure 6 CT-scan image showing the damages occurred at a different depth. 

 



Since at the impact point loaded laminates were pushed upwards causing all the 

laminates to move towards the top of the specimen, an indentation on the bottom and a 

protrusion on the top of the sample were generated. This resulted in the creation of a 

“pine tree” shape of the damage with three different delaminations occurred within the 

composite laminate (Fig. 6). Therefore, based on the CT-scan results, for the calculation 

of the damaged location a circular area was assumed with a radius of 10 mm and a 

thickness of 2 mm. 

 

5 Numerical and Experimental Results 

According to the previous section, the nonlinear classical material was modelled by 

imposing a combination of the semi-analytical Landau and Kelvin formulation to those 

elements within the damaged area. In this manner, the 3D nonlinear response to 

different types of stress waves could be simulated. In order to compare the amplitude of 

the second harmonic between the numerical model and the experimental test, only the 

influence of the second order nonlinear coefficient  was considered [Eq. (10)]. 

Moreover, the mesoscopic elements with nonlinear features were assumed to be 

uniformly distributed over a circular area with diameter of 20 mm and thickness of 2 

mm located at the middle of the plate.  

The quadratic nonlinear parameter  was experimentally calculated as the ratio between 

the amplitude of the second harmonic and the square value of the fundamental one, and 

it was used as an input for simulating the nonlinear behaviour of the composite 

structure. In our case a value of =0.4 was found. Hence, the nonlinear signature 

(harmonic generation) could be easily disclosed by the analysis the recorded signals in 

the frequency domain. Fig. 7 shows the comparison of the fast Fourier transformation 



(FFT) of the in-plane displacement component ux at xi=30 mm and yi=50 mm from both 

the experimental and numerical (FE) tests.  

 

Figure 7 Comparison of the in-plane displacement spectra from experimental (red) and simulated (blue) 

material responses. 

 

From Fig. 7 it can be clearly seen that a good agreement between the values of the 

second harmonic from the experimental and numerical tests was achieved. Indeed, in 

accordance with theoretical and experimental evidence [29], [30], [31], the second 

harmonic contribution is predominant in the measured material response due to the 

presence of damage. Moreover, it should be noted that the amplitude of the fundamental 

harmonic was normalized to a unit value. In this manner, it was possible to compare 

both simulated and experimental material responses in the case where no information 

about the mechanical pressure exerted by the actuator sensor was provided. 

Hence, this numerical model can be employed to understand the nonlinear behaviour of 

3D composite structure, or, alternatively, for nonlinear inverse problems, in which the 

size of the micro-crack or the fatigue crack grow can be estimated from the analysis of 

the harmonic structural responses. 

 



Conclusions 

The purpose of this study was to validate a numerical elastic material model with 

experimental results for the analysis of the nonlinear harmonic response in composite 

structures. By means of semi-analytical Landau and Kelvin formulation, this 

constitutive model allows the description of the structural response under continuous 

harmonic excitation in 3D composite laminates. In this manner, nonlinear elastic effects 

observed experimentally such as the second harmonic generation could be simulated. To 

validate the proposed model, experimental tests were conducted on a composite plate 

undergone to impact loading. Good agreement in the level magnitude of the second 

harmonic between the numerical and experimental tests, not only verify the validity of 

the theoretical model, but also shows its promising future in the application of 

nondestructive testing. Future work is now undergoing to extend this model to further 

nonlinear elastic phenomena such as vibro and inter-modulation (side-bands generation) 

in a variety of materials. 
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