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Summary.Enteric caliciviruses are emerging pathogens responsible for diarrhea
or gastroenteritis in their respective hosts. In this report, mink enteric caliciviruses
(MEC) were detected in feces from diarrheic mink by both immune electron mi-
croscopy (IEM) and RT-PCR using a broadly reactive primer pair (p289/290) tar-
geting the highly conserved RNA polymerase regions of the enteric caliciviruses,
Norwalk-like viruses (NLVs) and Sapporo-like viruses (SLVs). The MEC pos-
sess classical caliciviral morphology with typical cup-shaped depressions on the
viral surface. Sequence analyses based on nucleotide and predicted amino acid
(aa) sequences of the RT-PCR products indicated that MEC is most closely re-
lated genetically to SLVs of humans and animals. The MEC shared the highest aa
identities (64–71%) in the RNA polymerase region with both human SLVs and
the porcine enteric calicivirus (PEC) Cowden strain SLV, indicating that MEC
may belong to an individual genogroup or subgroup in the SLV genus. The MEC
shared only limited aa identities in the RNA polymerase region with vesiviruses
(40–51%) and NLVs (29–33%). The RNA polymerase regions of the cultivable,
non-enteric mink caliciviruses (MCV) were also amplified by RT-PCR using the
primer pair Pol1/Pol3 based on sequences of vesiviruses, and the primer pair
p289/290. Sequence analysis indicated that these MCV shared higher aa identi-
ties in the RNA polymerase region with vesiviruses (58–81%) than with SLVs
(43–51%) including the MEC, lagoviruses (35–37%) and NLVs (27–35%), sug-
gesting that they are most closely related genetically to vesiviruses. The MEC
associated with diarrhea in mink are morphologically similar to but are geneti-
cally distinct from the cultivable MCV and likely represent a new member of the
SLV genus.
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Introduction

Caliciviruses are small, nonenveloped viruses of 27–38 nm in diameter and pos-
sess a single-stranded, plus-sense RNA genome of 7.3–8.3 kb in length and a
single structural protein of 56–70 kD. Caliciviruses in the familyCaliciviridae
are currently divided into 4 genera: 1) Vesivirus; 2) Lagovirus; 3) “Norwalk-
like viruses” (NLVs); and “Sapporo-like viruses” (SLVs) [13].Vesivirusescause
vesicular lesions and reproductive failure in swine and marine animals or res-
piratory infections in cats, dogs and calves, but were also isolated from normal
animals or reptiles [3, 4, 29, 33, 36].Lagovirusescause a fatal liver necrosis
and systemic hemorrhage in rabbits [25, 28]. The NLVs include a large group
of viruses associated with food- and waterborne viral gastroenteritis in humans,
which are subdivided into 2 distinct genogroups represented by the prototype
strains, Norwalk virus (NV) and Snow Mountain virus (SMV) [6, 21]. Bovine
enteric caliciviruses (BEC), Jena virus and Newbury agent-2 cause diarrhea in
calves [2] and were recently characterized as NLVs [5, 24]. The SLVs includ-
ing Sapporo, Manchester and Parkville viruses are mainly associated with acute,
nonbacterial gastroenteritis in infants and young children worldwide [6, 17, 21,
23, 30, 31]. Porcine enteric calicivirus (PEC), Cowden strain, which causes diar-
rhea in pigs [10] and is the only cultivable enteric calicivirus [11, 32], has been
identified as a new member in the SLV genus [14]. The caliciviruses associated
with gastroenteritis in cats and chickens remain uncharacterized at the molecular
level [2]. Detection of the NLVs and SLVs in feces from normal and diarrheic
pigs or calves [5, 24, 34, 37, 38, 40] raises public health concern for potential
cross-species transmission of enteric caliciviruses and possible cattle or swine
reservoirs for enteric caliciviruses related to human caliciviruses.

The first enteric calicivirus, Norwalk virus was discovered by immune elec-
tron microscopy (IEM) of stools from diarrheic school children in Norwalk, Ohio
in 1972 [21], and its genome was the first to be sequenced [18]. With applications
and improvements of molecular diagnostic techniques, many newly characterized
enteric caliciviruses were more recently found to be responsible for numerous out-
breaks of food- and waterborne viral gastroenteritis worldwide [8, 27, 42]. By
using RT-PCR with multiple primers based on highly conserved RNA polymerase
sequences of many representative or prototype enteric caliciviruses, a large num-
ber of new strains of NLV or SLV were detected in stools of people involved in
outbreaks of gastroenteritis [8, 19, 40] and also in feces from normal and diar-
rheic swine and cattle [5, 14, 24, 37, 40]. Moreover, enteric caliciviruses were also
detected by RT-PCR in foods, water, sewage, fomites, etc. [12, 21, 35]. Conse-
quently, human caliciviruses (HuCV) have emerged as the leading cause of food-
and waterborne viral gastroenteritis in humans [27]. Recently, a newly-designed
primer pair, p289/290 has been shown to amplify the partial RNA polymerase
regions of both NLVs and SLVs [19].

Mink caliciviruses (MCV) were first isolated from normal mink on ranches
with a history of hemorrhagic pneumonia (pseuodomonas pneumonia), but no
disease was attributed to their presence [7, 26]. The MCV were grown in Vero cells
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and were antigenically distinct from VESV, SMSV and feline calicivirus (FCV)
by neutralization tests [26]. Recently, coronaviruses, rotaviruses and caliciviruses
were detected by electron microscopy in fecal samples collected from healthy and
“sticky kits” or diarrheic young mink [20].

In this study, caliciviruses were first detected in fecal samples collected from
diarrheic young mink by immune electron microscopy (IEM) using antiserum
to PEC/Cowden. Then RT-PCR was performed to detect the enteric caliciviruses
in mink feces by using a wide range of primer pairs for the RNA polymerase
regions of SLVs and NLVs. Next, the RNA polymerase regions of 3 previously
isolated, cultivable MCV strains [26] were similarly amplified by using RT-PCR.
Finally, the genetic relationships between MCV and mink enteric caliciviruses
(MEC) and between MEC, MCV and other human and animal caliciviruses were
determined by sequence analysis and phylogenetic studies.

Materials and methods

Background of the diarrhea outbreak

The mink diarrhea outbreak occurred in early June, 1999 on a fur farm in the Northern U.S.
Initially, the older mink had diarrhea which spread into the younger kits (5 weeks of age)
which developed profuse diarrhea that persisted for several days. About 30 to 40% of the kits
developed diarrhea. Fecal samples were collected from diarrheic kits at 2 to 6 days after the
onset of diarrhea. Fecal samples collected on the same day from several diarrheic mink kits
were pooled, and a total of 5 pools were collected and stored at−20◦C until use.

Cultivable mink caliciviruses

The MCV isolates #9, 13, and 20 were originally isolated from nasal swabs of normal mink
on ranches with hemorrhagic pneumonia (Pseudomonas aeruginosa) [7, 26]. The MCV
were grown in Vero cells and harvested at maximum cytopathic effect within 3 to 4 days
postinoculation.

Immune electron microscopy (IEM)

The IEM was performed as described [34]. Mink fecal samples were diluted 1:5 in 0.01 M
PBS, pH 7.2, sonicated and centrifuged at 1,200×g for 30 min. The supernatants were filtered
(0.45mm pore-size filter), mixed with hyperimmune serum to PEC/Cowden (1:100, 1:500),
hyperimmune serum to bovine coronavirus (1:100) and the dilution buffer as a control,
respectively, followed by incubation at 4◦C overnight. The MCV/20/80/US isolate grown in
Vero cells was centrifuged at 1,200×g for 50 min to remove cellular debris and the supernatant
was saved and centrifuged at 69,020×g for 2 h to pellet the virus. The virus pellet was
resuspended to half the original volume in PBS and then incubated separately with the
hyperimmune sera and the dilution buffer control as described above. The mixtures were
then centrifuged at 69,020×g for 35 min. The pellets were washed once with distilled water
and then were resuspended in distilled water and stained with 2% phosphotungstic acid, pH
7.0. Samples were examined using an electron microscope (Phillips 201, Philips-Norelco,
Eindhoven, The Netherlands).

Extraction of viral RNA

Viral RNA was extracted by using TRIzol LS reagent according to the instructions provided
by the supplier (GibcoBRL, Grand Island, NY). Briefly, 10% suspensions of fecal samples in
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0.01 M PBS, pH 7.2 were sonicated and centrifuged at 1,200×g for 30 min. The supernatant
was mixed with 3 volumes of TRIzol LS reagent by vortexing and incubated at 15–30◦C
for 5 min. The mixture was mixed with 0.8 volumes of chloroform by vigorous vortexing
for 1 min followed by centrifugation at 12,000× g for 15 min at 4◦C. The viral RNA in the
upper aqueous phase was precipitated with 1ml of glycogen (20mg/ml) and an equal volume
of isopropanol. The RNA pellet was resuspended in 50ml of DEPC-treated water and stored
at−20◦C until use. For extraction of MCV RNA, the MCV grown in Vero cell cultures were
prepared as described above.

Reverse transcription-polymerase chain reaction (RT-PCR)

Multiple primers targeting the RNA polymerase regions of caliciviruses from 3 genera
in the Caliciviridae were used in RT-PCR for detection of potential caliciviruses in the
mink fecal samples and for amplification of the target region of the 3 MCV isolates. These
primers included P289/290, GLPSG1/YGDD1, JV12/JV13, NV35/NV36, NV36/NVp110,
NI/NVp110, SR33/SR46, SR33/NV-3, Hel1/Hel2, Pol1/Pol2 and Pol1/Pol3 [1, 19, 22, 24,
29, 42, 43]. The primers PEC45 (4883TCTGTGGTGCGGTTAGCCTT4864) and PEC46
(4312GTGCTCTATTGCCTGGACTA4331) were designed based on the genomic sequence
of PEC/Cowden [15]. We tried the primer pair, p289/290 initially in RT-PCR for amplifica-
tion of the target regions of the respective caliciviruses because of its broad reactivity with
NLVs and SLVs [19]. The RT-PCR was performed by using the Titan one tube RT-PCR sys-
tem (Roche Molecular Biochemicals, Mannheim, Germany). Only one primer pair was used
in each RT-PCR reaction. Briefly, 5ml of RNA was mixed with 1ml of dimethyl sulfoxide
(DMSO) and 25 pmol of a reverse primer. The mixture was incubated at 70◦C for 10 min
and then chilled on ice for 2 min. To each reaction tube was added 1ml of 10 mM dNTPs,
25 pmol of forward primer, 2.5ml of 100 mM dithiothreitol (DTT), 10ml of 5×reaction
buffer, 1.5ml of 25 mM MgCl2, and 1ml of enzyme mix (AMV reverse transcriptase and
Taq DNA polymerase). The total 50ml reaction mixtures were placed on a Perkin-Elmer
GeneAmp 2400 Thermocycler (Perkin-Elmer, Norwalk, CT), equilibrated at 42 to 50◦C and
incubated for 60 min, followed by denaturation at 94◦C for 3 min and 35 cycles of denat-
uration at 94◦C for 30 sec, annealing at 42 to 55◦C for 30–60 sec and elongation at 72◦C
for 1 min and a prolonged elongation at 72◦C for 7 min. The PCR products were analyzed
by agarose gel electrophoresis and ethidium bromide staining. The PCR products of an
expected size were purified by using Qiagen quick PCR purification columns (Qiagen Inc.,
Santa Clarita, CA), and were either directly sequenced by using an automated DNA sequencer
ABI377 or cloned into a TA cloning vector pCR2.1 (Invitrogen, Carlsbad, CA) first and then
sequenced.

Sequence analysis

The lasergene software (DNA Star Inc., Madison, WI) was used to analyze DNA sequences.
Multiple alignments of nucleotide and predicted amino acid sequences were performed by
using the University of Wisconsin Genetics Computer Group software package. To further
define the genetic relationship between MEC, MCV and caliciviruses representative of each of
the four genera, phylogenetic trees were generated for the predicted aa sequences of the RNA
polymerase region. Sequences were aligned using CLUSTAL W [39] and the evolutionary
tree was generated by using the Neighbor-Joining method [9]. The confidence values of the
internal lineages within the phylogenetic trees were determined by boostrap analysis using
PHYLIP package [9]. In each bootstrap analysis, 100 bootstrap datasets were created from
which trees were generated. A consensus of the bootstrapped trees was made.
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Accession number

The partial sequences of the MCV and MEC strains have been deposited in the GenBank
database.

Results

Immune electron microscopy (IEM)

Typical caliciviral particles were detected in all 5 pools of mink fecal specimens
by IEM using hyperimmune serum to PEC/Cowden (Fig. 1, Table 1). The viruses
were 30 to 35 nm in diameter and possessed cup-shaped depressions on the virion
surface, which is characteristic of classical caliciviruses like vesiviruses and the
SLV (Fig. 1). These viruses showed slight reactivity with hyperimmune antiserum
to PEC/Cowden, but only at an antibody dilution 5–10 fold more concentrated than
that reactive with PEC/Cowden. Interestingly, these viruses were morphologically
indistinguishable from the cultivable MCV [7]. However, the MCV did not react
with high titered hyperimmune antiserum to PEC/Cowden. The specificity of the
IEM was also determined by using hyperimmune antiserum to bovine coronavirus.
None of the mink fecal samples were positive for coronavirus or reactive with the
antiserum to bovine coronavirus by IEM.

RT-PCR for amplification of the viral RNA polymerase region

By using the broadly reactive primer pair, p289/290, the expected PCR prod-
ucts of 331 bp were amplified by RT-PCR in all 5 pools of fecal specimens from

Table 1. Detection of mink enteric calicivirus (MEC) in feces of mink with diarrhea and mink calicivirus (MCV)
isolates from clinically normal mink by EM, IEM and RT-PCR

Mink EM IEM RT-PCR with primer pair
sample

MEC or MCV Anti-PEC seruma Anti-BCV serumb p289/290 Pol1/Pol3 Hel1/Hel2

MEC
WD1236 + +/−c −c + − −
WD1237 + +/− − + − −
WD1238 + +/− − + − −
WD1239 + +/− − + − −
WD1240 + +/− − + − −

MCV
9 + NTd − + + +

13 + NT − + + +
20 + − − + + +

aHyperimmune antiserum to PEC/Cowden
bHyperimmune antiserum to bovine coronavirus (BCV)
c + /− = Small number of virus aggregates with antiserum to PEC compared to PBS control,− = no reaction

with hyperimmune serum
dNT Not tested
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Fig. 1. Electron micrographs of mink en-
teric caliciviruses (MEC) from feces (a) and
mink calicivirus (MCV) from cell culture
(b). Viruses in fecal or cell culture samples
were incubated with hyperimmune pig anti-
serum (diluted 1:100) against PEC/Cowden
and a small number of aggregates were seen
with MEC in a but not with MCV inb. Virus
particles in the negative stain electron micro-
graph show the typical caliciviral morphol-
ogy with distinct cup-shaped depressions on
the viral surface. Bars: 100 nm

the diarrheic mink (Table 1). By setting the annealing temperature at 42◦C or
45◦C, the expected products were consistently visualized after agarose gel elec-
trophoresis of the PCR reactions from all 5 specimens. However, if the annealing
temperature was set at 50◦C or higher, no visible bands of expected products
were amplified by using RT-PCR. It was noted that RT-PCR using p289/290
correlated with IEM for detecting the MEC from the mink fecal specimens
(Table 1). No products with expected size were amplified from mink fecal sam-
ples by RT-PCR using primers GLPSG1/YGDD1, NV35/NV36, NV36/NVp110,
NI/NVp110, SR33/SR46, SR33/NV-3, Pol1/Pol2 and Pol1/Pol3. There were also
no products amplified from mink fecal specimens in RT-PCR with the PEC-
specific primers PEC45/PEC46.

By using primers Pol1/Pol3, amplicons of 339 bp were amplified in RT-PCR
from the three MCV isolates [9, 13, 20]. These products were smaller than those
amplified for SMSV 6 and 7, VESV C52 and I55, and primate calicivirus (PCV)
(419 bp) by 80 bp [29]. Sequence analysis indicated that the MCV amplicons had
a deletion of 80 bp at the 3′ end, which might result from the binding of Pol3 to the
upper regions of the templates. With primers Pol1/Pol2, a weak product of 350 bp
was amplified from MCV 9, but not from MCV 13 and 20. The amplicons with an
expected size of 407 bp were also amplified in RT-PCR from the 3 MCV isolates
by using primers Hel1/Hel2 based on sequences of the vesivirus helicase regions
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[29]. These products were not sequenced because of the low yield. No products of
expected sizes were amplified by using primers GLPSG1/YGDD1, NV35/NV36,
NV36/NVp110, NI/NVp110, SR33/SR46, and PEC45/PEC46. Interestingly, am-
plicons of 331 bp were obtained in RT-PCR from the 3 MCV isolates by using
the primer pair p289/290 at lower annealing temperature (40 to 42◦C), indicating
that this primer pair was very broadly reactive with caliciviruses, including some
vesiviruses.

Sequence analysis

The four RT-PCR products (331 bp) directly sequenced for MEC shared 100% nu-
cleotide sequence identities with each other, suggesting the same original source
for viruses in the mink fecal specimens. The predicted amino acid sequences
of the amplicons contained the GLPSG motifs characteristic of the RNA poly-
merase regions of caliciviruses and viruses in thePicornaviridaesuperfamily.
The amplicons shared only limited nucleotide and aa sequence identities with the
RNA polymerase regions of vesiviruses (34–43%, 46–54%), lagoviruses (34–
37%, 40%) and NLVs (27–38%, 29–33%) including the BEC, Newbury agent-2
and Jena virus (partial data shown in Table 2), respectively. However, they shared
the highest nucleotide and aa identities with the RNA polymerase regions of SLVs
(54–61%, 64–70%, respectively). The MEC shared 68.5% amino acid identity in
the RNA polymerase region with PEC/Cowden, newly characterized as a SLV of
animal origin.

The amplicons produced with primer pairs p289/290 and Pol1/Pol3 from the 3
MCV isolates were sequenced directly and the overlapping regions were aligned to
generate longer fragments (464 bp). The assembled fragments contained GLPSG
and YGDD motifs characteristic of the RNA polymerases of caliciviruses. The
MCV 20 shared 96.1% nucleotide and aa sequence identities in the partial RNA
polymerase region with both MCV 9 and 13, whereas the MCV 9 shared 98.1%
nucleotide and 100% aa sequence identities in the same region with the MCV
13 (data not shown). The 3 MCV isolates shared only limited nucleotide and aa
identities in the RNA polymerase region with SLVs (39–44%, 43–51%), RHDV
(33%, 35–37%) and NLVs (27–34%, 27–35%), respectively, but shared much
higher nucleotide and aa identities with vesiviruses (50–65%, 58–81%, respec-
tively) (partial data shown in Table 2). The MCV shared higher aa identity in the
RNA polymerase region with canine calicivirus (81%) than with VESV/SMSV
(62–69%) and FCV (58–64%) in the vesivirus genus. Comparatively, the MCV
shared lower nucleotide and aa identities (37–39%, 47–50%, respectively) in the
RNA polymerase region with the MEC identified in fecal samples of the diarrheic
mink.

Phylogenetic tree of the RNA polymerase regions

The phylogenetic tree generated for the RNA polymerase regions of MEC and
MCV, using the predicted aa sequences (Fig. 2) was similar to that generated for
the same region by using nucleotide sequences (data not shown). The evolutionary
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tree indicates that MEC is more closely related genetically to the SLVs than
to other human and animal caliciviruses. The MEC fell into the PEC/Cowden
branch, but showed genetic diversity from PEC/Cowden and human SLVs. The
MCV isolates 9, 13, and 20 are most closely related genetically to vesiviruses.
MCV fell into the canine calicivirus (CaCV) branch, but remained genetically
distinct from VESV/SMSV, FCV and even CaCV based on their aa sequence
identities in the RNA polymerase region (Table 2). All the known calicivirus
reference strains were segregated or differentiated into the respective genogroups
or genera in theCaliciviridae family, and the evolutionary tree created for the
sequences of the viruses in the individual genus is concordant with that in Fig. 2,
which indicated 4 distinct major branches representing 4 different genera in the
Caliciviridae family. The bootstrap values ranged from 46 to 100%, and for the
major nodes that differentiated the viruses into separate genotypes the bootstrap
values were often up to 95–100%.

Discussion

A recent report suggests that HuCV (NLVs and SLVs) cause 23 million cases of
foodborne illnesses in the U.S. annually, accounting for 67% of the cases caused
by foodborne pathogens in the U.S. and 33% of annual hospitalizations due to
foodborne illnesses [27]. The recognition of HuCV as an important foodborne
pathogen relies largely on the development and improvement of molecular assays
for detection of HuCV in stools and other specimens. Because of the great genetic
diversity among caliciviruses, multiple primer pairs usually need to be used in RT-
PCR for sample examination. A broadly reactive primer pair, p289/290 based on
the RNA polymerase sequences of 25 prototype and currently circulating HuCV
strains in the NLV and SLV genera was able to detect more viruses in either the
NLV or SLV genera than previously designed primers [19].

In this study, calicivirus particles were detected by IEM in all 5 pooled fecal
samples collected from the diarrheic mink kits during an outbreak of diarrhea in
a mink ranch. The viruses possessed the typical classical calicivirus morphology
characterized by cup-shaped depressions on the virion surface. No coronaviruses
or other virus-like particles were observed, suggesting that the “classical cali-
civirus” detected in mink feces might be associated with the diarrhea in kits.
By using RT-PCR with the primer pair p289/290, we obtained products of 331 bp
(expected size for SLVs) from all 5 mink fecal samples. These products contained
the GLPSG motif and shared the highest aa identities (60–70%) with the RNA
polymerase regions of SLVs, suggesting that MEC is a new member in the SLV
genus.

MEC was morphologically indistinguishable from the MCV originally iso-
lated from normal mink [7, 26]. The cultivable MCV were antigenically distinct
from FCV and the multiple serotypes of VESV and SMSV by virus neutralization
tests [26]. Thus it was of interest to determine the genetic relationships between
MEC and MCV. We used primer pair Pol1/Pol3 based on the RNA polymerase se-
quences of VESV and SMSV [29] and successfully amplified products of 339 bp
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from all 3 MCV isolates by using RT-PCR. These products were smaller than the
expected ones for some VESV and SMSV [29], because of the 3′ deletion (80 bp)
that may result from unexpected binding of Pol3 to the upper regions of the tem-
plates. By using the primers p289/290, we also obtained the expected products
from all 3 MCV isolates. This is further evidence of the extremely broad reactiv-
ity of p289/290 to detect not only the NLVs and SLVs, but also some vesiviruses
such as the MCV. The enteric caliciviruses associated with diarrhea in pigs, cattle,
chicken and dogs were initially detected by EM or IEM [2, 34, 38], but this method
is cumbersome, insensitive and time-consuming to use for large numbers of fecal
samples and hence not practical for large scale epidemiologic surveys. Because
only a few enteric caliciviruses of animal origin are characterized and limited se-
quence data are available, the calicivirus broadly reactive primers p289/290 can
be used for the clinical diagnosis of enteric caliciviral infections in humans and
animals and for environmental monitoring.

The amplicons obtained with p289/290 from MCV overlapped the 5′ end of the
products amplified with primer pair Pol1/Pol3 and sequence assembly generated
a fragment of 465 bp. The assembled fragments contained the GLPSG and YGDD
motifs characteristic of the calicivirus RNA polymerases and shared the highest
aa sequence identities with the RNA polymerase regions of vesiviruses (58–81%).
The 3 MCV isolates shared very high nucleotide and aa sequence identities (96–
100%) with each other, which correlates with their close antigenic relatedness
determined by virus neutralization tests [26]. Similarly, the genetic divergence
between MCV and VESV, SMSV and FCV correlated with their antigenic dis-
tinctiveness. Usually, the caliciviral RNA polymerase region is more conserved
than the capsid region which determines the viral antigenic identity and serotype.
It was proposed that viruses with less than 80% aa identity in the complete capsid

b
Fig. 2. Phylogenetic tree generated for the sequences in the RNA polymerase region of cali-
civiruses. Amino acid sequence alignment was generated from the SKWDS sequence to the
YGDD motif of the RNA polymerase. Calicivirus sequences used in the alignment were
retrieved from GenBank. Strain names and abbreviations (GenBank accession numbers) are
as follows: SLV: SV-Sapporo (S77903), MV-Manchester (X86559), PV-Parkville (U73124),
Hou86-HuCV Houston/86 (U95643), Hou90-Houston/90 (U95644), Lon92-London/92
(U67857), PEC/Cowden (AF182670), MEC-mink enteric calicivirus (XXXX);Vesiviruses:
FCV-feline calicivirus (M86379), SMSV-1-San Miguel sea lion virus serotypes 1 (U15301),
SMSV-4 (U15302), SMSV-5 (U18731), SMSV-6 (U18732), SMSV-13 (U18734), SMSV-
14 (U18735), VESV-vesicular exanthema of swine virus, A-48 (U18737), I-55 (U18740),
BCV-bovine calicivirus (U18741), PCV-primate calicivirus (AF091736), MCV/9/80/US-
mink calicivirus, MCV/13/80/US, MCV/20/US;Lagovirus: RHDV-rabbit hemorrhagic dis-
ease virus (M67473); NLV: NV-Norwalk (87661), DSV-Desert Shield (U04469), SHV-
Southampton (L07418), JV-Jena virus (bovine 117/80/FRG) (AJ011099), NA-2–Newbury
agent-2, Snow Mountain virus (L23831), Toronto virus (U02030), Mexico virus (U22498),
Hawaii virus (U07611), Lordsdale virus (86557), Bristol virus (X76716), Oth-25 virus
(L23830), Sw/NLV/43/98/-swine calicivirus (AB009415) detected in Japan, Bo/NLV/
176-Norwalk-like virus detected in calves in the Netherlands in 1998 (AF194183),
Sw/NLV/34-Norwalk-like virus detected in pigs in the Netherlands in 1998 (AF194184)
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gene may represent distinct antigenic types or serotypes [16]. Our findings pro-
vide a further genetic basis supporting the antigenic distinction between MCV and
other vesiviruses. The MCV were the most closely related genetically to CaCV, a
recently identified vesivirus genetically different from SMSV/VESV and FCV in
theVesivirusgenus [33]. However, the MCV and CaCV may comprise two inde-
pendent genogroups distinct from VESV/SMSV and FCV in this genus because
the MCV shared only 81% aa identity with CaCV even in the highly conserved
RNA polymerase region [16, 17].

MEC are morphologically similar to, but genetically distinct from MCV based
on partial RNA polymerase sequence analyses, which was confirmed by phylo-
genetic studies of the predicted aa sequences. MEC was most closely related
genetically to SLVs and may be a new member of this genus. From the phylo-
genetic tree, MEC was assigned to the same branch as PEC/Cowden, but both
of them shared only 68.6% aa identity in the RNA polymerase region with each
other. Thus MEC may comprise an independent genogroup distinct from Sap-
poro/Manchester virus, Houston/90/Parkville virus, London/92 and PEC/Cowden
in the SLV genus [17].

Enteric caliciviruses cause diarrhea in many animal species [2], but only a
few have been characterized molecularly, including PEC/Cowden, BEC Newbury
agent-2 and Jena virus [5, 14, 24]. To our knowledge, this is the first report
of the molecular characterization of a MEC associated with diarrhea in mink.
Interestingly, NLV genes were detected in cecal contents of slaughtered pigs in
Japan [37] and in pooled fecal specimens of farm animals (veal calves and pigs)
in the Netherlands [40], raising public health concerns for potential zoonotic
transmission of enteric caliciviruses of animal origin. The MEC is closely related
genetically to SLVs, but its source is unknown. In this mink ranch, the mink
affected by the diarrhea outbreak were fed raw kidneys and livers from pigs and
cattle. It is unknown if such unprocessed animal by-products were contaminated
by enteric caliciviruses from swine or cattle and thus were the source of infection
for mink. Further studies are needed to clarify if such MEC infect pigs or calves
and if these animals and mink are possible reservoirs for enteric caliciviruses
potentially transmissible to humans. The origin and the lack of pathogenicity
of MCV for mink is of additional interest. It was suggested that MCV from
normal mink might originate from marine animals because the affected mink
were commonly fed marine by-products and the MCV infection was widespread
in mink based on serology [26, 36]. However, the MCV were genetically (this
report) and antigenically distinct from the SMSV/VESV [26].

In summary, the MEC associated with mink diarrhea was identified as a po-
tential new member of the SLV genus, and it was genetically distinct from the
MCV that were characterized as potential new members of theVesivirusgenus.
Thus the enteric and non-enteric caliciviruses from mink were genetically distinct
from each other. The primer pair, p289/290 proved to be very broadly reactive,
not only with NLVs and SLVs including the MEC associated with mink diarrhea,
but also with the MCV of theVesivirusgenus, indicating that this primer pair can
be used for clinical diagnosis and epidemiological investigations.



Characterization of mink enteric and non-enteric caliciviruses 491

Acknowledgements

We thank the Canadian Mink Breeders Association and the Mink Farmers Research Founda-
tion for help in identifying mink ranches with diarrheal problems and for their partial funding
for this study. We appreciate the technical assistance of Alison J. McKeirnan who assisted in
the propagation of MCV. We are grateful to Drs. Xi Jiang (Eastern Virginia Medical School,
Norfolk, VA) and John D. Neill (National Animal Disease Center, USDA, Ames, IA) for
providing primer information and to Dr. Qijing Zhang and Qiuhong Wang for help with
sequence analyses. Salaries and partial research support were provided by state and federal
funds appropriated to the Ohio Agricultural Research and Development Center, The Ohio
State University.

References

1. Ando T, Monroe SS, Noel JS, Glass RI (1997) A one-tube method of reverse transcription-
PCR to efficiently amplify a 3-kilobase region from the RNA polymerase gene to the
poly(A) tail of small round-structured viruses (Norwalk-like viruses). J Clin Microbiol
35: 570–577

2. Bridger JC (1990) Small viruses associated with gastroenteritis in animals. In: Saif
LJ, Theil KW (eds) Viral diarrheas of man and animals. CRC Press, Boca Raton,
pp 123–145

3. Carter MJ, Milton ID, Madeley CR (1991) Caliciviruses. Rev Med Virol 1: 177–186
4. Cubbit WD (1994) Caliciviruses. In: Kapikian AZ (ed) Viral infections of the gastroin-

testinal tract. Marcel Dekker, New York, pp 549–568
5. Dastjerdi AM, Green J, Gallimore CI, Brown DWG, Bridger JC (1999) The bovine

Newbury agent-2 is genetically more closely related to human SRSVs than to animal
caliciviruses. Virology 254: 1–5

6. Estes MK, Hardy ME (1995) Norwalk virus and other enteric caliciviruses. In: Blaser MJ,
Smith PD, Ravdin JI, Greenberg HB, Guerrant RL (eds) Infections of the gastrointestinal
tract. Raven Press, New York, pp 1009–1304

7. Evermann JF, Smith AW, Skiling DE, McKeirnan AJ (1983) Ultrastructure of newly
recognized caliciviruses of the dog and mink. Arch Virol 76: 257–261

8. Faukhauser RL, Noel JS, Monroe, Ando T, Glass RI (1998) Molecular epidemiology of
Norwalk-like viruses in outbreaks of gastroenteritis in the US. J Infect Dis 178: 1571–
1578

9. Felsenstein J (1993) PHYLIP (Phylogeny Inference Package) version 3.5c. Distributed
by the author. Department of Genetics, University of Washington, Seattle

10. Flynn WT, Saif LJ, Moorhead PG (1988) Pathogenesis of porcine enteric calicivirus in
four day old gnotobiotic piglets. Am J Vet Res 49: 819–825

11. Flynn WT, Saif LJ (1988) Serial propagation of porcine enteric calicivirus-like virus in
porcine kidney cells. J Clin Microbiol 26: 206–212

12. Green KY (1997) The role of human caliciviruses in epidemic gastroenteritis. Arch Virol
[Suppl] 13: 153–165

13. Green KY, Ando T, Balaya MS, Berke T, Clarke IN, Estes ME, Matson DO, Nakata S,
Neil JD, Studdert MJ, Thiel H-J (2000) Taxonomy of the caliciviruses. J Infect Dis 181
[Suppl 2]: S322–S330

14. Guo M, Chang KO, Hardy ME, Zhang Q, Parwani AV, Saif LJ (1999) Molecular char-
acterization of a porcine enteric calicivirus genetically related to Sapporo-like human
caliciviruses. J Virol 73: 9625–9631

15. Guo M, Parwani AV, Cho KO, Lucas LM, Saif LJ (1999) Pathogenesis of tissue culture
adapted porcine enteric calicivirus in gnotobiotic pigs. Proceedings of the 80th Annual



492 M. Guo et al.

Meeting of the Congress of Research Workers in Animal Diseases, Chicago, 1999. Iowa
State University Press, Ames, Abstract 106

16. Hardy ME, Kramer SF, Treanor JJ, Estes MK (1997) Human calicivirus genogroup II
capsid sequence diversity revealed by analyses of the prototype Snow Mountain agent.
Arch Virol 142: 1469–1479

17. Jiang X, Cubbit WD, Berke T, Zhong W, Dai X, Nakata S, Pickering LK, Matson DO
(1997) Sapporo-like human caliciviruses are genetically and antigenically diverse. Arch
Virol 142: 1813–1827

18. Jiang X, Graham DY, Wang K, Estes MK (1990) Norwalk virus genome cloning and
characterization. Science 250: 1580–1583

19. Jiang X, Huang PW, Zhong W, Farkas T, Cubitt WD, Matson DO (1999) Design and
evaluation of a primer pair that detects both Norwalk- and Sapporo-like caliciviruses by
RT-PCR. J Virol Methods 83: 145–154

20. Jorgensen M, Scheutz F, Strandbygaard B (1996)Escherichia coliand virus isolated
from “sticky kits”. Acta Vet Scand 37: 163–169

21. Kapikian AZ, Estes MK, Chanock RM (1996) Norwalk group of viruses. In: Fields BN,
Knipe DM, Howley PM, Chanock RM, Melnick JL, Monath TP, Roizman B, Straus SE
(eds) Fields Virology. Lippincott-Raven, Philadelphia, pp 783–810

22. Le Guyader F, Estes MK, Hardy ME, Neill FH, Green J, Brown DWG, Atmar RL (1996)
Evaluation of a degenerate primer for the PCR detection of human caliciviruses. Arch
Virol 141: 2225–2235

23. Liu BL, Clarke IN, Caul EO, Lambden PR (1995) Human enteric caliciviruses have a
unique genome structure and are distinct from the Norwalk-like viruses. Arch Virol 140:
1345–1356

24. Liu BL, Lambden PR, Günther H, Otto P, Elschner, Clarke IN (1999) Molecular char-
acterization of a bovine enteric calicivirus: relationship to the Norwalk-like viruses.
J Virol 73: 819–825

25. Liu SJ, Xue HP, Pu BQ, Qian NH (1984) A new viral disease in rabbits. Anim Husb Vet
Med 16: 253–255

26. Long GG, Evermann JF, Gorham JR (1980) Naturally occurring picornavirus infection
of domestic mink. Can J Comp Med 44: 412–417

27. Mead PS, Slutsker L, Dietz V, McCaig LF, Bresee JS, Shapiro C, Griffin PM, Tauxe RV
(1999) Food-related illness and death in the United States. Emerg Infect Dis 5: 607–625

28. Meyers G, Wirblich C, Thiel HJ (1991) Rabbit hemorrhagic disease virus-molecular
cloning and nucleotide sequencing of a calicivirus genome. Virology 184: 664–676

29. Neill JD, Meyer RF, Seal BR (1995) Genetic relatedness of the caliciviruses: San Miguel
sea lion and vesicular exanthema of swine viruses constitute a single genotype within
theCaliciviridae. J Virol 69: 4484–4488

30. Noel J, Liu B, Humphrey C, Rodriguez E, Lambden P, Larke I, Dwyer D, Ando T, Glass
R, Monroe S (1997) Parkville virus: a novel genetic variant of human calicivirus in the
Sapporo virus clade, associated with an outbreak of gastroenteritis in adults. J Med Virol
52: 173–178

31. Numata K, Hardy ME, Nakata S, Chiba S, Estes MK (1997) Molecular characterization
of morphologically typical human calicivirus Sapporo. Arch Virol 142: 1537–1552

32. Parwani AV, Flynn WT, Gadfield KL, Saif LJ (1991) Serial propagation of porcine enteric
calicivirus: effects of medium supplementation with intestinal contents or enzymes. Arch
Virol 120: 115–122

33. Roerink F, Hashimoto M, Tohya Y, Mochizuki M (1999) Organization of the canine
calicivirus genome from the RNA polymerase gene to the poly(A) tail. J Gen Virol 80:
929–935



Characterization of mink enteric and non-enteric caliciviruses 493

34. Saif LJ, Bohl EH, Thiel KW, Cross RF, House JA (1980) Rotavirus-like, calicivirus-like
and 23 nm virus-like particles associated with diarrhea in young pigs. J Clin Microbiol
12: 105–111

35. Schaub SA, Oshiro RK (2000) Public health concerns about caliciviruses as waterborne
contaminants. J Infect Dis 181 [Suppl 2]: S374–S380

36. Smith AW, Skilling DE, Cherry N, Mead JH, Matson DO (1998) Calicivirus emergence
from ocean reserviors: Zoonotic and interspecies movements. Emerg Infect Dis 4: 1–11

37. Sugieda MH, Nagaoka Y, Kakishima Y, Ohshita T, Nakamura S, Nakajima S (1998)
Detection of norwalk-like virus genes in the caecum contents of pigs. Arch Virol 143:
1215–1221

38. Theil KW, McCloskey CM (1995) Detection of SRSV in fecal specimens from recently
weaned pigs by IEM using pooled weaned pig serum. Proceedings of the 76th Annual
Meeting of the Congress of Research Workers in Animal Diseases, Chicago, 1995. Iowa
State University Press, Ames, Abstract 110

39. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of
progressive multiple sequence alignment through sequence weighting, positions-specific
gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680

40. van der Poel WHM, Vinje J, van der Heide R, Herrera M-I, Vivo A, Koopmans MPG
(2000) Norwalk-like calicivirus genes in farm animals. Emerg Infect Dis 6: 36–41

41. Vinje J, Deijl H, van der Heide R, Lewis D, Hedlund K-O, Svensson L, Koopmans MPG
(2000) Molecular detection and epidemiology of Sapporo-like viruses. J Clin Microbiol
38: 530–536

42. Vinje J, Koopmans MP (1996) Molecular detection and epidemiology of small round-
structured viruses in outbreaks of gastroenteritis in the Netherlands. J Infect Dis 174:
610–615

43. Wang J, Jiang X, Madore HP, Gray J, Desselberger U, Ando T, Seto Y, Oishi I, Lew JF,
Green KY, Estes MK (1994) Sequence diversity of small round-structured viruses in the
Norwalk virus group. J Virol 68: 5982–5990

Authors’ address: Dr. L. J. Saif, Food Animal Health Research Program, Department of
Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The
Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, U.S.A.

Received June 6, 2000


